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Abstract

Alzheimer's disease (AD) is associated with heterogeneous atrophy patterns,'* which are
increasingly manifested throughout the disease course, driven by underlying neuropathologic
processes. Herein, we show that manifestations of these brain changes in early asymptomatic
stages can be detected via a novel deep semi-supervised representation learning method.> We
first identified two dominant dimensions of brain atrophy in symptomatic mild cognitive
impairment (MCI) and AD patients*: the “diffuse-AD” (R1) dimension shows widespread brain
atrophy, and the “MTL-AD” (R2) dimension displays focal medial temporal lobe (MTL)
atrophy. Critically, only R2 was associated with known genetic risk factors (e.g., APOE &4) of
AD in MCI and AD patients at baseline. We then showed that brain changes along these two
dimensions were independently detected in early stages in a cohort representative of the general
population® and two cognitively unimpaired cohorts of asymptomatic participants.®” In the
general population, genome-wide association studies found 77 genes unrelated to APOE
differentially associated with R1 and R2. Functional analyses revealed that these genes were
overrepresented in differentially expressed gene sets in organs beyond the brain (R1 and R2),
including the heart (R1) and the pituitary gland, muscle, and kidney (R2). These genes were also
enriched in biological pathways implicated in dendritic cells (R2), macrophage functions (R1),
and cancer (R1 and R2). The longitudinal progression of R1 and R2 in the cognitively
unimpaired populations, as well as in individuals with MCI and AD, showed variable
associations with established AD risk factors, including APOE ¢4, tau, and amyloid. Our findings
deepen our understanding of the multifaceted pathogenesis of AD beyond the brain. In early

asymptomatic stages, the two dimensions are associated with diverse pathological mechanisms,
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including cardiovascular diseases®, inflammation,”!! and hormonal dysfunction'*!* — driven by

genes different from APOE — which collectively contribute to the early pathogenesis of AD.
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Main
Alzheimer's disease (AD) is the most common cause of dementia in older adults and remains

14,15 and

incurable despite many pharmacotherapeutic clinical trials, including anti-amyloid drugs
anti-tau drugs.'® This is largely due to the complexity and multifaceted nature of the underlying
neuropathological processes leading to dementia. The research community has embraced several
mechanistic hypotheses to elucidate AD pathogenesis.!”!* Among these, the amyloid hypothesis
has been dominant over the past decades and has proposed a dynamic biomarker chain:
extracellular beta-amyloid (Ap) triggers a cascade that leads to subsequent intracellular
neurofibrillary tangles, including hyperphosphorylated tau protein (tau and p-tau),
neurodegeneration, including medial temporal lobe atrophy, and cognitive decline.?’! However,
the amyloid hypothesis has been reexamined and revised due to substantial evidence which
questions its current form?!~2*. While amyloid remains critical to AD development, the amyloid
cascade model has been continually refined as other biological factors are discovered to
influence the pathway from its accumulation to cell death.

Cardiovascular dysfunction has been widely associated with an increased risk for AD.8
There is also growing evidence that inflammatory'*'? and neuroendocrine processes>'* influence
pathways of amyloid accumulation and neuronal death. The inflammation hypothesis claims that
microglia and astrocytes release pro-inflammatory cytokines as drivers, byproducts, or beneficial
responses associated with AD progression and severity.!!?*?> The neuroendocrine hypothesis,
first introduced in the context of aging®®, has been extended to AD'?, where it proposes that
neurohormones secreted by the pituitary and other essential endocrine glands can affect the

central nervous system (CNS), which subsequently contribute to developing AD. For example,

Xiong and colleagues'? recently found that blocking the action of follicle-stimulating hormone in
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mice abrogates the AD-like phenotype (e.g., cognitive decline) by inhibiting the neuronal
C/EBPB-9-secretase pathway. These findings emphasize the need to further elucidate early brain
and body changes well before they lead to irreversible clinical progression.?’

