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Abstract

While large-scale volunteer-based studies such as the UK Biobank (UKBB) have become the
cornerstone of genetic epidemiology, the study participants are rarely representative of their
target population.

Here, we aim to evaluate the impact of non-random participation in the UKBB, and to pin
down areas of research that are particularly susceptible to biases when using non-
representative samples for genome-wide discovery. By comparing 14 harmonized
characteristics of the UKBB participants to that of a representative sample, we derived a
model for participation probability. We then conducted inverse probability weighted
genome-wide association analyses (WGWA) on 19 UKBB traits. Comparing the output
obtained from WGWA (Neffective=94,643 — 102,215) to standard GWA analyses (N=263,464 —
283,749), we assessed the impact of participation bias on three estimated quantities, namely
1) genotype-phenotype associations, 2) heritability and genetic correlation estimates and 3)
exposure-outcome causal effect estimates obtained from Mendelian Randomization.
Participation bias can lead to both overestimation (e.g., cancer, education) and
underestimation (e.g., coffee intake, depression/anxiety) of SNP effects. Novel SNPs were
identified in wGWA for 12 of the included traits, highlighting SNPs missed as a result of
participation bias. While the impact of participation bias on heritability estimates was small
(average change in h?: 1.5%, maximum: 5%), substantial distortions were present for genetic
correlations (average absolute change in ry: 0.07, maximum: 0.31) and Mendelian
Randomization estimates (average absolute change in standardized estimates: 0.04,
maximum: 0.15), most markedly for socio-behavioural traits including education, smoking
and BMI. Overall, the bias mainly affected the magnitude of effects, rather than direction. In
contrast, genome-wide findings for more molecular/physical traits (e.g., LDL, SBP) exhibited
less bias as a result of selective participation.

Our results highlight that participation bias can distort genomic findings obtained in non-
representative samples, and we propose a viable solution to reduce such bias. Moving
forward, more efforts ensuring either sample representativeness or correcting for
participation bias are paramount, especially when investigating the genetic underpinnings of

behaviour, lifestyles and social outcomes.
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Introduction

Elucidating the genetic underpinnings of health and disease is the overarching aim of genetic
epidemiology. Fast-growing biobanks with rich phenotypic data are therefore curated, to
maximize power for genome-wide discovery. To ensure validity of findings obtained from
genome-wide studies, substantial efforts are made to eliminate potential sources of bias,
such as population stratification, assortative mating, measurement error or indirect genetic
effects'™. A particularly challenging bias — and typically not considered in genetic studies —
can occur when data is collected from individuals not representative of their target
population®®. While valid conclusions are possible in non-representative samples under
certain conditions (e.g., if study participation is unrelated to both the independent and
dependent variable), study participation is linked to many commonly studied factors,
including mental and physical health, substance use (cigarettes, alcohol), income and
educational attainment’~!! — where participants typically show a better health profile than
the target population. Such 'healthy-volunteer bias' is well documented in the UK Biobank
(UKBB), one of the most widely used resources for biomedical research. Of the 9 million
people invited to participate in the UKBB, only 5.5% (~500,000) were recruited into the study
—a sample of volunteers with more healthy lifestyles, higher levels of education, and

favourable health profiles compared to the general population??13,

Given the growing reliance on non-representative biobanks, it is paramount to assess the
extent to which study participation induces bias in genome-wide studies and downstream
analyses. In observational studies using UKBB data, participation bias has already been shown
to distort phenotypic exposure-outcome associations't12% |f study participation includes a
genetic component, biased estimates are also expected in genetic studies®. In gene-
discovery studies, non-random participation may distort the association between a genetic
variant and the outcome (cf. Fig 1A). In Mendelian Randomization, participation bias could
induce an association between genetic instruments and unmeasured confounders of the
exposure-outcome association, thereby violating a key assumption of the method (cf. Fig
1B/C). Recent genome-wide studies looking at proxies of participation bias have already

16-23

described a genetic component to participatory behaviour and questionnaire responding ,

implicating that genetic studies are not immune to bias. While much of the recent GWA
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output is produced by non-representative biobanks (e.g., UKBB, Million Veteran Program,
23andMe), the extent to which gene-discovery and downstream analyses are subject to

participation bias is currently unknown.

