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s  ABSTRACT

66 Gene functional descriptions, which are typically derived from sequence similarity to experimentally validated
67 genes in a handful of model species, offer a crucial line of evidence when searching for candidate genes that

68 underlie trait variation. Plant responses to environmental cues, including gene expression regulatory variation,
69 represent important resources for understanding gene function and crucial targets for plant improvement

70 through gene editing and other biotechnologies. However, even after years of effort and numerous large-scale
71 functional characterization studies, biological roles of large proportions of protein coding genes across the plant
72 phylogeny are poorly annotated. Here we describe the Joint Genome Institute (JGI) Plant Gene Atlas, a public
73 and updateable data resource consisting of transcript abundance assays from 2,090 samples derived from 604
74 tissues or conditions across 18 diverse species. We integrated across these diverse conditions and genotypes
75 by analyzing expression profiles, building gene clusters that exhibited tissue/condition specific expression, and
76 testing for transcriptional modulation in response to environmental queues. For example, we discovered

77 extensive phylogenetically constrained and condition-specific expression profiles across many gene families

78 and genes without any functional annotation. Such conserved expression patterns and other tightly co-

79 expressed gene clusters let us assign expression derived functional descriptions to 64,620 genes with

80 otherwise unknown functions. The ever-expanding Gene Atlas resource is available at JGI Plant Gene Atlas

81 (https://plantgeneatlas.jgi.doe.gov) and Phytozome (https://phytozome-next.jgi.doe.gov), providing bulk access
82 to data and user-specified queries of gene sets. Combined, these web interfaces let users access differentially
83 expressed genes, track orthologs across the Gene Atlas plants, graphically represent co-expressed genes, and
84 visualize gene ontology and pathway enrichments.

85

s INTRODUCTION

87 The flowering plant, Arabidopsis thaliana, has served as a model for functional genomics over the past two

88 decades. While the goal of functionally characterizing each A. thaliana gene by the year 2010 (Koornneef and

89 Meinke 2010) has yet to be fully realized, many large-scale studies, such as gene knock-out collections for

90 reverse genetics, have tested the phenotypic effects nearly half of A. thaliana protein-coding genes (Berardini et
91 al. 2015). These experimentally validated loci, and a massive set of predicted and curated gene functions form
92 the foundation for gene characterization across 400M years of plant evolution.

93 Despite the potential for homology-based functional annotations across plants, putative gene functions in non-
94 model plants are sparse, often containing a majority of genes with no functional descriptions. These knowledge
95 gaps are undoubtedly due to the phylogenetic and functional scale of plant diversity. At one extreme, DNA or

9 protein sequences may have diverged so that no genes have obvious A. thaliana homologs. However, even with
97 homology, assigning gene function to distantly related plants assumes function is evolutionarily conserved. This
98 assumption is clearly violated in many situations: flowering plants have evolved diverse adaptive traits,

99 specialized organs/tissues, and environmental responses, all of which are poorly captured by a single model

100 organism. Further, gene neofunctionalization, subfunctionalization and gene cooption may invalidate direct

101 superimposition of gene annotation from one species to another (C. Li et al. 2012; Nicotra et al. 2010; Raissig et
102 al. 2017). The addition of other model species, including Brachypodium distachyon, Oryza sativa, and

103 Physcomitrium patens, has helped fill gaps in homology-based functional annotations. However, 16.1-56.9% (M
104 =27.8; SD = 10.06) of protein coding genes across the plant phylogeny remain poorly characterized

105 (Supplemental Fig. 1) (Gollery et al. 2006, 2007; Rhee and Mutwil 2014).

106 Incomplete gene functional annotations are not only due to an overreliance on few genetic model organisms,
107 but also an inability to link experimental evidence across species. However, centralized functional databases
108 containing information generated from new experiments such as ongoing large-scale transcriptome projects
109 and genome-wide association studies could accelerate gene function discovery. Even with a central repository,
110 interpretation and integration across diverse studies is difficult because experimental and analytical protocols
111 are rarely standardized. For example, different sample collection, RNA isolation, library construction protocols,
112 and sequencing platforms can result in significant variation in sequence coverage and estimates of gene

113 expression (Levin et al. 2010; Ross et al. 2013; Sudmant, Alexis, and Burge 2015; Yu et al. 2014). This among-
114 experiment variation reduces the accuracy and precision of comparisons across species and studies, which
115 directly limits putative gene function inference from transcript abundance profiles.

116 Here, we present an updateable large-scale dataset and a suite of experimental protocols to facilitate functional
17 gene prediction across the diversity of plants. Crucially, we have developed experimental conditions, tissue

118 types, and analytical protocols that permit comprehensive analysis of gene expression across plants. We

119 applied these conditions and collected 2,090 tissue samples from 18 plant species spanning single-celled
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120 algae, bryophytes, and flowering plants. This integrated dataset (1) forms a foundation to improve gene

121 functional annotations, (2) facilitates cross-species comparative transcriptomics within controlled environmental
122 and laboratory conditions, and (3) permits high-powered tests of gene regulatory evolution across

123 phylogenetically diverse plant genomes. To demonstrate this functionality, we cataloged the expression profiles
124 of annotated genes, and built co-expressed clusters of genes that exhibited tissue/condition specific

125 expression patterns including responses to changes in nitrogen (N) regimes, abiotic stressors, and

126 developmental stages. We systematically assigned expression derived functional descriptions to an average of
127 40.6% (SD = 12.6) of annotated genes in the assessed genomes, 9.5% of which previously had no known

128 function. This substantial transcriptomic resource is available to the research community at JGI Plant Gene

129 Atlas (https://plantgeneatlas.jgi.doe.gov) and through Phytozome, the JGI Plant Portal, at https://phytozome-
130 next.jgi.doe.gov (Goodstein et al. 2012).

131

132 SCOPE OF DATA GENERATED

133 We developed the JGI Gene Atlas from 15.4 trillion sequenced RNA bases (Tb) and 2,090 RNA-seq samples
134 across 9 JGI plant flagship genomes and 9 other reference plants (Table 1). For each of the sequenced plants,
135 we collected tissue samples representing appropriate developmental stages, growth conditions, tissues, and
136 abiotic stresses (Fig. 1). To reduce residual environmental variance, we followed standard growth conditions
137 including light quality, quantity and duration, temperature, water, growth media, and nutrients. Experimental
138 treatments were applied using standardized methods across all species (see Methods).

139

140 Table 1 | JGI Plant Gene Atlas species. Genome annotation versions of 18 diverse plants included in the current release.

141
Genome Version Project Taxonomy ID Source
Arabidopsis thaliana TAIR10 Gene Atlas 3702 phytozome-next.jgi.doe.gov/info/Athaliana_TAIR10
Brachypodium distachyon v3.1 Gene Atlas 5143 phytozome-next.jgi.doe.gov/info/Bdistachyon_v3_1
Chlamydomonas reinhardlii V5.6 Gene Atlas 3055 phytozome-next.jgi.doe.gov/info/Creinhardtii_v5_6
Eucalyptus grandis v2.0 Gene Atlas 71139 phytozome-next.jgi.doe.gov/info/Egrandis_v2_0
Glycine max Wm82.a4.v1 Gene Atlas 3847 phytozome-next.jgi.doe.gov/info/Gmax_Wm82_a4_v1
Kalanchoé fedtschenkoi vi1 Gene Atlas 63787 phytozome-next.jgi.doe.gov/info/Kfedtschenkoi_v1_1
Lupinus albus vi1 Non-JGlI 3870 phytozome-next.jgi.doe.gov/info/Lalbus_v1
Medicago truncatula Mt4.0v1 Gene Atlas 3880 phytozome-next.jgi.doe.gov/info/Mtruncatula_Mt4_0Ov1
Panicum hallii var. filpes v3.1 Gene Atlas 907226 phytozome-next.jgi.doe.gov/info/Phallii_v3_1
Panicum hallii var. hallii v2.1 Gene Atlas 1504633 phytozome-next.jgi.doe.gov/info/PhalliHAL _v2_1
Physcomitrium patens v3.3 Gene Atlas 3218 phytozome-next.jgi.doe.gov/info/Ppatens_v3_3
Populus trichocarpa v4.1 Gene Atlas 3694 phytozome-next.jgi.doe.gov/info/Ptrichocarpa_v4_1
Panicum virgatum v5.1 Gene Atlas 38727 phytozome-next.jgi.doe.gov/info/Pvirgatum_v5_1
Sorghum bicolor v3.1.1 Gene Atlas 4558 phytozome-next.jgi.doe.gov/info/Sbicolor_v3_1_1
Sorghum bicolor var Rio v2.1 JGI-CSP 4558 phytozome-next.jgi.doe.gov/info/SbicolorRio_v2_1
Sphagnum angustifolium vi1 Gene Atlas 53036 phytozome-next.jgi.doe.gov/info/Sfallax_v1_1
Setaria italica v2.2 Gene Atlas 4555 phytozome-next.jgi.doe.gov/info/Sitalica_v2_2
Setaria viridis v2.1 Gene Atlas 4556 phytozome-next.jgi.doe.gov/info/Sviridis_v2_1

