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Abstract  

While large-scale volunteer-based studies such as the UK Biobank (UKBB) have become the 

cornerstone of genetic epidemiology, the study participants are rarely representative of their 

target population.  

Here, we aim to evaluate the impact of non-random participation in the UKBB, and to pin 

down areas of research that are particularly susceptible to biases when using non-

representative samples for genome-wide discovery. By comparing 14 harmonized 

characteristics of the UKBB participants to that of a representative sample, we derived a 

model for participation probability. We then conducted inverse probability weighted 

genome-wide association analyses (wGWA) on 19 UKBB traits. Comparing the output 

obtained from wGWA (Neffective=94,643 – 102,215) to standard GWA analyses (N=263,464 – 

283,749), we assessed the impact of participation bias on three estimated quantities, namely 

1) genotype-phenotype associations, 2) heritability and genetic correlation estimates and 3) 

exposure-outcome causal effect estimates obtained from Mendelian Randomization.  

Participation bias can lead to both overestimation (e.g., cancer, education) and 

underestimation (e.g., coffee intake, depression/anxiety) of SNP effects. Novel SNPs were 

identified in wGWA for 12 of the included traits, highlighting SNPs missed as a result of 

participation bias. While the impact of participation bias on heritability estimates was small 

(average change in h2: 1.5%, maximum: 5%), substantial distortions were present for genetic 

correlations (average absolute change in rg: 0.07, maximum: 0.31) and Mendelian 

Randomization estimates (average absolute change in standardized estimates: 0.04, 

maximum: 0.15), most markedly for socio-behavioural traits including education, smoking 

and BMI. Overall, the bias mainly affected the magnitude of effects, rather than direction. In 

contrast, genome-wide findings for more molecular/physical traits (e.g., LDL, SBP) exhibited 

less bias as a result of selective participation. 

Our results highlight that participation bias can distort genomic findings obtained in non-

representative samples, and we propose a viable solution to reduce such bias. Moving 

forward, more efforts ensuring either sample representativeness or correcting for 

participation bias are paramount, especially when investigating the genetic underpinnings of 

behaviour, lifestyles and social outcomes.  
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Introduction 

Elucidating the genetic underpinnings of health and disease is the overarching aim of genetic 

epidemiology. Fast-growing biobanks with rich phenotypic data are therefore curated, to 

maximize power for genome-wide discovery. To ensure validity of findings obtained from 

genome-wide studies, substantial efforts are made to eliminate potential sources of bias, 

such as population stratification, assortative mating, measurement error or indirect genetic 

effects1–4. A particularly challenging bias – and typically not considered in genetic studies – 

can occur when data is collected from individuals not representative of their target 

population5,6. While valid conclusions are possible in non-representative samples under 

certain conditions (e.g., if study participation is unrelated to both the independent and 

dependent variable), study participation is linked to many commonly studied factors, 

including mental and physical health, substance use (cigarettes, alcohol), income and 

educational attainment7–11 – where participants typically show a better health profile than 

the target population. Such 'healthy-volunteer bias' is well documented in the UK Biobank 

(UKBB), one of the most widely used resources for biomedical research. Of the 9 million 

people invited to participate in the UKBB, only 5.5% (~500,000) were recruited into the study 

– a sample of volunteers with more healthy lifestyles, higher levels of education, and 

favourable health profiles compared to the general population12,13.  

Given the growing reliance on non-representative biobanks, it is paramount to assess the 

extent to which study participation induces bias in genome-wide studies and downstream 

analyses. In observational studies using UKBB data, participation bias has already been shown 

to distort phenotypic exposure-outcome associations11,12,14.  If study participation includes a 

genetic component, biased estimates are also expected in genetic studies15. In gene-

discovery studies, non-random participation may distort the association between a genetic 

variant and the outcome (cf. Fig 1A). In Mendelian Randomization, participation bias could 

induce an association between genetic instruments and unmeasured confounders of the 

exposure-outcome association, thereby violating a key assumption of the method (cf. Fig 

1B/C). Recent genome-wide studies looking at proxies of participation bias have already 

described a genetic component to participatory behaviour and questionnaire responding16–23, 

implicating that genetic studies are not immune to bias. While much of the recent GWA 
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output is produced by non-representative biobanks (e.g., UKBB, Million Veteran Program, 

23andMe), the extent to which gene-discovery and downstream analyses are subject to 

participation bias is currently unknown.  

Participation bias is eliminated by the use of samples that are representative of their target 

population. To achieve representativeness in the UKBB, we derive a model for participation 

probability and create a pseudo-sample of the UKBB matching its target population. Thereby, 

it is possible to evaluate how a shift towards representativeness impacts genome-wide 

findings and downstream analyses. We anticipate that these findings will help to characterize 

the impact of participation bias in large volunteer-based samples used for biomedical 

research and to pin down areas of research that might be particularly susceptible to bias 

when relying on non-representative samples. 
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Methods 

First, we derived a model for participation probability by comparing 14 harmonized 

characteristics of the UKBB sample to that of a representative sample. Utilising the estimated 

participation probabilities, we conducted inverse probability weighted genome-wide 

association analyses (wGWA) on 19 UKBB traits. Second, to explore the genetic basis of UKBB 

participation, we conducted a GWA on the participation probability and evaluated the 

genetic findings. Finally, comparing wGWA results to those obtained from standard GWA 

analyses, we assessed the impact of participation bias on the estimation of three frequently 

studied quantities: 1) effect of genetic markers on complex traits, 2) heritability and genetic 

correlation estimates and 3) exposure-outcome associations obtained from Mendelian 