Recent advances in artificial intelligence (Al), especially deep learning (DL), applied to
magnetic resonance imaging (MRI), showed great promise in biomedical applications®®*°. DL
models discover complex non-linear relationships between phenotypic and genetic features and
clinical outcomes, thereby providing informative imaging-derived endophenotypes™’. In
particular, Al has been applied to MRI to disentangle the neuroanatomical heterogeneity of AD

32.33 of this neuroanatomical

with categorical disease subtypes.!>3! The genetic underpinnings
heterogeneity in AD are also complex and heterogeneous. The most recent large-scale genome-

wide association study®? (GWAS: 111,326 AD vs. 677,633 controls) has identified 75 genomic
loci, including APOE genes, associated with AD. However, such case-control group comparisons
conceal genetic factors that might contribute differentially to different dimensions of AD-related
brain change. More importantly, the genetic variants that contribute to the initiation and early
progression of brain change in younger and asymptomatic individuals are poorly understood.
The current study models disease neuroanatomical heterogeneity using a newly-
developed semi-supervised representation deep learning method, Surreal-GAN.? It provides
multiple continuous dimensional scores (i.e., neuroanatomical dimensions) instead of categorical
subtypes,! considering disease heterogeneity spatially and temporally. These multiple
dimensional scores reflect the co-expression level of respective brain atrophy dimensions. Refer
to Method 1 and Supplementary eMethod 1 for more methodological details and strengths of
semi-supervised representation learning. We hypothesized that genetic variants, potentially

unrelated to APOE genes, contribute to early manifestations of multiple dimensions of brain
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atrophy in early asymptomatic stages. To test this hypothesis, we first defined the Surreal-GAN
dimensions in late symptomatic stages and then examined their expression back to early
asymptomatic stages. In our previous study,’ we derived two neuroanatomical dimensions (R1
and R2) by applying Surreal-GAN to the MCI/AD participants and cognitively unimpaired (CU)
participants from the Alzheimer's Disease Neuroimaging Initiative study (ADNI*). Herein, we
applied the trained model to three asymptomatic populations and one symptomatic population:
the general population (N=39,575; age: 64.12+7.54 years) from the UK Biobank (UKBB?®)
excluding demented individuals; the cognitively unimpaired population (N=1658; age:
65.75+10.90 years) from ADNI and the Baltimore Longitudinal Study of Aging study (BLSA”);
the cognitively unimpaired population with a family risk (N=343; age: 63.63+5.05 years) from
the Pre-symptomatic Evaluation of Experimental or Novel Treatments for Alzheimer's Disease
(PREVENT-AD®); the MCI/AD population (N=1534; age: 73.45+7.69 years) from ADNI and

BLSA. Refer to Method 2 and Table 1 for details of the definition of these populations.

Results

Two dominant dimensions of brain atrophy found in MCI and AD

In MCI/AD patients, the “diffuse-AD” dimension (R1) showed widespread brain atrophy without
an exclusive focus on the medial temporal lobe (Fig. 1A and Supplementary eTable 1 for P-
values and effect sizes). In contrast, the “MTL-AD” dimension (R2) displayed more focal medial
temporal lobe atrophy, prominent in the bilateral parahippocampal gyrus, hippocampus, and
entorhinal cortex (Fig. 1A). All results, including P-values and effect sizes (Pearson’s correlation
coefficient r), are presented in Supplementary eTable 1. The atrophy patterns of the two

dimensions defined in the symptomatic MCI/AD population (Fig. 1A) were present in the
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asymptomatic populations, albeit with a smaller magnitude of r. (Supplementary eTable 1, 4,
and 8). We visualized the expression of R1 and R2 and the age distribution in the four
populations in Supplementary eFigure 1. The MCI/AD population exhibited more salient AD

signatures than the three asymptomatic populations.

