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Abstract

Genome-wide association studies have revealed that the genetic architectures of complex
traits vary widely, including in terms of the numbers, effect sizes, and allele frequencies of
significant hits. However, at present we lack a principled way of understanding the similarities
and differences among traits. Here, we describe a probabilistic model that combines mutation,
drift, and stabilizing selection at individual sites with a genome-scale model of phenotypic
variation. In this model, the architecture of a trait arises from the distribution of selection
coefficients of mutations and from two scaling parameters. We fit this model for 95 diverse,
highly polygenic quantitative traits from the UK Biobank. Notably, we infer similar distributions
of selection coefficients across all these traits. This shared distribution implies that differences
in architectures of highly polygenic traits arise mainly from the two scaling parameters: the
mutational target size and heritability per site, which vary by orders of magnitude across traits.
When these two scale factors are accounted for, the architectures of all 95 traits are nearly
identical.
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Introduction

A central goal of genetics is to understand how genetic variation maps to phenotypic variation.
Starting in the late 20th century, there was huge progress toward identifying the genes for Mendelian
traits. But most phenotypic variation in humans is genetically complex, and it is only in the last
15 years that genome-wide association studies (GWAS) have started to reveal the genetic basis of
variation in a wide array of complex traits [1]. These studies have now identified tens of thousands
of robust associations between genetic variants and a wide array of traits and diseases.

One intriguing observation from this work is the striking variation in genetic architecture among
complex traits [2–5]. (Here, we use the term architecture to refer to the numbers of causal variants
and their joint distribution of allele frequencies and effect sizes.) Traits have been found to vary in
all aspects of genetic architecture, including: the number and magnitude of significant signals found
at a given sample size [6]; the fraction of heritability explained by lead GWAS signals [3]; the allele
frequency distributions of significant variants [4, 7]; the estimated numbers of causal variants [8, 9];
and the SNP-based heritability [10,11].

Nonetheless, diverse traits do show important similarities. First, most complex traits are in-
fluenced by large numbers of variants with small effects, only a small fraction of which can be
confidently detected at current sample sizes [12–14]. Indeed, even relatively “simple” complex traits
such as molecular biomarkers are highly polygenic with ∼104 causal variants spread widely across
the genome, compared to ∼105 or more variants for traits such as height or BMI [2,9, 15–17].

Second, the distributions of effect sizes of causal variants are not fit well using standard modeling
assumptions such as normal distributions. Instead, effect sizes typically span several orders of
magnitude, much like power-law distributions [18,19].

Third, trait-associated variants are often highly pleiotropic: i.e., they influence many traits
simultaneously. Many pairs of traits show significant genetic correlations, indicating that allelic
impacts are often shared [16, 20, 21]; moreover, whenever different traits are mediated through
overlapping cell types or pathways, we can expect that they will share many of the same regulatory
variants even if the directions of effects are uncorrelated [5, 14,16,22].

Fourth, selection plays a central role in shaping complex trait architecture. Evolutionary theory
predicts that variants with phenotypic effects would usually be under selection and, in particular,
that selection is usually stronger for larger-effect variants [23]. Consistent with this, variants with
larger effect sizes tend to be at lower frequencies, indicating that selection prevents such variants
from reaching high frequencies [24–26]. Since heritability depends on both effect sizes and allele
frequencies, an important consequence is that the genes that are most important for a trait con-
tribute less to heritability than would be expected in the absence of selection, thus flattening the
heritability distribution across genes [17,27,28].

Here we develop a principled approach for understanding similarities and differences in genetic
architecture. Specifically, we want to understand how the population genetic processes of mutation,
selection, and drift alongside properties of individual traits determine the numbers of variants, as
well as the joint distributions of allele frequencies and effect sizes. What features of these processes
are shared across traits? And which are different?

To answer these questions, we require a model for how population genetic processes shape com-
plex trait architecture. Current models differ primarily in their assumptions about the relationship
between selection on alleles (or alternatively their frequencies), and the effect sizes of those alleles on
a trait of interest [23]. The heuristic ‘α-model’, developed for estimating SNP heritability, assumes
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a particular parametric relationship between allele frequencies and effect sizes [25, 29, 30]. While
the α-model is motivated by the observed inverse relationship between effect size and frequency,
the precise functional form is arbitrary. In turn, several evolutionary models postulate particular
parametric relationships between the strength of selection on alleles and their effect sizes, and then
rely on explicit population genetics models to derive the relationship between allele frequencies and
effect sizes and other aspects of genetic architecture [31–36]. These models, however, differ in their
predictions about architecture, owing to the various ad-hoc parametric relationships they assume.

Simons et al. (2018) introduced an evolutionary model that moves beyond ad-hoc choices by
deriving the relationship between selection on alleles and their effects on a trait under an explicit,
interpretable, biological model [27]. Motivated by extensive evidence that many quantitative traits
are subject to stabilizing selection, where fitness declines with displacement from an optimal trait
value [23, 37, 38], and that genetic variation affecting one trait often affects many others [5, 16, 22],
they modeled selection on alleles that arises from stabilizing selection in a multi-dimensional trait
space. They then used an explicit population genetic model to derive the genetic architecture of a
focal trait with mutation, genetic drift, and stabilizing selection in a multi-dimensional trait space.