Randomization 

 

Samples 

 

UK Biobank 

The UK Biobank (UKBB) is a large-scale prospective population-based research resource 

focusing on the role of genetic, environmental and lifestyle factors in health outcomes in 

middle age and later life. More than 9,000,000 men and women between 40 and 69 

registered with the UK NHS were invited to take part. Of those, 5.4% (~500,000 individuals) 

were recruited in 22 assessment centres across England, Wales and Scotland between 2006 

and 201024,25. Included in this study were data from UK Biobank participants of European 

ancestry passing standard GWA analysis quality control measures26. We further filtered the 

sample according to geographical region (excluding individuals from Scotland and Wales) to 

match the geographical regions included in the reference sample (HSE), and removed 

individuals with missing data in auxiliary variables used to generate the propensity scores 

(further described below).  

 

Health Survey England 

The Health Survey for England is an annual probability sample set out to measure health and 

related behaviours in a nationally representative sample of adults and children living in 

private households in England27. In our study, we included data from five cohorts recruiting a 
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sample of more than 80,000 individuals between 2006 and 2010 (i.e., the UKBB recruitment 

period). We applied the same inclusion criteria to HSE data as used for UKBB recruitment, 

retaining only individuals aged between 40 and 69 years and of (self-reported) European 

ancestry. HSE response rates ranged between 64% and 68%27. HSE sample weights are 

supplied to account for the unequal probabilities of selection and non-response28, weighing 

individuals as a function of sex, household type, region and social class. In this study, the HSE 

weights were incorporated in LASSO regression predicting UKBB participation (described 

below). 

 

UK Census data  

We also exploited data from the 2011 Census Microdata, a 5% sample of anonymized 

individual-level Census record29, which runs every ten years to collect basic demographic 

variables (e.g., educational attainment, age, general health) through a paper-based or online 

questionnaire. With a 95% response rate, the UK Census microdata is highly representative of 

the UK population. We applied the same selection criteria to the Census data as to the UKBB 

and HSE (i.e., filtered according to geographical region, restriction of individuals to European 

ancestry and ages 40-69), resulting in a relevant sample of n=895,649. We extracted all 

variables that could be harmonized with the UKBB and HSE data (further described in 

Supplement). The Census data was solely used to assess the level of representativeness of 

the HSE, by comparing the distributions and associations between variables present in both 

the HSE and Census sample. For the generation of UKBB probability weights, we rather used 

the HSE sample, given its richer phenotypic data critical for accurate weight estimation.  

 

 

Analysis 

 

Auxiliary variables 

We adjust for participation bias in the UKBB using probability weighting30. This approach 

adjusts for non-response bias by weighting over- and under-represented individuals, thereby 

creating a pseudo-population that is representative of its target population31. Probability 

weighting relies on auxiliary variables available for both a selected (non-representative) and a 

representative reference sample. In this study, we selected auxiliary variables tapping into 
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dimensions related to health, lifestyles, education and basic demographics. We included all 

variables that could be harmonized across the two datasets (HSE and UKBB) with few missing 

observations (i.e., < 50,000 in the UKBB, < 500 in HSE). Fourteen variables derived from 

twelve measures were included and harmonized across the two datasets. Five continuous 

variables included: age, BMI, weight, height and education (age when completed full-time 

education). Nine categorical variables included: household size (1, 2, 3, 4, 5, 6 or 7 or more), 

sex (male/female), alcohol consumption frequency (never/few times per year/monthly/once 

or twice weekly/three or four times weekly/daily), smoking status (never/previous/current), 

employment status (employed/economically inactive/retired/unemployed), income 

(<18k/18k−31k/31k−52k/52k−100k/>100k), obesity status (underweight/healthy 

weight/overweight/obese) and overall health (poor/fair/good). Further details of the coding 

of the variables in each dataset are provided in the Supplement. 

 

Construction and evaluation of UK Biobank probability weights 

To derive the model for participation probability, we first combined the harmonized UKBB 

data with the data from the reference sample (HSE). We then used LASSO regression in 

glmnet32 to predict UKBB participation (Pi, with UKBB = 1; HSE = 0), conditional on the 

harmonized auxiliary variables described above. We included fourteen main effects (five 

continuous variables, nine binary/categorical variables) in the model. All categorical and 

binary variables were entered as dummy variables, indexing each possible level of the 

variable. In addition, we included all possible two-way interaction terms among the dummy 

and continuous variables, resulting in 903 included predictors. LASSO performs variable 

selection by shrinking the coefficients for variables that contribute least to prediction 

accuracy. The shrinkage is controlled by the tuning parameter (𝜆), which was obtained using 

5-fold cross-validation that minimizes the cross-validated error.  

The predicted probabilities (Pi) were then used to build the individual sampling weights (wi). 