APOE genes are associated with R2 but not with R1 in the MCI/AD population

In GWAS (Method 6 B & C), the R2 dimension, but not R1, was associated with well-
established AD genomic loci (rs429358, chromosome: 19, 45411941; minor allele: C, P-value:
1.05 x 10"'") and genes (APOE, PVRL2, TOMMA40, and APOC]I) (Fig. 1B, Method 6B). The
details of the identified genomic locus and annotated genes are presented in Supplementary
eTable 2. The polygenic risk scores of AD (Method 6F) showed a slightly stronger positive
association with the R2 dimension [r=0.11, -logio(P-value)=3.14] than with the R1 dimension
[7=0.09, -logio(P-value)=2.31, Supplementary eFigure 2]. The QQ plots of baseline GWAS are

presented in Supplementary eFigure 3.

Clinical profiles of the R1 and R2 dimensions in the MCI/AD population

Clinical association studies (Method 5) correlated the two dimensions with 45 clinical variables
and biomarkers. Compared to the R1 dimension, R2 showed associations, to a larger extent than
R1, with SPARE-AD and the Rey Auditory Verbal Learning Test (RAVLT). SPARE-AD
quantifies the presence of a typical imaging signature of AD-related brain atrophy, which has
been previously shown to predict clinical progression in both CU and MCI individuals.**
RAVLT measures episodic memory, a reliable neuropsychological phenotype in AD, which is

also correlated with medial temporal lobe atrophy.>>* The R1 dimension was associated to a
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greater extent with 1) SPARE-BA, which captures the individualized expression of advanced

brain age from MRTI7:

2) white matter lesions (WML), which are commonly associated with
vascular risk factors and cognitive decline®®, and 3) whole-brain uptake of 18F-
fluorodeoxyglucose (FDG) PET, which is a biomarker of brain metabolic function and atrophy.
Both dimensions were positively associated with cerebrospinal fluid (CSF) levels of tau and p-
tau and negatively associated with the CSF level of AB42% (Fig. 1C), as well as the whole-brain
standardized uptake value ratio of 18F-AV-45 PET (Supplementary eTable 3). Results for all
45 clinical variables, including cognitive scores, modifiable risk factors, CSF biomarkers,

disease/condition labels, demographic variables, and imaging-derived phenotypes, are presented

in Supplementary eTable 3 for P-values and effect sizes (i.e., beta coefficients).
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Figure 1: The manifestation of the R1 and R2 dimensions of brain atrophy in the MCI/AD
population.
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A) Brain association studies (Method 4) reveal two dominant brain atrophy dimensions. A linear
regression model was fit to the 119 GM ROIs at baseline for the R1 and R2 dimensions. The —
logio(P-value) of each significant ROI (Bonferroni correction for the number of 119 ROIs: —
logio(P-value) > 3.38) is shown. A negative value denotes brain atrophy with a negative
coefficient in the linear regression model. P-value and effect sizes (r, Pearson’s correlation
coefficient) are presented in Supplementary eTable 1. The range of r for each dimension is also
shown. Of note, the sample size (N) for R1 and R2 is the same for each ROI. B) Genome-wide
association studies (Method 6) demonstrate that the R2, but not R1, dimension is associated with
variants related to APOE genes (genome-wide P-value threshold with the red line: —logio(P-
value) > 7.30). We associated each common variant with R1 and R2 using the whole-genome
sequencing data from ADNI. Gene annotations were performed via positional, expression
quantitative trait loci, and chromatin interaction mappings using FUMA.** We then manually
queried whether they were previously associated with AD-related traits in the GWAS Catalog.*!
Red-colored loci/genes indicate variants associated with AD-related traits in previous literature.
C) Clinical association studies (Method 5) show that the R2 dimension is associated to a larger
extent with AD-specific biomarkers, including SPARE-AD?*, an imaging surrogate to AD
atrophy patterns, and APOE ¢4, the well-established risk allele in sporadic AD. The R1
dimension is associated to a larger extent with aging (e.g., SPARE-BA,* an imaging surrogate
for brain aging) and vascular-related biomarkers (e.g., WML, white matter lesion). The same
linear regression model was used to associate the R1 and R2 dimensions with the 45 clinical
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variables, including cognitive scores, modifiable risk factors, CSF biomarkers, disease/condition
labels, demographic variables, and imaging-derived phenotypes. The radar plot shows
representative clinical variables; results for all 45 clinical variables are presented in
Supplementary eTable 3. The SPARE-AD and SPARE-BA scores are rescaled for visualization
purposes. The gray-colored circle lines indicate the P-value threshold in both directions
(Bonferroni correction for the 45 variables: —logio(P-value) > 2.95). A positive/negative —
logio(P-value) value indicates a positive/negative correlation (beta). The transparent dots
represent the associations that do not pass the Bonferroni correction; the blue-colored dots and
red-colored dots indicate significant associations for the R1 and R2 dimensions, respectively.
Clinical profiles of the R1 and R2 dimensions in the general population