As we will show in the next section, the Simons et al. model can be reframed as a generative
(statistical) model for the genetic architecture of a continuous complex trait, which depends on a few
biologically interpretable parameters. We next describe approaches to infer these parameters and
test the model fit based on data from GWAS. Applying our inference to 95 diverse, highly-polygenic
quantitative traits from UK Biobank we show that this model provides an excellent fit to the data.
Surprisingly, we find that most variation in architecture among traits is explained by differences in
just two scaling parameters: the mutational target size and heritability per site.

Results

A population genetic model of complex traits. As a starting point, we assume that pheno-
typic variation exists in a high-dimensional trait space under stabilizing selection. Here we outline
key elements of the model; further details and biological motivation can be found in the Supplement
and in [23,27].

We model each person’s phenotype as a point in an n-dimensional trait space, and assume that
this dimension is high (n ≥ 10). To model stabilizing selection we assume that there is an optimal
phenotype, and that fitness decreases with Euclidean distance from the optimum (Figure 1A).

The phenotypic effect of each variant is represented by a random vector in the n-dimensional
trait space, namely

⇀

b = (b1, b2, ...bn), where bi is the additive effect of the derived allele on the i-th
trait. We assume that a person’s phenotype arises from their genotype according to the standard
additive model in n-dimensions: it is a vector sum over the effects of all variants plus a random
vector representing the environmental effects [39].

The model thus far is mathematically similar to Fisher’s Geometric model [40], which Fisher
and others used to study adaptive processes [41], but we consider a different question and a different
evolutionary setting. We focus on the genetic architecture of a single highly polygenic trait that
arises in the balance between mutation, stabilizing selection in the multidimensional trait space,
and genetic drift.

Mutation, selection, and drift at individual sites. Each generation, mutation introduces new
trait-affecting variants into the population at a rate µ per site, per gamete, per generation. The
long-term fate of variants is determined by the combined action of selection and drift.
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Under stabilizing selection, at equilibrium, selection holds the phenotypic mean very close to
the optimal phenotype, and thus acts against mutations (and against variation in general). The
strength of selection, s, acting against a variant is proportional to its squared magnitude in the
n-dimensional trait space (Figure 1B):

s = ||
⇀

b||2 /VS =

n∑
j=1

b2j/VS (1)

with VS reflecting the width of the fitness function around the optimum.

Given s we can compute the present day allele frequency distribution, as follows. When traits
are subject to stabilizing selection, selection at individual sites is under-dominant, meaning that se-
lection acts against minor alleles, regardless of the direction of effect [27,42,43]. At strongly selected
sites, this approximates the standard model of selection against deleterious alleles. Specifically, the
expected change in allele frequency at an autosomal site in a single generation, given current derived
allele frequency q is

E[∆q] = −sq(1− q)(
1

2
− q). (2)

Meanwhile, the variance in the change in allele frequencies, i.e., drift, scales inversely with population
size. Hence, the distribution of present-day allele frequencies is the result of a stochastic process
including past mutations, selection, and drift – which depends on the history of population sizes.
For our analysis here, we computed the distribution of present day allele frequencies under the
stabilizing selection model using a demographic model estimated for the British population [44]. As
expected, strongly selected variants (large s) tend to be rare, while nearly-neutral variants (small
s) can drift to high frequencies (Figure 1C).
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Figure 1: The model. (A) We use Fisher’s concept of a multi-dimensional trait space. Under
stabilizing selection, an individual’s fitness declines with distance from the optimal phenotype [40].
(B) The selection coefficient experienced by a variant is proportional to the sum of squared effects
on all traits. (C) We compute the distribution of derived allele frequencies (q) conditional on s and
demography. (D) The distribution of effect sizes for Trait 1 (b1) is normally distributed given s.
(E) The generative model for q, β, and the observed Z-score at any given site.
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The relationship between selection and effect sizes. Next we need to understand how selection in
the multi-dimensional trait space relates to the genetic architecture of a single focal trait of interest.
Without loss of generality, we focus on the first dimension in the n-dimensional trait space, and to
simplify the notation we denote the effect size b1 of a variant on trait 1 simply as b.

While it seems natural to think about s as a function of a variant’s effects on traits, here we
invert this relationship: specifically, we need the conditional distribution of the effect size on trait
1 given s. This conditional distribution reflects uncertainty about the projection of

⇀

b onto the first
dimension if all we know is s (or equivalently ||

⇀

b||2). Fortunately, when the number of traits is
sufficiently large, this conditional distribution is well approximated by a simple form (see [27] and
SI Section 1.3), namely:

b|s ∼ N(0, c · s), (3)

where c = VS/n. Intuitively, variants under weak selection (small s) tend to have small squared
effect sizes (b2) and variants under strong selection (large s) tend to have larger squared effect sizes
(Figure 1D).

With the distributions for b and q given s, we can now compute the expected per site contri-
bution to phenotypic variance as a function of s, given by E[2b2q(1− q)|s]. Under non-equilibrium
demography, the expectation does not have a simple form but it is plotted in Figure S2. At sites
where selection is weak, b2 is small, and these sites contribute little to the overall genetic variance,
VG. When selection is strong, b2 is large, but selection holds q(1− q) low, and these effects cancel
out, so these sites are capped in terms of how much they can contribute to VG [27].