The weights were calculated as an extension of standard Inverse Probability Weights [wi = (1-

Pi)/Pi], designed to make the weighted sample estimates conform to the population 

estimates31. To assess the performance of the generated weights, we evaluated the extent to 

which the weighting recovered means (for continuous variables) and prevalences (for binary 

traits) in the UKBB and, hence, mitigated participation bias. We also quantified participation 

bias as the differences between the correlations among all auxiliary variables within the UKBB 
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(rUKBB) and the HSE (rHSE). The degree to which the weighted correlations (rUKBB_W) reduced 

bias was estimated as (|rHSE - rUKBB| - |rHSE - rUKBB_W|) / (|rHSE - rUKBB|), where a value of one 

indicates that weighting fully eliminated bias. The weighted means (and proportions) for a 

given variable (𝑋!) were estimated using the weights (𝑤!), with the expression:  "
#
∑ 𝑤! 	𝑋!$
!%" , 

where 𝑊 = ∑ 𝑤!$
!%" .  

We further evaluated if over-fitting was a problem, by re-running LASSO in train-test splits of 

the data (5-fold leave-one-out cross-validation, with a split ratio of 80:20). Here, we used the 

training sample (80% of the data) for model estimation and the test sample (20% of the data) 

to generate the out-of-sample predicted probabilities. The degree of participation bias 

reduction was then compared between the out-of-sample predicted probabilities and the full 

sample probabilities.  

 

Probability weighted genome-wide association analyses 

To evaluate the extent to which SNP effects were distorted by participation bias in the UKBB, 

we conducted inverse probability weighted genome-wide association analyses (wGWA). 

wGWA was performed for 19 UKBB health-related traits collected at baseline with few 

missing observations (nmissing<50,000). The coding of all variables, genotyping, imputation and 

quality control (QC) procedures are described in the Supplement. Additional QC filters for 

genome-wide analyses were applied to select participants (i.e., exclusion of related 

individuals, exclusion of non-White British ancestry based on principal components, high 

missing rate and high heterozygosity on autosomes) and genetic variants (Hardy–Weinberg 

disequilibrium P > 1 × 10−6, minor allele frequency > 1% and call rate > 90%). 

We obtained unweighted SNP estimates (𝛽*) from a standard ordinary least squares (OLS) 

linear regression model. The weighted SNP estimates (𝛽*&) were obtained from weighted 

least squares (WLS) regression. All GWA analyses were conducted in LDAK (version 5.2)33,34, 

which was extended to accommodate sampling weights in a linear WLS model (--linear --

sample-weights). The standard least squares estimate of the variance is based on the 

assumption of homoskedasticity (i.e., that the residual variance is constant across 

individuals). Since the use of sampling weights violates this assumption, we used the Huber-

White estimator35 to estimate the variance of the coefficients:  
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𝛽&, = (𝑋'𝑊𝑋)("(𝑋'𝑊𝑌) 

𝑉𝑎𝑟1𝛽&,2 = (𝑋'𝑊𝑋)("(𝑋'𝑊𝐷𝑊𝑋)(𝑋'𝑊𝑋)(" 

with  

𝐷 = 𝑑𝑖𝑎𝑔((𝑌 − 𝑋 ∙ 𝛽&), )) 

where 𝑌 denotes the phenotypic outcome vector, 𝑊 is a diagonal matrix with the probability 

weights sitting on the diagonal and 𝑋 is a column vector of the genotype values.  

Both models included the same covariates (PC1-PC5, sex, age, batch effect). We applied a 

linear model to all outcomes (continuous and binary traits). This was done to allow for 

standardization of SNP estimates and to ensure comparability of effect sizes.  

Two additional sets of analyses were conducted to explore the genetic basis of UKBB 

participation: First, we conducted autosomal wGWA and standard GWA on biological sex and 

evaluated if wGWA reduced sex-differential participation bias. As previously suggested22, 

autosomal heritability linked to biological sex could result from sex-differential participation. 

As such, reduced heritability estimates in wGWA compared to GWA would provide evidence 

for the utility of wGWA for participation bias correction. In addition, we compared the 

resulting SNP effects to the effects of previously identified sex-associated variants 

(p< 5 × 10−8). Here, 49 variants assessed in an independent sample of >2,400,000 volunteers 

curated by 23andMe22 were selected. 

Second, we conducted a genome-wide analysis on the liability to UKBB participation, by 

including the individual participation probabilities as the outcome of interest in wGWA. 

Application of standard GWA analysis is not possible in this context, as this approach stratifies 

for the outcome of interest by selecting a subset of the population willing to participate. LD-

independent SNPs reaching genome-wide significance (p<5x10-8) were selected via clumping 

(--clump-kb 250 –clump-r2 0.1). PhenoScanner36, a database of genotype-phenotype 

associations from existing GWA studies, was used to explore previously identified 

associations of lead SNPs with other phenotypes. Genetic correlations with other traits were 

estimated using LD-score regression37 as implemented in the R-Package GenomicSEM38. The 

summary statistic files used in LD-score regression were obtained for 49 health and 

behavioural phenotypes, using publically available summary statistic files accessible via 

consortia websites or the MRC-IEU OpenGWAS project (https://gwas.mrcieu.ac.uk)39 (sTable 

1 for details). 
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LD score regression and heritability estimates 