Brain association studies (Method 4) confirmed the presence of the two atrophy patterns in the
general population (Fig. 2A and Supplementary eTable 4 for P-values and effect sizes). In
clinical association studies (Method 5), the R1 dimension was significantly associated, to a
larger extent than R2, with cardiovascular (e.g., triglycerides) and diabetes factors (e.g., Hbalc
and glucose), executive function (TMT-B), intelligence, physical measures (e.g., diastolic blood
pressure), SPARE-BA [-logio(P-value) = 236.89 for R1 and -46.35 for R2] and WML [logio(P-
value) = 120.24 for R1 and 2.06 for R2]. In contrast, the R2 dimension was more significantly
associated with SPARE-AD [—logio(P-value) = 136.01 for R1 and 250.41 for R2] and
prospective memory. (Fig. 2B). Results for all 61 clinical variables, including cardiovascular
factors, diabetic blood markers, social demographics, lifestyle, physical measures, cognitive

scores, and imaging-derived phenotypes, are presented in Supplementary eTable S for P-values

and effect sizes.

Twenty-four genomic loci and seventy-seven genes unrelated to APOE are associated with
the R1 and R2 dimensions in the general population
GWAS (Method 6B & C) identified 24 genomic loci, 14 of which are novel (refer to Method

6E for the definition of novel loci/genes), and 77 genes unrelated to APOE associated with R1 or

11
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R2. In particular, the R1 dimension was significantly associated with 11 genomic loci and 49
annotated genes. Eight genes (blue-colored genes in Fig. 2C) were previously associated with
AD-related traits; 12 novel loci/genes (pink-colored in bold genes in Fig. 2C) have not been
previously associated with any clinical traits (Method 6C). The R2 dimension was significantly
associated with 13 genomic loci and 40 annotated genes. 13 genes (red-colored genes in Fig. 2C)
were associated with AD-related traits; 8 loci/genes (pink-colored in bold genes in Fig. 2C) were
novel (Fig. 2C, Supplementary eTable 6, Method 6C, D, E). These genomic loci and genes
were also associated with many clinical traits in the literature from the GWAS Catalog.*! These
included hormones (e.g., sex hormone-binding globulin measurement vs. CCKN2C),
inflammatory factors (e.g., macrophage inflammatory protein 1b measurement vs. CDC25A),
imaging-derived phenotypes (e.g., cerebellar volume measurement from MRIs vs. DMRTA?2),
and psychiatric disorders (e.g., unipolar depression vs. ASTN2) (Fig. 2D). Details of the GWAS
Catalog results are presented in Supplementary eFile 1. The QQ plots are presented in
Supplementary eFigure 4. The two dimensions were significantly heritable in the general
population based on the SNP-based heritability estimates (R1: 7% = 0.49 + 0.02; R2: h* = 0.55 +
0.02) (Method 6B). The polygenic risk scores of AD (Method 6F) showed a marginal positive
association with the R2 dimension [-logio(P-value)=1.42], but not with the R1 dimension [-

logio(P-value)=0.47<1.31] in this population.