142
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143 We sought to limit among-experiment measurement and environmental variation by using identical molecular
144 methods to extract (RNA integrity number, RIN = 5 and at least 1 pg of total RNA) and sequence (lllumina

145 stranded, paired-end 2x150 RNA-seq libraries) high-quality RNA. All samples were quality tested and

146 sequenced at JGI. The resulting transcript abundance assays were highly correlated across biological replicates
147 within conditions, tissues, and genotypes (Supplemental Data 1), which provides evidence that our gene

148 expression measurements are highly accurate and robust.

149 We also demonstrated that the JGI Gene Atlas is updateable, with a new reference genome version and even
150 with sequence data derived from other experiments and sequencing facilities. To accomplish this, we included
151 S. bicolor ‘Rio’ (sweet sorghum, Nsampies = 94) (Cooper et al. 2019) from JGI’'s Community Science Program

152 project and Lupinus albus (white lupin) cluster root tissue (Nsampies = 72) (Hufnagel et al. 2020) from a non-JGl
153 project. A comprehensive list of all samples available so far is in Supplemental Data 2 and

154 https://plantgeneatlas.jgi.doe.gov. Our custom pipeline to analyze expression levels of protein-coding genes is
155 outlined in Supplemental Fig. 2.

156
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159 Figure 1 | The phylogenetic context and scope of Gene Atlas RNA-seq samples. The 16 genomes are ordered by their
160 phylogenetic position, visualized on the left as a cladogram without branch lengths that was constructed from 10 single-copy
161 orthologs. Tips are labeled with genome names and thumbnail photos. Photo credit given on Phytozome.

162

163 OVERVIEW OF THE TRANSCRIPTOMIC LANDSCAPE OF GENE ATLAS PLANTS

164 Developing a baseline of evolutionarily conserved gene expression. Across all 18 species, 47-87% (mean =
165 73%) of annotated genes were transcriptionally active (FPKM > 1). To test for conserved and divergent

166 expression levels across the 18 species, we applied the traditional method of comparing single-copy orthologs
167 across species. While powerful, restricting tests to orthologs based on gene sequences can be problematic

168 across evolutionarily diverged lineages. For example, given the phylogenetic distance and nested whole-

169 genome duplications among our sampled species, we were only able to find 2,066 one-to-one orthologous

170 protein-coding genes (Supplemental Data 3) across just eight of the vascular plant genomes. Furthermore,

171 such single-copy orthologs have evolutionarily conserved sequences and likely gene functions, permitting

172 better homology-based functional descriptions (89.01% with good functional descriptions) than genome-wide
173 averages (83.8%, Fisher’s exact test odds = 1.607, P = 5.495e-12). Nonetheless, we observed 227 (10.98%)

174 genes with 1:1 orthologs and consistent expression among species, but weak functional descriptions

175 (Supplemental Data 4). Given the expected paucity of multi-genome single-copy orthologs, we also addressed
176 the challenge of finding genes with similar expression across species by analyzing pairwise single-copy

4
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orthologs to a single reference genome, A. thaliana. Overall, we identified 6,018 unique Arabidopsis orthologs
that showed conserved expression patterns across multiple species. Surprisingly, these genes include 660
(11%) with little to no known functional description, making these genes rational targets for functional
characterization studies (Supplemental Data 5). Identifying and improving the functional characterizations of
such genes was one of the objectives of the Gene Atlas experiment. Genes with single-copy orthologs in A.
thaliana and consistent expression were significantly enriched in transcription factors (n = 501, 8.3%; Fisher’s
exact test odds ratio = 1.507, P = 4.26e-13), suggesting that potential regulators of different biological
processes are strongly conserved across the plant species (Keightley and Hill 1990). These observed
evolutionarily conserved expression patterns inform functional details that complement direct sequence data
comparisons.

In contrast to these ortholog-constrained analyses, co-expression analyses are agnostic to orthology, which
dramatically increases the number of genes that can be analyzed, providing a broader perspective on gene
expression regulatory evolution. For example, multidimensional scaling and hierarchical clustering revealed that
phylogenetically neighboring species have more similar expression profiles across tissues and nitrogen
treatments than more distantly related species (Mantel R > 0.63, P < 0.04) (Fig. 2). However, the phylogenetic
signal of co-expression was dwarfed by variation among tissues, where far more of the total co-expression
clustering across nitrogen source treatments was driven by patterns among tissues than genetic distance
among species (tissues correlated with the first canonical correspondence analysis axis, which explains 41.46%
of the variation), suggesting that genes in closely related species exhibit similar transcriptional profiles across
tissues and conditions likely owing to the accumulation of evolutionarily conserved regulatory elements.

Group
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Figure 2 | Global patterns of gene expression across eight vascular plants. Multidimensional scaling based on the
expression of 2,066 single-copy orthologous genes in two tissues and three nitrogen treatment conditions show predominant
clustering first by tissues and then by clade (mono-, dicots) (A). Hierarchical clustering based on Pearson correlation coefficients of
logz transformed normalized expression data (B).

Patterns of tissue-specific gene expression across 18 species and >400M years of plant evolution.
Tissue-specific expression complements global co-expression analyses by defining potential gene function
associated with an organ or tissue. The major drawback of this approach results from morphological
differences among species. For example, in Chlamydomonas, a single-celled organism, transcriptionally active
genes in a given condition represent expressed genes in the organism as a whole, whereas multicellular
organisms exhibit gene expression variation across different cell subtypes. Furthermore, the mosses sampled
here lack root systems, flowers, seeds or easily sampled reproductive organs. Even the far more closely related
flowering plants have functionally divergent homologous structures, such as root nodules, panicles, florets,
sepals, and rhizomes. As such, analysis of tissue-specific expression must be somewhat phylogenetically
constrained and condensed into large-scale functional tissue types (Fig. 1).

Our data suggest that large proportions of annotated genes (27-68%, M = 44.7; SD = 12.7) are commonly
expressed (FPKM > 1) in multiple tissues (Supplemental Data 6), confirming that many genes serve multiple
functions across tissues and environments. However, there was considerable among-tissue variation across
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218 species (ANOVA F = 70.01, df = 16, P < 2e-16) where gene expression is driven by variation among tissues or
219 conditions (Supplemental Data 6). Such variably expressed genes may have evolved diverse functions
220 depending on the regulatory environment across cell types.