SNP heritability estimates were obtained for both the standard GWA and wGWA output (ℎ)  

and ℎ&) , respectively), using LD score regression as implemented in GenomicSEM. We applied 

the default settings (restricted SNPs to MAF>0.01, LD-scores from the European-ancestry 

sample in the 1000 Genomes Project40). For binary phenotypes, the observed scale was 

converted to the liability scale41, where the population prevalence was set to be equal to the 

weighted prevalence in the UKBB. We also estimated bivariate genetic correlations among all 

phenotypes included in standard GWA and wGWA (𝑟𝑔 and 𝑟𝑔&, respectively). To compare 

the estimates obtained from wGWA and standard GWA, we calculated the difference 

(𝑟𝑔*+,, = 𝑟𝑔 − 𝑟𝑔& and ℎ*+,,) = ℎ) − ℎ&) ) and used the following test statistic (here 

exemplified for 𝑟𝑔*+,,):  

𝑍-. =	
𝑟𝑔*+,,

𝑆𝐸(𝑟𝑔*+,,)
 

𝑆𝐸(𝑟𝑔*+,,) = =𝑆𝐸(𝑟𝑔)) + 𝑆𝐸(𝑟𝑔&)) 	− 2𝑟	𝑆𝐸(𝑟𝑔)	𝑆𝐸(𝑟𝑔&) 

The correlation coefficients 𝑟(ℎ), ℎ&) ) and 𝑟(𝑟𝑔, 𝑟𝑔&) were obtained from 200-block 

Jackknife analysis. For this, we split the genome into 200 equal blocks of SNPs and removed 

one block at a time to perform Jackknife estimation.   

 

Mendelian Randomization analyses 

To evaluate the impact of selection bias when using MR, we assessed if sample weighting 

altered MR estimates. As genetic instruments, we selected LD-independent (--clump-kb 

10,000 --clump-r2 0.001) SNPs reaching genome-wide significance (p<5x10-8) in either wGWA 

or standard GWA for a given phenotype. Phenotypes with few (<10) genetic instruments 

were not included in MR analyses. We used the inverse-variance weighted (IVW) MR 

estimator, which combines the ratio estimates of the individual genetic variants 𝐺/  to derive 

the causal effect (𝛼C+0#). The ratio estimate is 𝛼C/ = 𝛽*/123/	𝛽*/456, where 𝛽*/456 corresponds to 

the SNP-exposure association and 𝛽*/123  corresponds to the SNP-outcome association. Since 

the IVW estimator assumes that the uncertainty in the genetic association with the exposure 

is zero, we used the following correction42 to account for selected genetic variants (𝛽*/456) 

that were genome-wide significant in one analysis (e.g., standard GWA) but not the other 

(e.g., wGWA) for the same trait: 𝛼C+0#(78--9:;9< = 𝛼C+0#
=!

>?
, where 𝑆) =	 "

@("
∑ (𝛽*/456 −@
/%"
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𝛽*456	)) 	and 𝜎C) = 𝑆) − "
@
	∑ 𝑉𝑎𝑟(𝛽*/456)@

/%" , where 𝑚 refers to the number of SNPs selected 

as instruments. The corresponding variance was estimated as: 𝑉𝑎𝑟(𝛼C+0#(78--9:;9<) =

𝑉𝑎𝑟(𝛼C+0#)
=!

>?!
. 

For each exposure-outcome association, we obtained 1) an MR estimate using the SNP 

effects from standard GWA analyses and 2) an MR estimate using the SNP effects from 

wGWA analyses. We included in MR the standardized SNP effects and standard errors (i.e., 

effect of the genotype on the standardized outcome), which were derived using the following 

formula43: 𝛽=3* = 𝑍/=2𝑝(1 − 𝑝)(𝑛 + 𝑍))	and 𝑆𝐸(𝛽=3*) = 1	/	=2𝑝(1 − 𝑝)(𝑛 + 𝑍)), 

where n is the sample size, p is the minor allele frequency (MAF), and Z is the SNP effect 𝛽*  

divided by its standard error [𝑍 = 𝛽*/𝑆𝐸(𝛽*)]. Of note, when standardizing the weighted 

estimates (𝛽*&), n was replaced by the effective sample size [𝑛4AA = 𝑊) / ∑ 𝑤!B)$
!%"  ] to 

account for the unequal contribution per observation. 𝑤!B	refers to the normalized 

probability weights, obtained by dividing 𝑤!  by its mean [𝑤!B = 𝑤!/𝑤CLLL]. 

 To compare the standard (𝛼C) to the weighted MR (𝛼C&) estimates, we estimated 𝛼*+,, [𝛼C −

𝛼C&] and the corresponding test statistic as 𝑍 = 𝛼*+,, 	/	𝑆𝐸(𝛼*+,,), where 𝑆𝐸(𝛼*+,,) =

=𝑆𝐸(𝛼C)) + 𝑆𝐸(𝛼C&)) 	− 2𝑟	𝑆𝐸(𝛼C)	𝑆𝐸(𝛼C&). The correlation coefficient was derived using a 

Jackknife procedure, where we performed MR leaving out each SNP in turn to then calculate 

the correlation 𝑟(𝛼C, 𝛼C&) from these results. The results were corrected for multiple testing 

using FDR-correction (controlled at 5%), correcting for the total number of conducted MR 

analyses. 