12
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Figure 2: The expression of the R1 and R2 dimensions in the general population.
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A) Brain association studies (Method 4) confirm the presence of the two dimensions in the
general population: the R1 dimension shows widespread brain atrophy, whereas the R2
dimension displays focal medial temporal lobe atrophy. P-value and effect sizes (r, Pearson’s
correlation coefficient) are presented in Supplementary eTable 4. The range of r for each
dimension is also shown. Of note, the sample size (N) for R1 and R2 is the same for each ROI.
B) Clinical association studies (Method 5) further show that the R2 dimension is associated with
prospective memory, and the R1 dimension is associated with several cognitive dysfunctions,
cardiovascular risk factors (e.g., triglycerides), and diabetes (e.g., HbAlc). The same linear
regression models were used to associate the R1 and R2 dimensions with the 61 clinical
variables, including cardiovascular factors, diabetic blood markers, social demographics,
lifestyle, physical measures, cognitive scores, and imaging-derived phenotypes. The radar plot
shows representative clinical variables; all other results are presented in Supplementary eTable
5. The gray circle lines indicate the P-value threshold in both directions (Bonferroni correction
for the 61 variables: —logio(P-value) > 3.08). A positive/negative —logio(P-value) value indicates
a positive/negative correlation (beta). Transparent dots represent the associations that do not pass
the Bonferroni correction; the blue-colored dots and red-colored dots indicate significant
associations for the R1 and R2 dimensions, respectively. C) Genome-wide association studies
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(Method 6) demonstrate that the R2 dimension is associated to a larger extent with genomic loci
and genes previously associated with AD-related traits in the literature (genome-wide P-value
threshold with the red line: —logio(P-value) > 7.30). The R1 dimension identified 8 (blue-colored
in bold) out of the 49 mapped genes associated with AD-related traits; 12 novel loci/genes (pink-
colored in bold, Method 6C) were not associated with any clinical traits. The R2 dimension
identified 13 (red-colored in bold) out of 40 mapped genes associated with AD-related traits; 8
loci/genes were novel (pink-colored in bold). Gene annotations were performed via positional,
expression quantitative trait loci, and chromatin interaction mappings using FUMA.*° The
genomic loci and mapped genes were manually queried in the GWAS Catalog*! to determine
whether they were previously associated with AD (novel or not). D) Besides AD-related traits,
the genes and genomic loci in the two dimensions were also associated with other clinical traits,
including inflammation, neurohormones, and imaging-derived phenotypes, in the literature from
the GWAS Catalog.*! The flowchart first maps the genomic loci and genes (left) identified in the
two dimensions onto the human genome (middle). It then links these variants to any clinical
traits identified in previous literature from the GWAS Catalog (right). In the middle of the
human genome, we show chromosomes 1 to 22 (above to below); the blue and red-colored genes
are AD-related for the R1 and R2 dimensions, respectively. The black-colored genes (Fig. C) are
not annotated. INF: inflammation; PD: psychiatric disorder; PM: physical measure; Novel (pink-
colored in bold, corresponding to the novel loci/genes in Fig C) indicates that the locus or gene
was not associated with any traits in the literature.

Genes associated with the R1 and R2 dimensions are overrepresented in organs beyond the
brain in the general population

Tissue specificity analyses test whether the input genes (Fig. 2C) are overrepresented in
differentially expressed gene sets (DEG) in one organ/tissue compared to all other organs/tissues
using different gene expression data*® (Method 6D). The genes associated with the R1
dimension were overrepresented in caudate, hippocampus, putamen, amygdala, substantia nigra,
liver, heart, and pancreas; the genes associated with the R2 dimension were overrepresented in
caudate, hippocampus, putamen, amygdala, anterior cingulate, pituitary, liver, muscle, kidney,
and pancreas (Fig. 3A and Supplementary eFigure 5). Genes in DEG over-expressed in the
heart were only associated with R1, while those in DEG over-expressed in the pituitary gland,
muscle, and kidney were unique in R2. The expression values of every single gene for all tissues

are presented in Supplementary eFigure 6.
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Genes associated with the R1 and R2 dimensions are enriched in key biological pathways in
the general population