221 Despite considerable across-tissue expression, we observed 220,218 (32.1%) of all genes with high expression
222 specificity to a single tissue or condition. To identify genes exhibiting such strong tissue or condition specific
223 expression, we used the Tau method (Yanai et al. 2005) which accounts for the number of unique sample types
224 and produces consistently robust results with highest correlation between datasets of varying sizes

225 (Kryuchkova-Mostacci and Robinson-Rechavi 2017). Using this method, we identified genes specific to (1)

226 reproductive and root tissue in S. italica, (2) leaf, inflorescence, and whole floret in switchgrass, (3) leaf, leaf

207 blade, dry seed, and imbibed seed in S. bicolor, and (4) stem and flower related gene sets in Brachypodium. Of
228 all the standard plant tissues, stem and leaf had the fewest uniquely expressed genes (two-tailed unpaired

229 Welch’s t-test, P = 8.338e-06) while roots followed by flower tissues were most unique (two-tailed unpaired

230 Welch’s t-test, P = 2.547e-10). Groups of genes with greater expression proclivity towards spores, protonema
231 and leaflet were recognized in Physcomitrium; drought and high temperature in Sphagnum; and towards seed,
232 root tip, lateral root, and nodules in soybean (Supplemental Data 7, 8). These gene sets were largely

233 overrepresented in GO biological processes known for each tissue or condition (Supplemental Data 9). Genes
234 and their promoter regions with such marked expression specificity represent valuable tissue-specific reporters
235 and targets for plant genetic engineering applications.

236

237 Transcription modulation across developmental stages. Developmental time-courses represent a

238 particularly powerful experiment to understand gene function and the dynamics of transcript abundance. As an
239 example of such a time course, we evaluated the regulation of gene expression in leaf tissue in five

240 developmental stages of Sorghum bicolor (juvenile, vegetative, floral initiation, anthesis and grain maturity).

241 Overall, we identified 13,992 unique DEGs (n total annotated genes= 34,211) across the five developmental
242 stages (Fig. 3A, 3B, 3C). KEGG pathway enrichments of up-regulated differentially expressed genes were
243 largely consistent with physiological expectations: photosynthesis, carbohydrate and N metabolism terms were

244 overrepresented in juvenile/vegetative stages (P < 0.05, hypergeometric test), floral initiation/anthesis stages
245 were enriched in reproductive organ development and hormone signal transduction, and grain maturity stage
246 were enriched for amino acid metabolism and transport, and zeatin and tyrosine metabolism (Fig. 3D, 3E). We
247 observed the enrichment pattern to be reversed among downregulated genes in different stages, e.g., plant-
248 pathogen interaction and plant hormone signal transduction were suppressed in juvenile and vegetative stages
249 whereas photosynthesis, carbohydrate and N metabolism related pathways were among those suppressed in
250 late developmental stages (Supplemental Fig. 3). These overrepresented pathways among DEGs at each stage
251 illustrate the key biological events over the growing season, e.g., as juveniles the S. bicolor are collecting

252 energy to increase the biomass, and as they flower and mature, they express defense mechanisms, and finally,
253 with grain maturity, they reduce photosynthesis and slow down nutrient acquisition. The S. bicolor dataset

254 provides an example of high-resolution characterization of gene expression changes and insight into the

255 molecular responses of the plant across developmental stages represented by the Gene Atlas dataset.

256
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258 Figure 3 | Differentially expressed gene comparison across five developmental stages in Sorghum bicolor. Numbers of
259 differentially expressed genes across developmental stages (A). Venn diagrams of up-regulated (B) and down-regulated genes that
260 are unique and shared between developmental stages (C). Top 10 KEGG metabolic pathway enrichments (P <.05, hypergeometric
261 test) of up-regulated differentially expressed genes in each of the five developmental stages (D) and upregulated genes unique to
262 each stage (E). ‘gene.ratio’ represents the ratio of number of DEGs over the number of genes annotated specific to the pathway.
263
264
265
266
267
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269 Transcriptional responses to different N sources. Tissue-specific gene expression regulatory responses to
270 environmental cues are often evolutionarily conserved. These conserved responses offer a framework to test
271 hypotheses about gene function as it relates to environmental sensitivity. A particularly powerful experiment

272 adjusts the amount and type of necessary resource available. Drought, light and nutrient availability

273 manipulations have provided strong evidence for gene function across the diversity of plants (Faye et al. 2022);
274 (Zhang et al. 2021); (Huang, Zhao, and Chory 2019); (Swift et al. 2020); (Y. Li et al. 2022). In addition to providing
275 evidence for the function of specific candidate genes’ responses to environmental stimuli, highly controlled

276 manipulations, like our nitrogen source experiments, offer a framework to compare the relative roles of gene

277 families and molecular pathways.

278 To understand gene expression underpinnings of N metabolism, we contrasted transcript abundance in

279 aboveground and root tissues of each Gene Atlas species (where available, see Fig. 1) grown on N from three
280 sources: urea, ammonium (NH4*), and nitrate (NOs’) (Supplemental Data 10). Since our experiments had similar
281 statistical power and biological replicates among species and conditions, the total number of DEGs is a strong
282 indicator of the transcriptional effects of different N sources. The most striking patterns were those related to
283 tissue-specific gene expression variation within genotypes (Fig. 4A, 4B). For example, the root transcriptome
284 was more responsive than aboveground tissues in all eudicot genotypes (Mann-Whitney U-test, P = 5e-04)

285 except Arabidopsis (two-tailed unpaired Welch’s t-test, P = 0.4526). We observed consistent enrichments of N
286 metabolism pathway genes among differentially expressed genes between treatments across many species,
287 which demonstrates that this experiment elicits molecular responses of genes with homologs in genetic model
288 species.

289 Despite the power of discovering enriched groups of genes with similar and expected functional annotations, a
290 major goal of the Gene Atlas is to provide a framework to discover novel gene functions and interactions. As
291 such, we were excited to find starch and sucrose metabolism, and phenylpropanoid biosynthesis pathways
292 overrepresented in upregulated DEGs. Indeed, many of the DEGs we identified in pairwise comparisons

293 between N-sources are not directly involved in N metabolism. For example, genes associated with plant-

294 pathogen interaction, plant hormone signal transduction, and carbohydrate metabolism were abundant (Fig.
295 4C, 4D, Supplemental Fig. 4). Similar observations were reported previously in Sorghum genotypes with

296 varying N-stress tolerance subjected to N-limiting conditions (Gelli et al. 2014). Notably, nitrogen and amino
297 acid metabolism-related pathways were overrepresented mainly in DEGs in nitrate vs. urea comparison. Such
298 comparisons highlight differences in plant’s response to NOs"as a sole N source compared to NH4* at the

299 metabolic level.
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301 Figure 4 | Transcriptional response of Gene Atlas plants towards NH4s* and NOs" compared to urea as the sole nitrogen
302 source in root and leaf tissues. Numbers of genes differentially upregulated (A) and numbers of genes differentially
303 downregulated in response to changing nitrogen regime (B). Top 10 KEGG metabolic pathway enrichments (P <.05,
304 hypergeometric test) in up-regulated differentially expressed genes in roots from Gene Atlas plants in ammonia vs. urea (C)
305 and nitrate vs. urea treatment comparisons (D). ‘gene.ratio’ represents the ratio of number of DEGs over the number of genes
306 annotated specific to the pathway.
307
308
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310 INFERRING GENE FUNCTION FROM PATTERNS OF GENE EXPRESSION

311 Variation in co-expression network topologies. Genes with similar expression patterns across diverse

312 environmental conditions and tissues tend to serve similar biological functions across distantly related species
313 and can be detected by co-expression clustering algorithms. For example, clusters of genes associated with a
314 specific tissue or condition may be crucial for plant development or response to environmental cues. These

315 strongly conserved tissue- and treatment-specific expression patterns facilitate biological gene function

316 extrapolating from expression studies in one organism to close phylogenetic neighbors. To identify modules

317 with such coherent expression patterns, we constructed 30 weighted gene co-expression networks (Langfelder
318 and Horvath 2008) and 148 highly significant (min KME = 0.7, cut height = 0.25) co-expression modules within
319 species and across different sets of tissues and conditions. Of these, 21 modules were significantly correlated
320 with stress treatments (i.e., heat, cold, drought, salt, and wound stresses), 10 with N treatments, and 33 with
321 other experimental conditions (Supplemental Data 11). Tissue-specific modules were also very common, e.g.,
322 root tissue-specific modules (n = 11), contained genes with GO terms enriched in responses to stimulus,

323 oxidation-reduction process (Manzano et al. 2014; Passaia et al. 2014) and hydrogen peroxide metabolism (Ma
324 et al. 2014) that are relevant to root functions (Bruex et al. 2012; Kogawara et al. 2014; W. Li, Lan, and 3.948
325 2015; Loreti et al. 2005). Leaf specific modules (n = 11) were enriched for phototropism, thylakoid membrane
326 organization, pigment biosynthetic process, phototropism, and carbon fixation (Supplemental Data 12),

327 suggesting that genes within the same module are associated with the same or interconnected biological

328 functions.

