

1 Polylactide Degradation Activates Immune Cells by Metabolic Reprogramming

2
3 Chima V. Maduka^{1,2,3}, Mohammed Alhaj⁴, Evran Ural^{2,3}, Michael O. Habeeb^{2,3}, Maxwell M. Kuhnert^{2,3}, Kylie
4 Smith^{2,3}, Ashley V. Makela^{2,3}, Hunter Pope^{2,3}, Shoue Chen⁵, Jeremy M. Hix³, Christiane L. Mallett³, Seock-
5 Jin Chung^{2,3}, Maxwell Hakun^{2,3}, Anthony Tundo^{2,3}, Kurt R. Zinn^{2,3}, Kurt D. Hankenson⁶, Stuart B.
6 Goodman^{7,8}, Ramani Narayan⁴, Christopher H. Contag^{2,3,9*}

7
8
9 ¹ Comparative Medicine & Integrative Biology, Michigan State University, East Lansing, MI 48824, USA

10 ² Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA

11 ³ Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI
12 48824, USA

13 ⁴ Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI
14 48824, USA

15 ⁵School of Packaging, Michigan State University, East Lansing, MI, 48824 USA

16 ⁶ Department of Orthopedic Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA.

17 ⁷ Department of Orthopedic Surgery, Stanford University, CA 94063, USA.

18 ⁸ Department of Bioengineering, Stanford University, CA 94305, USA.

19 ⁹ Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI 48864,
20 USA.

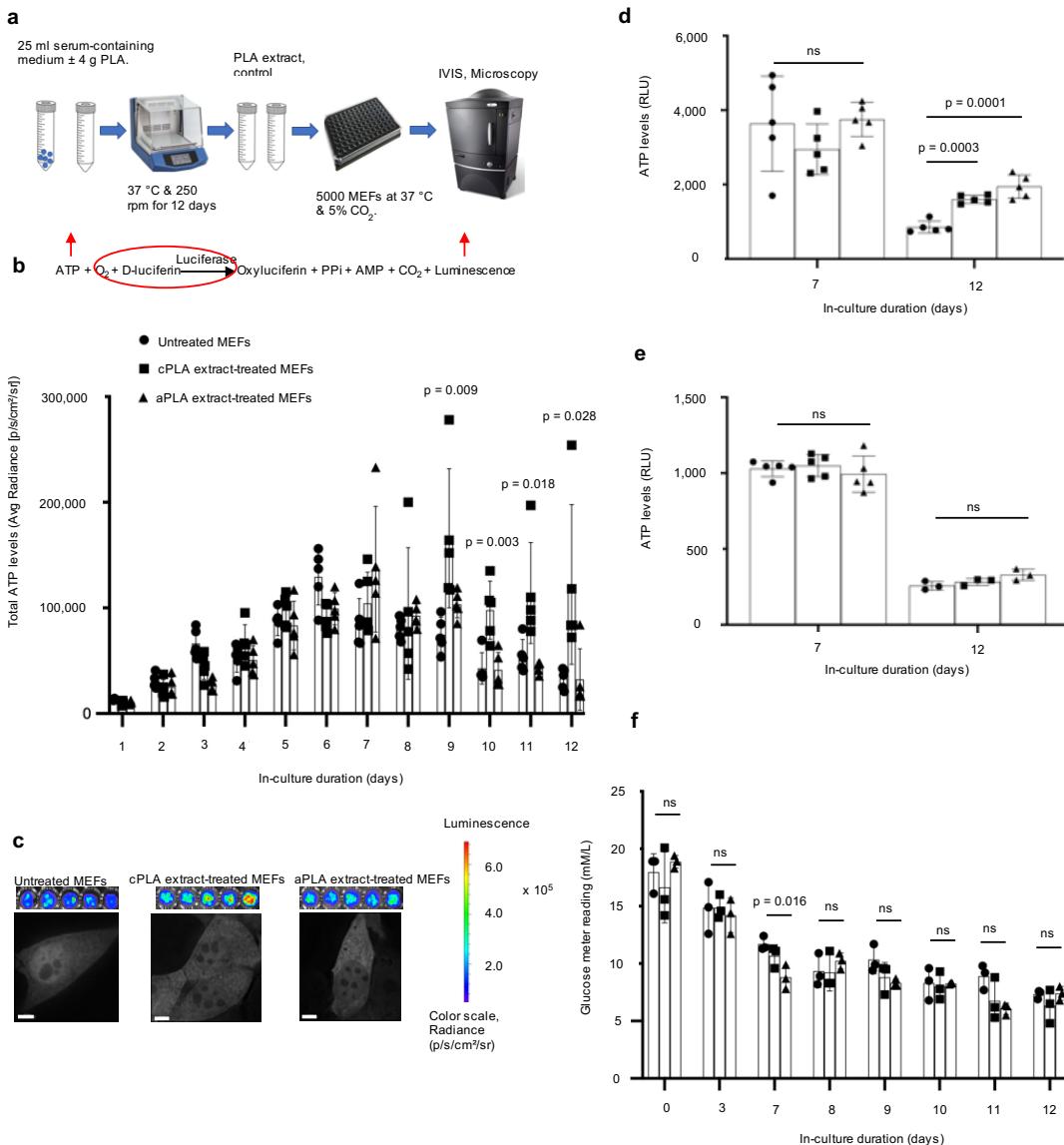
21
22 *Corresponding author: Christopher H. Contag, contagch@msu.edu

24 ABSTRACT

25 Polylactide (PLA) is the most widely utilized biopolymer in medicine. However, chronic inflammation and
26 excessive fibrosis resulting from its degradation remain significant obstacles to extended clinical use.
27 Immune cell activation has been correlated to the acidity of breakdown products, yet methods to neutralize
28 the pH have not significantly reduced adverse responses. Using a bioenergetic model, we observed
29 delayed cellular changes that were not apparent in the short-term. Amorphous and semi-crystalline PLA
30 degradation products, including monomeric L-lactic acid, mechanistically remodel metabolism in cells
31 leading to a reactive immune microenvironment characterized by elevated proinflammatory cytokines.
32 Selective inhibition of metabolic reprogramming and altered bioenergetics both reduce these undesirable
33 high cytokine levels and stimulate anti-inflammatory signals. Our results present a new biocompatibility
34 paradigm by identifying metabolism as a target for immunomodulation to increase tolerance to biomaterials,
35 ensuring safe clinical application of PLA-based implants for soft- and hard-tissue regeneration, and
36 advancing nanomedicine and drug delivery.

37
38 **Keywords:** Polylactide, Metabolic Reprogramming, Immune Cells, Tissue Regeneration, Biocompatibility

39
40 Polylactide (PLA) is the most widely utilized biopolymer¹, with applications in nanotechnology, drug
41 delivery and adult reconstructive surgery for tissue regeneration. However, after surgical implantation, PLA
42 elicits adverse immune responses in up to 44% of human patients, often requiring further interventions^{2,3}.
43 In animals, a 66% incidence of excessive fibrosis with capsules from long-term inflammation which
44 significantly limit implant-tissue integration has been reported⁴. PLA degrades by hydrolysis into D- or L-
45 lactic acid, with semi-crystalline PLA degrading slower and tending to contain less D-content than
46 amorphous PLA^{1,5}. Adverse responses to PLA are exacerbated by mechanical loading and increasing
47 implant size⁶, and occur after prolonged exposure to large amounts of PLA degradation products^{2,7-9}. It is
48 speculated that adverse responses are mediated by PLA degradation reducing pH in surrounding tissue¹⁰,
49 the historical basis of which involved *Photobacterium phosphoreum*¹¹. This bacterium expresses a
50 luciferase whose reduced metabolic activity, measured by bioluminescence, can infer toxicity. In this study,
51 breakdown products (extract) of PLA were obtained either in sterile water or Tris buffer; addition of acidic
52 extract correlated with reduced luminescence. However, the study was not performed on mammalian cells,
53 did not reflect the buffered in-vivo microenvironment or simulate prolonged exposure times to accumulated


54 PLA degradation products. Establishing that a decrease in pH correlates with PLA degradation has
55 informed the current strategy in regenerative medicine to neutralize acidic PLA degradation products both
56 in-vitro and in-vivo using polyphosphazene¹², calcium carbonate, sodium bicarbonate and calcium
57 hydroxyapatite salts¹⁰, bioglass¹³ and composites containing alloys or hydroxides of magnesium^{14,15} despite
58 reports of failures¹⁶. The lack of a clearly described mechanism of immune cell activation by PLA
59 degradation remains a major obstacle in the safe application of large-PLA based implants in load-bearing
60 applications as reflected by their paucity in FDA approvals¹⁷, and in soft tissue surgery where neutralizing
61 ceramics cannot be applied¹⁸.

62 Metabolic reprogramming refers to significant changes in oxidative phosphorylation and glycolytic
63 flux patterns and is a driver of fibrosis and bacterial lipopolysaccharide (LPS)-induced inflammation^{19,20}.
64 Here we set out to establish a molecular mechanism that directly links metabolic reprogramming to
65 inflammation and fibrosis, consequent to cellular interactions with PLA degradation products. Foremost, we
66 develop and validate a bioenergetic model of prolonged immune cell interaction with accumulated PLA
67 degradation products. Only after prolonged exposure to amorphous or semi-crystalline PLA degradation
68 products did macrophages and fibroblasts mechanistically undergo metabolic reprogramming and marked
69 bioenergetic changes, with higher PLA crystallinity delaying onset. Using our model, we observed that PLA
70 breakdown products markedly increase proinflammatory cytokine expression in primary macrophages
71 through lactate signaling. Targeting different glycolytic steps using small molecule inhibitors modulated
72 proinflammatory and stimulated anti-inflammatory cytokine expression by inhibiting metabolic
73 reprogramming and altered bioenergetics in a dose-dependent manner. This process is highly specific and
74 not cytotoxic to surrounding unaffected immune cells. Further, we demonstrate that use of the small
75 molecule inhibitors imbedded in PLA implants substantiated our hypothesis of controlling the inflammatory
76 response in-vivo. Our findings establish a new biocompatibility paradigm by identifying altered metabolism
77 as a target for immunomodulation of PLA-based implants, fundamentally differing from previous strategies
78 aimed at neutralizing PLA. Therefore, major advances in the use of PLA for human and veterinary
79 applications are anticipated.
80

81 **Bioenergetic model for evaluating cellular responses to PLA degradation.**

82 To simulate in-vivo buffer conditions, breakdown products of PLA, generally referred to as
83 extracts²¹, were generated in serum-containing DMEM medium and used after 12 days (d) of incubation in
84 a shaker at 37 °C (Fig. 1a). This in-vitro degradation method was designed to mimic PLA degradation in-
85 vivo, with agitation to accelerate PLA degradation relative to static methods²². Due to the buffering inherent
86 in the serum-containing DMEM medium, there were no changes in pH over the 12 d extraction period for
87 serum-containing control medium (pH = 8.0), amorphous PLA (pH = 8.2) and crystalline PLA (pH = 8.2)
88 extracts used on cells. On the other hand, extraction in water for the same duration resulted in pH
89 differences between control (pH = 8.2), amorphous PLA (pH = 7.5) and crystalline PLA (pH = 7.6) extracts.
90