Single-site dynamics and heritability. Moving from single sites to a genome-wide model, let L

be the number of sites in the genome at which mutations can affect Trait 1; we refer to L as the
mutational target size. We use f(s) to denote the unknown distribution of selection coefficients of
mutations at these L sites. Then the (expected) total additive genetic variance for Trait 1 is given
by

VA = L

∫
E[2b2q(1− q)|s] · f(s)ds. (4)

Next, we rescale b from the original but arbitrary measurement units into units of standard devia-
tions of the trait value: we define β = b/

√
VP , where VP is the phenotypic variance. Dividing both

sides by VP , and noting that VA/VP is the (narrow sense) heritability h2, we can relate heritability
to the site-level parameters:

h2 = L

∫
E[2β2q(1− q)|s] · f(s)ds. (5)

This equation expresses the key relationship between heritability (h2), mutational target size (L),
and the expected contribution to variance per site.

Finally, Equation 3 can be rewritten in terms of β and population genetics parameters (for
details see SI Section 1.5):

β|s ∼ N

(
0,

h2

L
· k

4µ
s

)
, (6)

where k is a constant that depends on f(s) and demography and is approximately 1, and µ is
the mutation rate. Crucially, Equation 6 shows that the trait’s heritability per site, h2/L, is a
fundamental scaling factor that relates selection on alleles to their effects on the trait.
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Together, these results provide a generative model for the genetic architecture of a complex
trait (Figure 1E). Assuming that the demographic history and mutation rate per site are known in
advance, this model is fully specified in terms of three unknowns: the mutational target size, L; the
heritability per site, h2/L; and the distribution of selection coefficients, f(s). We now describe how
we estimate these from GWAS data.

Inference of model parameters from GWAS data. In principle we would want to perform
inference using all causal variants, but this is technically challenging since most causal sites have
very small effect sizes; hence there is great uncertainty about which sites are causal and their true
effect sizes. As a tractable alternative, we restricted our inference to the independent genome-wide
significant hits for each trait. We account for this restriction in the inference by noting that we only
observe the subset of sites for which the absolute GWAS z-score exceeds 5.45, corresponding to the
conventional significance threshold of p<5×10−8.

We performed simulations to illustrate the changes in architecture at GWAS hits as a function
of each of the main model components (Figure 2; SI Section 5). As expected from theory:

A. When selection is weak, causal variants can drift to high frequencies, and most significant hits
are at common variants. Conversely, when selection is strong, there is a greater fraction of
rare variants among the significant hits, and an inverse relationship between effect size and
allele frequency.

B. When traits have high heritability per site h2/L, the squared effect sizes and z-scores tend to
be larger, there are more genome-wide significant hits and they explain a greater proportion
of heritability, compared to traits with low h2/L.

C. When traits have a large mutational target size L (holding h2/L and f(s) constant), there
are more causal variants, and more genome-wide significant hits, but the distribution of allele
frequencies and effect sizes, and the proportion of heritability explained by hits, are unaffected.

We implemented a maximum likelihood method that estimates the components of our model
from the joint distribution of q and |z| across significant hits (Figure 2D-F; SI Section 5). We fit
f(s) using a spline function with four knots, thus our full model includes six parameters per trait:
four for f(s), as well as h2/L, and L.

We tested this method using simulated GWAS data under a variety of parameter values. We
find that even with modest numbers of hits (∼100) the method provides accurate estimates, while
the estimates are noisy for traits with fewer hits (e.g., panel 2E). It may seem surprising that we
can estimate f(s) from relatively few observations, but each variant carries considerable information
about the strength of selection: the allele frequency bounds s for that variant from above and the
effect size bounds s both from below and above, such that jointly they are highly informative (Figure
S3). Given these results we analyzed traits with at least 100 hits.

We also observed that the data are less informative at both ends of the range of possible selection
coefficients: GWAS has low power to detect very strongly selected variants (s ≳ 10−2) as the allele
frequencies are too low, and low power to detect effectively-neutral variants (s ≲ 10−5) as their
effect sizes are too small. We therefore implemented a regularization penalty to constrain f(s) to
sensible values at extremes of the range (SI Section 3.8).
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Figure 2: Inference of model parameters. (A)–(C) The joint distributions of minor allele
frequencies (MAFs), z-scores, and numbers of hits per trait depend on model parameters as illustrated
here. Each graph shows simulated distributions of genome-wide significant hits, with the graphs in
each row differing in one of the main axes of our model. (D)–(F) True values of the distributions
of f(s) as well as h2/L and L are indicated by the dotted lines; inferences are indicated by solid
lines or by point estimates with bars indicating 90% bootstrap CIs.