329

330 Inferring transcription factor functions from co-expressed genes. Genes showing highest connectivity with
331 neighboring genes within a module, referred to as hub genes, are likely involved in preserving multi-gene

332 regulatory variation and thus network integrity, potentially as trans-regulatory elements like transcription factors.
333 We determined the top 10 most highly connected hub genes within each module. Across all the co-expression
334 networks 87 hub genes belonged to transcription factor (TF) families (via PlantTFDB; (Jin et al. 2017))

335 (Supplemental Data 13), a slight but not significant enrichment of TFs relative to the genomic background (%
336 hub TFs = 6.21%, background TFs = 5.23%, Fisher’s exact test odds ratio = 0.834, P = 0.104). TFs with many
337 connections are presumed to be most influential in regulating the expression of modular genes in co-expression
338 networks (Mukhtar et al. 2011). Under this premise, we further explored the overrepresented TF families among
339 the hub genes. Most represented TF families in N treatment modules were MYB, WRKY, and NAC. Similar

340 observations were made by Canales et al. (Canales et al. 2014) from Arabidopsis root transcriptomic data

341 generated under contrasting N conditions. As shown in previous studies (Ghazalpour et al. 2006; Horvath et al.
342 2006; Liu, He, and Deng 2021; Miller, Oldham, and Geschwind 2008; Torkamani et al. 2010; Voineagu et al.

343 2011), hub genes play key roles in orchestrating module behavior and provide a specific focus for investigations
344 into trait or condition related modules.

345

346 Expression derived function descriptions (EDFD). To evaluate how well the predicted gene function

347 descriptions of Gene Atlas plants illustrate validated gene functions, we categorized currently assigned

348 functional descriptions available at Phytozome as genes with good (GGF) and poor (GPF) function descriptions
349 using an augmented dictionary lookup approach that incorporates weighting for negative, positive, and

350 adversative keywords. Overall, 16% to 56% of the functional descriptions are GPF across the plants, with a

351 large percentage of such genes not having a known function (Supplemental Fig. 1) (Gollery et al. 2006; Rhee
352 and Mutwil 2014). We then assigned EDFD to the two subsets using results from tissue and condition specific
353 expression groups, DEGs unique to a single contrast and co-expression network analysis along with ortholog
354 function descriptions derived from nearest phylogenetic neighbors (see Methods).

355

356 Using this method, we added additional biological information to an average of 40.6% (SD = 12.6) of genes

357 (excluding orthology based function descriptions) in these plant genomes (Table 2; Supplemental Data 14).
358 For example, in the case of S. bicolor, 5,357 (15.65% of the total) genes lacked sequence homology-based

359 function descriptions, 24,406 had good functional descriptions while overall 9,723 had poor descriptions. Gene
360 Atlas expression-based functional descriptions were assigned to a total of 20,259 genes, of which 14,891

361 (43.63% of total annotated genes) had good functional descriptions and 5,368 (15.73%) had poor descriptions.
362 To verify the reliability of the assigned functional associations, GO enrichment analysis of genes assigned with
363 descriptions based on leaf and root samples was performed. We observed significant enrichment for

364 photosynthesis, chloroplast organization, chlorophyll biosynthetic process and plastid translation (P <.05,

365 Fisher’'s exact test) in leaf related EDFDs; and cell wall loosening (Somssich, Khan, and Persson 2016), water
366 transport and xyloglucan biosynthetic process (Pefia et al. 2012) (P <.05, Fisher’s exact test) in root related

10
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367 EDFDs. Similar analysis in Brachypodium genes with assigned descriptions based on abiotic stress

368 experiments (i.e., cold, heat, drought, and salt stress) showed significant enrichment for regulation of cellular
369 response to alkaline pH, response to cold, heat, and positive regulation of response to oxidative stress (P <.05,
370 Fisher’s exact test). Likewise, among genes annotated based on flower samples, specification of floral organ
371 identity, fruit wall development and sporopollenin biosynthetic process were among the top enriched GO terms
372 (P <.05, Fisher’s exact test). These results indicate that the assigned functional descriptions show strong

373 biological role predictability and the approach here aids in expanding our current understanding of plant gene
374 functions.

375

376 Table 2 | Summary of assigned expression derived function descriptions (EDFD) to Gene Atlas. Number of annotated
377 genes and the percentage of genes with good function descriptions (GGF), poor function descriptions (GPF) categorized using an
378 augmented dictionary lookup approach that incorporates weighting for negative, positive, and adversative keywords and

379 percentage of genes assigned with expression derived function descriptions.

% assigned % assigned % assigned

Genome n.genes % GGF % GPF n.assigned

(GGF) (GPF) (total)
A. thaliana 27,416 83.86 32.43 16.14 5573 10,418 38.00
B. distachyon 34,310 72.56 34.17 27.44 13.19 16,247 47.35
C. reinhardtii 17,741 43.08 126 56.92 15.98 5,070 28.58
E. grandlis 36,349 79.74 28.63 20.26 3.997 11,858 32.62
G. max 52,872 80.37 47.25 19.63 11.33 30,971 58.58
K. fedtschenkoi 30,964 82.01 39.56 17.99 7.644 14,615 47.20
M. truncatula 50,894 67.94 23.66 32.06 5.285 14,731 28.94
P. halli 33,805 72.65 34.97 27.35 8.656 14,746 43.62
P. halliHAL 33,263 73.36 31.16 26.64 7.946 13,007 39.10
P. patens 32,926 55.44 19.35 44.56 14.06 11,003 33.42
P. trichocarpa 34,699 82.31 39.57 17.69 7.997 16,507 47.57
P. virgatum 80,278 69.2 39.73 30.8 14.15 43,251 53.88
S. bicolor 34,129 71.51 43.63 28.49 15.73 20,259 50.36
S. bicolorRio 35,490 69.16 15.04 30.84 4.765 7,029 19.81
S. fallax 25,100 78.31 32.36 21.69 9.183 10,427 4154
S. italica 34,584 77 39.37 23 10.78 17,344 50.15
S. viridis 38,334 70.43 35.99 29.57 12.74 18,680 48.73
L. albus 38,258 78.17 11.01 21.83 2.415 5,138 13.43

380

381 To help investigators target important genes for additional functional studies, we ranked the biological

382 relevance of genes using a scoring methodology based on expression patterns of genes identified using

383 tissue/condition specificity, differential expression, co-expression, hub status in a co-expression module and
384 consensus expression across species. Gene orthologs with similar expression profiles in two or more species
385 were given additional scores derived from the phylogenetic distance, i.e., larger the divergence time higher the
386 score (see Methods). We identified a total of 656 top ranked genes across Gene Atlas plants (604 have

387 orthologs in =5 plants; 40 of which have orthologs in =10 of evaluated plants) that have poor functional

388 information but with the potential to improve our understanding of plant biology and form a list of prioritized
389 targets for future experimental investigations (Table 3; Supplemental Data 15).

390
391
392

393
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Table 3 | Prioritized top ranked genes with poor functional descriptions for future experimental investigations. Genes
were given scores based on expression patterns identified from i) unique differential expression in a single contrast, ii)
tissue/condition specific expression and iii) biologically relevant co-expression modules (each given a score of 2) while hub
genes in a co-expression module were given a score of 4. Gene orthologs with similar expression profiles were given
additional scores derived from the phylogenetic distance. Total score was calculated as the aggregate of individual scores.
Top ranked genes (two per species) are represented here.