 
 
 
Results 
 
Samples 

From the five HSE cohorts comprising a total sample of n=81,118, we retained n=22,646 after 

applying the same inclusion criteria used for UKBB recruitment. After further exclusion of HSE 

individuals with missing data on the 14 auxiliary variables, we included a final sample of 

n=21,816. Comparing the distribution of a subset of auxiliary variables also available in the UK 

Census Microdata (n=895,649 ) shows that the profile of the HSE sample closely matches that 

of the Census sample (sTable 2). More specifically, proportions were comparable between 
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HSE and Census, but deviated in the UKBB for most of the selected variables, such as female 

gender (PCENSUS=51%, PHSE=51%, PUKBB=54%), individuals of age >65 (PCENSUS=13%, PHSE=13%, 

PUKBB=19%), mean age when completed full time education (MCENSUS=16.6, MHSE=16.4%, 

PUKBB=17.2%), retired individuals (PCENSUS=19%, PHSE=19%, PUKBB=34%). Further inspection of 

the associations between variables available in the HSE and UK Census (sFigure 1) highlights 

that the HSE captures well the characteristics of the population residing in England.  

Of the initial UKBB sample (502,645 participants), we excluded individuals of age >69 and <40 

(n=2463), individuals from Scotland or Wales (n=56,483), individuals of non-European 

ancestry (n=28,371), individuals withdrawing consent (n=161) and individuals with missing 

data on any of the auxiliary variables (n=21,868). The sampling weights were generated for 

n=393,299 UKBB individuals, of which 109,550 were removed after applying QC steps for 

genome-wide analyses. 

 

Performance of the UK Biobank probability weights 

Figure 2A shows the distribution of the normalized propensity weights (win) for UKBB 

individuals. The probabilities used to construct the weights were obtained from a LASSO 

regression model retaining 454 of the 903 initially included predictors. Figure 2B illustrates 

which auxiliary variables most strongly linked to UKBB participation (UKBB = 1; HSE = 0), 

highlighting that older (retired) and more educated non-smoking individuals were particularly 

likely to participate. 

To evaluate the performance of the weights, we first assessed if probability weighting 

recovered the reference (HSE) population distributions. We included the generated weights 

in univariate logistic regression model predicting UKBB participation, where UKBB individuals 

were given their normalized weight (win) and HSE participants were given a weight of 1. 

When applying probability weighting (shown on the right side of Figure 2B), previously 

significant predictors became non-significant. All means and proportions in the HSE, UKBB 

(unweighted) and UKBB (weighted) are provided in sTable 3. Next, we estimated the degree 

of bias reduction following probability weighting. Here, we quantified participation bias as 

the difference between an estimate of association obtained in the UKBB (rUKBB) and the 

reference sample (rHSE). The largest difference [rdiff=|rHSE-rUKBB|] was present for employment 

status with overall health (rdiff=0.19; rHSE=-0.25; rUKBB=-0.06), overall health with age 

(rdiff=0.12; rHSE=-0.13; rUKBB=-0.01), household size with income (rdiff=0.10; rHSE=0.20; 
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rUKBB=0.31), and employment status with income (rdiff=0.10; rHSE=-0.25; rUKBB=-0.35) (cf. Figure 

2C). Application of probability weighting eliminated most bias induced by selective 

participation (median bias reduction: 0.97; mean: 0.91, range: 0.58 - 0.998). The estimates 

were very similar to the cross-validated model (median bias reduction: 0.96; mean: 0.90, 

range 0.50; 0.998), highlighting that over-fitting was unlikely to be a problem.  

Finally, Figure 2D summarizes changes in means and proportions as a result of probability 

weighting, estimated for the auxiliary variables (in blue), as well as other UKBB variables (in 

orange) not used to construct the weights. Application of weighting resulted in overall more 

unfavourable health outcomes and demographics, including increases in mental illness 

(higher rates of schizophrenia and alcohol addiction) and poorer socioeconomic status 

(higher deprivation index, lower job class), providing further indication that weighting largely 

reduced the healthy volunteer bias of the UKBB. 

In summary, probability weighting successfully created a pseudo-sample of the UKBB 

achieving higher levels of representativeness, thus providing a useful tool for participation 

bias correction in downstream analyses.  

 

Probability weighted genome-wide association analyses on UK Biobank traits 

The effect of participation bias on genome-wide results was evaluated by comparing the SNP 

estimates obtained from probability weighted genome-wide analyses, wGWA (𝛽*&, Neffective= 

94,643 – 102,215), to standard GWA analyses (𝛽* , N=263,464 – 283,749). As illustrated in 

Figure 3, the impact of participation bias was assessed in terms of changes in effect sizes 

across SNPs and genome-wide discovery (i.e., number of identified SNPs).  

First, Figure 3A highlights the number of SNP where bias induced overestimation [(|𝛽*| −

|𝛽*&|)	/	N𝛽*N ≥ 0.2] or underestimation [(|𝛽*| − |𝛽*&|)	/	N𝛽*N ≤ −0.2] of SNP effects. Among all 

genome-wide hits (1690, with p< 5 × 10−8), overestimation was more common (420 SNPs, 

24.85% of all genome-wide SNPs) than underestimation (290 SNPs, 17.16% of SNPs). More 

specifically, underestimation was most common for cancer (57% of SNPs), loneliness (50%), 

education  (33%) and reaction time (33%), whereas overestimation was present for 

depression/anxiety (67%), coffee intake (63%) and smoking status (58% of SNPs). There was 

no evidence of change in direction of effects as a result of participation bias (cf. sResults, 

Supplement). Second, with respect to genome-wide discovery (Figure 3B), we found that of 
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all SNPs identified either in wGWA or GWA analyses (n=1690 across all phenotypes), 25 SNPs 

(1.48%) were missed as a result of participation bias, as these SNPs reached significance only 

in the weighted analyses. Novel SNPs were identified for 12 of the 19 included traits, most 

notably for depression/anxiety (50% of genome-wide SNPs linked to depression/anxiety were 

missed by standard GWA), cancer (29%) and loneliness (25%). Detailed results are listed in 

sTable 4 and plotted in sFigure 2-3. 