Dataset of 95 quantitative traits from the UK BioBank. We selected traits from the UK
Biobank for analysis, as follows (SI Section 2.4). Since our model is most directly applicable to
quantitative continuous traits, we restricted our analysis to such traits. We identified independent
lead variants for each trait using COJO [45]. Since low-frequency variants are often poorly imputed,
we removed hits with MAF<1% (see SI Section 6.3 for how we account for this in the inference).
We excluded traits for which more than 10% of hits fell within a single LD block, as well as hits
in regions of extremely high LD (LD score >300). As noted above, we restricted ourselves to traits
with at least 100 independent hits; doing so implies that the traits are among the more polygenic
and heritable traits in UKBB. For each trait we recorded the number of hits, and the estimated
allele frequency, z-score, and effective sample size for each hit.

This resulted in a list of 95 traits that passed all filtering steps, with a range of 100 to 1,426 hits
per trait (mean=398). These traits include 40 morphometric traits, of which 26 are related to body
weight or adiposity (e.g., BMI, waist circumference and birth weight) as well as 14 others (e.g.,
height, bone mineral density and hand grip strength). The traits also include 27 blood phenotypes
(e.g. platelet traits, lymphocyte count, and hemoglobin measurements), and 12 molecular traits
sampled from blood or urine (e.g., IGF-1, triglycerides and calcium levels). Additionally, we have
9 cardiovascular traits, including pulse rate, blood pressure measurements, and pulmonary func-
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tion traits. Lastly, we include 6 ophthalmologic traits, and 1 behavioral trait (age at first sexual
intercourse).

Distributions of trait parameters. We applied our inference to all 95 traits. Figure 3A shows
the estimated distributions of selection coefficients, f(s), for five traits that vary in polygenicity
and kind, from calcium levels to BMI. Note that although our inference is based on significant hits,
f(s) represents the distribution of s among new mutations.

Trait

Trait-specific distributions Single shared distribution Inferred heritability and target size for 9 traits
No. of
hits

Heritability (   2) Target size (   ) 
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Figure 3: Parameter estimates for example traits. (A) Distributions of selection coefficients,
f(s), estimated for each trait separately, using trait-specific distributions, with 90% confidence en-
velopes. (B) Single shared distribution (SSD) of selection coefficients, estimated using all 95 traits
together. (C) Properties of example traits. h2 and L are estimated using f(s) from the SSD, which
helps to stabilize the estimates.

We infer that most trait-affecting mutations are under weak selection, with s ranging between
10−5 and 10−3. In this range, the strength of selection is roughly comparable to genetic drift
(∼ 10−4 per generation), consistent with the observation that many GWAS variants are common,
and more generally that much of the heritable variation in complex traits arises from common
variants [3, 4, 10, 12]. However, the distributions have a substantial tail in the strong selection
range (s > 10−3), and therefore span multiple orders of magnitude. Since selection coefficients
span multiple orders of magnitude so too, should effect sizes. This echoes recent results showing
that distributions of effect sizes for complex traits do indeed span multiple orders of magnitude (in
contrast to the normal distribution which has often been assumed in statistical genetics models)
[18,19].

Importantly, the distribution of selection coefficients, f(s), is similar across all 95 traits, with the
confidence envelopes for different traits largely overlapping (Figures 3A, S5). We thus conjectured
that we could build a unified model by assuming a Single Shared Distribution for f(s), which we
refer to as the SSD, instead of assuming separate Trait-Specific Distributions (TSDs). The SSD is
shown in Figure 3B. As we will show, the SSD provides a useful approximation for the architecture
of individual traits, while greatly cutting down the number of model parameters and highlighting
important shared features of trait architecture.

In contrast to f(s), the heritability h2 and especially the mutational target size L vary markedly
among traits. For example, among the traits in Figure 3C, BMI (444 hits) has an estimated target
size of 150 MB, one of the highest estimated target sizes, in contrast to urea (185 hits) with a
target size of 2.5 MB, one of the lowest estimated target sizes. These results are broadly consistent
with expectations from previous studies of polygenicity showing that morphological traits including
height and BMI have many more contributing variants than do molecular traits, illustrated here
by urea and calcium [2, 9]. Our estimates of heritability vary less widely among traits, and are
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concordant with previous estimates (Table S1; [10]).

Quantifying model fit. Next, we assessed the fit of our models to the genetic architecture
observed in GWAS, including how the fit is affected by using the SSD approximation (SI Section
4). To do so, we computed a measure of model fit using the predicted distribution of z-scores given
the allele frequencies and study size. For each variant i, we computed what we refer to as a residual
p-value: Pr(|z|> zi | zi > 5.45, qi,Model), where zi and qi are the observed z-score and frequency
of SNP i, respectively, and Model indicates the SSD or TSD model. The SSD model fit depends
on only one trait-specific parameter, h2/L, as f(s) is shared across traits, and the residual p-value
statistic is independent of L. In contrast, the TSD model fit depends on five parameters per trait:
h2/L and four parameters to fit f(s).

The residual p-value has a simple interpretation: If we correctly model the distribution of z-
scores among significant hits, then the distribution of residual p-values will be uniform between 0
and 1. If the observed z-scores are too small then the residual p-values will skew toward 1, and if
the z-scores are too high they will skew toward 0. To avoid overfitting, we split the genome into
approximately independent blocks [46], each time inferring the model on 90% of the blocks and
computing residual p-values for the held-out 10%.