Score
Organism Gene ID eD)i(f;&:;:::ie: Con:)::)i::;::;cific Co-expression Hub gene ::::g::: Total Arabidopsis orthologs
A. thaliana AT2G20080 2 2 2 0 21.91 27.91 AT2G20080
AT4G28840 0 2 2 0 21.91 25.91 AT4G28840
B. distachyon Bradi1g38210 0 2 2 0 10.7 14.7 AT2G42760
Bradi2g23445 0 0 2 0 11.69 13.69 AT5G02090; AT2G37750
C. reinhardtii Cre02.9078550 0 2 2 4 0 8
Cre02.9092700 0 2 2 4 0 8
E. grandis Eucgr.BO0604 0 2 2 0 16.57 20.57 AT5G08050
Eucgr.FO1122 0 2 2 0 1712 2112
G. max Glyma.13G227500 0 0 2 0 20.28 44.56 AT1G33055
Glyma.16G013600 0 0 2 0 20.84 45.68 AT3G14280
K. fedtschenkoi  Kaladp0065s0016 0 0 2 0 19.79 21.79 AT4G28840; AT2G20080
Kaladp0965s0006 2 0 2 0 26.23 30.23 AT2G30230; AT1G06980
M. truncatula Medtr2g079300 2 2 2 0 18.11 2411
Medtr3g031140 0 2 2 0 27.28 31.28 AT2G30230; AT1G06980
P. hallii var. filipes  Pahal.3G090000 2 2 2 0 13.2 19.2 AT5G02160
Pahal.7G305700 2 2 2 0 12.05 18.05 AT4G21445
P. hallii var. halli ~ PhHAL.3G160400 0 0 2 0 14.55 16.55
PhHAL 5G229300 2 2 2 0 11.532 17.532 ﬁﬁggg:g foerese:
P. patens Pp3c11_15500 2 2 2 4 0 10
Pp3c13_2427 0 2 2 4 0 8
P. trichocarpa Potri.018G084100 2 2 2 0 19.79 25.79 AT4G28840; AT2G20080
Potri.003G193400 2 0 2 0 20.89 24.89
P. virgatum Pavir.5NG404000 0 0 2 0 13.64 15.64
Pavir.2NG640501 0 2 2 0 9.72 18.72 AT5G13720
S. bicolor Sobic.009G229000 0 0 2 4 13.35 19.35 AT4G28840; AT2G20080
Sobic.001G118400 2 2 2 0 10.44 16.44 AT1G73885
S. bicolorRio SbRi0.08G154700 0 2 2 0 12.31 16.31 AT5G08050
SbRio.10G134000 0 2 2 0 12.05 16.05 AT4G01150
S. angustifolium  Sphfalx02G142200 2 2 2 4 0 10
Sphfalx11G077900 2 2 0 0 4.5 8.5 AT3G03341
S. italica Seita.9G407600 2 0 2 0 12.70583 16.7053 | AT1G63410; AT3G14260
Seita.9G436900 0 2 2 0 12.5741 16.5741 | AT2G30230; AT1G06980
S. viridis Sevir.1G151100 2 0 2 0 13.2732 17.2732 ﬁggégggg; b
Sevir.5G247600 0 0 2 0 13.2732 15,2732 | ATOCO2770; ATSG27680;

AT1G23710; AT1G70420
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402 DATA ACCESS

403 JGI Plant Gene Atlas data are currently hosted at two portals: i) JGI Plant Gene Atlas

404 (https://plantgeneatlas.jgi.doe.gov), a dedicated portal provides bulk access to the data and user-specified

405 queries of a single gene to multiple gene sets, lets users access differentially expressed genes, visualize gene
406 ontology and pathway enrichments and track orthologs across the Gene Atlas plants; and ii) JGI’s plant portal,
407 Phytozome (phytozome.jgi.doe.gov). Currently, Phytozome provides efficient tabular and graphical

408 representation of co-expressed genes, pathway details, peptide, CDS and transcript sequence, protein

409 homologs, plant family information and additionally genome browser view of gene models.

410

411 CONCLUSIONS

412 Here we analyzed the transcriptional landscape of 18 plants from 2,090 RNA-seq datasets. To the best of our
413 knowledge, it is the largest compendium of plant transcriptome data generated following standardized

414 protocols across diverse plant species. These datasets enable JGI's efforts to improve genome annotations

415 especially related to conserved biological processes across the diversity of plants. Comparing orthologs among
416 common gene sets between species allowed us to pinpoint and rank biologically relevant and evolutionarily

417 conserved genes, demonstrating the potential of cross-species analysis from the transcriptome resource

418 generated in this study. Furthermore, our results documented plant responses to varying N resources at the

419 organ level and expression variation among developmental stages. These and other analyses highlight shared
420 and varied gene expression regulatory evolution across plants.

421 The Gene Atlas datasets, along with the additional expression derived functional annotations, are valuable

422 resources to the plant research community and provide targets, unknown or poorly described TFs, hub genes,
423 and conserved genes, for functional studies that directly improve gene functional descriptions. We

424 acknowledge that these functional associations are not definitive evidence of their functions, but we anticipate
425 that they will be useful in directing future functional characterization experiments. We will continue to expand
426 the Gene Atlas through standardized procedures to increase the specificity of these function descriptions. We
427 strongly believe that results from this study and additional custom analyses on this resource will aid researchers
428 in better understanding of roles of genes in their own experiments and get a better handle on biological

429 processes at the system level.

430

431 METHODS

432 Plant growth and treatment conditions

433 Glycine max and Medicago truncatula. Plant seeds (G. max cv. Williams 82) were surface-sterilized, transferred to pots

434 containing 3:1 vermiculite perlite. 2/3 seedlings were planted in each pot and grown until plants were 4 weeks in a growth

435 chamber under 16 h-light/8 h-dark conditions, 26-23°C temperature maintained at 250 pmol m=2s-". Plants for nitrogen

436 experiment were watered with nutrient solution containing either 10 mM KNO3 (NOs~ plants) or 10 mM (NH4)sPO4 (NH4* plants)
437 or 10 mM urea (urea plants). We selected urea as a control condition for the counter ions, potassium, and phosphate, as the
438 best compromise. The nutrient solutions were renewed every 3 days. After 4 weeks, different tissues (leaf, stem, root, shoot,
439 shoot tip, root tip, lateral roots, etc) for N regimes and standard conditions were harvested. Plants under symbiotic conditions
440 were watered with nutrient solution containing 0.5 mM NH4NOs every other week. Subsequently, root nodules, roots, and

441 trifoliate leaves under symbiotic conditions were collected and tissues from flower open and un-open were harvested from
442 field grown plants.

443 Arabidopsis thaliana. Seeds were cold-stratified in water for 3 days and subsequently seeds were sown into 9 cm? plastic

444 pots (T.O. Plastics, Clearwater, FL, USA) filled with 2 parts Promix Biofungicide (Premier Tech, Riviére-du-Loup, QC, Canada)
445 to 1 part Profile Field and Fairway (Profile, Buffalo Grove, IL, USA). Pots were placed in a growth chamber (22°C days/20°C
446 nights, 14 h light at a photosynthetic photon flux density of 350 pmol m-2s-7), then thinned to 1 plant per pot containing

447 Sunshine MVP potting mix (SunGro Horticulture) and transferred into a greenhouse at the University of Texas at Austin when
448 rosettes had achieved 7-8 leaves. Plants supplemented with differing nitrogen source regimes (see Glycine max) were

449 harvested after 30 days.

450 Brachypodium distachyon. Seeds (B. distachyon Bd21) were grown in Metro mix 360 soil in a growth chamber, under 12 h

451 day and 12 h night conditions, maintained at 24°C/18°C, ~50% relative humidity; 150 umol m-2s-'. Plants were watered once
452 a day or every two days depending on the size of plants and soil conditions and fertilized twice a week (Tuesday and Friday)
453 using Jack’s 15-16-17 at a concentration of 100 ppm. For the nitrogen source study, plants grown for 30 days under differing
454 nitrogen source regimes (see Glycine max) were harvested.

455 For cold treatment experiment, Bd21 seeds were sown in soil without stratification. The germinated seeds were grown in a

456 growth chamber under short day conditions (26°C 10 h light, 18°C 14 h dark) for 4 weeks and then moved to a cold room
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457 (4°C 10 h light, 4°C 14 h dark) for cold treatment. Whole shoots were harvested at different treatment time points and stored
458 at -80°C for RNA extraction.