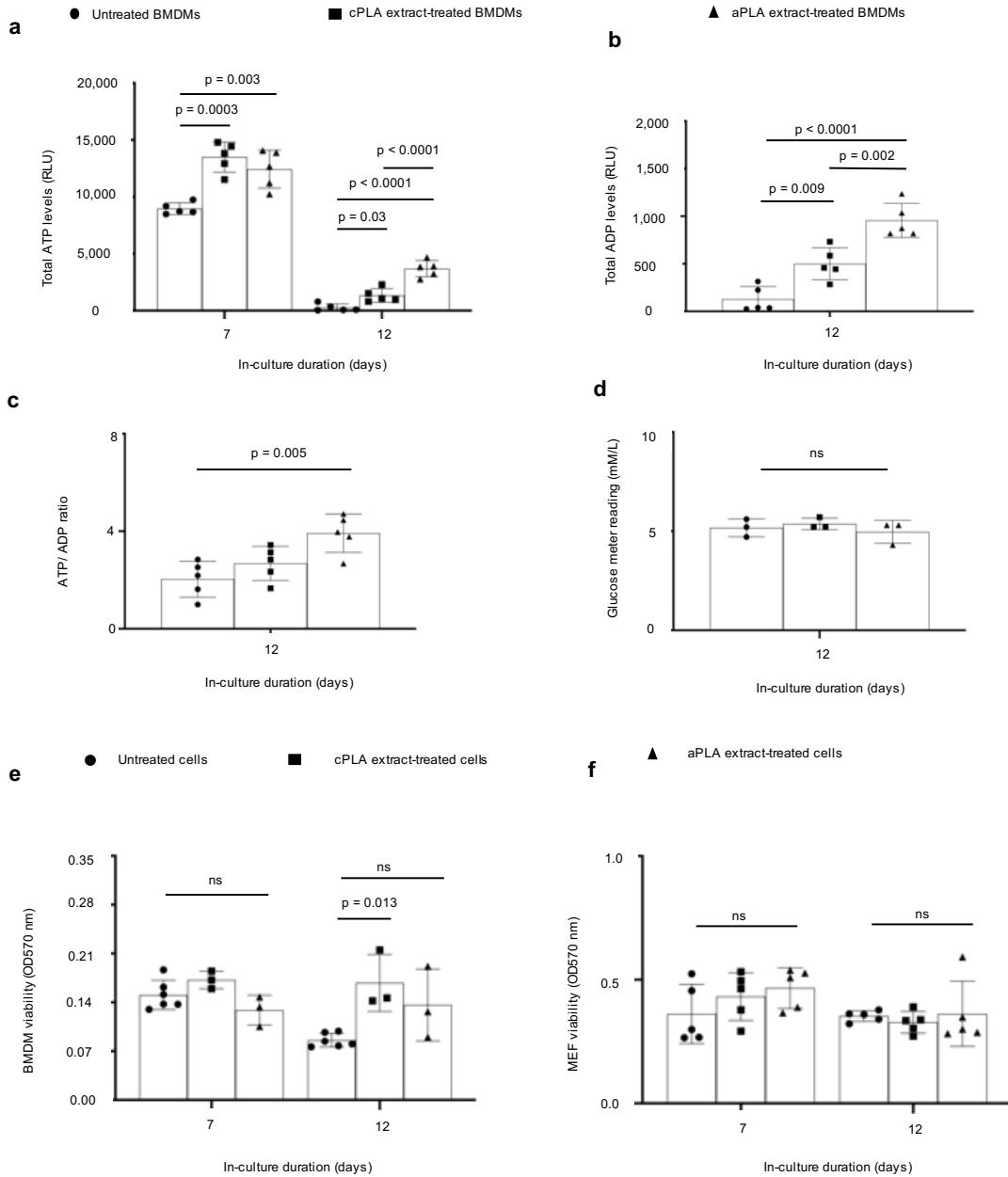

91 Together, studies in rodents, dogs and humans indicate that adverse immune responses occur
92 after accumulation of PLA degradation products over several weeks or months^{8,23-25}. To account for these
93 extended exposure times in our model, we cultured immune cells in PLA extract for 12 d, and this required
94 initiating our cultures with small numbers of cells per well in both control and treatment groups to prevent
95 overgrowth of the cultures. Mouse embryonic fibroblasts (NIH 3T3 cells) were stably transfected with a
96 Sleeping Beauty transposon plasmid (pLuBIG) having a bidirectional promoter driving a modified firefly
97 luciferase gene (fLuc) and a fusion gene encoding a Blasticidin-resistance marker (BsdR) linked to eGFP
98 (BGL)²⁶. Seeding the same cell numbers across control and treatment groups resulted in constant levels of
99 luciferase and we exposed cells to equal levels of D-luciferin and oxygen in all assays. In this manner, ATP
100 was rate-limiting and changes in ATP were measured by bioluminescence using in-vivo imaging system
101 (IVIS; Fig. 1b). Use of bioluminescence as an indicator of ATP levels was inexpensive, rapid (on the order
102 of seconds) and allowed for high throughput temporal bioenergetic analysis in live cells. Additionally, in our
103 model, each well of a 96-well plate had a total of 200 μ l of medium, of which 100 μ l was freshly prepared.
104 The additional 100 μ l for control wells was medium that had been in the shaker at 37 °C for 12 d to account
105 for potential nutrient degradation that could confound results. Similarly, the additional 100 μ l for treatment
wells was medium in which PLA had been degraded under the same conditions.

Figure 1 | Bioenergetic (ATP) levels are elevated in mouse embryonic fibroblasts (MEFs) only after prolonged exposure to polylactide (PLA) degradation products (extract). **a**, Workflow showing our in-vitro bioenergetic model. **b**, Keeping luciferase, oxygen and D-luciferin levels constant (red circle) allows for changes in PLA (red arrow) to be measured by luminescence (red arrow). Using in-vivo imaging system (IVIS) and in comparison to controls, ATP levels in live cells are increased in blasticidin-eGFP-luciferase (BGL)-transfected MEFs after prolonged exposure to crystalline PLA (cPLA) degradation products. **c**, Representative microscopic (scale bars, 5 μM) and IVIS images show differential nucleoli number and luminescence, respectively. **d**, Measuring ATP in cell lysates of wild-type MEFs revealed that prolonged exposure to both amorphous PLA (aPLA) and cPLA results in elevated ATP levels. **e**, Addition of PLA does not affect the biochemical reaction by which ATP is measured. **f**, Between groups on the same day, glucose levels are similar in our in-vitro bioenergetic model. Not significant (ns), mean (SD), n = 5 (Fig. 1b, 1d and day 7 for 1e) or n = 3 (Fig. 1f and day 12 for 1e), one-way ANOVA followed by Tukey's post-hoc test; 100 μl of control or PLA extract was used.

106
107
108 Dose-bioenergetic response of amorphous and crystalline PLA extracts revealed altered ATP levels for all
109 tested doses (Supplementary Fig. 1a). Therefore, we selected 100 or 150 μl of extract, as indicated in figure
110 legends, to mimic accumulation of voluminous PLA breakdown products^{2,7}.
111 Highly crystalline and amorphous PLA samples were selected for their high molecular weights and
112 represent a range of physicochemical properties (crystallinity, stereochemistry, degradation period) which
113 constitute important considerations in selecting PLA for hard and soft tissue engineering^{8,10,25}. Before using
114 these PLA materials, we authenticated their physicochemical and thermal properties (Supplementary Table
115 1). Lastly, we used the non-transformed, immortalized NIH 3T3 fibroblast cell line that typifies primary

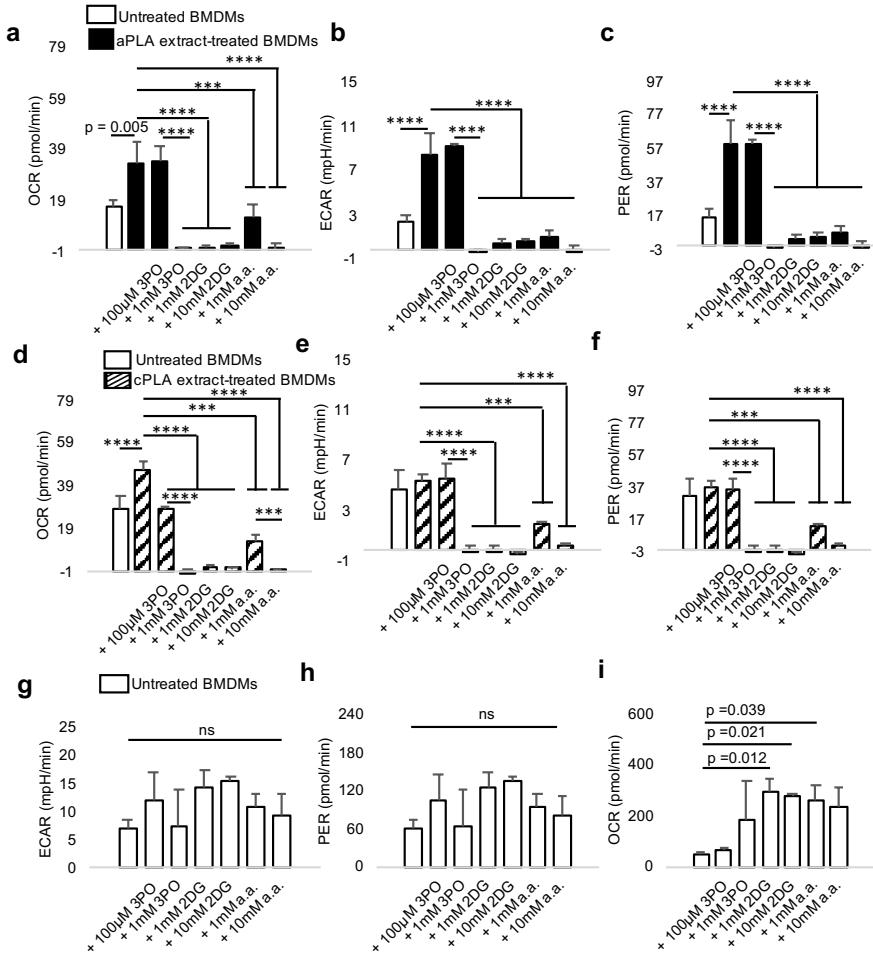
116 fibroblasts, as well as primary bone-marrow derived macrophages, both of which are key cellular mediators
117 of prolonged inflammation and excessive fibrosis that occur in response to PLA degradation^{12,23}.
118

Figure 2 | Bioenergetics is increased in primary bone marrow-derived macrophages (BMDMs) after prolonged exposure to polylactide (PLA) degradation products (extract). **a**, ATP levels **b**, ADP levels **c**, and ATP/ADP ratios are increased in BMDMs after prolonged exposure to amorphous PLA (aPLA) or crystalline PLA (cPLA) degradation products (extracts) in comparison to controls. **d**, Glucose levels between groups on day 12 are similar. **e-f**, Cell number between groups are similar for BMDMs (**e**) and MEFs (**f**). Not significant (ns), mean (SD), n = 5 (Fig. 2a, b, c, f), n = 3 (Fig. 2d), n = 3-6 (Fig. 2e), one-way ANOVA followed by Tukey's post-hoc test; 100 μ l of control or PLA extract was used.

119
120 **Bioenergetics is altered in immune cells after exposure to PLA degradation products**
121 Unlike in the short-term (days 0-5), prolonged (days 6-12) exposure of fibroblasts to either
122 amorphous or crystalline PLA increased ATP levels in live cells (Fig. 1b-c). Upon high resolution z-stack
123 imaging, there were apparent changes in nucleoli number (Fig. 1c) after prolonged exposure to either
124 amorphous or crystalline PLA extract, which could represent a stress response²⁷. To exclude the possibility
125 that changing luciferase expression (by transcription or translation) was responsible for observed

126 bioenergetic changes, we lysed wild-type cells after exposure to PLA extract and added controlled amounts
127 of luciferase and D-luciferin in the standard ATP assay. Moreover, measuring ATP levels in live cells by
128 IVIS is constrained by parameters inherent to live cells. Lysed cells allow for the measurement of ATP from
129 all organellar compartments, and is not constrained by D-luciferin uptake, revealing more information than
130 measurements in live cells. By day 12, there was a 1.9- and 2.3-fold increase in ATP levels among cells
131 exposed to crystalline and amorphous PLA extract, respectively (Fig. 1d). To exclude the possibility that
132 PLA extracts affect the biochemical reaction (Fig. 1b) underlying bioenergetic measurements, fibroblasts
133 were cultured for different time points. Thereafter, lysed fibroblasts were exposed to D-luciferin, luciferase
134 and control or PLA extract at the same time. No difference in ATP levels was observed, confirming that
135 treatment with PLA extract did not affect this biochemical reaction (Fig. 1e).

136 Declining ATP levels from day 0 to day 12 is likely due to changing glucose levels²⁸. To determine
137 whether glucose levels changed between groups on the same day because of the extended exposure times
138 in our model, glucose meter readings were optimized in mammalian cell culture medium (Supplementary
139 Fig. 1b). Glucose levels were similar between groups on each day (Fig. 1f). On day 7, when untreated
140 groups had higher glucose levels (Fig. 1f), corresponding bioenergetic measurement revealed that PLA
141 extract-treated fibroblasts had higher ATP levels (Supplementary Fig. 1c), excluding changing glucose
142 levels as a confounding factor in our bioenergetic model. Because NIH 3T3 cells are normal immortalized
143 fibroblasts, changing cell number from proliferation could account for bioenergetic changes. To exclude
144 this, we optimized the crystal violet assay for cell number measurement²⁹ in fibroblasts (Supplementary Fig.
145 2a). Next, we isolated mouse primary bone marrow-derived macrophages (BMDMs) which, unlike NIH 3T3
146 cells, do not proliferate³⁰.


147 Both ATP³¹ and ADP³² metabolism and ratios are crucial in inflammatory conditions. In BMDMs
148 and consistent with our observations in fibroblasts, we observed marked increases in ATP and ADP levels
149 (Fig. 2a, b) or ATP/ADP ratios (Fig. 2c) which were not due to changing glucose levels (Fig. 2d). After
150 optimizing the crystal violet assay for macrophages (Supplementary Fig. 2b), overall, cell numbers could
151 not account for observed bioenergetic changes (Fig. 2e). Furthermore, fibroblast numbers were similar for
152 cultures that were untreated or exposed to PLA extracts (Fig. 2f), excluding changing cell number as a
153 confounder in our model.