Participation bias is eliminated by the use of samples that are representative of their target
population. To achieve representativeness in the UKBB, we derive a model for participation
probability and create a pseudo-sample of the UKBB matching its target population. Thereby,
it is possible to evaluate how a shift towards representativeness impacts genome-wide
findings and downstream analyses. We anticipate that these findings will help to characterize
the impact of participation bias in large volunteer-based samples used for biomedical
research and to pin down areas of research that might be particularly susceptible to bias

when relying on non-representative samples.
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Methods

First, we derived a model for participation probability by comparing 14 harmonized
characteristics of the UKBB sample to that of a representative sample. Utilising the estimated
participation probabilities, we conducted inverse probability weighted genome-wide
association analyses (WGWA) on 19 UKBB traits. Second, to explore the genetic basis of UKBB
participation, we conducted a GWA on the participation probability and evaluated the
genetic findings. Finally, comparing wGWA results to those obtained from standard GWA
analyses, we assessed the impact of participation bias on the estimation of three frequently
studied quantities: 1) effect of genetic markers on complex traits, 2) heritability and genetic
correlation estimates and 3) exposure-outcome associations obtained from Mendelian

Randomization

Samples

UK Biobank

The UK Biobank (UKBB) is a large-scale prospective population-based research resource
focusing on the role of genetic, environmental and lifestyle factors in health outcomes in
middle age and later life. More than 9,000,000 men and women between 40 and 69
registered with the UK NHS were invited to take part. Of those, 5.4% (~500,000 individuals)
were recruited in 22 assessment centres across England, Wales and Scotland between 2006
and 2010%*%°. Included in this study were data from UK Biobank participants of European
ancestry passing standard GWA analysis quality control measures?®. We further filtered the
sample according to geographical region (excluding individuals from Scotland and Wales) to
match the geographical regions included in the reference sample (HSE), and removed
individuals with missing data in auxiliary variables used to generate the propensity scores

(further described below).

Health Survey England
The Health Survey for England is an annual probability sample set out to measure health and
related behaviours in a nationally representative sample of adults and children living in

private households in England?’. In our study, we included data from five cohorts recruiting a
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sample of more than 80,000 individuals between 2006 and 2010 (i.e., the UKBB recruitment
period). We applied the same inclusion criteria to HSE data as used for UKBB recruitment,
retaining only individuals aged between 40 and 69 years and of (self-reported) European
ancestry. HSE response rates ranged between 64% and 68%?2’. HSE sample weights are
supplied to account for the unequal probabilities of selection and non-response?8, weighing
individuals as a function of sex, household type, region and social class. In this study, the HSE
weights were incorporated in LASSO regression predicting UKBB participation (described

below).

UK Census data

We also exploited data from the 2011 Census Microdata, a 5% sample of anonymized
individual-level Census record?®, which runs every ten years to collect basic demographic
variables (e.g., educational attainment, age, general health) through a paper-based or online
questionnaire. With a 95% response rate, the UK Census microdata is highly representative of
the UK population. We applied the same selection criteria to the Census data as to the UKBB
and HSE (i.e., filtered according to geographical region, restriction of individuals to European
ancestry and ages 40-69), resulting in a relevant sample of n=895,649. We extracted all
variables that could be harmonized with the UKBB and HSE data (further described in
Supplement). The Census data was solely used to assess the level of representativeness of
the HSE, by comparing the distributions and associations between variables present in both
the HSE and Census sample. For the generation of UKBB probability weights, we rather used

the HSE sample, given its richer phenotypic data critical for accurate weight estimation.

Analysis

Auxiliary variables

We adjust for participation bias in the UKBB using probability weighting®. This approach
adjusts for non-response bias by weighting over- and under-represented individuals, thereby
creating a pseudo-population that is representative of its target population3!. Probability
weighting relies on auxiliary variables available for both a selected (non-representative) and a

representative reference sample. In this study, we selected auxiliary variables tapping into
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dimensions related to health, lifestyles, education and basic demographics. We included all
variables that could be harmonized across the two datasets (HSE and UKBB) with few missing
observations (i.e., < 50,000 in the UKBB, < 500 in HSE). Fourteen variables derived from
twelve measures were included and harmonized across the two datasets. Five continuous
variables included: age, BMI, weight, height and education (age when completed full-time
education). Nine categorical variables included: household size (1, 2, 3, 4, 5, 6 or 7 or more),
sex (male/female), alcohol consumption frequency (never/few times per year/monthly/once
or twice weekly/three or four times weekly/daily), smoking status (never/previous/current),
employment status (employed/economically inactive/retired/unemployed), income
(<18k/18k-31k/31k-52k/52k-100k/>100k), obesity status (underweight/healthy
weight/overweight/obese) and overall health (poor/fair/good). Further details of the coding

of the variables in each dataset are provided in the Supplement.

Construction and evaluation of UK Biobank probability weights

To derive the model for participation probability, we first combined the harmonized UKBB
data with the data from the reference sample (HSE). We then used LASSO regression in
glmnet®? to predict UKBB participation (P;, with UKBB = 1; HSE = 0), conditional on the
harmonized auxiliary variables described above. We included fourteen main effects (five
continuous variables, nine binary/categorical variables) in the model. All categorical and
binary variables were entered as dummy variables, indexing each possible level of the
variable. In addition, we included all possible two-way interaction terms among the dummy
and continuous variables, resulting in 903 included predictors. LASSO performs variable
selection by shrinking the coefficients for variables that contribute least to prediction
accuracy. The shrinkage is controlled by the tuning parameter (4), which was obtained using
5-fold cross-validation that minimizes the cross-validated error.