We first considered the fit of our model for height, the trait with the greatest number of hits in
our dataset (Figure 4A). For height, the distribution of z-scores across the 1426 hits is fit essentially
perfectly by the SSD model (Figure 4A). In contrast, two simpler heuristic models provide a poor
fit to the distribution of z-scores (Figure 4A). First, when we assumed that effect sizes are normally
distributed, the resulting residual p-values deviate greatly from uniformity with many extremely
small p-values. We also considered a version of the α-model with a normal density of effect sizes
conditional on allele frequencies [30]. By fitting the inverse relationship between allele frequencies
and effect sizes, the alpha model improves the overall fit, but still has an excess of tiny p-values. In
both cases, the underlying normal distribution is too narrow to accommodate the wide variation in
observed effect sizes, including many hits close to the significance threshold and a minority of much
stronger hits.

For BMI, with 444 hits, our SSD model fits most of the distribution well, but the top hits are
larger than expected (Figure 4B). In particular, the residual p-value of one SNP is significant even
after Bonferroni correction. Unsurprisingly, this outlier represents the well-known FTO signal that
was detected even in very early GWAS studies [47, 48], and that also appears as an outlier for 14
other morphometric traits in our dataset.

We find 12 additional outlier SNPs for a variety of other traits. The 12 outliers include both
missense and noncoding variants, and are all found near strong candidate genes for the relevant
traits (Table S2). We hypothesize that these outliers violate our model assumptions in some way
that allows them to be common despite having a large effects. For example, they might have much
smaller pleiotropic effects than most other variants affecting those traits, leading to weaker selection
than expected given their effect sizes. Alternatively, they may have been targets of strong positive
or balancing selection that allowed them to reach high frequencies despite their large effect sizes.
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Figure 4: Model fit. (A) QQ-plot of residual p-values for height (each data point is a SNP) under
three models: the SSD model provides a good fit to the distribution of z-scores, while two other
models fit poorly. (B) For BMI, the SSD model fits most of the z-score distribution, but a few hits
are more significant than expected, notably at FTO. (C) Goodness-of-fit comparison among models
(each data point is a trait). Red: α-model versus SSD shows much worse fit for the α-model (data
above diagonal). Orange: TSD versus SSD generally shows slightly better performance for TSD
(data below diagonal), while using five parameters per trait instead of one. (D) QQ-plots for model
fits (by trait) for TSD, SSD, and α-models.

We next performed goodness-of-fit tests for each trait to determine whether the overall distri-
butions of residual p-values match the expected uniform distribution, using Kolmogorov-Smirnov
statistics (Figure 4C; SI Section 4). For most traits, the TSD model fits slightly better than the
SSD model, indicating that the TSD correctly identifies some degree of trait-specific signal, though
it uses five parameters to do so, compared to one, for SSD. In contrast, the α-model fits the data
far worse than the SSD model. Similarly, Figure 4D shows QQ-plots of model-fits across models
and traits. Both the SSD and TSD models show a modest inflation of p-values, perhaps relating
to simplifying assumptions in the model; nonetheless, both models fit the data well, as we can only
reject these models for 1, and 4 traits out of 95, for the TSD and SSD models, respectively. Thus,
we conclude that the SSD model provides an accurate, yet parsimonious, description of genetic
architecture.

Prediction of allele ages. The previous results show that the model provides a good empirical
fit to the data. We next wanted to evaluate whether it can also predict the evolutionary processes
underlying the genetic architecture. To do this, we turned to an entirely different type of predictions
from our model. Conditional on allele frequency, deleterious alleles tend to be younger than neutral
alleles [24,49]; our parameter estimates can be used to predict the extent of this effect for GWAS hits.

10

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2022. ; https://doi.org/10.1101/2022.10.04.509926doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.04.509926
http://creativecommons.org/licenses/by/4.0/


Distribution of allele ages

GWAS hits
Model prediction

Matched SNPs
Neutral prediction

C
D

F

104 105 106 1070

0.2

0.4

0.6

0.8

1

Age in Years

Figure 5: Allele ages. The distribution of
GWAS hit allele ages for all 95 traits (solid
blue), estimated using Relate, compared to the
distribution of allele ages predicted by our
model (dashed blue). Also shown, the dis-
tribution of allele ages for neutral frequency-
matched SNPs (solid red) and the distribution
predicted by a neutral model (dashed red). Al-
lele ages were converted to years by assuming
28 years per generation [52].

We compared our model’s predictions to allele ages estimated from a reconstruction of the ancestral
recombination graph using Relate [44] (see SI Section 7 for details, including bias correction).

Looking at the allele ages of GWAS hits for all 95 traits as estimated by Relate, we see that
they are much younger than frequency-matched, putatively neutral alleles (Figure 5). We estimate
that the median age of a GWAS hit variant is 173,000 years, compared to 597,000 years for matched
neutral variants. These observations highlight the competing influences of selection and drift on
GWAS hits: due to selection GWAS hits are much younger than matched neutral variants, yet
at the same time selection is weak enough that most of GWAS hits are fairly old, predating the
out-of-Africa bottleneck. This finding echoes previous ones showing that many common GWAS hits
are shared among African and non-African populations [50,51].