154

155 **Exposure of macrophages to PLA breakdown products selectively results in metabolic** 156 **reprogramming**

157 To determine the metabolic pathways responsible for the bioenergetic changes we had observed,
158 Seahorse assays were used to measure oxygen consumption rate (OCR), extracellular acidification rate
159 (ECAR) and lactate-linked proton efflux rate (PER) in a customized medium (pH 7.4); this technique has
160 not been previously used to examine PLA-induced adverse responses. PLA extract was removed and
161 washed off the cells prior to running the Seahorse assay at a pH of 7.4. Seahorse assays measure ECAR
162 as an index of glycolytic flux, OCR as an index of oxidative phosphorylation and PER as an index of
163 monocarboxylate transporter function³³ in live cells; and are used to assess for metabolic reprogramming³⁴⁻³⁶.
164 Primary BMDMs exposed to amorphous PLA extract were metabolically altered, showing a 2-fold
165 increase in oxidative phosphorylation (OCR; Fig. 3a), 3.5-fold increase in glycolytic flux (ECAR; Fig. 3b)
166 and 3.5-fold increase in monocarboxylate transporter activity (PER; Fig. 3c) in comparison to untreated
167 BMDMs. Similar amounts (100 μ l) of crystalline PLA extract resulted in a 1.6-fold increase in OCR (Fig. 3d)
168 but no change in ECAR (Fig. 3e) or PER (Fig. 3f). However, higher amounts (150 μ l) of crystalline PLA
169 extract resulted in 3.2-, 3.8-, and 3.8-fold increases in OCR, ECAR and PER, respectively (Supplementary
170 Fig. 3a-c) compared to controls, suggesting that greater volume of PLA extract is required for
171 reprogramming using crystalline than amorphous PLA.

172 Next, we targeted different steps in the glycolytic pathway using three small molecule inhibitors: 3-
173 (3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO), 2-deoxyglucose (2DG) and aminoxyacetic acid (a.a.).
174 Whereas 3PO specifically inhibits 6-phosphofructo-2-kinase which is the rate limiting glycolytic enzyme³⁷,
175 2DG inhibits hexokinase, the first enzyme in glycolysis³⁸, and aminoxyacetic acid prevents uptake of
176 glycolytic substrates³⁸. In a dose-dependent manner, 3PO, 2DG and a.a. inhibited metabolic
177 reprogramming following exposure to amorphous PLA (Fig. 3a-c) or crystalline PLA extract (Fig. 3-f), but
178 not in untreated BMDMs (Fig. 3g-i).

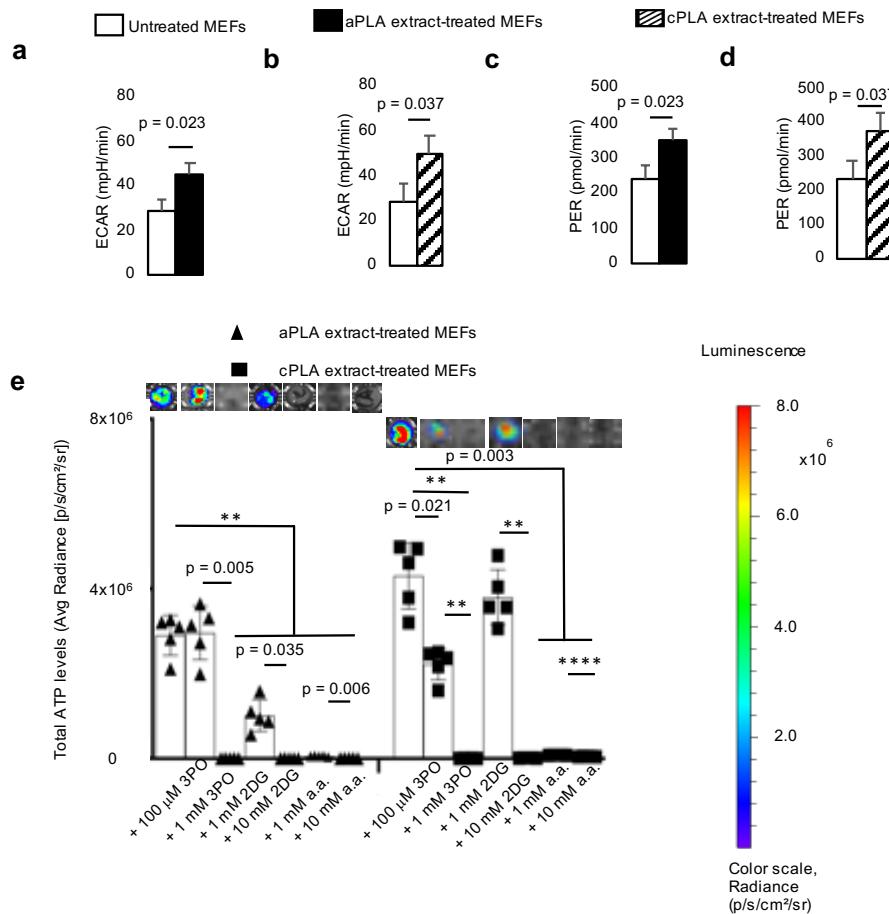
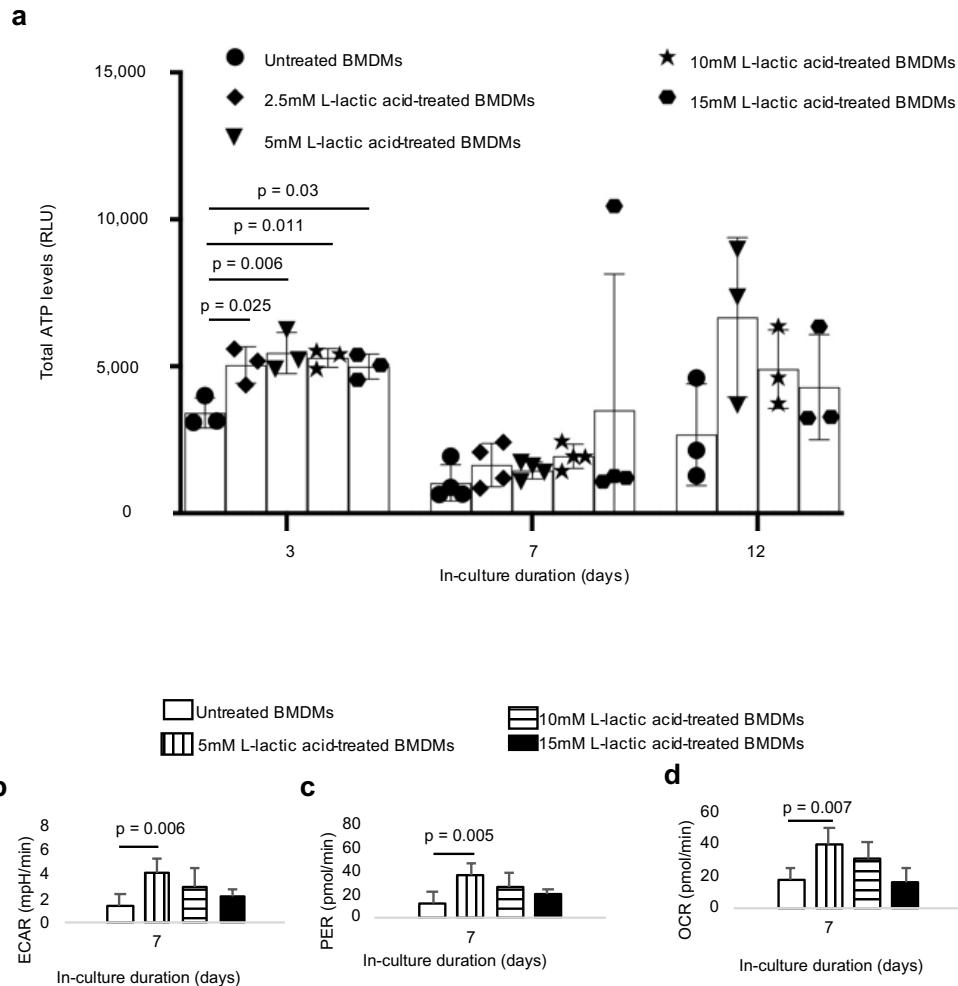


Figure 3 | Functional metabolic indices are altered in primary bone marrow-derived macrophages (BMDMs) after prolonged exposure to polylactide (PLA) degradation products (extract), and can be modulated by glycolytic inhibitors. **a-c.** Following exposure to amorphous PLA (aPLA) extract, oxygen consumption rate (OCR) (a), extracellular acidification rate (ECAR) (b) and proton efflux rate (PER) (c) are increased relative to controls, and this abnormal increase can be dose-dependently controlled by various small molecule inhibitors. **d-f.** OCR (d) and not ECAR (e) and PER (f) are increased relative to controls in groups exposed to crystalline PLA (cPLA) extract, and functional metabolic indices can be controlled by pharmacologic inhibitors of glycolysis. **g-h.** ECAR (g) and PER (h) are not affected by glycolytic inhibitors in untreated BMDMs. **i.** Compensatory increase in OCR occurs in untreated BMDMs after treatment with some inhibitors. Not significant (ns), ***p<0.001, ****p<0.0001, mean (SD), n = 3, one-way ANOVA followed by Tukey's post-hoc test; 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO), 2-deoxyglucose (2DG) and aminoxyacetic acid (a.a.); 100 μ l of control or PLA extract was used for 7 days.

179 This demonstrates cellular uptake of 3PO, 2DG and a.a., yet with selective pharmacologic effects. Notably
 180 and under the same experimental conditions, cell viability was not reduced in untreated BMDMs after
 181 exposure to glycolytic inhibitors (Supplementary Fig. 2c), demonstrating the absence of cytotoxicity²⁹.
 182 However, when BMDMs were treated with amorphous or crystalline PLA extract, where metabolism was
 183 abnormally remodeled, 3PO, 2DG and a.a. mildly, but selectively, reduced cell viability (Supplementary Fig.
 184 2d). Therefore, pharmacologically targeting altered metabolism in primary BMDMs following exposure to
 185 PLA extract is highly specific with limited toxicity to immune cells that have normal metabolic profiles.
 186

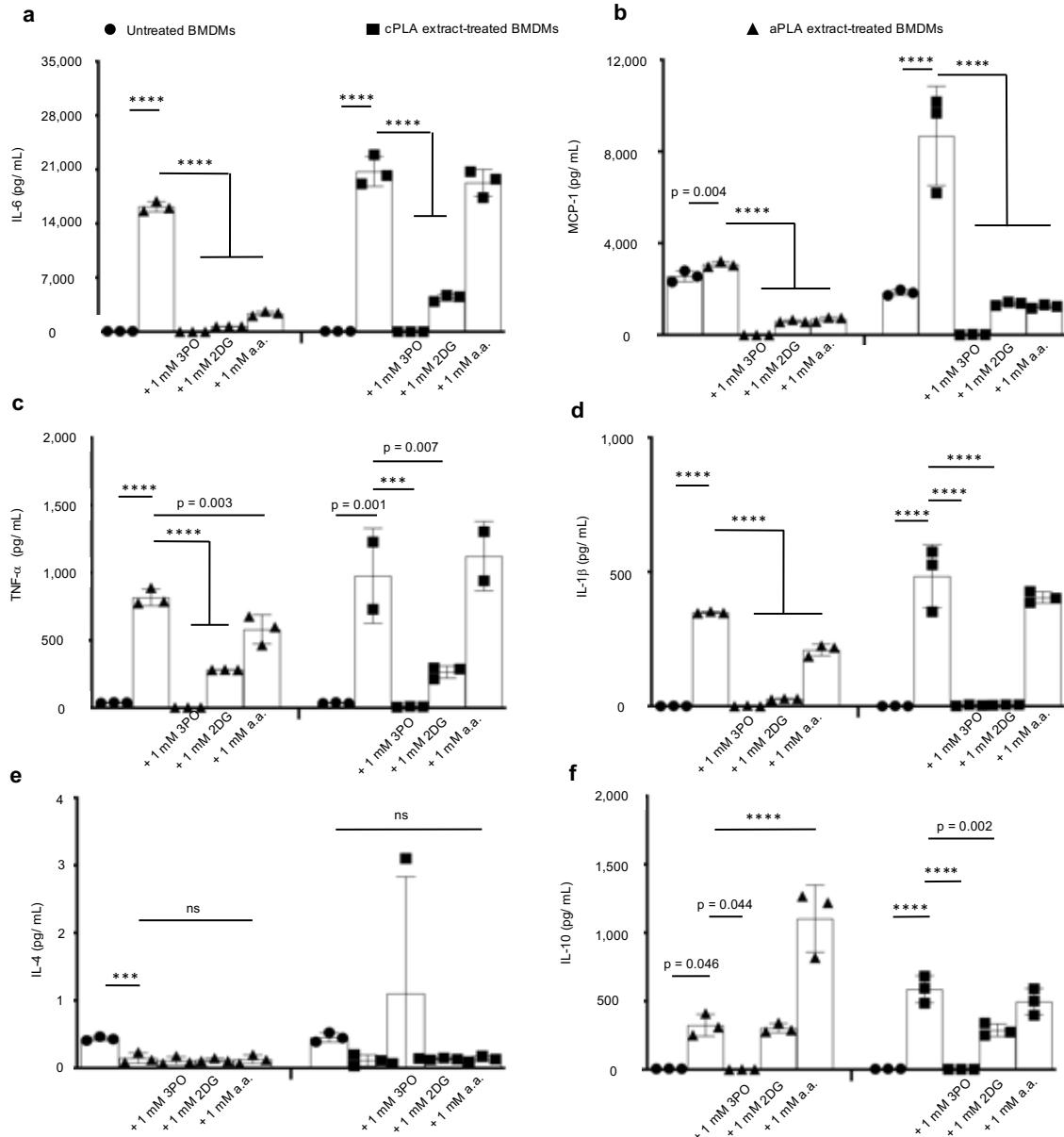
187 Fibroblasts are glycolytically reprogrammed after exposure to PLA breakdown products

188 After prolonged exposure of fibroblasts to amorphous and crystalline PLA extracts, glycolytic flux
 189 (ECAR; Fig. 4a-b) is increased by 1.6- and 1.7-fold, respectively. Furthermore, monocarboxylate transporter
 190 function is increased in amorphous or crystalline PLA extract-treated fibroblasts by 1.6- and 1.5-fold,
 191 respectively (Fig. 4c-d). However, oxidative phosphorylation remains similar between untreated fibroblasts
 192 and cells exposed to amorphous or crystalline PLA extracts (OCR; Supplementary Fig. 4a-b). Remarkably,
 193 increased bioenergetic (ATP) levels in amorphous or crystalline PLA extract-treated fibroblasts are inhibited
 194 by 3PO, 2DG and a.a. in a temporal and dose-dependent manner (Fig. 4e; Supplementary Fig. 4c).