The predicted probabilities (Pi) were then used to build the individual sampling weights (w;).
The weights were calculated as an extension of standard Inverse Probability Weights [w; = (1-
Pi)/Pi], designed to make the weighted sample estimates conform to the population
estimates3!. To assess the performance of the generated weights, we evaluated the extent to
which the weighting recovered means (for continuous variables) and prevalences (for binary
traits) in the UKBB and, hence, mitigated participation bias. We also quantified participation

bias as the differences between the correlations among all auxiliary variables within the UKBB
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(rukee) and the HSE (ruse). The degree to which the weighted correlations (rukss_w) reduced
bias was estimated as (| ruse - rukss| - | ruse - rukes_w|) / (| ruse - rukes|), where a value of one
indicates that weighting fully eliminated bias. The weighted means (and proportions) for a
given variable (X;) were estimated using the weights (w;), with the expression: % Nowi X,
where W = YN w;.

We further evaluated if over-fitting was a problem, by re-running LASSO in train-test splits of
the data (5-fold leave-one-out cross-validation, with a split ratio of 80:20). Here, we used the
training sample (80% of the data) for model estimation and the test sample (20% of the data)
to generate the out-of-sample predicted probabilities. The degree of participation bias
reduction was then compared between the out-of-sample predicted probabilities and the full

sample probabilities.

Probability weighted genome-wide association analyses

To evaluate the extent to which SNP effects were distorted by participation bias in the UKBB,
we conducted inverse probability weighted genome-wide association analyses (WGWA).
wGWA was performed for 19 UKBB health-related traits collected at baseline with few
missing observations (Nmissing<50,000). The coding of all variables, genotyping, imputation and
quality control (QC) procedures are described in the Supplement. Additional QC filters for
genome-wide analyses were applied to select participants (i.e., exclusion of related
individuals, exclusion of non-White British ancestry based on principal components, high
missing rate and high heterozygosity on autosomes) and genetic variants (Hardy—Weinberg
disequilibrium P>1x107°, minor allele frequency>1% and call rate>90%).

We obtained unweighted SNP estimates () from a standard ordinary least squares (OLS)
linear regression model. The weighted SNP estimates (5,,) were obtained from weighted
least squares (WLS) regression. All GWA analyses were conducted in LDAK (version 5.2)3334
which was extended to accommodate sampling weights in a linear WLS model (--linear --
sample-weights). The standard least squares estimate of the variance is based on the
assumption of homoskedasticity (i.e., that the residual variance is constant across
individuals). Since the use of sampling weights violates this assumption, we used the Huber-

White estimator3® to estimate the variance of the coefficients:


https://doi.org/10.1101/2022.09.28.509845
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.28.509845; this version posted September 28, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

By = X'WX)"L(X'WY)
Var(B,) = X'WX)L(X'WDWX)(X'WX)~!

with

D = diag((Y = X - u)?)
where Y denotes the phenotypic outcome vector, W is a diagonal matrix with the probability
weights sitting on the diagonal and X is a column vector of the genotype values.
Both models included the same covariates (PC1-PC5, sex, age, batch effect). We applied a
linear model to all outcomes (continuous and binary traits). This was done to allow for
standardization of SNP estimates and to ensure comparability of effect sizes.
Two additional sets of analyses were conducted to explore the genetic basis of UKBB
participation: First, we conducted autosomal wGWA and standard GWA on biological sex and
evaluated if WGWA reduced sex-differential participation bias. As previously suggested??,
autosomal heritability linked to biological sex could result from sex-differential participation.
As such, reduced heritability estimates in wGWA compared to GWA would provide evidence
for the utility of WGWA for participation bias correction. In addition, we compared the
resulting SNP effects to the effects of previously identified sex-associated variants
(p<5x1078). Here, 49 variants assessed in an independent sample of >2,400,000 volunteers
curated by 23andMe?? were selected.
Second, we conducted a genome-wide analysis on the liability to UKBB participation, by
including the individual participation probabilities as the outcome of interest in wGWA.
Application of standard GWA analysis is not possible in this context, as this approach stratifies
for the outcome of interest by selecting a subset of the population willing to participate. LD-
independent SNPs reaching genome-wide significance (p<5x10%) were selected via clumping
(--clump-kb 250 —clump-r2 0.1). PhenoScanner3®, a database of genotype-phenotype
associations from existing GWA studies, was used to explore previously identified
associations of lead SNPs with other phenotypes. Genetic correlations with other traits were
estimated using LD-score regression®” as implemented in the R-Package GenomicSEM32. The
summary statistic files used in LD-score regression were obtained for 49 health and
behavioural phenotypes, using publically available summary statistic files accessible via
consortia websites or the MRC-IEU OpenGWAS project (https://gwas.mrcieu.ac.uk)? (sTable

1 for details).
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LD score regression and heritability estimates