 
Probability weighted genome-wide association analysis on sex 

UKBB participants were proportionately more female (femaleUKBB=54.38%) compared to the 

general population (femaleHSE=50.74%; femaleCENSUS=50.62%). Probability weighting 

recovered the population prevalence in the UKBB (weighted femaleUKBB=50.36%). SNP 

heritability estimates (h2) (sFigure4A) using wGWA led to almost half of that of the standard 

GWA (h2 on liability scale = 1.2%, p=0.1 in wGWA versus 2.1%, p=5.4e-11 in standard GWA). 

sFigure 4B/sTable 5 display the SNP effects of 49 variants previously associated with sex 

(p< 5 × 10−8, in an independent sample of >2,400,000 volunteers) to estimates obtained from 

standard GWA and wGWA. Of those, 18 (36.73%) SNPs showed significantly reduced sex-

associated effects in wGWA. In contrast, only 3 (6.12%) SNPs showed reduced sex-associated 

effects in standard GWA. 

 

Genome-wide association study on the liability to UKBB participation 

wGWA on UKBB participation was conducted in Neff=102,215 participants. 28 SNPs reached 

genome-wide significance (p< 5 × 10−8), of which LD-independent 23 SNPs were selected after 

clumping. Figure 4A shows the Manhattan plot with positional mapping of genome-wide 

SNPs associated with the liability to UKBB participation (cf. sTable 6 for annotation and 

estimates of significant SNPs). The QQ plot (sFigure 5) can be found in the Supplement. SNP 

heritability for UKBB participation was h2=0.009 (se=0.005) (LD-score intercept: 1.055). A 

lookup of SNP-trait associations estimated in previous GWA analyses showed that UKBB 

participation-associated variants mostly tapped into age-related outcomes (e.g., cause of 

death: cancer/dementia/fatty liver disease/pneumonia) (sTable 7). LD score regression 

analyses (cf. Figure 4B, sTable 8) implicated substantial genetic correlations between UKBB 

participation and phenotypes related to socioeconomic factors and previously assessed 

participatory behaviour, including educational attainment (rg=0.92), income (rg=0.81), 
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participation (response to email invitationand mental health survey completion) (rg=0.75 and 

rg=0.7, respectively), intelligence (rg=0.73) and cigarette use (age of onset) (rg=-0.72).  

 

Weighted SNP heritability and genetic correlation estimates 

Bias was assessed in terms of differences in SNP heritability (ℎ*+,,) = ℎ) − ℎ&) ) and genetic 

correlations (𝑟𝑔*+,, = 𝑟𝑔 − 𝑟𝑔&) between standard and weighted GWA analyses (Figure 5). 

On average, heritability estimates differed by 1.5% (liability scale |ℎ*+,,) | = 0.015, range 0 - 

0.05). ℎ*+,,)  was highest for BMI (ℎ)= 0.24; ℎ&) =0.19), education (ℎ)= 0.21; ℎ&) =0.24) and 

diabetes (ℎ)= 0.19; ℎ&) =0.16). Of all assessed traits included in LDSC regression (n=18), five 

showed significant (pFDR<0.05) ℎ*+,,) , of which four (80%) were over-estimated and one 

(education) was under-estimated as a result of participation bias. The weighted and 

unweighted heritability estimates are plotted in sFigure 6 and additional statistics (e.g., LDSC 

intercepts) are provided in sTable 9. 

Concerning estimates of genetic correlations, we found an average difference of |𝑟𝑔*+,,|	= 

0.07 (range 0 – 0.31) between results obtained from standard and weighted GWA analyses. 

Participation bias leading to rg-overestimation was most notable for rg(BMI, smoking status) 

[𝑟𝑔=0.27; 𝑟𝑔&=0.13], rg(fruit intake, physical activity) [𝑟𝑔=0.32; 𝑟𝑔&=0.18] and rg(alcohol 

use frequency, smoking status) [𝑟𝑔=0.35; 𝑟𝑔&=0.21]. rg-underestimation was most 

prominent for rg(insomnia, risk taking) [𝑟𝑔=0.02; 𝑟𝑔&=0.31], rg(vegetable intake, physical 

activity) [𝑟𝑔=0.3; 𝑟𝑔&=0.58] and rg(depression/anxiety, risk taking) [𝑟𝑔=0.27; 𝑟𝑔&=0.47]. For 

five (3.27%) of the assessed trait pairs (n=153) the weighted and standard genetic 

correlations were significantly (pFDR<0.05) different, of which education was the most 

commonly implicated trait (sFigure 7, sTable 10). Change in direction of genetic correlations 

as a result of participation bias was less present (cf. sResults, Supplement). 

 

Effect of participation bias on Mendelian Randomization estimates 

Figure 6 summarizes which MR estimates were affected by participation bias, as inferred 

from differences between the standard and weighted MR estimates (𝛼*+,, = 𝛼C − 𝛼C&). 