Most importantly, the shift in ages of GWAS hits compared to matched control SNPs is pre-
dicted well by the SSD model, indicating that this model captures the right magnitude of selection
coefficients. (For results about our ability to distinguish selection coefficients with this analysis see
Figure S14.) Since the allele ages inferred by Relate are estimated from local haplotype structure,
information that isn’t used by our inference, this concordance provides an external validation of the
SSD model.

Simple scaling rules control differences in trait architectures. The fit of the SSD model
suggests an intriguing prediction: that the differences in genetic architecture among traits are pri-
marily due to just two trait-specific parameters: the heritability per site (h2/L) and the mutational
target size (L).

To see why, consider the full genetic architecture for a trait, for all variants regardless of whether
they can be detected by GWAS. First, for a given demographic history, the distribution of allele
frequencies depends only on the distribution of selection coefficients, f(s). Hence, under the SSD
approximation, the allele frequency distribution is shared across traits and can be predicted from
our estimate of f(s) (black line, Figure 6A).

Next, while f(s) represents the distribution of selection coefficients among new mutations,
strongly selected variants are less likely to reach high frequencies. Hence, the distribution of selection
coefficients shifts towards the left with increasing allele frequencies, as shown in Figure 6B.

Given the distributions of selection coefficients at different allele frequencies from Figure 6B, we
can compute the distribution of squared effect sizes as a function of allele frequencies, by integrating

11

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2022. ; https://doi.org/10.1101/2022.10.04.509926doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.04.509926
http://creativecommons.org/licenses/by/4.0/


Equation 6 over s. Crucially, under the SSD model, these distributions are identical across traits,
if the effect sizes on the x-axis are scaled in terms of h2/L (black lines, Figure 6C).

A.Distribution of MAFs B. Distribution of C. Distribution of squared effect sizes
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Figure 6: Shared genetic architecture under the SSD model. (A) Distribution of allele
frequencies for all causal variants (black), and for genome-wide significant hits (light/dark blue), for
our inferred f(s) and British population history. (B) Distributions of selection coefficients at causal
variants with different minor allele frequencies. (C) Distributions of squared effect sizes β2, shown
here for three example minor allele frequencies; notice that effect sizes are scaled by the natural
units of h2/L. For traits with high h2/L, variants within both the light and dark blue regions are
genome-wide significant (GWS); for traits with low h2/L, only the dark blue regions are significant.

How do these distributions affect GWAS hits? Unlike the underlying distributions, the power
to detect significant variants in GWAS depends on the actual squared effect sizes β2, not scaled by
h2/L (and it depends on allele frequency and sample size). Consequently, there is more power to
detect variants for traits with higher h2/L – this is intuitive, because higher h2/L implies that each
site explains more variance in the trait. This is illustrated in Figure 6C: for traits with high h2/L,
variants within both light and dark blue regions are genome-wide significant, but for traits with low
h2/L, only variants within the dark blue regions are detected.

Moreover, even though the underlying distribution of causal variant allele frequencies is shared
among traits, the frequency distribution of hits is predicted to vary. For traits with high h2/L there
is relatively more power to detect low frequency variants than for traits with low h2/L (Figure 6A).

Lastly, the second scaling parameter, L, represents the mutational target size. Conditional on
h2/L, changing L only changes the numbers of causal variants (and numbers of hits) but does not
change any of the distributions.

We first tested these predictions for three traits: height, platelet crit (a blood phenotype), and
FEV1 (a measure of lung function), where we reduced the sample size to 330,000 so it is identical
for all traits (SI Section 6.6). Figure 7A shows height and platelet crit. These two traits differ
greatly in their number of hits (1245 vs 499), estimated heritability (76% vs 31%) and mutational
target size (25 MB vs 10 MB). However, we estimate that they have very similar values of h2/L
(∼3.2× 10−8). Consistent with our model, the distributions of z-scores, effect sizes, and MAFs for
significant hits are nearly identical for the two traits.

In contrast, height and FEV1 have similar mutational target sizes, but h2/L for height is 4.5-
fold higher than for FEV1 (Figure 7B). As expected, this results in greater power to detect variants
associated with height than with FEV1 (40% vs. 12% of h2 explained by significant hits). Conse-
quently, genome-wide significant hits for height have larger effect sizes and larger z-scores than for
FEV1. We also see slightly fewer low-MAF hits for FEV1 (p = 0.01, KS test), due to the lower
power compared to height.
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Figure 7: Heritability and target size underlie differences between trait architectures:
examples for three traits. (A) Height (blue) and platelet crit (red) have the same heritability per
site h2/L, but height has a much higher mutational target size L. This results in many more hits
for height (1245) than for platelet crit (499) (2 left panels). However, the marginal distributions
of z-scores, effect sizes, and MAFs of hits are nearly identical for the two traits (3 right panels).
(B) Height (blue) and FEV1 (gold) differ in h2/L, but have similar L. Consequently, the joint
distribution of z-scores and MAFs of their hits are markedly different (2 left panels), as are the
marginal distributions of hit effect sizes, MAFs and z-scores (right). (C) After scaling by their
respective

√
h2/L, and imposing the more stringent scaled significance threshold (corresponding to

FEV1) for both traits, the joint distribution of z-scores and MAFs of their hits (2 left panels) and
the corresponding marginal distributions (3 right panels) are highly similar.