SNP heritability estimates were obtained for both the standard GWA and wGWA output (h?
and h2, respectively), using LD score regression as implemented in GenomicSEM. We applied
the default settings (restricted SNPs to MAF>0.01, LD-scores from the European-ancestry
sample in the 1000 Genomes Project*®). For binary phenotypes, the observed scale was
converted to the liability scale*!, where the population prevalence was set to be equal to the
weighted prevalence in the UKBB. We also estimated bivariate genetic correlations among all
phenotypes included in standard GWA and wGWA (rg and rg,,, respectively). To compare
the estimates obtained from wGWA and standard GWA, we calculated the difference
(rgpirr =79 — 9w and h3,zr = h? — hZ) and used the following test statistic (here

exemplified for rgprr):

7 = TIpIFF
ra SE(rgpirr)

SE(rgpirr) = \/SE(rg)* + SE(rgy)? — 2r SE(rg) SE(rgy)

The correlation coefficients r(h?, h2) and r(rg, rg,,) were obtained from 200-block

Jackknife analysis. For this, we split the genome into 200 equal blocks of SNPs and removed

one block at a time to perform Jackknife estimation.

Mendelian Randomization analyses

To evaluate the impact of selection bias when using MR, we assessed if sample weighting
altered MR estimates. As genetic instruments, we selected LD-independent (--clump-kb
10,000 --clump-r2 0.001) SNPs reaching genome-wide significance (p<5x10%) in either WGWA
or standard GWA for a given phenotype. Phenotypes with few (<10) genetic instruments
were not included in MR analyses. We used the inverse-variance weighted (IVW) MR

estimator, which combines the ratio estimates of the individual genetic variants G; to derive

AEXP
J

, where BEXP

~ . . ..~ _ AOUT
the causal effect (& ). The ratio estimateis @; = B~/ 7

corresponds to

the SNP-exposure association and SUT

i corresponds to the SNP-outcome association. Since

the IVW estimator assumes that the uncertainty in the genetic association with the exposure

is zero, we used the following correction*? to account for selected genetic variants (ﬁfxp)

that were genome-wide significant in one analysis (e.g., standard GWA) but not the other

2

A . s 1 5
(e.g., WGWA) for the same trait: @;yw—corrected = Qrvw —, Where §% = — X EXP _
o m-—

J
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Bexp )? and 62 = §2 —% Y7L, Var(BF*?), where m refers to the number of SNPs selected
as instruments. The corresponding variance was estimated as: Var(&;yw—_corrected) =

~ 52
Var(alvw) ;
For each exposure-outcome association, we obtained 1) an MR estimate using the SNP
effects from standard GWA analyses and 2) an MR estimate using the SNP effects from

WGWA analyses. We included in MR the standardized SNP effects and standard errors (i.e.,

effect of the genotype on the standardized outcome), which were derived using the following

formula®®: Berp = Z/4/2p(1 — p)(n + Z2) and SE (Bsrp) = 1/ +/2p(1 — p)(n + Z2),

where n is the sample size, p is the minor allele frequency (MAF), and Z is the SNP effect ,[;’

divided by its standard error [Z = B/SE(B)]. Of note, when standardizing the weighted
estimates (ﬁw), n was replaced by the effective sample size [ngsr = w? /Z?Ll wizn ] to
account for the unequal contribution per observation. w;, refers to the normalized
probability weights, obtained by dividing w; by its mean [w;,, = w;/w,].

To compare the standard (@) to the weighted MR (&,,) estimates, we estimated appr [@ —

a,,] and the corresponding test statistic as Z = appr / SE (apirr), where SE(appr) =

JSE(&)? + SE(&,,)? — 2r SE(Q) SE(@,,). The correlation coefficient was derived using a
Jackknife procedure, where we performed MR leaving out each SNP in turn to then calculate
the correlation r(&, @,,) from these results. The results were corrected for multiple testing
using FDR-correction (controlled at 5%), correcting for the total number of conducted MR

analyses.

Results

Samples

From the five HSE cohorts comprising a total sample of n=81,118, we retained n=22,646 after
applying the same inclusion criteria used for UKBB recruitment. After further exclusion of HSE
individuals with missing data on the 14 auxiliary variables, we included a final sample of
n=21,816. Comparing the distribution of a subset of auxiliary variables also available in the UK
Census Microdata (n=895,649 ) shows that the profile of the HSE sample closely matches that

of the Census sample (sTable 2). More specifically, proportions were comparable between
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HSE and Census, but deviated in the UKBB for most of the selected variables, such as female
gender (Pcensus=51%, Puse=51%, Pukss=54%), individuals of age >65 (Pcensus=13%, Phse=13%,
Pukss=19%), mean age when completed full time education (Mcensus=16.6, Muse=16.4%,
Pukss=17.2%), retired individuals (Pcensus=19%, Puse=19%, Pukss=34%). Further inspection of
the associations between variables available in the HSE and UK Census (sFigure 1) highlights
that the HSE captures well the characteristics of the population residing in England.