Figure 4 | Functional metabolism is altered in mouse embryonic fibroblasts (MEFs) after exposure to polylactide (PLA) degradation products (extract). a-b, Following exposure to amorphous PLA (aPLA; a) or crystalline PLA (cPLA; b) extracts, extracellular acidification rate (ECAR) is increased. c-d, Proton efflux rate (PER) is elevated in MEFs after exposure to aPLA (c) or cPLA (d) extract. e, Bioenergetic levels in MEFs exposed to aPLA or cPLA extracts are decreased in a dose-dependent manner by 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO), 2-deoxyglucose (2DG) and aminoxyacetic acid (a.a.; representative wells are shown). ** p = 0.002, **** p < 0.0001, mean (SD), n = 3 (Fig. 4a, b, c, d), n = 5 (Fig. 4e), two-tailed unpaired t-test or Brown-Forsythe and Welch ANOVA followed by Dunnett's T3 multiple comparisons test; 100 μl of control or PLA extract was used for 7 days.

195
196
197
198
199
200
201
202
203
204
205
206

Short- and long-term exposure to L-lactic acid alters bioenergetics and results in metabolic reprogramming


As previously reported for short-term hydrolytic degradation of PLA⁸, there was no reduction in mass of PLA after our 12 d extraction, but there were detectable changes in molecular weight (Supplementary Table 2). Using the standard D/L-lactic acid enzyme-based determination assays could not effectively measure levels in serum-containing medium. However, in milliQ water and relative to controls, we observed a 7.8- and 5.2-fold increase in L-lactic acid in amorphous and crystalline PLA extracts, respectively, although these increments were not significant (Supplementary Table 3; Supplementary Fig. 5a-b). Similarly, we observed a 2.7- and 2.8-fold increase in D-lactic acid in amorphous and crystalline PLA extracts, respectively (Supplementary Table 3). Therefore, we exposed BMDMs to various doses of L-lactic acid, ranging from 2.5- to 15-fold higher levels in comparison to untreated cells. In

207 addition, we measured corresponding pH levels: Untreated medium (pH = 8.01), 2.5 mM (pH = 7.47), 5 mM
208 (pH = 7.19), 10mM (pH = 6.84) and 15mM (pH = 6.65) L-lactic acid-containing DMEM medium.

Figure 5 | Treatment of primary bone marrow-derived macrophages (BMDMs) with L-lactic acid altered bioenergetic (ATP) levels and functional metabolism. a, Treatment with different doses of monomeric L-lactic acid resulted in changes in ATP levels. **b-d**, Following exposure to L-lactic acid extracellular acidification rate (ECAR, **b**), proton efflux rate (PER, **c**) and oxygen consumption rate (OCR, **d**) are increased. One-way ANOVA followed by Tukey's post-hoc test, mean (SD), n = 34 (Fig. 5a), n = 5 (Fig. 5b, c, d).

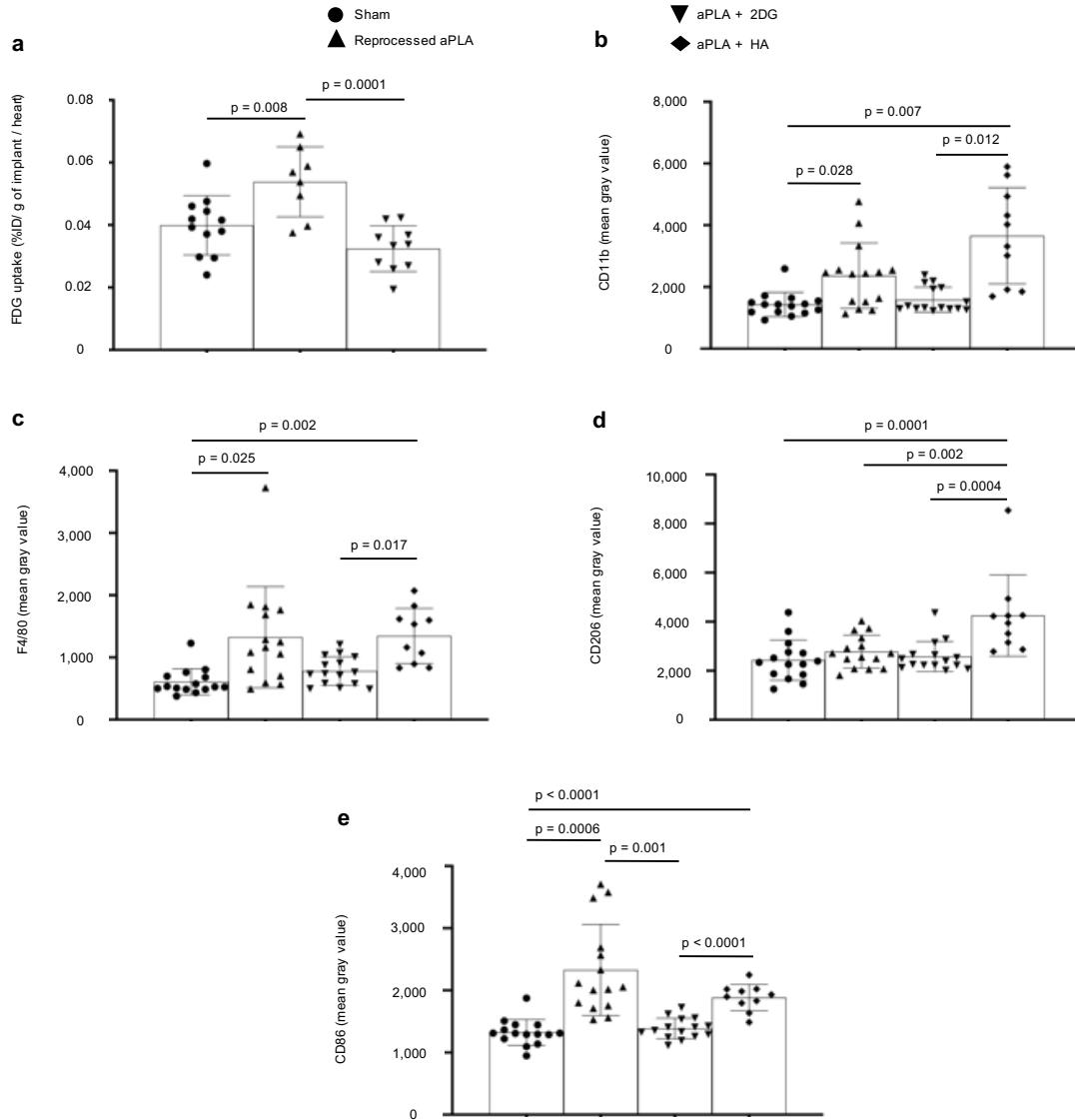
209
210 We observed that bioenergetic levels are altered in the short-term (day 3; Fig. 5a) for all doses of
211 L-lactic acid treatment, resulting in a 1.5 to 1.6-fold increase in ATP levels. After prolonged (day 7) exposure
212 to L-lactic acid and even when bioenergetic alterations were not apparent, glycolytic flux (ECAR; Fig. 5b),
213 monocarboxylate transporter function (PER; Fig. 5c) and oxidative phosphorylation (OCR; Fig. 5d) were
214 increased by 2.8-, 2.8- and 2.3-fold, mechanistically reproducing observations made with amorphous and
215 crystalline PLA extracts in our bioenergetic model. Moreover, these changes were not dependent on
216 alterations in cell number (Supplementary Fig. 5c). Of note, highly acidic groups (10-15 mM L-lactic acid)
217 did not result in reduction in viability of primary macrophages either at day 7 or 12, relative to controls
218 (Supplementary Fig. 5c).
219
220
221

Figure 6 | In macrophages exposed to PLA breakdown products, glycolytic inhibitors modulate elevated proinflammatory cytokine expression and stimulate or do not reduce anti-inflammatory cytokine levels. **a-d**, Following exposure to amorphous PLA (aPLA) or crystalline PLA (cPLA) extract, primary bone marrow-derived macrophages (BMDMs) express elevated levels of IL-6 (a), MCP-1 (b), TNF- α (c) and IL-1 β (d) in comparison to untreated BMDMs, and these elevated proinflammatory cytokine levels can be modulated by various small molecule inhibitors of glycolysis. **e**, Addition of glycolytic inhibitors to PLA does not reduce IL-4 expression. **f**, Expression of IL-10 is increased by inhibiting glycolysis using aminoxyacetic acid (a.a.) in amorphous PLA. Not significant (ns), *** p <0.001, *** p <0.0001, mean (SD), n = 3 in all except the cPLA group in TNF- α (Fig. 6c) where n=2-3, one-way ANOVA followed by Tukey's post-hoc test; 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO), 2-deoxyglucose (2DG); 100 μ l of aPLA or 150 μ l of cPLA extract with corresponding controls were used on day 7.

222 **Glycolytic inhibition modulates proinflammatory and stimulates anti-inflammatory cytokine expression**
 223

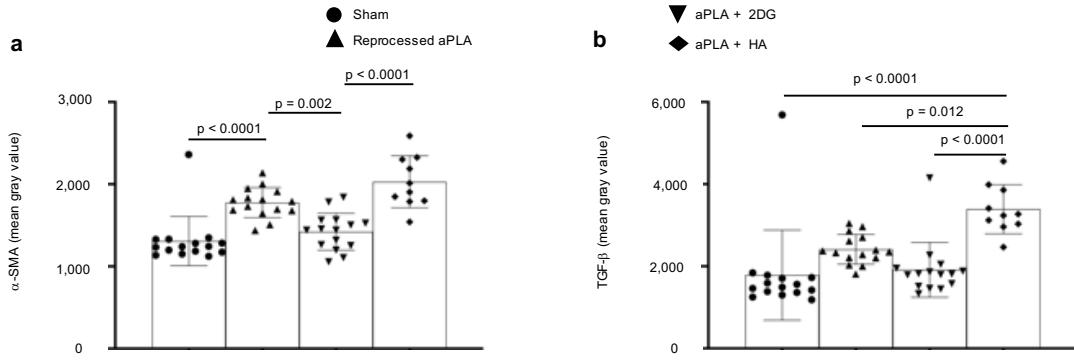
224 To determine whether glycolytic inhibition affects proinflammatory (IL-6, MCP-1, TNF- α , IL-1 β and
 225 IFN- λ) and anti-inflammatory (IL-4, IL-10, and 1L-13) protein expression, we used a magnetic bead-based
 226 chemokine and cytokine assay³⁹. We observed that prolonged exposure of primary macrophages to
 227 amorphous and crystalline PLA extracts resulted in 228- and 319-fold increases, respectively, in IL-6 protein
 228 expression (Fig. 6a) compared to untreated macrophages. We confirmed this observation by ELISA

229 (Supplementary Fig. 6a). Similarly, exposure of macrophages to lactic acid resulted in elevated IL-6 protein
230 expression by 2.3-fold (Supplementary Fig. 6a). Amorphous PLA extracts increased MCP-1 (Fig. 6b), TNF-
231 α (Fig. 6c) and IL-1 β (Fig. 6d) levels by 1.2-fold, 21-fold, and 567-fold, respectively. Likewise, crystalline
232 PLA extracts increased MCP-1 (Fig. 6b), TNF- α (Fig. 6c) and IL-1 β (Fig. 6d) levels by 4.7-fold, 27-fold, and
233 1,378-fold, respectively. Abnormally increased levels of IL-6, MCP-1, TNF- α and IL-1 β were modulated by
234 addition of 3PO, 2DG or a.a. (Fig. 6a-d). Increased MCP-1 levels in macrophages also occurred after
235 exposure to L-lactic acid (Supplementary Fig. 6b). Levels of IFN- γ and IL-13 were unchanged by PLA
236 extract (data not shown) but exposure to amorphous PLA extract decreased IL-4 protein levels by 3-fold
237 (Fig. 6e) relative to untreated macrophages. Remarkably, with the exception of 3PO, IL-10 expression was
238 either unchanged (crystalline PLA) or increased by 3.4-fold (amorphous PLA) upon addition of a.a. (Fig. 6f)
239 relative to macrophages exposed to PLA extract.
240


241 **Increased radiolabeled glucose uptake occurs in the PLA microenvironment and drives 242 inflammation, in-vivo**

243 Taken together, our in-vitro data suggest that metabolic changes drive inflammation arising from
244 PLA degradation. To test this hypothesis in-vivo, we incorporated 2DG into amorphous PLA (aPLA) by
245 melt-blending at 190 °C and compared to aPLA which had been subjected to similar melt-blending
246 conditions (called reprocessed aPLA). Following melt-blending, extruded (sterile) filaments (1.75 mm
247 diameter, 1 mm long) were subcutaneously implanted on the back (dorsum) of mice. Sham controls
248 underwent similar surgical exposures but were not implanted with any materials. After 6 weeks, mice were
249 injected with F-18 fluorodeoxyglucose (FDG) and euthanized; using FDG allows for evaluation of metabolic
250 reprogramming and inflammation^{40,41}. Thereafter, circular biopsies (12 mm in diameter) of full thickness
251 skin containing implants were assayed for radioactivity using a gamma counter. Compared to sham
252 controls, skin containing reprocessed aPLA implants had 1.35-fold increase in FDG uptake, which was
253 abolished in skin containing aPLA+2DG implants (Fig. 7a).