On average, participation bias led to an absolute change of 0.038 in standardized MR 

estimates (range 0 – 0.15). Most affected were associations between lifestyle choices, 

including coffee intake on BMI (𝛼C=0.8; 𝛼C&=0.65), fruit consumption on LDL cholesterol 

(𝛼C=0.03; 𝛼C&=-0.12) and fruit consumption on coffee intake (𝛼C=0.15; 𝛼C&=0.01) (sFigure8 and 
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sTable 11). Of all exposure-outcome associations tested (k=234), 14 (6%) estimates were 

either overestimated (2%, |𝛼C| − |𝛼C&| > 0.1) or underestimated (4%, |𝛼C| − |𝛼C&| < -0.1). 

Significant (pFDR<0.05) differential effects were only present for two of the exposure-outcome 

associations tested (education on BMI; smoking status on fruit consumption). There was little 

evidence of bias resulting in changes in direction of MR estimates (sResults, Supplement). 

 

 

Discussion 

While the use of large volunteer-based biobanks is key to advancing genetic epidemiology, it 

is currently unclear to which extent selective participation impacts genotype-phenotype 

association obtained from the data. In this work, we conducted inverse probability weighted 

GWA (wGWA) on 19 traits to correct for participation bias in genome-wide analyses. We 

found that participation bias can distort genome-wide findings and downstream analyses. 

Overall, the bias mostly affected magnitude of effects, rather than direction, but was present 

across all sets of genome-wide analyses. For genome-wide association analysis, we find that 

estimates are subject to both overestimation (e.g., for cancer and education) and 

underestimation (e.g., for coffee intake, depression/anxiety). wGWA also led to the discovery 

of novel loci for 12 of the included traits, highlighting SNPs that would be missed as a result 

of participation bias. Of note, although effect size estimates can shrink as a consequence of 

participation bias, the increased standard errors of the inverse probability weighting (due to 

reduced effective sample size) renders new discoveries difficult. Participation bias also 

distorted heritability estimates, genetic correlations and Mendelian Randomization 

estimates, most notably for socio-behavioural traits including education, diet, smoking and 

BMI. In contrast, more molecular/physical traits (e.g., LDL, SBP) exhibited less bias as a result 

of selective participation. Such pattern is in line with existing studies22,23 and our findings of 

high genetic correlations between the liability to UKBB participation and socio-behavioural 

traits, particularly education, income and substance use. More broadly, different sources of 

bias are likely to affect similar phenotypes in genome-wide studies, in that socio-behavioural 

phenotypes are subject to bias resulting from selective participation22,23, indirect genetic 

effects3, assortative mating4, error in measurements44 and population stratification45.  
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Our work builds and extends recent efforts evaluating bias due to selective participation. 

More specifically, we replicate findings showing that phenotypic exposure-outcome 

associations in the UKBB differ from those estimated in probability samples12,14: participation 

bias, defined as the difference in exposure-outcome associations in the UKBB and the 

reference sample (HSE), was substantial for a number of associations. For example, 

phenotypically, the impact of participation bias was most prominent for the link between 

overall health with age and employment status. Application of probability weighting 

eliminated a significant proportion (>90%) of bias due to selective participation in the UKBB. 

To our knowledge, this work is the first to provide participation bias corrected GWA on 

complex traits related to health and behaviour. We highlight patterns of bias and point to 

areas of research that are most impacted by this bias. Since genome-wide association 

summary statistics are increasingly used in epidemiological research to study causal 

questions concerning education, diet and behaviour, greater care should be taken when 

relying on data obtained from non-random samples. Biobank data in which participation bias 

cannot be assessed (e.g., in self-selection samples without a defined target population) may 

therefore be only of limited utility when scrutinizing genotype-phenotype relationships. As 

part of this work, we provide software to perform wGWA, which allows researchers to 

conduct sensitivity checks when relying on non-representative samples. Alternatively, 

recruitment schemes incorporating probability sampling can help reduce bias, but samples 

are typically small given the substantial costs associated with recruitment.  

 

This study comes with a number of shortcomings. First, while the application of probability 

weighting successfully removed bias resulting from selective participation in the UKBB, 

residual bias may still exist. Important factors independently predicting UKBB participation 

may have been missed when modelling participation probability, which would reduce the 

efficacy of probability weighting. When choosing a reference population, there is a trade-off 

between representativeness of the reference sample and the number of available variables 

to match the samples. We choose to use the HSE as a reference sample to strike a balance 

between these two factors, but biases can remain if important variables were not measured 

or the reference sample is not representative enough. Second, genome-wide analyses were 

restricted to phenotypes with little missing data. This is a shortcoming since traits with 

substantial missing data are perfect candidates for characteristics influencing participation.  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 28, 2022. ; https://doi.org/10.1101/2022.09.28.509845doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.28.509845
http://creativecommons.org/licenses/by-nc-nd/4.0/


As such, we did not evaluate the impact of participation bias on variables collected at follow-

up. Finally, the UKBB probability weights are sample specific, constructed for a more 

educated, healthy, older, and female sample residing in England. Bias due to selective 

participation will differ across study contexts and participation mechanisms as evaluated in 

this study are therefore not generalizable to other cohorts. 

 

In conclusion, our results highlight that selective participation can lead to bias in genome-

wide results and downstream analyses, most visibly for socio-behavioural traits. Moving 

forward, more efforts ensuring either sample representativeness or methods correcting for 

participation bias are paramount, especially when studying the genetic underpinnings of 

behaviour, lifestyles and educational outcomes. 