Of the initial UKBB sample (502,645 participants), we excluded individuals of age >69 and <40
(n=2463), individuals from Scotland or Wales (n=56,483), individuals of non-European
ancestry (n=28,371), individuals withdrawing consent (n=161) and individuals with missing
data on any of the auxiliary variables (n=21,868). The sampling weights were generated for
n=393,299 UKBB individuals, of which 109,550 were removed after applying QC steps for

genome-wide analyses.

Performance of the UK Biobank probability weights

Figure 2A shows the distribution of the normalized propensity weights (wi,) for UKBB
individuals. The probabilities used to construct the weights were obtained from a LASSO
regression model retaining 454 of the 903 initially included predictors. Figure 2B illustrates
which auxiliary variables most strongly linked to UKBB participation (UKBB = 1; HSE = 0),
highlighting that older (retired) and more educated non-smoking individuals were particularly
likely to participate.

To evaluate the performance of the weights, we first assessed if probability weighting
recovered the reference (HSE) population distributions. We included the generated weights
in univariate logistic regression model predicting UKBB participation, where UKBB individuals
were given their normalized weight (win) and HSE participants were given a weight of 1.
When applying probability weighting (shown on the right side of Figure 2B), previously
significant predictors became non-significant. All means and proportions in the HSE, UKBB
(unweighted) and UKBB (weighted) are provided in sTable 3. Next, we estimated the degree
of bias reduction following probability weighting. Here, we quantified participation bias as
the difference between an estimate of association obtained in the UKBB (rukss) and the
reference sample (ruse). The largest difference [rqifr=| ruse-rukss | ] was present for employment
status with overall health (rgir=0.19; ruse=-0.25; rukss=-0.06), overall health with age

(raifr=0.12; ruse=-0.13; rukss=-0.01), household size with income (rqi#=0.10; ruse=0.20;
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rukes=0.31), and employment status with income (rqifr=0.10; ruse=-0.25; rukes=-0.35) (cf. Figure
2C). Application of probability weighting eliminated most bias induced by selective
participation (median bias reduction: 0.97; mean: 0.91, range: 0.58 - 0.998). The estimates
were very similar to the cross-validated model (median bias reduction: 0.96; mean: 0.90,
range 0.50; 0.998), highlighting that over-fitting was unlikely to be a problem.

Finally, Figure 2D summarizes changes in means and proportions as a result of probability
weighting, estimated for the auxiliary variables (in blue), as well as other UKBB variables (in
orange) not used to construct the weights. Application of weighting resulted in overall more
unfavourable health outcomes and demographics, including increases in mental iliness
(higher rates of schizophrenia and alcohol addiction) and poorer socioeconomic status
(higher deprivation index, lower job class), providing further indication that weighting largely
reduced the healthy volunteer bias of the UKBB.

In summary, probability weighting successfully created a pseudo-sample of the UKBB
achieving higher levels of representativeness, thus providing a useful tool for participation

bias correction in downstream analyses.

Probability weighted genome-wide association analyses on UK Biobank traits

The effect of participation bias on genome-wide results was evaluated by comparing the SNP
estimates obtained from probability weighted genome-wide analyses, wGWA (,@W, Neffective=
94,643 —102,215), to standard GWA analyses (B, N=263,464 — 283,749). As illustrated in
Figure 3, the impact of participation bias was assessed in terms of changes in effect sizes
across SNPs and genome-wide discovery (i.e., number of identified SNPs).

First, Figure 3A highlights the number of SNP where bias induced overestimation [(|3] —
1B / |B| = 0.2] or underestimation [(|8] — |Bw]) / |B] < —0.2] of SNP effects. Among all
genome-wide hits (1690, with p<5x1078), overestimation was more common (420 SNPs,
24.85% of all genome-wide SNPs) than underestimation (290 SNPs, 17.16% of SNPs). More
specifically, underestimation was most common for cancer (57% of SNPs), loneliness (50%),
education (33%) and reaction time (33%), whereas overestimation was present for
depression/anxiety (67%), coffee intake (63%) and smoking status (58% of SNPs). There was
no evidence of change in direction of effects as a result of participation bias (cf. sResults,

Supplement). Second, with respect to genome-wide discovery (Figure 3B), we found that of
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all SNPs identified either in wGWA or GWA analyses (n=1690 across all phenotypes), 25 SNPs
(1.48%) were missed as a result of participation bias, as these SNPs reached significance only
in the weighted analyses. Novel SNPs were identified for 12 of the 19 included traits, most
notably for depression/anxiety (50% of genome-wide SNPs linked to depression/anxiety were
missed by standard GWA), cancer (29%) and loneliness (25%). Detailed results are listed in

sTable 4 and plotted in sFigure 2-3.