254 Next, we sought to determine the effect of glycolytic inhibition on recruitment and activation states
255 of macrophages and fibroblasts. To compare the effects of glycolytic inhibition to neutralization techniques,
256 we included a group where hydroxyapatite (HA) was incorporated in aPLA^{10,42}. Hematoxytin and eosin
257 staining revealed the presence of inflammatory infiltrates in the implant microenvironment (reprocessed
258 aPLA, aPLA+2DG, aPLA+HA) compared to sham controls, suggesting persistent inflammation
259 (Supplementary Fig. 7).


260 Chronic inflammation to PLA is principally driven by recruited macrophages^{12,23}. Therefore, we
261 stained for CD11b and F4/80, established macrophage markers. Compared to sham controls, aPLA
262 resulted in a 1.7- and 2.2-fold increase in CD11b and F4/80 intensities, respectively (Fig. 7b-c;
263 Supplementary Fig. 8). Unlike aPLA+2DG, aPLA+HA increased CD11b and F4/80 intensities by 2.6-fold
264 and 2.2-fold, respectively, when compared to sham controls (Fig. 7b-c). Of note, there was no significant
265 difference in CD11b and F4/80 intensities between aPLA and aPLA+2DG (Fig. 7b-c), suggesting similar
266 levels of macrophage recruitment. Furthermore, aPLA+2DG revealed 2.3-fold and 1.7-fold less CD11b and
267 F4/80 intensities, respectively, compared to aPLA+HA (Fig. 7b-c). To determine the activation states of
268 recruited macrophages, we stained for CD206 and CD86, anti-inflammatory and proinflammatory
269 macrophage markers, respectively⁴³. Relative to other groups, only aPLA+HA increased CD206 intensity
270 (Fig. 7d; Supplementary Fig. 8), consistent with the bioactivity of HA⁴⁴. We observed a 1.8-fold increase in
271 CD86 intensity with reprocessed aPLA compared to sham controls, consistent with the proinflammatory
272 effects of aPLA (Fig. 7e; Supplementary Fig. 8). Compared to reprocessed aPLA, aPLA+2DG and not
273 aPLA+HA decreased CD86 intensity (Fig. 7e). In fact, there was a 1.4-fold decrease in CD86 intensity in
274 aPLA+2DG compared to aPLA+HA (Fig. 7e).

275 Fibroblasts are a key cellular player of excessive fibrosis around PLA implants^{12,23}, and their
276 activation in myofibroblast phenotype is marked by α -SMA and TGF- β expression⁴⁵. We observed a 1.4-
277 fold increase in α -SMA intensity with reprocessed PLA compared to sham controls, which was decreased
278 in the aPLA+2DG, but not aPLA+HA group (Fig. 8a; supplementary Fig. Supplementary Fig. 9). With TGF-
279 β intensity, aPLA+HA was elevated relative to other groups (Fig. 8b; Supplementary Fig. 9). Compared to
280 aPLA+HA, aPLA+2DG revealed 1.4-fold and 1.8-fold decrease in α -SMA and TGF- β intensities,
281 respectively (Fig. 8b).

Figure 7 | Increased radiolabeled glucose uptake occurs in the polylactide (PLA) microenvironment and drives inflammation in-vivo. **a,** When normalized to heart values, percent injected dose per gram (% ID/ g) of biopsied tissues surrounding amorphous PLA (aPLA) implants show higher F-18 fluorodeoxyglucose (FDG) uptake compared to sham controls; increased FDG uptake is reduced by incorporation of 2-deoxyglucose (2DG). **b-c,** Compared to sham controls, mean fluorescence intensity of CD11b (**b**) or F4/80 (**c**) is increased following surgical implantation of aPLA or a combination of aPLA and hydroxyapatite (HA), but not a combination of aPLA and 2DG. **d,** Compared to other groups, CD206 mean fluorescence intensity is increased in aPLA + HA. **e,** Compared to sham controls, CD86 mean fluorescence intensity is increased following implantation of aPLA; elevated CD86 is decreased by incorporating 2DG but not HA. Mean (SD); Fig. 1a, sham (n = 12), aPLA (n = 8), aPLA + 2DG (n = 10); Fig 1b-e, sham (n = 15), aPLA (n = 15), aPLA + 2DG (n = 15), aPLA + HA (n = 10); one-way ANOVA followed by Tukey's post-hoc test or Brown-Forsythe and Welch ANOVA followed by Dunnett's T3 multiple comparison test; refer to methods section (In-vivo studies, tissue processing and analyses) for more information on n.

282
283

Figure 8 | Activation of fibroblasts in the polylactide (PLA) microenvironment is regulated by immunometabolism. a, Compared to sham controls, mean fluorescence intensity of alpha-smooth muscle actin (α -SMA) is increased following surgical implantation of amorphous PLA (aPLA) or a combination of aPLA and hydroxyapatite (HA), but not a combination of aPLA and 2-deoxyglucose (2DG). b, Compared to other groups, mean fluorescence intensity of transforming growth factor-beta (TGF- β) is increased in aPLA + HA. Mean (SD); sham (n = 15), aPLA (n = 15), aPLA + 2DG (n = 15), aPLA + HA (n = 10); one-way ANOVA followed by Tukey's post-hoc test; refer to methods section (In-vivo studies, tissue processing and analyses) for more information on n.

284

285

Discussion

286

287

288

289

290

291

We describe a bioenergetic model of immune cell activation to PLA degradation, revealing that altered bioenergetics and metabolic reprogramming underlie adverse responses, including persistent inflammation and excessive fibrosis, to PLA breakdown products. For decades, the hypothesis in regenerative medicine has been that acidity drives immune cell activation to PLA degradation¹⁰. However, this observation was founded on correlation and not causation^{11,21}. Consequently, methods based on neutralizing acidity have been inadequate in controlling adverse responses to PLA degradation^{7,16}.

292

Importantly, our in-vitro model extends the short time periods that have been previously studied⁴⁶.

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

By adapting our bioenergetic model for high throughput analysis, we observed delayed immune cell changes not apparent in the short-term. In patients, PLA slowly degrades into oligomers and monomers of lactic acid. Ultimately, due to bulk degradation, PLA breakdown exceeds immune cellular clearance, resulting in accumulation of oligomers and monomers of lactic acid²⁵. We illustrate that only after prolonged exposure to PLA degradation products do fibroblasts and macrophages become activated. Mechanistically, PLA degradation not only alters bioenergetic homeostasis in immune cells, it results in metabolic reprogramming. We identified PLA degradation products to include monomeric L-lactic acid and reproduced bioenergetic alterations and metabolic reprogramming using monomeric L-lactic acid. Although not shown, we also identified a spectrum of different oligomeric lactic acid in extracts by electrospray ionization-mass spectrometry as previously reported⁴⁷. Following prolonged exposure of macrophages to PLA degradation products, metabolic reprogramming is characterized by concomitantly elevated oxidative phosphorylation and glycolysis, resulting in increased IL-6, MCP-1, TNF- α and IL-1 β protein expression, potent proinflammatory cytokines. Increased glycolysis, a fundamental proinflammatory metabolic phenotype, is likely mediated by HIF-1 α ³⁶. Human fibroblasts in lactate-enriched medium stabilize HIF-1 α resulting in increased glycolysis⁴⁸ which underlies activation of fibroblasts in several profibrotic pathologies¹⁹. Similarly, increased oxidative phosphorylation is required for macrophages to function as antigen presenting cells as part of inflammation⁴⁹ or its resolution²⁰.

310

311

312

313

314

315

316

317

318

319

320

Inhibiting different steps in the glycolytic pathway produced similar effects, decreasing proinflammatory cytokine expression by modulating metabolic reprogramming and altered bioenergetics. Unlike bacterial LPS-mediated glycolytic reprogramming that is uniquely dependent on IL-1 β ³⁶, PLA degradation products additionally affect IL-6, MCP-1 and TNF- α . Of note, modulating proinflammatory cytokine expression using aminoxyacetic acid stimulated IL-10 protein expression, an anti-inflammatory cytokine³⁴. Collectively, these findings are important for at least four reasons. First, it explains the “Oppenheimer phenomenon”, where long-term PLA implantation results in neoplasia in some humans and up to 80% of rodents⁶ since IL-6 directly links persistent inflammation from PLA to cellular transformation⁵⁰. Second, stimulating IL-10 is critical to tissue repair by driving wound resolution and angiogenesis⁵¹. In fact, IL-10 is a key immunomodulatory cytokine secreted by mesenchymal stem cells⁵², and is crucial in macrophage-stem cell crosstalk^{53,54} for tissue engineering. Third, macrophages that have normal

321 metabolism are unaffected by the small molecule inhibitors studied. In fact, cytotoxicity is selective for
322 macrophages having altered metabolism, following exposure to PLA degradation products, making this
323 technique particularly desirable. Fourth, it provides a basis to study lactate signaling in tumor initiation, with
324 the potential to stop neoplastic initiation.

325 In cell culture medium used in our studies, serum and high bicarbonate salts buffered the pH of
326 PLA degradation products, excluding pH as a confounder of observed metabolic cellular changes.
327 Furthermore, using monomeric L-lactic acid at various concentrations that simulated neutralized and acidic
328 PLA degradation products, we similarly observed bioenergetic alterations, excluding pH as a confounder.
329 Lastly, using aminoxyacetic acid to modulate some adverse responses to PLA degradation products,
330 suggests that acidity is not solely the driver of immune cellular activation to PLA.

331 Our findings using sterile implants present a perspective different than what is observed with
332 bacterial endotoxin (LPS). Within 1h of exposure to very low endotoxin concentrations, significant metabolic
333 changes characterized by increased glycolysis and decreased oxidative phosphorylation occurs³⁵; with PLA
334 degradation products, we only observed changes after several days of exposure, with distinct metabolism.
335 Importantly, LPS decreases ATP levels^{35,55}; in contrast, PLA degradation products (including monomeric L-
336 lactic acid) increase ATP levels as shown in this study. Lastly, unlike PLA degradation products, LPS-
337 mediated glycolytic reprogramming is reliant on IL-1 β signaling³⁶.

338 Lactate is a signaling molecule in immunity⁵⁶ and cancer progression⁵⁷⁻⁵⁹. Its role when combined
339 with LPS is conflicting, with reports of proinflammatory and anti-inflammatory effects^{60,61}. However, a stand-
340 alone ability of lactate to activate immune cells is novel, as prior inflammatory and cancer models did not
341 simulate prolonged exposure times, a critical feature of the cancer and immune microenvironments.

342 Amorphous PLA which undergoes faster hydrolytic degradation than crystalline PLA results in
343 quicker onset of metabolic reprogramming. Nonetheless, crystalline PLA does eventually result in metabolic
344 remodeling and altered bioenergetics. Furthermore, our data implicate monocarboxylate transporters which
345 mediate the bi-directional flux of lactate across cell membranes^{33,60}.