 

Data availability 

Standard and probability weighted UK Biobank association statistics, computed using LDAK 

version 5.2, will be made available through the GWAS catalog. 

 

Code availability 

LDAK is available at http://dougspeed.com/downloads/ 

All analytical scripts are available at 

https://github.com/TabeaSchoeler/TS2021_UKBBweighting 
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Figure 1. Illustration of the impact of participation bias in genetic studies 

 

Illustration of the relationships between a genetic variant (G) and an exposure (X) or outcome (Y) and study participation (Z). Panel 
(A) illustrates the effect of participation bias in genome-wide association studies, where (Z) is a common consequence of (G) and 
(Y) (dashed red). Conditioning on a common consequence (Z) induces a non-causal association between the genetic variant (G) 
and the outcome (Y). Panel (B/C) illustrates the effect of participation bias in Mendelian Randomization studies, where bias occurs 
if (Z) is a consequence of either the exposure (X) (Panel B) or the outcome (Y) (Panel C). Conditioning on (Z) induces an association 
between the genetic variant and confounders, thereby violating the MR assumption of exchangeability. 
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Figure 2. Performance of the UK Biobank probability weights 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Panel (A) presents the truncated density curves of the normalized propensity weights (win) for UKBB participants, ranging from 0.02 to 50.01. Panel (B) shows 
standardized coefficients of variables predicting UKBB participation (HSE = 0; UKBB = 1) in univariate logistic regression models. Coefficients are provided for all 
UKBB participants and males and females separately. Panel (C) plots the correlation coefficients among all auxiliary variables within the UKBB (obtained from 
weighted and unweighted analyses), and within the HSE. Highlighted in blue are results where the coefficients between the UKBB (rUKBB) and the reference sample 
(rHSE) deviated (rdiff >0.05, where rdiff=|rHSE-rUKBB|). Panel (D) depicts the percentage change (for categorical variables) and change in means as a function of 
weighting, obtained for a number of health-related UKBB phenotypes, including the auxiliary variables (blue) and variables not used to construct the weights. 
Percentage change was estimated as the difference between the weighted (pw) and unweighted proportion (p), divided by the unweighted value [(pw – p) / p × 
100]. Change in means was expressed as a standardized mean difference, estimated as the difference between the unweighted mean (m) and the weighted mean 
(mw), divided by the unweighted standard deviation (sd) [mw-m/sd]. 
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Figure 3. SNP estimates from weighted and unweighted genome-wide analyses 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Summary of comparison between SNP effects obtained from probability weighted genome-wide association (wGWA) and standard 
GWA analyses on 19 traits. Panel (A) summarizes the proportions of overestimated and underestimated SNP effects as a result of 
participation bias. Shown in panel (B) are the numbers and proportions of SNPs reaching genome-wide significance in either 
standard GWA, wGWA or both (GWA & wGWA). The scatter plots to the right plot the weighted (|𝛽w|) against the unweighted 
(|𝛽|) SNP effects for four selected traits. 
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Figure 4. Genome-wide association study on the liability to UK Biobank participation 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Panel (A) displays the Manhattan plot of the genome-wide association study on the liability to UKBB participation. Labels are 
provided for the top LD-independent genome-wide significant SNPs (i.e., SNPs above the horizontal line, with p<5×10−8) and gene 
names obtained through positional mapping. The x-axis refers to chromosomal position, the y-axis refers to the p-value on a -log10 
scale. Panel (B) shown are the genetic correlations (rg) of the UKBB participation with traits indexing participatory behaviour (in 
green) and other traits (in blue). 
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Figure 5. Weighted SNP heritability and genetic correlation estimates 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Plotted in Panel (A) are the differences in SNP heritability (h2
DIFF = h2 - hw

2) and genetic correlations (rgDIFF = |rg| -|rgw|) obtained 
from weighted and standard GWA analyses. The diagonal shows the differences in SNP heritability, where bias leading to 
overestimation (h2

diff > 0.02) are plotted in orange and bias leading to underestimation (h2
diff  < -0.02) are plotted in yellow. The 

off-diagonal highlights overestimated genetic correlations (rgDIFF > 0.1) in blue and underestimated genetic correlations (rgDIFF  < -
0.1) green. Tiles coloured in turquoise index genetic correlations where rg and rgw show opposite directions (with rg printed at 
the top and rgw printed at the bottom of the tile). Panel B illustrates estimates of genetic correlations (rg shown as ⬤; rgw shown 
as▲) and the corresponding confidence intervals for two selected traits.  (*) Estimates showing significant differences (pFDR<0.05). 
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Figure 6. Effect of participation bias on MR estimates of exposure-outcome associations  

 

 

 

 

 

 

 

 

 

 

 

 

Summary of results obtained from weighted (𝛼#!) and standard (𝛼#) Mendelian Randomization (MR). MR estimates subject to 
overestimation (|𝛼#| – |𝛼#!| > 0.1) as a results of participation bias are highlighted in violet. MR estimates subject to 
underestimation (|𝛼#| – |𝛼#!| < -0.1) are highlighted in cyan. The asterisks (*) highlight results where 𝛼# and 𝛼#! showed significant 
(pFDR<0.05) differences. 
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