Genes associated with the two dimensions were enriched in different biological pathways
(Method 6D). Genes associated with the two dimensions were implicated in several types of
cancer, including up-regulation of fibroblast, breast cancer, and neuroblastoma tumors (Fig. 3B),
which indicate a certain extent of genetic overlaps and shared pathways that may explain the
intriguing inverse relationship between AD and cancer.*> Genes associated with the R1
dimension were implicated in pathways involved in the down-regulation of macrophages (Fig.
3B), which are involved in the initiation and progression of various inflammatory processes,
including neuroinflammation and AD.?* Inflammation is also known to be associated with
vascular compromise and dysfunction. This further concurs with the stronger cardiovascular
profile of R1, especially with increased WML and predominant SPARE-BA increases. Genes
associated with the R2 dimensions were enriched in pathways involved in AD onset,
hippocampus-related brain volumes, and dendritic cells (Fig. 3B). In particular, dendritic cells

may regulate amyloid-B-specific T-cell entry into the brain,*

as well as the inflammatory status
of the brain.** The gene set enrichment analysis results are presented in Supplementary eTable

7.
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Figure 3: Tissue specificity and biological pathway enrichment analysis of the R1 and R2
dimensions in the general population.
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A) Tissue specificity analyses (Method 6D) show that genes associated with the two dimensions
of neurodegeneration are overrepresented in organs/tissues beyond the human brain (R1 and R2).
The unique overrepresentation of genes in differentially expressed gene sets (DEG) in the heart
(R1) and the pituitary gland, muscle, and kidney (R2) may imply the involvement of
inflammation®'! and neurohormone dysfunction'>!3, respectively. The GENE2FUNC*
pipeline from FUMA was performed to examine the overrepresentation of prioritized genes (Fig.
2C) in pre-defined DEGs (up-regulated, down-regulated, and both-side DEGs) from different
gene expression data. The input genes (Fig. 2C) were tested against each DEG using the
hypergeometric test. We present only the organs/tissues that passed the Bonferroni correction for
multiple comparisons. B) Gene set enrichment analysis (Method 6D) shows that genes
associated with the two dimensions are enriched in different biological pathways. For example,
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genes associated with the R1 dimension are implicated in down-regulated macrophage functions,
which have been shown to be associated with inflammation.?* In contrast, the R2 dimension is
enriched in AD hallmarks (e.g., hippocampus), AD-related gene sets, and the pathway involved
in dendritic cells, which may regulate amyloid-B-specific T-cell entry into the brain.** Both
dimensions are enriched in gene sets involved in cancer, which may indicate overlapped genetic
underpinnings between AD and cancer.*> The GENE2FUNC?® pipeline from FUMA was
performed to examine the enrichment of prioritized genes (Fig. 2C) in pre-defined gene sets.
Hypergeometric tests were performed to test whether the input genes were overrepresented in
any pre-defined gene sets. Gene sets were obtained from different sources, including MsigDB*’
and GWAS Catalog.*! We show the significant results from gene sets defined in the GWAS
Catalog, curated gene sets, and immunologic signature gene sets. All results are shown in
Supplementary eTable 7.

The longitudinal rate of change in the R2 dimension, but not R1, is marginally associated
with the APOE &4 allele, tau in cognitively unimpaired individuals

Using cognitively unimpaired participants from ADNI and BLSA, longitudinal brain association
studies (Method 4B) showed that the rate of change in the R1 dimension was associated with the
change of brain volume in widespread brain regions. In contrast, the rate of change in the R2
dimension was associated with the change of brain volume in the focal medial temporal lobe (Fig.
4A and Supplementary eTable 8 for P-values and effect sizes). This further indicates that the two
dominant patterns discovered cross-sectionally also progress in consistent directions
longitudinally. The two dimensions were not associated with CSF biomarkers (Ap42, tau, and p-
tau) and the APOE ¢4 allele (rs429358) at baseline [—logio(P-value) < 1.31)]. The rate of change
of the R2 dimension, but not R1, was marginally [nominal threshold: —logio(P-value) > 1.31]
associated with the APOE ¢4 allele, the CSF level of tau, and p-tau (Fig. 4B and Supplementary
eTable 9 for P-values and effect sizes), but they did not survive the Bonferroni correction [—