We predicted that after rescaling the z-scores (and effect sizes) for these traits by
√

h2/L, their
architectures should become nearly identical. On this scale, the significance cutoff is 5.45/

√
h2/L,

which is higher for FEV1 than for height (illustrated by the light and dark blue regions in Figure
6C). We therefore compared the architecture of genome-wide significant hits for both traits using
the higher threshold in the scaled units. After doing so, we only have 131 hits for height, but it is
apparent that the summary properties for both traits are indeed highly similar (Figure 7C).

We repeated this scaling procedure for the 50 other traits in our dataset whose scaled threshold
is below that of FEV1. After doing so, the distributions for all hits are highly similar to the scaled
distributions for height and FEV1 (dotted line, Figure 7C). We repeated similar analyses for all
traits, and found these scaling laws approximate the architecture for all 95 traits (SI Section 8).
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Discussion

What determines the genetic architecture of complex traits? Does genetic variation in a given trait
primarily reflect the idiosyncrasies of its biology–or alternatively, does it reflect processes that are
shared among different traits?

Here we describe a principled approach to tackle these questions. Our point of departure is an
evolutionary model of genetic architecture based on empirically motivated and interpretable biolog-
ical assumptions. Given extensive evidence that many quantitative (continuous) traits are subject
to stabilizing selection [23], and that genetic variation affecting one trait often affects many oth-
ers [5,20,21], we model selection on alleles that arises from stabilizing selection in multi-dimensional
trait space. Otherwise, we assume the standard population genetic model incorporating the effects
of mutation, selection, genetic drift and demographic history. This model gives rise to a family of
genetic architectures, where the architecture of a given trait is determined by the distribution of
selection coefficients at trait-affecting sites as well as two scaling parameters: the mutational target
size and the heritability per site.

We perform inference allowing all these parameters to vary among traits. We find that the
model provides a good fit to the joint distribution of allele frequencies and effect sizes at genome-
wide significant hits for the 95 quantitative traits in our dataset. Intriguingly, we also find that the
distribution of selection coefficients is similar across all these traits, suggesting that their genetic
architecture can be approximated by a Single Shared Distribution (SSD) of selection coefficients
and two additional scaling parameters per trait. We then estimate the SSD using the data from all
traits jointly, show that it fits the architecture of individual traits well, and validate our estimate
of the SSD by showing that it accurately predicts the distribution of allele ages at GWAS hits for
all traits.

The fit of the SSD model implies that, aside from the two scaling parameters, the genetic
architecture is highly similar among all 95 traits. Cross-sections of the estimated shared architecture
are visualized in Figure 6. Indeed, as predicted, after we rescale the effect sizes by the estimated
heritability per site, we find that the joint distributions of effect sizes and allele frequencies for
GWAS hits are remarkably similar among traits. Meanwhile the number of hits for a given trait is
proportional to estimated target size (Figure 7).

These findings delineate the attributes of genetic architecture that are shared among traits and
those that are trait-specific. In doing so, they raise new questions and insights about complex traits,
as follows.

Why is the distribution of selection coefficients similar across highly polygenic
traits? The similarity in genetic architecture among traits arises from the similarity in the dis-
tribution of selection coefficients of variants affecting them. Previous work has hinted at these
similarities: for example, work using the α-model reported broadly similar relationships between
MAF and effect size among a variety of traits [25, 26, 36], though it should be noted that there
is no straightforward interpretation of α in terms of selection coefficients [36]. Why should the
distribution of selection coefficents be similar across highly polygenic traits?

In the extreme, this similarity might be viewed as a consequence of high polygenicity and
the finite amount of functional genetic variation. If all functional variants affected all traits, the
distribution of selection coefficients would necessarily be shared among traits. This logic may well
explain similarities among traits whose mutational target sizes encompass much of the functional
portion of the genome; for example, we estimate the target size for BMI at ∼5% of the genome
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compared to ∼8% estimated to be functional [53–55]. The same logic may be especially relevant
for traits that are mediated through the same tissues. However, this logic cannot explain the
similarity among traits whose target sizes are substantially smaller and are primarily mediated
through different tissues [56]. The biomarkers in our dataset, for example, have target sizes that are
more than an order of magnitude smaller than BMI (e.g., calcium level with a target size of ∼0.1%
of the genome), and are mediated through distinct cell types or tissues [9]. If traits are affected by
different tissues, the variants affecting them should be different, so why should genetic variation in
these traits be subject to similar selection?

One possibility is that the similarity in selection acting on variation affecting different traits
reflects similarity in the biological systems in which variation arises, notably in gene-regulatory
networks. Heritable variation in complex traits is spread across most of the genome, and is enriched
in regulatory regions near most genes that are expressed in the tissues that affect these traits [14].
The lead variants typically explain a tiny fraction of the heritability [3], and the most relevant
biological pathways are usually only modestly enriched for heritability [9,14]. In other words, most
heritable variation is mediated through the regulation of genes and pathways that are not closely
connected to the trait’s biology [9, 14, 57]. Perhaps, the essential logic of gene regulatory networks
and their evolution are sufficiently similar across tissues to drive similar distributions of selection
coefficients, even if the specific pathways, genes, enhancers, and variants differ.