346 Glucose is the first substrate in glycolysis. As such, radiolabeled glucose (FDG) uptake is often
347 used to measure glycolytic dependence, in-vivo, such as in some cancers or inflammatory disorders where
348 enhanced glycolysis is pivotal to disease progression⁶². We observed increased glycolytic dependence in
349 the PLA inflammatory microenvironment using sterile amorphous PLA, which was abrogated by 2DG, one
350 of the glycolytic inhibitors applied in our in-vitro studies. Unsurprisingly, after surgical resection of colorectal
351 and cervical tumors in human patients, chronic, sterile inflammation from PLA-based adhesion barriers
352 elevate FDG uptake, falsely mimicking cancer recurrence^{63,64}.

353 Surprisingly, 2DG did not significantly reduce macrophage recruitment as measured by expression
354 of CD11b or F4/80 in the PLA microenvironment. However, 2DG reduced macrophage activation into a
355 proinflammatory phenotype (CD86), likely by competing with radiolabeled glucose for binding to
356 hexokinase³⁶, thereby inhibiting the first step in glycolysis. Since hydroxyapatite (HA) is often used to
357 neutralize acidity from PLA degradation¹⁰, we compared effects of incorporating similar amounts (w/w) of
358 HA to 2DG toward clinical translation of techniques targeting metabolism. Compared to 2DG, we observed
359 increased pro-regenerative macrophage expression (CD206) with HA, which is consistent with the
360 bioactivity of ceramic biomaterials⁴⁴, opening the possibility of combinatorial strategies for regenerative
361 applications. Corroborating CD206 results, our in-vitro data showed that neither 2DG nor 3PO, as a
362 glycolytic inhibitor for PLA-based application, increases IL-4 or IL-10.

363 Compared to inhibiting glycolysis using 2DG, neutralizing acidity using HA increased macrophage
364 recruitment and proinflammatory polarization, suggesting that metabolism and not acidity, is at the center
365 of adverse immune responses to bulk PLA implants and PLA degradation products. Contrary to some
366 studies, an explanation for the inability of HA to reduce inflammation in our study could be the amount used.
367 Whereas the w/w concentration of HA present in our fabricated composites was 2 % for direct comparison
368 to 2DG, greater than 20 % HA concentrations are more often used^{65,66}. However, it is noteworthy that 2%
369 HA resulted in significantly increased CD206 expression, suggesting pharmacological efficacy, yet could
370 not reduce CD86 expression. Furthermore, unlike in soft tissue regeneration, enhanced mechanical
371 properties of implants having more concentration of or comprising of only HA is desirable for bone tissue
372 engineering^{65,66}.

373 Increased fibroblast activation, measured by α -SMA expression, in the PLA microenvironment was
374 reduced by inhibiting glycolysis using 2DG and not neutralizing acidity using HA. Compared to HA, 2DG
375 reduced both α -SMA and TGF- β expression, suggesting that underlying metabolism regulates fibroblast
376 activation in the PLA microenvironment. In agreement, metabolic reprogramming is known to play a key
377 role in profibrotic disorders, activating fibroblasts¹⁹.

378 Most, if not all, publications on PLA's biomedical application include a statement indicating that
379 PLA breakdown products are metabolized through the tricarboxylic acid cycle. However, not until this study
380 has it been demonstrated that bioenergetic changes occur in response to PLA. This key observation will
381 redirect the field of tissue engineering, by offering an opportunity to intervene in this response. It opens up
382 the possibilities to computationally identify relevant small molecules that could be clinically deployed,
383 embedded in PLA implants, to mitigate adverse responses after carefully tuning drug release profiles.
384 Moreover, use of PLA composites with ceramics could be optimized by combining the benefits of metabolic
385 reprogramming with bioactivity of ceramics for bone tissue engineering. Beyond its ability to inhibit uptake
386 of glycolytic substrates, related glutamine metabolic pathways, affected by aminoxyacetic acid could be
387 explored for driving pro-regenerative macrophage response⁶⁷.

388 Taken together, our findings suggest a model where PLA degradation products, including
389 monomers of L-lactic acid, mechanistically remodel metabolism in cells of the immune microenvironment.
390 This mechanism is specific and leads to increased proinflammatory cytokine and marker expression which
391 can be modulated while stimulating anti-inflammatory cytokines. Our approach will enhance the
392 biocompatibility and safety of biomaterials, including PLA-based implants for soft- and hard-tissue
393 regeneration, significantly advancing tissue engineering.
394

395 Methods

396 **Polylactide (PLA) materials and extraction.** Highly crystalline PLA 3100HP and amorphous PLA 4060D
397 (both from NatureWorks LLC) were used after their physicochemical and thermal properties were
398 authenticated (Supplementary Table 1). PLA was sterilized by exposure to ultraviolet radiation for 30
399 minutes²⁵. Afterwards, breakdown products (extracts)²¹ of PLA were obtained by suspending 4 g of PLA
400 pellets in 25 ml of complete medium. Complete medium comprised of DMEM medium, 10% heat-inactivated
401 Fetal Bovine Serum and 100 U/mL penicillin-streptomycin (all from ThermoFisher Scientific). PLA was
402 extracted for 12 days in an orbital shaker at 250 rpm and 37 °C, after which extracts were decanted and
403 extract's pH measured. Either 100 or 150 μ l of extract (specified in each figure legend) was used per well
404 of a flat-bottom 96-well plate; each volume was made up to 200 μ l, as final volume, using freshly made
405 complete medium.
406

407 **Bioenergetic assessment.** Bioluminescence was measured using the IVIS Spectrum in vivo imaging
408 system (PerkinElmer) after adding 150 μ g/mL of D-luciferin (PerkinElmer). Living Image (Version 4.5.2,
409 PerkinElmer) was used for acquiring bioluminescence on the IVIS Spectrum. Standard ATP/ADP kits
410 (Sigma-Aldrich) containing D-luciferin, luciferase and cell lysis buffer were used to according to
411 manufacturer's instructions. Luminescence at integration time of 1000 ms was obtained using the
412 SpectraMax M3 Spectrophotometer (Molecular Devices) using SoftMax Pro (Version 7.0.2, Molecular
413 Devices).
414

415 **pH measurements.** The pH of extracts was assessed using an Orion Star A111 Benchtop pH Meter
416 (ThermoFisher Scientific) under room temperature conditions (20 °C).
417

418 **Microscopy.** Z-stack microscopy was accomplished by using the DeltaVision deconvolution imaging
419 system (GE Healthcare) and softWoRx software (Version 7.2.1, GE Healthcare) at excitation and emission
420 wavelengths of 525 and 558 nm, respectively for FITC. Section thickness of 0.2 μ m for 64 to 128 sections
421 were obtained at 40x and 100x magnification while imaging. Chambered Coverglass (Nunc Lab-Tek II) was
422 used to seed 20,000 BGL cells (see cells below), keeping similar ratios as in a 96-well plate for volume of
423 PLA extracts to volume of fresh medium.
424

425 **Glucose measurement.** Glucose levels in complete medium was evaluated by a hand-held GM-100
426 glucose meter (BioReactor Sciences) after validation (Supplementary Fig. 1b) according to manufacturer's
427 instruction.
428

429 **Cells.** Mouse embryonic fibroblast cell line (NIH 3T3 cell line; ATCC) and murine primary bone-marrow
430 derived macrophages (BMDMs) were used. In each experiment, either 5,000 fibroblasts or 50,000 BMDMs
431 were initially seeded. BMDMs were sourced from male and female C57BL/6J mice (Jackson Laboratories)
432 of 3-4 months^{30,35}. NIH 3T3 cells were stably transfected with a Sleeping Beauty transposon plasmid
433 (pLuBIG) having a bidirectional promoter driving an improved firefly luciferase gene (fLuc) and a fusion
434 gene encoding a Blasticidin-resistance marker (BsdR) linked to eGFP (BGL)²⁶; enabling us to
435 simultaneously monitor morphological and bioenergetic changes in live cells^{68,69}. All cells were cultured in
436 a total of 200 μ l complete medium with volumes of extracts specified in figure legends.
437

438 **Materials.** 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (MilliporeSigma), 2-deoxyglucose
439 (MilliporeSigma) and aminoxyacetic acid (Sigma-Aldrich) were used for glycolytic inhibition and L-lactic
440 acid (Sigma-Aldrich) was used at various concentrations to reproduce the effects of PLA degradation
441 products. Each of these materials were made in complete medium before adding to wells of a 96-well plate.
442

443 **Cell viability.** Cell viability was assessed using the crystal violet staining assay²⁹, at room temperature, as
444 an end-point measure of total biomass generated over the course of the culture period. Briefly, out of 200
445 μ l of medium per well, 150 μ l is discarded. To each well, 150 μ l of 99.9 % methanol (MilliporeSigma) is
446 added for 15 mins to kill and fix the cells, then discarded. Afterwards, 100 μ l of 0.5 % crystal violet (25 %
447 methanol) is added for 20 mins, then the wells are emptied. Each well is washed twice with 200 μ l of
448 phosphate buffered saline for 2 mins. Absorbance (optical density) was acquired at 570 nm using the the
449 SpectraMax M3 Spectrophotometer (Molecular Devices) and SoftMax Pro software (Version 7.0.2,
450 Molecular Devices).
451

452 **Functional metabolism.** Basal measurements of oxygen consumption rate (OCR), extracellular
453 acidification rate (ECAR) and lactate-linked proton efflux rate (PER) were obtained in real-time using the
454 Seahorse XFe-96 Extracellular Flux Analyzer (Agilent Technologies)³⁴⁻³⁶. Prior to running the assay, cell
455 culture medium was washed with and replaced by the Seahorse XF DMEM medium (pH 7.4) supplemented
456 with 25 mM D-glucose and 4 mM Glutamine. The Seahorse plates were equilibrated in a non-CO₂ incubator
457 for an hour prior to the assay. The Seahorse ATP rate and cell energy phenotype assays were run according
458 to manufacturer's instruction and all reagents for the Seahorse assays were sourced from Agilent
459 Technologies. Wave software (Version 2.6.1) was used to export Seahorse data directly as means \pm
460 standard deviation (SD).
461

462 **Chemokine and cytokine measurements.** Cytokine and chemokine levels were measured using a
463 MILLIPLEX MAP mouse magnetic bead multiplex kit (MilliporeSigma)³⁹ to assess for IL-6, MCP-1, TNF- α ,
464 IL-1 β , IL-4, IL-10, IFN- λ and 1L-13 protein expression in supernatants. Data was acquired using Luminex
465 200 (Luminex Corporation) by the xPONENT software (Version 3.1, Luminex Corporation). Using the
466 glycolytic inhibitor, 3PO, expectedly decreased cytokine values to < 3.2 pg/ mL in some experiments. For
467 statistical analyses, those values were expressed as 3.1 pg/ mL. Values exceeding the dynamic range of
468 the assay, in accordance with manufacturer's instruction, were excluded. Additionally, IL-6 ELISA kits
469 (RayBiotech) for supernatants were used according to manufacturer's instructions.
470

471 **D/L-lactic acid determination assays.** Measurements of L- and D-lactic acid were using standard D- and
472 L-lactate assay kits (Sigma-Aldrich) according to manufacturer's instruction after optimization
473 (Supplementary Fig. 5a-b). Negative absorbance values which were outside the dynamic range for the
474 assay were excluded during analysis.
475

476 **Optical rotation.** Polarimetry was used to characterize the L-content and optical purity of the PLA samples
477 with a P-2000 polarimeter (Jasco) by the Spectra Manager software (Version 2.13.00, Jasco). The optical

478 rotation, $[\alpha]_{25}$, was measured and averaged for three samples of each polymer in chloroform (Omnisolv), at
479 a concentration of 1 g/ mL. Conditions were set at 25 °C and 589 nm wavelength. Sucrose was used as a
480 standard reference material, and its specific optical rotation was reported as approximately 67 °.
481

482 **Gel permeation chromatography.** Gel permeation chromatography (GPC) was conducted to characterize
483 the polymer molecular weights using a 600 controller (Waters) equipped with Optilab T-rEX refractive index
484 (RI) and TREOS II multi-angle light scattering (MALS) detectors (Wyatt Technology Corporation), and a
485 PLgel 5 μ m MIXED-C column (Agilent Technologies) with chloroform eluent (1 mL/min). ASTRA software
486 (Version 7.3.2.21, Wyatt Technology Corporation) was used. Polystyrene standards (Alfa Aesar) with M_n
487 ranging from 35,000 to 900,000 Da were used for calibration.
488

489 **Differential scanning calorimetry.** Differential scanning calorimetry (DSC) was conducted with a DSC
490 Q20 (TA Instruments) to analyse the melting temperature (T_m), glass transition temperature (T_g), and
491 percent crystallinity of the PLA grades. Thermal Advantage software (Version 5.5.23, TA Instruments) was
492 used. Temperature was first equilibrated to 0 °C, then ramped up to 200 °C at a heating rate of 10 °C/ min;
493 temperature was then held isothermally for 5 minutes. Afterwards, the sample was cooled back to 0 °C at
494 a rate of 10 °C/min, then held isothermally for 2 minutes. Finally, the material was heated back to 200 °C
495 at 10 °C/ min.
496