Probability weighted genome-wide association analysis on sex

UKBB participants were proportionately more female (femaleukss=54.38%) compared to the
general population (femalense=50.74%; femalecensus=50.62%). Probability weighting
recovered the population prevalence in the UKBB (weighted femaleukss=50.36%). SNP
heritability estimates (h?) (sFigure4A) using wWGWA led to almost half of that of the standard
GWA (h? on liability scale = 1.2%, p=0.1 in WGWA versus 2.1%, p=5.4e-11 in standard GWA).
sFigure 4B/sTable 5 display the SNP effects of 49 variants previously associated with sex
(p<5x1078, in an independent sample of >2,400,000 volunteers) to estimates obtained from
standard GWA and wGWA. Of those, 18 (36.73%) SNPs showed significantly reduced sex-
associated effects in wWGWA. In contrast, only 3 (6.12%) SNPs showed reduced sex-associated

effects in standard GWA.

Genome-wide association study on the liability to UKBB participation

wGWA on UKBB participation was conducted in Nerr=102,215 participants. 28 SNPs reached
genome-wide significance (p<5x1078), of which LD-independent 23 SNPs were selected after
clumping. Figure 4A shows the Manhattan plot with positional mapping of genome-wide
SNPs associated with the liability to UKBB participation (cf. sTable 6 for annotation and
estimates of significant SNPs). The QQ plot (sFigure 5) can be found in the Supplement. SNP
heritability for UKBB participation was h?=0.009 (se=0.005) (LD-score intercept: 1.055). A
lookup of SNP-trait associations estimated in previous GWA analyses showed that UKBB
participation-associated variants mostly tapped into age-related outcomes (e.g., cause of
death: cancer/dementia/fatty liver disease/pneumonia) (sTable 7). LD score regression
analyses (cf. Figure 4B, sTable 8) implicated substantial genetic correlations between UKBB
participation and phenotypes related to socioeconomic factors and previously assessed

participatory behaviour, including educational attainment (rg=0.92), income (rg=0.81),
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participation (response to email invitationand mental health survey completion) (rg=0.75 and

rg=u./, res ective ,mte lgence (rg=u. and cigarette use (age or onset) (rg=-0. .
g=0.7, respectively), intellig (rg=0.73) and cig (age of ) (rg=-0.72)

Weighted SNP heritability and genetic correlation estimates

Bias was assessed in terms of differences in SNP heritability (h3;zr = h?> — h2) and genetic
correlations (rgp;rr = g — gy, ) between standard and weighted GWA analyses (Figure 5).
On average, heritability estimates differed by 1.5% (liability scale |h%;zr| = 0.015, range O -
0.05). h3,rr was highest for BMI (h?= 0.24; h2,=0.19), education (h?= 0.21; h2,=0.24) and
diabetes (h?=0.19; h2,=0.16). Of all assessed traits included in LDSC regression (n=18), five
showed significant (pror<0.05) hrr, of which four (80%) were over-estimated and one
(education) was under-estimated as a result of participation bias. The weighted and
unweighted heritability estimates are plotted in sFigure 6 and additional statistics (e.g., LDSC
intercepts) are provided in sTable 9.

Concerning estimates of genetic correlations, we found an average difference of |rgppr| =
0.07 (range 0 —0.31) between results obtained from standard and weighted GWA analyses.
Participation bias leading to rg-overestimation was most notable for rg(BMI, smoking status)
[rg=0.27; rg,,=0.13], rg(fruit intake, physical activity) [rg=0.32; rg,,=0.18] and rg(alcohol
use frequency, smoking status) [rg=0.35; rg,,=0.21]. rg-underestimation was most
prominent for rg(insomnia, risk taking) [rg=0.02; rg,,=0.31], rg(vegetable intake, physical
activity) [rg=0.3; rg,,=0.58] and rg(depression/anxiety, risk taking) [rg=0.27; rg,,=0.47]. For
five (3.27%) of the assessed trait pairs (n=153) the weighted and standard genetic
correlations were significantly (pror<0.05) different, of which education was the most
commonly implicated trait (sFigure 7, sTable 10). Change in direction of genetic correlations

as a result of participation bias was less present (cf. sResults, Supplement).

Effect of participation bias on Mendelian Randomization estimates

Figure 6 summarizes which MR estimates were affected by participation bias, as inferred
from differences between the standard and weighted MR estimates (ap;pr = @& — @,,).
On average, participation bias led to an absolute change of 0.038 in standardized MR
estimates (range 0 — 0.15). Most affected were associations between lifestyle choices,

including coffee intake on BMI (@=0.8; &,,=0.65), fruit consumption on LDL cholesterol

(@=0.03; &,,=-0.12) and fruit consumption on coffee intake (@=0.15; &,,,=0.01) (sFigure8 and
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sTable 11). Of all exposure-outcome associations tested (k=234), 14 (6%) estimates were
either overestimated (2%, |&| — |@,,| > 0.1) or underestimated (4%, |&| — |&,,| <-0.1).
Significant (pror<0.05) differential effects were only present for two of the exposure-outcome
associations tested (education on BMI; smoking status on fruit consumption). There was little

evidence of bias resulting in changes in direction of MR estimates (sResults, Supplement).