Limitations and future analyses. We emphasize again that the SSD model is an approxima-
tion. There are indeed modest differences in the distributions of selection coefficients among traits
as hinted at by the slightly better fits of the TSDs compared to the SSD. Additionally, our inference
has limited power at both ends of the distribution of selection effects; hence we cannot exclude the
possibility that there are larger differences among traits in these regions of the parameter space.
Specifically, our focus on variants with MAF>1% limits our ability to quantify the contribution of
very strongly selected, rare alleles, and focusing on genome-wide significant hits limits our analysis
of weakly selected variants. Moreover, we only included traits with more than 100 genome-wide sig-
nificant hits, thus limiting the scope of our results to highly polygenic traits. All these limitations
may be addressed in the future. For example, other approaches [28], or whole genome sequenc-
ing [58] would enable greater power for strongly selected variants. Meanwhile, methodologies that
integrate over the full distribution of causal variants accounting for LD [11, 19, 36] may allow us
to relax the reliance on genome-wide significant hits, thus increasing the power to identify weakly
selected variants, more generally increasing the precision of our inference for both the TSD and SSD
models, and allowing for the analysis of less polygenic traits.

Future increases in sensitivity and applications of our inference to different kinds of traits may
also warrant extensions of our evolutionary model. Notably, our current model is restricted to
quantitative traits and is not immediately applicable to binary traits including diseases. Disease
risk is often modeled in terms of an underlying quantitative trait referred to as liability, and for some
diseases it seems plausible that the liability is subject to stabilizing selection (e.g., obesity with BMI
as the underlying liability). We speculate that with appropriate adjustment of the model in order
to fit data from case-control GWASs, we may find that such diseases share the same architecture as
the quantitative traits that we studied here. The liability associated with other complex diseases,
however, may plausibly be affected by directional selection to reduce disease risk, which is not
captured in our current model. More generally, we assume that selection on variants arises solely
from stabilizing selection in a high-dimensional trait space. While stabilizing selection may well be
ubiquitous, one can imagine that some complex traits are subject to other modes of selection, such
as the aforementioned directional selection to reduce disease risk. Another simplifying assumption of
our model is that all the genetic variation in a given trait is affected by the same degree of pleiotropic

15

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2022. ; https://doi.org/10.1101/2022.10.04.509926doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.04.509926
http://creativecommons.org/licenses/by/4.0/


selection (this degree was reflected in the dimension of the trait space; see, e.g., Equation 3 and
Simons et al. 2018). Future extensions of the model may incorporate variation in the degree of
pleiotropic selection, where this variation may also differ among complex traits.

Why do trait-specific scaling parameters vary? Future refinements notwithstanding, our
evolutionary model with a shared distribution of selection effects fits the data from all 95 traits
in our dataset remarkably well, indicating, as we have also confirmed, that differences in genetic
architecture among highly polygenic traits are largely determined by the two trait-specific scaling
factors: the mutational target size and heritability per site.

The mutational target size varies over 2 orders of magnitude among our 95 traits. While the
estimates are novel, the variation among them is hardly surprising given the vast differences in the
biology of these traits. These traits vary in being affected by few to many tissues, by the number
and properties of core genes and pathways in these tissues [57], and by the number of independent
biological processes that contribute to trait variation [59]. Moreover, the pathways associated with
these traits plausibly differ in how buffered they are against genetic (and environmental) variation
and in their modularity, plausibly reflective of the kinds of traits and of selection pressures over
much longer evolutionary timescales than the turnover time of heritable variation [60, 61]. Our
estimates of heritability are less variable, but still spanning over an order of magnitude, and vary
among different kinds of traits (Table S1). Both of these observations have been known for almost
a century, and yet the question about their causes remains largely open [23, 37, 38]. Our results
indicate that other differences in architecture among traits are dwarfed by the variation caused by
these two scaling parameters.

Outlook. Taking a step back, our results highlight that evolutionary thinking is essential to
understanding of the findings emerging from human GWASs, and more generally, heritable variation
in complex traits. This insight is consistent with long-standing thinking in the field, given that
heritable variation in complex traits reflects the outcome of evolutionary processes of mutation,
natural selection, genetic drift and demographic history [23, 38]. Specifically, the signal measured
in GWASs reflects causal variants’ contribution to heritability, which depends on their effect on the
trait under consideration, but also on their minor allele frequency, where the relationship between
the two is mediated by natural selection. What is surprising, at least to us, is how far an analysis
based on evolutionary modeling can go, in this case, showing that the genetic architectures of
highly polygenic quantitative traits are largely shared. This finding carries many implications about
human GWASs and their applications, some of which we plan to explore elsewhere. Alongside other
evidence, it also hints at underlying biology that largely remains to be discovered, plausibly relating
to properties of gene regulatory networks. We think that a combination of evolutionary reasoning
alongside a systems approach to gene regulation would move us closer to answering the questions
that have existed since the beginning of the field of genetics, about the mapping from genetic
variation to phenotypes.
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