497 **In-vivo studies, tissue processing and analyses.** Amorphous PLA was compounded with 2DG at 190
498 °C for 3 mins in a DSM 15 cc mini-extruder (DSM Xplore) and pelletizer (Leistritz Extrusion Technology).
499 Our in-vitro studies indicate 1 mM 2DG to be an effective concentration. Accordingly, we estimated that 189
500 mg of 2DG in 10 g of amorphous PLA will approximate effective concentrations after accounting for potential
501 thermal degradation of 2DG, converting mM to w/ w values⁷⁰. We compounded comparable amounts (200
502 mg) of hydroxyapatite (HA; 2.5 μ m² particle sizes⁴²; Sigma-Aldrich) in 10 g of amorphous PLA under the
503 same melt-blending thermal conditions. To exclude the effect of melt-blending as a confounder in our
504 studies, amorphous PLA controls were processed under the same thermal conditions to make
505 “reprocessed” amorphous PLA. Pellets from melt-blending were made into 1.75 mm diameter filaments
506 using an extruder (Filabot EX2) at 170 °C with air set at 93. For surgical implantation, amorphous PLA
507 filaments were cut into 1 mm lengths; four biomaterials were subcutaneously implanted on the dorsum
508 (back) of each mouse, with two cranially (2.5 cm apart) and two caudally (2.5 cm apart)¹².
509

510 Two-month old female C57BL/6J mice (n = 3 mice per group) with an average weight of 19 g were used
511 according to procedures approved by the Institutional Animal Care and Use Committee at Michigan State
512 University (PROTO202100327). Mice were anesthetized using isoflurane (2-3 %). The back of each mouse
513 was shaved and alternate iodine and alcohol swabs were used as skin disinfectants. Aseptic surgery
514 consisted of incisions through the skin into the subcutis, where biomaterials were inserted into a pouch
515 made with forceps. Afterwards, surgical glue (3M Vetbond) was used to appose the skin. Each mouse
516 received intraperitoneal or subcutaneous pre- and post-operative meloxicam (5 mg/ kg) injections as well
517 as postoperative saline. Sham controls underwent the same procedure without biomaterial implantation.
518 After 6 weeks, the dorsum of mice was shaved to visibly observe sites of surgical implantation. Thereafter,
519 mice were intraperitoneally injected with 4.82 MBq F-18 fluorodeoxyglucose (Cardinal Health) in 200 μ L. At
520 65 mins post-dose, mice were euthanized and blood drawn from their hearts. Circular biopsies (12 mm
521 diameter) of full skin thickness, with visible implants in the center, were recovered. Similar sized biopsies
522 were collected from mice in the sham group in the region where surgical incision was made. Biomaterial
523 migration from subcutaneous sites only allowed for the recovery of most and not all implants. As such, for
524 obtaining data on the gamma counter (Fig. 7a), there were 12 skin biopsies from 3 mice in the sham group,
525 8 skin biopsies from 3 mice (amorphous PLA group) and 10 skin biopsies from 3 mice (amorphous + 2DG
526 group). Skin biopsies, blood sample and heart organs were weighed, with only skin samples fixed in 4%
527 paraformaldehyde (PFA). Activity in all samples was assessed via gamma counter (Wizard 2, Perkin Elmer)
528 once decayed to a linear range. All injected doses and gamma counter measurements were decay-
529 corrected to the same timepoint to calculate the percent of injected dose taken up per gram of assessed
530 tissue (% ID / g; Fig. 7a).

531
532 For tissue staining, one skin biopsy per mouse was passed through increasing concentration of 10 %, 20
533 % and 30 % sucrose, daily. Using 99.9% methanol (Sigma-Aldrich) on dry ice, tissues were embedded in
534 optimal cutting temperature (O.C.T.) compound (Tissue-Tek) by snap freezing. After equilibration at -20 °C,
535 multiple successive 8 μ m sections were obtained using a microtome-cryostat. Sections were routinely
536 stained using hematoxylin and eosin. Two different tissue sections were immunostained using conjugated
537 antibodies as follows: 1) F4/80-FITC (1:100; BioLegend; 123107), CD11b-PE (1:100; BioLegend; 101207),
538 CD206-BV421 (1:200; BioLegend; 141717) and CD86-Alexa Fluor 647 (1:100; BioLegend; 105019) using
539 ordinary mounting medium; 2) alpha-SMA-eFluor660 (1:150; ThermoFisher Scientific; 50-9760-82), TGF-
540 beta-PE (1:100; ThermoFisher Scientific; 12-9821-82) using DAPI mounting medium. Sections for TGF-
541 beta were permeabilized using 0.1% Triton X in 1x PBS (PBST) for 8 mins then washed off with 1x PBS
542 generously. Afterwards, blocking buffer (0.5 % bovine serum albumin in 1x PBS) was used to cover slides
543 for 30 mins. Slides were then incubated in antibodies at 4 °C overnight. Subsequently, slides with tissue
544 sections were washed in 1x PBS, and mounting medium applied.
545

546 Immunostained sections on slides were imaged using a Leica DMi8 Thunder microscope fitted with a
547 DFC9000 GTC sCMOS camera and LAS-X software (Leica, version 3.7.4). Imaging settings at 20x
548 magnification and 100 % intensity were: 1) F4/80-FITC excitation using the 475 laser (filter 535/ 70; 500
549 ms); CD11b-PE excitation using the 555 laser (no filter; 500 ms); CD206-BV421 excitation using 395 laser
550 (no filter; 150 ms); CD86-Alexa Fluor 647 excitation using the 635 laser (no filter; 500 ms). 2) alpha-SMA-
551 eFluor660 excitation using the 635 laser (no filter; 500 ms), TGF-beta-PE excitation using the 555 laser (no
552 filter; 500 ms) and DAPI excitation using the 395 laser (535 filter; 500 ms). On the other hand, sections
553 stained with hematoxylin and eosin were imaged at 40x using the Nikon Eclipse Ci microscope fitted with a
554 CoolSNAP DYNO (Photometrics) and NIS elements BR 5.21.02 software (Nikon Instruments Inc.).
555 Microscope images were prepared and analyzed using ImageJ (version 1.53k). For analyzing
556 immunostained sections, 5 randomly selected rectangular areas of interest (1644.708 μ m²), encompassing
557 cells adjacent to implants, were obtained as mean gray values⁷¹ a tissue section. In the sham group,
558 biopsies were taken from incision sites and areas without cells were also analyzed. Where derived from n
559 = 2 or n = 3 mice, 10 or 15 data points, respectively are graphically represented to fully reveal inherent
560 variance across samples (Fig. 7b-e; Fig. 8a-b); only the aPLA + HA group had sections derived from n = 2
561 mice after one sample was damaged during cryo-sectioning and excluded from analyses. Representative
562 images (16-bit; 0 to 65,535) were adjusted to enhance contrast for direct comparison using ImageJ as
563 follows: CD86 (800 – 11,000), CD206 (2,000 – 5,000), F4/80 (500 – 4,000), CD11b (800 – 11,000), SMA
564 (1,300 – 5,000), DAPI (6,000 – 31, 000), TGF (1,900 – 13,000).
565

566 **Statistics and reproducibility.** Statistical software (GraphPad Prism) was used to analyse data presented
567 as mean with standard deviation (SD). Significance level was set at p < 0.05, and details of statistical tests
568 and sample sizes, which are biological replicates, are provided in figure legends. Exported data (mean, SD)
569 from Wave in Seahorse experiments had the underlying assumption of normality and similar variance, and
570 thus were tested using corresponding parametric tests as indicated in figure legends.
571

572 **Data availability.** The data supporting the findings of this study are available within the paper and its
573 Supplementary Information.
574

575 **References**

- 576 1 Farah, S., Anderson, D. G. & Langer, R. Physical and mechanical properties of PLA, and
577 their functions in widespread applications - A comprehensive review. *Adv Drug Deliv Rev*
578 **107**, 367-392, doi:10.1016/j.addr.2016.06.012 (2016).
- 579 2 Givissis, P. K., Stavridis, S. I., Papagelopoulos, P. J., Antonarakos, P. D. & Christodoulou, A.
580 G. Delayed foreign-body reaction to absorbable implants in metacarpal fracture
581 treatment. *Clinical Orthopaedics and Related Research* **468**, 3377-3383 (2010).

582 3 Laine, P., Kontio, R., Lindqvist, C. & Suuronen, R. Are there any complications with
583 bioabsorbable fixation devices?: a 10 year review in orthognathic surgery. *International*
584 *journal of oral and maxillofacial surgery* **33**, 240-244 (2004).

585 4 Chalidis, B., Kitridis, D., Savvidis, P., Papalois, A. & Givissis, P. Does the Inion OTPSTM
586 absorbable plating system induce higher foreign-body reaction than titanium implants?
587 An experimental randomized comparative study in rabbits. *Biomedical Materials* **15**,
588 065011 (2020).

589 5 Poh, P. S. *et al.* Polylactides in additive biomanufacturing. *Advanced Drug Delivery*
590 *Reviews* **107**, 228-246 (2016).

591 6 Ramot, Y., Haim-Zada, M., Domb, A. J. & Nyska, A. Biocompatibility and safety of PLA and
592 its copolymers. *Adv Drug Deliv Rev* **107**, 153-162, doi:10.1016/j.addr.2016.03.012 (2016).

593 7 Mosier-LaClair, S., Pike, H. & Pomeroy, G. Intraosseous bioabsorbable poly-L-lactic acid
594 screw presenting as a late foreign-body reaction: a case report. *Foot & ankle international*
595 **22**, 247-251 (2001).

596 8 Athanasiou, K. A., Agrawal, C. M., Barber, F. A. & Burkhart, S. S. Orthopaedic applications
597 for PLA-PGA biodegradable polymers. *Arthroscopy* **14**, 726-737, doi:10.1016/s0749-
598 8063(98)70099-4 (1998).

599 9 Waris, E. *et al.* Long-term bone tissue reaction to polyethylene oxide/polybutylene
600 terephthalate copolymer (Polyactive®) in metacarpophalangeal joint reconstruction.
601 *Biomaterials* **29**, 2509-2515 (2008).

602 10 Agrawal, C. M. & Athanasiou, K. A. Technique to control pH in vicinity of biodegrading
603 PLA-PGA implants. *J Biomed Mater Res* **38**, 105-114, doi:10.1002/(sici)1097-
604 4636(199722)38:2<105::aid-jbm4>3.0.co;2-u (1997).

605 11 Taylor, M. S., Daniels, A. U., Andriano, K. P. & Heller, J. Six bioabsorbable polymers: in vitro
606 acute toxicity of accumulated degradation products. *J Appl Biomater* **5**, 151-157,
607 doi:10.1002/jab.770050208 (1994).

608 12 Deng, M. *et al.* Dipeptide-based Polyphosphazene and Polyester Blends for Bone Tissue
609 Engineering. *Biomaterials* **31**, 4898-4908, doi:10.1016/j.biomaterials.2010.02.058 (2010).

610 13 Pajares-Chamorro, N. *et al.* Silver-doped bioactive glass particles for in vivo bone tissue
611 regeneration and enhanced methicillin-resistant *Staphylococcus aureus* (MRSA)
612 inhibition. *Materials Science and Engineering: C* **120**, 111693 (2021).

613 14 Lih, E. *et al.* A Bioinspired Scaffold with Anti-Inflammatory Magnesium Hydroxide and
614 Decellularized Extracellular Matrix for Renal Tissue Regeneration. *ACS Cent Sci* **5**, 458-467,
615 doi:10.1021/acscentsci.8b00812 (2019).

616 15 Xu, T. O., Kim, H. S., Stahl, T. & Nukavarapu, S. P. Self-neutralizing PLGA/magnesium
617 composites as novel biomaterials for tissue engineering. *Biomed Mater* **13**, 035013,
618 doi:10.1088/1748-605X/aaaa29 (2018).

619 16 Kamata, M., Sakamoto, Y. & Kishi, K. Foreign-body reaction to bioabsorbable plate and
620 screw in craniofacial surgery. *Journal of Craniofacial Surgery* **30**, e34-e36 (2019).

621 17 Narayanan, G., Vernekar, V. N., Kuyinu, E. L. & Laurencin, C. T. Poly (lactic acid)-based
622 biomaterials for orthopaedic regenerative engineering. *Advanced drug delivery reviews*
623 **107**, 247-276 (2016).

624 18 Gonzalez-Lomas, G., Cassilly, R. T., Remotti, F. & Levine, W. N. Is the etiology of pretibial
625 cyst formation after absorbable interference screw use related to a foreign body
626 reaction? *Clinical Orthopaedics and Related Research* **469**, 1082-1088 (2011).

627 19 Xie, N. *et al.* Glycolytic reprogramming in myofibroblast differentiation and lung fibrosis.
628 *American journal of respiratory and critical care medicine* **192**, 1462-1474 (2015).

629 20 O'Neill, L. A. & Pearce, E. J. in *J Exp Med* Vol. 213 15-23 (2016).