459 Chlamydomonas reinhardti. C. reinhardtii strain CC-1690 (also known as 21gr) was cultured at 24°C (agitated at 180 rpm at

460 a photon flux density of 90 ymol m-2s-' provided by cool white fluorescent bulbs at 4100 K and warm white fluorescent bulbs
461 at 3000 K used in the ratio of 2:1) in tris acetate-phosphate (TAP) medium (Boyle et al. 2012). For growth in differing nitrogen
462 sources, TAP medium was supplemented with (NH4)sPO4 or KNOs, or urea (see Glycine max). Cultures of strain CC-1690 were
463 inoculated to 1 x 105 cells mI-" and collected for RNA at 1 x 10° cells ml-', when the growth rates of all cultures were identical.
464 For assessing the impact of cell density, cultures were inoculated at 1 x 104 cells mI-" in replete medium and sampled at 5 x
465 10° cells ml-! and at each doubling thereafter until the culture reached a final density of 8 x 108 cells ml-".

466 Eucalyptus grandis. E. grandis samples were derived from tissues collected from clonal ramets of the genotype BRASUZ1
467 that was used to generate the E. grandis reference genome. Tissue samples were collected from three trees ca. 5 years old,
468 and an adult tree ca. 8 years old at the time of sample collection, planted in experimental fields at Embrapa Genetic

469 Resources and Biotechnology in Brasilia, Brazil (15.73 South, 47.90 West). RNA samples were prepared from adult leaves

470 (completely developed), juvenile leaves (tender, thinner, not waxed), fruit buds, and developing cambium (from inside the tree
471 bark). Plant material was collected from the field, immediately frozen in liquid nitrogen, and stored at -80°C until RNA

472 extraction that followed an optimized CTAB-lithium chloride-based protocol (Inglis et al. 2018).

473 Kalanchoé fedtschenkoi. Four-week-old K. fedtschenkoi plants (accession ORNL M2) were grown under a 250 mmol m2 s™!
474 white light with a 12 h light (25°C)/12 h dark (18°C) cycle and were used as starting plant material for eight different

475 experiments (i.e., circadian, metabolite, temperature, drought, light intensity, light quality, nitrogen utilization, and standard
476 tissue). The experiments were conducted under day/night temperature regime of 25°C/18°C except the temperature

477 experiment. For the circadian experiment, two sets of plants were grown under a 12 h light/12 h dark cycle and continuous
478 lighting (250 mmol m2 s-! white light), respectively, for seven days and then mature leaf samples (i.e., leaves 5-7 counting
479 from the top of the plants) were collected every two hours over a 48 h period. For the metabolite experiment, plants were
480 grown under an aerobic condition to prevent dark COz fixation and malate accumulation. This was accomplished by putting
481 the plants in a sealed chamber with a closed air loop, through which air was continuously circulated. CO2 was subsequently
482 continuously scrubbed from the air using a hydrated soda lime filter (LI-COR Biosciences, Lincoln NE) included in the loop.
483 CO: levels were monitored and maintained at an average of 3 ppm over the 12 h overnight aerobic treatment. Plants were
484 removed from the aerobic condition just prior to the start of the daylight photoperiod. Mature leaves were harvested at 2 h
485 intervals over the succeeding 24 h period (12 h light/12 h dark). For the temperature treatment, plants were grown under three
486 different temperatures (8°C, 25°C and 37°C), respectively, for seven days. For drought treatments, plants were grown under
487 three soil moisture conditions (40% + 3% [control], 20% + 3% [moderate drought] and 2% + 3% [severe drought]),

488 respectively, for 19 days. For the light intensity experiment, plants were grown under light intensity of O (darkness), 150 (low
489 light) and 1000 (high light) mmol m-2 s for 48 h. For the light quality experiment, plants were grown under blue light (270
490 mmol m2 s), red light (280 mmol m2 s), far-red light (280 mmol m= s-') and constant darkness for 48 h. For the nitrogen
491 utilization experiment, plants were treated with potassium sulfate (10 mM), ammonium sulfate (10 mM) and urea (5 mM),

492 respectively, for four weeks. Immediately after the temperature, drought, light intensity, light quality and nitrogen utilization
493 experiments, mature leaves were collected at two time points of dawn (2 h before the start of light period) and dusk (2 h

494 before the start of dark period). For the nitrogen utilization experiment, root samples were also collected at dawn and dusk,
495 respectively. For the standard tissue experiment, plants were grown in the greenhouse under a 12 h light/12 h dark cycle at

496 Oak Ridge National Laboratory (Oak Ridge, TN) and five different tissue types (young leaf, young stem, mature stem, root,
497 and flower) were collected at 10 am in the greenhouse.

498 Lupinus albus. RNA-seq data from cluster root samples were obtained from (Hufnagel et al. 2020).

499 Panicum virgatum. Vegetatively propagated Alamo AP13 plants were grown in pre-autoclaved MetroMix 300 substrate

500 (Sungro® Horticulture, http://www.sungro.com/) and grown in a walk-in growth chamber at 30/26°C day/night temperature
501 with a 16 h photoperiod (250 pm sec-') for four months. Tissues were harvested at six developmental stages, including leaf
502 development (VLD: V2), stem elongation (STE: E2 and E4), and reproductive phases (REP: R2, S2, and S6) (Moore et al.

503 1991).

504 For P. virgatum photoperiod experiment, four switchgrass genotypes, AP13, WBC, AP13, and VS16 plants were vegetatively
505 propagated and grown in one-gallon pots with a 6:1:1 mixture of Promix:Turface:Profile soil at a growth chamber at the

506 University of Texas at Austin. After one-week maintenance with a 30/25°C day/night temperature and 14L/10D photoperiod,
507 plants from each genotype were divided into two groups and received LD (16L/8D) or SD (8L/16D) treatment in separate

508 growth chambers. Fully emerged young leaves were simultaneously harvested from three individuals as three biological

509 replicates after three-week LD and SD treatments. We collected two leaf tissues (2cm leaf tips and 2 cm leaf base) at two

510 zeitgeber times (ZT1 and ZT17). All samples were immediately flash frozen in liquid nitrogen and stored at -80 °C for DNA and
511 RNA extraction.

512 Panicum halli. The P. hallii FIL2 (var. filipes; Corpus Christi, TX; 27.65° N, 97.40° W) and P. hallii HAL2 (var. hallii; Austin, TX;
513 30.19° N, 97.87° W) were grown in 3.78 L pots at the University of TX Brackenridge Field Laboratory (Austin, Texas) in the

514 greenhouse with mean daytime air temperature of 30°C and relative humidity of 65%. Plants supplemented with differing
515 nitrogen source regimes (see Glycine max) were harvested after 30 days.

516 For P. hallii panicle samples, genotypes, HAL2 and FIL2, were grown in a growth chamber at University of Texas at Austin
517 with 26°C day/22 °C night temperature and 12 h photoperiod. Plants were grown in 3.5 inches square pots with a 6:1:1
518 mixture of Promix:Turface:Profile soil. Young panicle tissues were collected under a dissection microscope and the
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519 developmental stages were determined according to the lengths (0.1-0.2 cm for D1 stage, 0.5-1 cm for D2 stage, 4.5-5.5 cm
520 for D3 stage, and 9-11 cm for D4 stage). Tissues for D1 and D2 stages were taken from at least fifty plants and pooled for

521 each biological replicate. Tissues for D3 and D4 stages were taken from at least fifteen plants and pooled for each biological
522 replicate. All samples were harvested at 17:00-18:00 of the day and immediately flash frozen in liquid nitrogen. Three

523 biological replicates for each stage were stored at -80°C for DNA and RNA extraction.

524 Physcomitrium patens. The protonemata cultures were systematically entrained by two successive weeks of culture prior to
525 treatment to obtain a homogeneous culture as described in Perroud et al. (Perroud et al. 2018). In brief, BCD (Cove et al.