Discussion

While the use of large volunteer-based biobanks is key to advancing genetic epidemiology, it
is currently unclear to which extent selective participation impacts genotype-phenotype
association obtained from the data. In this work, we conducted inverse probability weighted
GWA (WGWA) on 19 traits to correct for participation bias in genome-wide analyses. We
found that participation bias can distort genome-wide findings and downstream analyses.
Overall, the bias mostly affected magnitude of effects, rather than direction, but was present
across all sets of genome-wide analyses. For genome-wide association analysis, we find that
estimates are subject to both overestimation (e.g., for cancer and education) and
underestimation (e.g., for coffee intake, depression/anxiety). wWGWA also led to the discovery
of novel loci for 12 of the included traits, highlighting SNPs that would be missed as a result
of participation bias. Of note, although effect size estimates can shrink as a consequence of
participation bias, the increased standard errors of the inverse probability weighting (due to
reduced effective sample size) renders new discoveries difficult. Participation bias also
distorted heritability estimates, genetic correlations and Mendelian Randomization
estimates, most notably for socio-behavioural traits including education, diet, smoking and
BMI. In contrast, more molecular/physical traits (e.g., LDL, SBP) exhibited less bias as a result
of selective participation. Such pattern is in line with existing studies?>?3 and our findings of
high genetic correlations between the liability to UKBB participation and socio-behavioural
traits, particularly education, income and substance use. More broadly, different sources of
bias are likely to affect similar phenotypes in genome-wide studies, in that socio-behavioural
phenotypes are subject to bias resulting from selective participation?%?3, indirect genetic

effects®, assortative mating*, error in measurements* and population stratification®.
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Our work builds and extends recent efforts evaluating bias due to selective participation.
More specifically, we replicate findings showing that phenotypic exposure-outcome
associations in the UKBB differ from those estimated in probability samples!?!: participation
bias, defined as the difference in exposure-outcome associations in the UKBB and the
reference sample (HSE), was substantial for a number of associations. For example,
phenotypically, the impact of participation bias was most prominent for the link between
overall health with age and employment status. Application of probability weighting
eliminated a significant proportion (>90%) of bias due to selective participation in the UKBB.
To our knowledge, this work is the first to provide participation bias corrected GWA on
complex traits related to health and behaviour. We highlight patterns of bias and point to
areas of research that are most impacted by this bias. Since genome-wide association
summary statistics are increasingly used in epidemiological research to study causal
questions concerning education, diet and behaviour, greater care should be taken when
relying on data obtained from non-random samples. Biobank data in which participation bias
cannot be assessed (e.g., in self-selection samples without a defined target population) may
therefore be only of limited utility when scrutinizing genotype-phenotype relationships. As
part of this work, we provide software to perform wGWA, which allows researchers to
conduct sensitivity checks when relying on non-representative samples. Alternatively,
recruitment schemes incorporating probability sampling can help reduce bias, but samples

are typically small given the substantial costs associated with recruitment.

This study comes with a number of shortcomings. First, while the application of probability
weighting successfully removed bias resulting from selective participation in the UKBB,
residual bias may still exist. Important factors independently predicting UKBB participation
may have been missed when modelling participation probability, which would reduce the
efficacy of probability weighting. When choosing a reference population, there is a trade-off
between representativeness of the reference sample and the number of available variables
to match the samples. We choose to use the HSE as a reference sample to strike a balance
between these two factors, but biases can remain if important variables were not measured
or the reference sample is not representative enough. Second, genome-wide analyses were
restricted to phenotypes with little missing data. This is a shortcoming since traits with

substantial missing data are perfect candidates for characteristics influencing participation.


https://doi.org/10.1101/2022.09.28.509845
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.28.509845; this version posted September 28, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

As such, we did not evaluate the impact of participation bias on variables collected at follow-
up. Finally, the UKBB probability weights are sample specific, constructed for a more
educated, healthy, older, and female sample residing in England. Bias due to selective
participation will differ across study contexts and participation mechanisms as evaluated in

this study are therefore not generalizable to other cohorts.

In conclusion, our results highlight that selective participation can lead to bias in genome-
wide results and downstream analyses, most visibly for socio-behavioural traits. Moving
forward, more efforts ensuring either sample representativeness or methods correcting for
participation bias are paramount, especially when studying the genetic underpinnings of

behaviour, lifestyles and educational outcomes.

Data availability
Standard and probability weighted UK Biobank association statistics, computed using LDAK

version 5.2, will be made available through the GWAS catalog.