630 21 Ignatius, A. A. & Claes, L. E. In vitro biocompatibility of bioresorbable polymers: poly(L,
631 DL-lactide) and poly(L-lactide-co-glycolide). *Biomaterials* **17**, 831-839, doi:10.1016/0142-
632 9612(96)81421-9 (1996).

633 22 Yang, Y. *et al.* In vitro degradation of porous poly (L-lactide-co-glycolide)/ β -tricalcium
634 phosphate (PLGA/ β -TCP) scaffolds under dynamic and static conditions. *Polymer
635 Degradation and Stability* **93**, 1838-1845 (2008).

636 23 Bostman, O. M. & Pihlajamaki, H. K. Adverse tissue reactions to bioabsorbable fixation
637 devices. *Clin Orthop Relat Res*, 216-227 (2000).

638 24 Choueka, J. *et al.* Canine bone response to tyrosine-derived polycarbonates and poly(L-
639 lactic acid). *J Biomed Mater Res* **31**, 35-41, doi:10.1002/(sici)1097-
640 4636(199605)31:1<35::aid-jbm5>3.0.co;2-r (1996).

641 25 Athanasiou, K. A., Niederauer, G. G. & Agrawal, C. M. Sterilization, toxicity,
642 biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers.
643 *Biomaterials* **17**, 93-102, doi:10.1016/0142-9612(96)85754-1 (1996).

644 26 Kanada, M. *et al.* Differential fates of biomolecules delivered to target cells via
645 extracellular vesicles. *Proceedings of the National Academy of Sciences* **112**, E1433-E1442
646 (2015).

647 27 Frottin, F. *et al.* The nucleolus functions as a phase-separated protein quality control
648 compartment. *Science* **365**, 342-347 (2019).

649 28 Hui, S. *et al.* Glucose feeds the TCA cycle via circulating lactate. *Nature* **551**, 115-118
650 (2017).

651 29 Feoktistova, M., Geserick, P. & Leverkus, M. Crystal violet assay for determining viability
652 of cultured cells. *Cold Spring Harbor Protocols* **2016**, pdb. prot087379 (2016).

653 30 Gonçalves, R. & Mosser, D. M. The isolation and characterization of murine macrophages.
654 *Current protocols in immunology* **111**, 14.11. 11-14.11. 16 (2015).

655 31 Infantino, V., Iacobazzi, V., Palmieri, F. & Menga, A. ATP-citrate lyase is essential for
656 macrophage inflammatory response. *Biochemical and biophysical research
657 communications* **440**, 105-111 (2013).

658 32 Jijon, H. B. *et al.* Inhibition of poly (ADP-ribose) polymerase attenuates inflammation in a
659 model of chronic colitis. *American Journal of Physiology-Gastrointestinal and Liver
660 Physiology* **279**, G641-G651 (2000).

661 33 Tan, Z. *et al.* in *The Journal of biological chemistry* Vol. 290 46-55 (2015).

662 34 Ip, W. E., Hoshi, N., Shouval, D. S., Snapper, S. & Medzhitov, R. Anti-inflammatory effect
663 of IL-10 mediated by metabolic reprogramming of macrophages. *Science* **356**, 513-519
664 (2017).

665 35 Mills, E. L. *et al.* Succinate Dehydrogenase Supports Metabolic Repurposing of
666 Mitochondria to Drive Inflammatory Macrophages. *Cell* **167**, 457-470.e413,
667 doi:10.1016/j.cell.2016.08.064 (2016).

668 36 Tannahill, G. *et al.* Succinate is a danger signal that induces IL-1 β via HIF-1 α . *Nature* **496**,
669 238-242, doi:10.1038/nature11986 (2013).

670 37 Clem, B. *et al.* Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses
671 glycolytic flux and tumor growth. *Molecular cancer therapeutics* **7**, 110-120 (2008).

672 38 Kauppinen, R. A., Sihra, T. S. & Nicholls, D. G. Aminooxyacetic acid inhibits the malate-
673 aspartate shuttle in isolated nerve terminals and prevents the mitochondria from utilizing
674 glycolytic substrates. *Biochim Biophys Acta* **930**, 173-178, doi:10.1016/0167-
675 4889(87)90029-2 (1987).

676 39 Sprague, L. *et al.* Dendritic cells: in vitro culture in two-and three-dimensional collagen
677 systems and expression of collagen receptors in tumors and atherosclerotic
678 microenvironments. *Experimental cell research* **323**, 7-27 (2014).

679 40 Philpott, G. W. *et al.* RadioimmunoPET: detection of colorectal carcinoma with positron-
680 emitting copper-64-labeled monoclonal antibody. *Journal of Nuclear Medicine* **36**, 1818-
681 1824 (1995).

682 41 Wen, S.-S. *et al.* Metabolic reprogramming and its clinical application in thyroid cancer.
683 *Oncology Letters* **18**, 1579-1584 (2019).

684 42 Pérez, E. Mechanical performance of in vitro degraded polylactic acid/hydroxyapatite
685 composites. *Journal of Materials Science* **56**, 19915-19935 (2021).

686 43 Graney, P. L., Lurier, E. B. & Spiller, K. L. Biomaterials and bioactive factor delivery systems
687 for the control of macrophage activation in regenerative medicine. *ACS Biomaterials
688 Science & Engineering* **4**, 1137-1148 (2017).

689 44 Xue, H. *et al.* Enhanced tissue regeneration through immunomodulation of angiogenesis
690 and osteogenesis with a multifaceted nanohybrid modified bioactive scaffold. *Bioactive
691 Materials* (2022).

692 45 Veiseh, O. *et al.* Size- and shape-dependent foreign body immune response to materials
693 implanted in rodents and non-human primates. *Nat Mater* **14**, 643-651,
694 doi:10.1038/nmat4290 (2015).

695 46 Pariente, J.-L., Kim, B.-S. & Atala, A. In vitro biocompatibility evaluation of naturally
696 derived and synthetic biomaterials using normal human bladder smooth muscle cells. *The
697 Journal of urology* **167**, 1867-1871 (2002).

698 47 Andersson, S. R., Hakkarainen, M., Inkinen, S., Södergård, A. & Albertsson, A.-C.
699 Polylactide stereocomplexation leads to higher hydrolytic stability but more acidic
700 hydrolysis product pattern. *Biomacromolecules* **11**, 1067-1073 (2010).

701 48 Kozlov, A. M., Lone, A., Betts, D. H. & Cumming, R. C. Lactate preconditioning promotes a
702 HIF-1 α -mediated metabolic shift from OXPHOS to glycolysis in normal human diploid
703 fibroblasts. *Scientific reports* **10**, 1-16 (2020).

704 49 Olive, A. J., Kiritsy, M. & Sassetti, C. (Am Assoc Immnol, 2021).

705 50 Iliopoulos, D., Hirsch, H. A. & Struhl, K. An epigenetic switch involving NF- κ B, Lin28, Let-7
706 MicroRNA, and IL6 links inflammation to cell transformation. *Cell* **139**, 693-706 (2009).

707 51 Eming, S. A., Wynn, T. A. & Martin, P. Inflammation and metabolism in tissue repair and
708 regeneration. *Science* **356**, 1026-1030 (2017).

709 52 Jiang, W. & Xu, J. Immune modulation by mesenchymal stem cells. *Cell proliferation* **53**,
710 e12712 (2020).

711 53 Pajarinen, J. *et al.* Mesenchymal stem cell-macrophage crosstalk and bone healing. *Biomaterials* **196**, 80-89 (2019).

712 54 Swartzlander, M. D. *et al.* Immunomodulation by mesenchymal stem cells combats the foreign body response to cell-laden synthetic hydrogels. *Biomaterials* **41**, 79-88 (2015).

713 55 Van den Bossche, J. *et al.* Mitochondrial dysfunction prevents repolarization of inflammatory macrophages. *Cell reports* **17**, 684-696 (2016).

714 56 Manoharan, I., Prasad, P. D., Thangaraju, M. & Manicassamy, S. Lactate-Dependent Regulation of Immune Responses by Dendritic Cells and Macrophages. *Frontiers in Immunology*, 3062 (2021).

715 57 Zhang, A. *et al.* Lactate-induced M2 polarization of tumor-associated macrophages promotes the invasion of pituitary adenoma by secreting CCL17. *Theranostics* **11**, 3839 (2021).

716 58 Lin, S. *et al.* Lactate-activated macrophages induced aerobic glycolysis and epithelial-mesenchymal transition in breast cancer by regulation of CCL5-CCR5 axis: a positive metabolic feedback loop. *Oncotarget* **8**, 110426 (2017).

717 59 Romero-Garcia, S., Moreno-Altamirano, M. M. B., Prado-Garcia, H. & Sánchez-García, F. J. Lactate contribution to the tumor microenvironment: mechanisms, effects on immune cells and therapeutic relevance. *Frontiers in immunology* **7**, 52 (2016).

718 60 Samuvel, D. J., Sundararaj, K. P., Nareika, A., Lopes-Virella, M. F. & Huang, Y. Lactate boosts TLR4 signaling and NF-κB pathway-mediated gene transcription in macrophages via monocarboxylate transporters and MD-2 up-regulation. *The Journal of Immunology* **182**, 2476-2484 (2009).

719 61 Yang, K. *et al.* Lactate Suppresses Macrophage Pro-Inflammatory Response to LPS Stimulation by Inhibition of YAP and NF-κB Activation via GPR81-Mediated Signaling. *Frontiers in Immunology* **11**, 2610 (2020).

720 62 Tang, C.-Y. & Mauro, C. Similarities in the metabolic reprogramming of immune system and endothelium. *Frontiers in immunology* **8**, 837 (2017).

721 63 Hsieh, T.-C. & Hsu, C.-W. Foreign body reaction mimicking local recurrence from polyactide adhesion barrier film after laparoscopic colorectal cancer surgery: A retrospective cohort study. *Medicine* **101** (2022).

722 64 Chong, G. O., Lee, Y. H., Hong, D. G., Cho, Y. L. & Lee, Y. S. Unabsorbed polylactide adhesion barrier mimicking recurrence of gynecologic malignant diseases with increased 18F-FDG uptake on PET/CT. *Archives of Gynecology and Obstetrics* **292**, 191-195 (2015).

723 65 Bernardo, M. P. *et al.* PLA/Hydroxyapatite scaffolds exhibit in vitro immunological inertness and promote robust osteogenic differentiation of human mesenchymal stem cells without osteogenic stimuli. *Scientific reports* **12**, 1-15 (2022).

724 66 Kim, S.-S., Park, M. S., Jeon, O., Choi, C. Y. & Kim, B.-S. Poly (lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. *Biomaterials* **27**, 1399-1409 (2006).

725 67 Jha, A. K. *et al.* Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. *Immunity* **42**, 419-430, doi:10.1016/j.immuni.2015.02.005 (2015).

753 68 Kanada, M. *et al.* Microvesicle-mediated delivery of minicircle DNA results in effective
754 gene-directed enzyme prodrug cancer therapy. *Molecular cancer therapeutics* **18**, 2331-
755 2342 (2019).

756 69 Negrin, R. S. & Contag, C. H. In vivo imaging using bioluminescence: a tool for probing
757 graft-versus-host disease. *Nature Reviews Immunology* **6**, 484-490 (2006).

758 70 Poon, C. Measuring the density and viscosity of culture media for optimized
759 computational fluid dynamics analysis of in vitro devices. *Journal of the Mechanical
760 Behavior of Biomedical Materials* **126**, 105024 (2022).

761 71 Bravo-Hernandez, M. *et al.* Spinal subpial delivery of AAV9 enables widespread gene
762 silencing and blocks motoneuron degeneration in ALS. *Nature medicine* **26**, 118-130
763 (2020).

764

765 **Acknowledgements.** Euthanized C57BL/6J mice were a gift from RR Neubig (facilitated by J Leipprandt)
766 and the Campus Animal Resources at Michigan State University (MSU). Funding for this work was provided
767 in part by the James and Kathleen Cornelius Endowment at MSU.

768

769 **Author contributions.** Conceptualization, C.V.M. and C.H.C.; Methodology, C.V.M., K.R.Z., K.D.H.,
770 S.B.G., R.N. and C.H.C.; Investigation, C.V.M., M.A., E.U., M.O.B., M.M.K., K.S., A.V.M., H.P., S.C., J.M.H.,
771 C.L.M., S.J.C., M.H. and A.T.; Writing – Original Draft, C.V.M.; Writing – Review & Editing, C.V.M., M.A.,
772 E.U., M.O.B., M.M.K., K.S., A.V.M., H.P., S.C., J.M.H., C.L.M., S.J.C., M.H., A.T., K.R.Z., K.D.H., S.B.G.,
773 R.N. and C.H.C.; Funding Acquisition, C.H.C.; Resources, R.N. and C.H.C.; Supervision, K.R.Z., K.D.H.,
774 S.B.G., R.N. and C.H.C.

775

776 **Competing interests.** C.V.M and C.H.C are inventors on a pending patent application filed by Michigan
777 State University on metabolic reprogramming to biodegradable polymers.

778

779