526 2009) or Knop medium (Reski and Abel 1985) were used to culture the moss. Solid medium (medium with 1% [w/v] agar)

527 protonemal cultures were grown atop a cellophane film to allow tissue transfer for specific treatments (e.g., with hormones),
528 and for ease of harvesting. Plates and flasks were cultivated at 22°C with a 16 h-light/8 h-dark regime under 60-80 pmol

529 m-2s-! white light (long-day conditions). All harvests were performed in the middle of the light photoperiod (+8 h of light in

530 long day conditions) (Perroud et al. 2018; Fernandez-Pozo et al. 2020).

531 Populus trichocarpa. Populus trichocarpa (Nisqually-1) cuttings were potted in 4" X 4" X 5" containers containing 1:1 mix of
532 peat and perlite. Plants were grown under 16 h-light/8 h-dark conditions, maintained at 20-23°C and an average of 235 pmol
533 m-2s~'to generate tissue for (1) standard tissues and (2) nitrogen source study. Plants for standard tissue experiment were
534 watered with McCown’s woody plant nutrient solution and plants for nitrogen experiment were supplemented with either

535 10mM KNOs (NOs~ plants) or 10mM (NH4)sPO4 (NH4* plants) or 10 mM urea (urea plants). Once plants reached leaf

536 plastochron index 15 (LPI-15), leaf, stem, root, and bud tissues were harvested and immediately flash frozen in liquid nitrogen
537 and stored at -80°C until further processing was done.

538 The plant material for the seasonal time course study was obtained from 2-year-old branches and apical buds (understood as

539 the top bud of each branch) of 5-year-old hybrid poplar (Populus tremula x alba INRA 717 1B4) trees planted at the Centre for
540 Plant Biotechnology and Genomics (CBGP) in Pozuelo de Alarcén, Madrid (3°49'W, 40°24’N), growing under natural

541 conditions. Stem samples were collected weekly from November 7, 2014, to April 9, 2015. Buds were collected weekly from
542 13 January to 14 April 2015. For each time point, stem portions from 8 trees and 25 apical buds from 8 trees were pooled.
543 RNA extraction was performed using the protocol described in (Ibafiez et al. 2008). For the gene expression analysis, the
544 weekly data were divided into groups named; fall, winter, and spring. Letter suffixes - “a, b, c, d, e” were added to group
545 names representing “early,” “mid,”, “late”, “fortnight-1” or “fortnight-2” based on sampling dates within each season,

546 following the Northern Meteorological Seasons dates.

547 Setaria italica and Setaria viridis. Seeds (S. italica B100 and S. viridis A10.1) were sown in flats (4x9 inserts/flat) containing
548 Metro mix 360 soil and grown in a growth chamber, under 12 h day and 12 h night conditions, maintained at 31°C/22°C,

549 50%-60% humidity; 450 pmol m—2s-'. Plants were watered once a day or every two days depending on the size of plants and
550 soil conditions and fertilized twice a week (Tuesday and Friday) using Jack’s 15-16-17 at a concentration of 100 ppm. For

551 light treatment experiments, plants were grown under continuous monochromatic light, blue: 6 pmol m- s-' red: 50 ymol m-
552 2 s far-red: 80 ymol m2 s, respectively and watered with RO water every 3 days. Total aerial tissues were collected (at 9.30

553 AM) from 8-day old seedlings.

554 Sorghum bicolor. The reference line BTx623 was grown under 14 h day greenhouse conditions in topsoil to generate tissue
555 for two separate experiments: (1) a nitrogen source study and (2) a tissue by developmental stage timecourse. For the

556 nitrogen source study, plants grown under differing nitrogen source regimes (see Glycine max) were harvested at 30 days
557 after emergence (DAE). For the tissue by developmental stage timecourse, plants were harvested at the juvenile stage (8

558 DAE), the vegetative stage (24 DAE), at floral initiation (44 DAE), at anthesis (65 DAE), and at grain maturity (96 DAE) and leaf,
559 root, stem and reproductive structures as described in McCormick et al (Mccormick et al. 2017).

560 Sorghum bicolor var Rio. Genetic material for S. bicolor var Rio was obtained from a single seed source provided by W.

561 Rooney at Texas A&M University. Plants were grown in greenhouse conditions and material for RNA extraction was collected
562 at 6 biological stages: vegetative (5-leaf), floral initiation, flag leaf, anthesis, soft dough, and hard dough. Stages were

563 identified based on biological characteristics defined in (Vanderlip and Reeves 1972). At every stage, whole plants were

564 harvested, and the topmost fully developed leaf and topmost internode were collected. During the first 3 stages, meristems
565 were isolated from the topmost internode while floral and seed tissues were collected after plants had flowered. All tissues
566 were immediately placed in RNA Later and stored at 4°C prior to RNA extraction. See also (Cooper et al. 2019).

567 Sphagnum angustifolium (formally S. fallax). S. angustifolium were grown on BCD agar media pH 6.5, ambient temperature
568 (20°C) and 350 pmol m2 s of photosynthetically active radiation (PAR) at a 12 h light/dark cycle for 2 months prior to

569 initiation of experimental conditions. At 8 am on the morning of the treatments, Sphagnum plantlets were transferred to petri
570 dishes with 15 ml of appropriate BCD liquid media and placed in a temperature-controlled growth cabinet. Excluding the dark
571 treatment, all samples were kept under 350 PAR for the duration of the experiment. Morning treatment samples were

572 harvested at noon. After each experiment the material was blotted dry, placed in a 15 mL Eppendorf tube, flash frozen in

573 liquid nitrogen, and stored at -80°C until RNA extractions were completed.

574 For the control treatment, Sphagnum plants were placed in a 22.05 cm? petri dish containing BCD media 6.5 pH and

575 incubated in a growth cabinet at 20°C and ambient light 350 PAR. To test low pH gene expression, the sample was placed in
576 a 22.05 cm? petri dish containing 6.5 pH BCD media at 8 AM. Each hour, the pH was gradually decreased until the sample
577 was transferred to 3.5 pH media at 11 AM. The samples were harvested at 12 PM. This treatment was repeated for the high
578 pH experiment except the sample was gradually brought from 6.5 to 9.0 pH. Temperature experiments were controlled in

579 growth cabinets plantlets in 22.05 cm? petri dishes containing 6.5 pH BCD media. The high temperature treatment began at
580 20°C and over three hours, temperature was gradually increased to 40°C. The low temperature treatment began at 20°C and
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581 over three hours, was gradually decreased to 6°C. To test water loss effects on gene expression, plantlets were placed on dry
582 plates (no BCD media) for the duration of the experiment. Dark effect on gene expression was tested by placing plant

583 material in a BCD filled petri dish in complete darkness from 8 AM to 12 PM. To evaluate gene expression that is present

584 during immature growth stages, a sporophyte was collected from the mother of the S. angustifolium pedigree and germinated
585 on solid Knop medium under axenic tissue culture conditions. After 10 days of growth, plantlets were predominantly within

586 the thalloid protonemata with rhizoid stage and flash frozen in LN2 until RNA extraction using CTAB lysis buffer and Spectrum
587 Total Plant RNA kit.

588

589 RNA extraction and sequencing

590 All tissues were immediately flash frozen in liquid nitrogen and stored at -80°C until further processing was done. Every

591 harvest involved at least three independent biological replicates for each condition. High quality RNA was extracted mainly
592 using standard Trizol-reagent based extraction (Z. Li and Trick 2005), exceptions noted above under individual species. The
593 integrity and concentration of the RNA preparations were checked initially using Nano-Drop ND-1000 (Nano-Drop

594 Technologies) and then by BioAnalyzer (Agilent Technologies). Plate-based RNA sample prep was performed on the
595 PerkinElmer Sciclone NGS robotic liquid handling system using lllumina's TruSeq Stranded mRNA HT sample prep kit utilizing

596 poly-A selection of mMRNA following the protocol outlined by lllumina in their user guide:

597 http://support.illumina.com/sequencing/sequencing_kits/truseq_stranded_mrna_ht_sample_prep_kit.html, and with the

598 following conditions: total RNA starting material was 1 pg per sample and 8 cycles of PCR was used for library amplification.
599 The prepared libraries were then quantified by gPCR using the Kapa SYBR Fast lllumina Library Quantification Kit (Kapa

600 Biosystems) and run on a Roche LightCycler 480 real-time PCR instrument. The quantified libraries were then prepared for
601 sequencing on the lllumina HiSeq sequencing platform utilizing a TruSeq paired-end cluster kit, v4, and lllumina’s cBot

602 instrument to generate a clustered flow cell for sequencing. Sequencing of the flow cell was performed on the lllumina

603 HiSeg2500 sequencer using HiSeq TruSeq SBS sequencing kits, v4, following a 2x150 indexed run recipe. The same

604 standardized protocols were used to prevent introduction of any batch effects among samples throughout the project.