Code availability

LDAK is available at http://dougspeed.com/downloads/

All analytical scripts are available at

https://github.com/TabeaSchoeler/TS2021 UKBBweighting
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Figure 1. lllustration of the impact of participation bias in genetic studies

/ N\ /@\
© 0 6-60-0 6-6-0
\_/ \ /

Q, 9, @

lllustration of the relationships between a genetic variant (G) and an exposure (X) or outcome (Y) and study participation (Z). Panel
(A) illustrates the effect of participation bias in genome-wide association studies, where (Z) is a common consequence of (G) and
(Y) (dashed red). Conditioning on a common consequence (Z) induces a non-causal association between the genetic variant (G)
and the outcome (Y). Panel (B/C) illustrates the effect of participation bias in Mendelian Randomization studies, where bias occurs
if () is a consequence of either the exposure (X) (Panel B) or the outcome (Y) (Panel C). Conditioning on (Z) induces an association
between the genetic variant and confounders, thereby violating the MR assumption of exchangeability.
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Figure 2. Performance of the UK Biobank probability weights
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Panel (A) presents the truncated density curves of the normalized propensity weights (win) for UKBB participants, ranging from 0.02 to 50.01. Panel (B) shows
standardized coefficients of variables predicting UKBB participation (HSE = 0; UKBB = 1) in univariate logistic regression models. Coefficients are provided for all
UKBB participants and males and females separately. Panel (C) plots the correlation coefficients among all auxiliary variables within the UKBB (obtained from
weighted and unweighted analyses), and within the HSE. Highlighted in blue are results where the coefficients between the UKBB (rukes) and the reference sample
(ruse) deviated (raiff >0.05, where raitt= | ruse-rukse| ). Panel (D) depicts the percentage change (for categorical variables) and change in means as a function of
weighting, obtained for a number of health-related UKBB phenotypes, including the auxiliary variables (blue) and variables not used to construct the weights.
Percentage change was estimated as the difference between the weighted (pw) and unweighted proportion (p), divided by the unweighted value [(pw—p) / p x
100]. Change in means was expressed as a standardized mean difference, estimated as the difference between the unweighted mean (m) and the weighted mean
(mw), divided by the unweighted standard deviation (sd) [mw-m/sd].
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Figure 3. SNP estimates from weighted and unweighted genome-wide analyses
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Summary of comparison between SNP effects obtained from probability weighted genome-wide association (WGWA) and standard
GWA analyses on 19 traits. Panel (A) summarizes the proportions of overestimated and underestimated SNP effects as a result of
participation bias. Shown in panel (B) are the numbers and proportions of SNPs reaching genome-wide significance in either
standard GWA, wGWA or both (GWA & wGWA). The scatter plots to the right plot the weighted (|Bw|) against the unweighted
(181) SNP effects for four selected traits.


https://doi.org/10.1101/2022.09.28.509845
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.28.509845; this version posted September 28, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Figure 4. Genome-wide association study on the liability to UK Biobank participation
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Panel (A) displays the Manhattan plot of the genome-wide association study on the liability to UKBB participation. Labels are
provided for the top LD-independent genome-wide significant SNPs (i.e., SNPs above the horizontal line, with p<5x107%) and gene
names obtained through positional mapping. The x-axis refers to chromosomal position, the y-axis refers to the p-value on a -log10
scale. Panel (B) shown are the genetic correlations (ry) of the UKBB participation with traits indexing participatory behaviour (in
green) and other traits (in blue).
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Figure 5. Weighted SNP heritability and genetic correlation estimates
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Plotted in Panel (A) are the differences in SNP heritability (h?pirr= h? - h,?) and genetic correlations (rgoire= | rg| -|rgw|) obtained
from weighted and standard GWA analyses. The diagonal shows the differences in SNP heritability, where bias leading to
overestimation (h%g > 0.02) are plotted in orange and bias leading to underestimation (h%y <-0.02) are plotted in yellow. The
off-diagonal highlights overestimated genetic correlations (rgpir> 0.1) in blue and underestimated genetic correlations (rgpir < -
0.1) green. Tiles coloured in turquoise index genetic correlations where rg and rg, show opposite directions (with rg printed at
the top and rgw printed at the bottom of the tile). Panel B illustrates estimates of genetic correlations (rg shown as @; rgw shown
as A) and the corresponding confidence intervals for two selected traits. (*) Estimates showing significant differences (prpr<0.05).


https://doi.org/10.1101/2022.09.28.509845
http://creativecommons.org/licenses/by-nc-nd/4.0/

Outcome

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.28.509845; this version posted September 28, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Figure 6. Effect of participation bias on MR estimates of exposure-outcome associations
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Summary of results obtained from weighted (&,,) and standard (&) Mendelian Randomization (MR). MR estimates subject to
overestimation (|&@| — |&,, | > 0.1) as a results of participation bias are highlighted in violet. MR estimates subject to
underestimation (|&| — |&,, | <-0.1) are highlighted in cyan. The asterisks (*) highlight results where & and &,, showed significant
(pror<0.05) differences.
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