605

606 RNA-seq data normalization and differential gene expression analysis

607 lllumina RNA-seq 150 bp paired-end strand-specific reads were processed using custom Python scripts to trim adapter

608 sequences and low-quality bases to obtain high quality (Q=25) sequence data. Reads shorter than 50 bp after trimming were
609 discarded. The processed high-quality RNA-seq reads were aligned to current reference genomes of Gene Atlas using

610 GSNAP, a short read alignment program (Wu and Nacu 2010). HTSeq v1.99.2, a Python package was used to count reads
611 mapped to annotated genes in the reference genome (Anders, Pyl, and Huber 2015).

612 Multiple steps for vetting libraries and identifying outliers were employed, including visualizing the multidimensional scaling
613 plots to identify batch effects, if any, and outliers among the biological replicates were further identified based on Euclidean
614 distance to the cluster center and the Pearson correlation coefficient, r > 0.85. Libraries retained after QC and outlier-filtering
615 steps were only considered for further analysis. Detected batch effects, if any, were accounted for using RUVSeq (v1.4.0)
616 (Risso et al. 2014) with the residual RUVr approach. Fragments per kilobase of exon per million fragments mapped (FPKM)
617 and transcripts per million (TPM) values were calculated for each gene by normalizing the read count data to both the length
618 of the gene and the total number of mapped reads in the sample and considered as the metric for estimating gene expression
619 levels (B. Li and Dewey 2011; Trapnell et al. 2011). Genes with low expression were filtered out, by requiring =2 relative log
620 expression normalized counts in at least two samples for each gene. Differential gene expression analysis was performed

621 using the DESeq2 package (v1.30.1) (Love, Huber, and Anders 2014) with adjusted P-value < 0.05 using the Benjamini &

622 Hochberg method and an log: fold change >1 as the statistical cutoff for differentially expressed genes.

623

624 Co-expression network construction

625 Weighted gene co-expression networks were constructed using the WGCNA R package (v1.70.3) (Langfelder and Horvath
626 2008) with normalized expression data retained after filtering genes showing low expression levels (logz values of expression
627 <2). Subsets of samples belonging to specific experiments such as N study, developmental stages, or stress treatment, were
628 used to construct multiple networks for each species. Subsetting samples reduces the noise and increases the functional
629 connectivity and specificity within modules. We followed standard WGCNA network construction procedures for this analysis.
630 Briefly, pairwise Pearson correlations between each gene pair was weighted by raising them to power (B). To select proper
631 soft-thresholding power, the network topology for a range of powers was evaluated and appropriate power was chosen that
632 ensured an approximate scale-free topology of the resulting network. The pairwise weighted matrix was transformed into a
633 topological overlap measure (TOM). And the TOM-based dissimilarity measure (1 — TOM) was used for hierarchical clustering
634 and initial module assignments were determined by using a dynamic tree-cutting algorithm. Pearson correlations between
635 each gene and each module eigengene, referred to as a gene’s module membership, were calculated and module eigengene
636 distance threshold of 0.25 was used to merge highly similar modules. These co-expression modules were assessed to

637 determine their association with expression patterns distinct to a tissue or condition. Module eigengenes were associated
638 with tissues or treatment conditions or developmental stages to gain insight into the role each module might play. These

639 modules were visualized using igraph R package (v.1.2.6) (Gabor Csardi and Tamas Nepusz 2006) and in order to focus on
640 relevant gene pair relationships, network depictions were limited to top 500 within-module gene-gene interactions as

641 measured by topological overlap.

642

643 GO and KEGG pathway enrichment analysis

644 GO enrichment analysis of DEGs, co-expression modules and genes in tissue and condition specific clusters was performed
645 using topGO (v.2.42.0) (Alexa A and Rahnenfuhrer J 2016) , an R Bioconductor package, to determine overrepresented GO
646 categories across biological process (BP), cellular component (CC) and molecular function (MF) domains. Enrichment of GO

647 terms was tested using Fisher's exact test with P <0.05 considered as significant. KEGG (Kanehisa and Goto 2000) pathway
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648 enrichment analysis was also performed on those gene sets based on hypergeometric distribution tests and pathways with P
649 <0.05 were considered as enriched.

650

651 Categorization of function descriptions

652 An augmented dictionary lookup approach that incorporates weighting for positive (amplifiers), negative (including

653 attenuators), and adversative keywords was adapted from sentiment analysis methodology to categorize gene function

654 descriptions. We generated a custom dictionary from gene function descriptions of all Gene Atlas plants and used a modified
655 valence shifters data table with sentimentr (v.2.9.0) (https://cran.r-project.org/web/packages/sentimentr), to obtain sentiment
656 score. We empirically determined the minimum cutoff for sentiment score to classify gene descriptions as good (score > 0.3)
657 and poor (score < 0.3) function descriptors.

658

659 Identification of orthologous genes

660 OrthoFinder (v2.5.4) was used to identify orthologous genes across 18 Gene Atlas species using default parameters (Emms
661 and Kelly 2019). OrthoFinder results were parsed to generate tables of orthologs for each species and genes with one-to-one
662 ortholog relationships between species identified using rooted gene trees were further subsetted.

663

664 Gene ranking method

665 To rank and prioritize genes by their biological relevance, genes with distinct expression patterns identified based on i)

666 tissue/condition specificity, ii) unique DE in a single contrast were given a score of 2 for each method i.e., a gene was

667 assigned a score of 4 if it were identified by two methods. These scores were augmented with co-expression network

668 analysis (described above). Genes in biologically relevant modules were ranked (score=2) while hub genes in a co-expression
669 module were ranked the highest (score=4). Also, gene orthologs with consensus expression pattern in two or more plants

670 were given additional scores based on the phylogenetic distance between species (Zeng et al. 2014; Kumar et al. 2017) i.e.,
671 larger the divergence time higher the score (million years ago/100) (Supplemental Data 16). Final ranking of the genes was
672 calculated as the aggregate of individual scores.

673

674 System design and implementation

675 All statistical analyses and visualizations were performed using the R 4.0.3 Statistical Software (R Development Core Team
676 2011) and its web interface was developed using shiny (v1.7.1). Currently, Gene Atlas is deployed on a CentOS Linux server
677 by employing Docker (version 19.03.11), an open platform for developing and running applications.

678

679 Data availability
680 The RNA-seq data that support the findings of this study are available from the NCBI Sequence Read Archive (SRA) under

681 accessions provided in Supplemental Data 1. To enable exploration of the transcriptome datasets for JGI Plant Gene Atlas
682 v2.0, the data are hosted on Gene Atlas portal (https://plantgeneatlas.jgi.doe.gov) and JGI’s Phytozome plant portal.
683 Documentation for data processing and downloadable data are available in the ‘Methods’ section

684 (https://plantgeneatlas.jgi.doe.gov).
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930 Supplemental Figure 1 | Classification of gene function descriptions. Percentage of genes with poor and good function
931 descriptions categorized using an augmented dictionary lookup approach that incorporates weighting for negative, positive and
932 adversative keywords.
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948 Supplemental Figure 4 | Transcriptional response of Gene Atlas plants towards NH4* and NOs™ as the sole nitrogen
949 source in root tissues. Top 10 KEGG metabolic pathway enrichments (P <.05, hypergeometric test) in up-regulated (A) and
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950 down-regulated (B) differentially expressed genes in roots from Gene Atlas plants in ammonia vs. nitrate comparison. ‘gene.ratio’
951 represents the ratio of number of DEGs over the number of genes annotated specific to the pathway.
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