logio(P-value) = 2.95]. The longitudinal rate of change of both dimensions was negatively

associated [-logio(P-value) > 2.95] with the total CSF level of AB42.
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We tested these associations using cognitively unimpaired individuals with a high risk of
AD based on their family history (refer to Method 2 for details) from the PREVENT-AD cohort.
Similarly, at baseline, the two dimensions were not associated with CSF biomarkers or the APOE
¢4 allele (rs429358). The longitudinal rate of change in the R2 dimension, but not R1, was
marginally [nominal threshold: —logio(P-value) > 1.31] associated with the APOE ¢4 allele [—
logio(P-value) = 1.92], the CSF level of tau [-logio(P-value) = 1.65], and p-tau [-logio(P-value) =
1.66].

Longitudinal brain association studies also confirmed the longitudinal progression of the
two dimensions in the MCI/AD population (Supplementary eFigure 7A). The rates of change in
the two dimensions were both associated with APOE &4 [-logio(P-value) = 12.54 for R1 and 9.05
for R2] in GWAS (Supplementary eFigure 7B), and related to CSF levels of tau [-logio(P-value)
= 16.47 for R1 and 9.73 for R2], p-tau [-logio(P-value) = 19.13 for R1 and 10.81 for R2], and

AP42 [-logio(P-value) = 13.64 for R1 and 13.55 for R2] (Supplementary eFigure 7C).
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Figure 4: The longitudinal rate of change in R1 and R2 in the cognitively unimpaired
population.
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A) Longitudinal brain association studies (Method 4B) show that the R1 dimension exhibits
longitudinal brain volume decrease in widespread brain regions, whereas the R2 dimension
displays longitudinal brain volume decrease in the focal medial temporal lobe. We first derived
the rate of change of the 119 GM ROIs and the R1 and R2 dimensions using a linear mixed
effect model; a linear regression model was then fit to the rate of change of the ROIs, R1, and R2
to derive the beta coefficient value of each ROI. A negative value denotes longitudinal brain
changes with a negative coefficient of the rate of change in the linear regression model. P-value
and effect sizes (r, Pearson’s correlation coefficient) are presented in Supplementary eTable 8.
The range of r for each dimension is also shown. Of note, the sample size (N) for R1 and R2 is
the same for each ROI. B) The rate of change, not the baseline measurement, in the two
dimensions is negatively associated with the CSF level of AB42 (Bonferroni correction for the 45
variables: —logio(P-value) > 2.95). The rate of change in the R2 dimension, not the R1
dimension, was marginally (—logio(P-value) > 1.31) associated with the CSF level of tau and p-
tau, and APOE ¢4. All other clinical associations are presented in Supplementary eFile 9. The
gray-colored circle lines indicate different P-value thresholds in both directions (Bonferroni
correction for the 45 variables: —logio(P-value) > 2.95 and the nominal P-value threshold: —
logio(P-value) > 1.31). A positive/negative —logio(P-value) value indicates a positive/negative
correlation (beta). Transparent dots represent the associations that do not pass the nominal P-
value threshold [logio(P-value) = 1.31]; the blue-colored dots and red-colored dots indicate
significant associations [logio(P-value) > 1.31] for the R1 and R2 dimensions, respectively.
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Discussion

The current study leveraged a deep semi-supervised representation learning method to establish
two predominant dimensions in the symptomatic MCI/AD population, which were independently
found to be expressed, to a lesser degree, in three asymptomatic populations. In particular, the
R1 dimension represented a “diffuse-AD” atrophy pattern: varying degrees of brain atrophy
throughout the entire brain. In contrast, the R2 dimension showed an “MTL-AD” atrophy
pattern: brain atrophy predominantly concentrated in the medial temporal lobe (Fig. 1A).
Importantly, only R2 was found to be significantly associated with genetic variants of the APOE
genes in MCI/AD patients. Furthermore, our study examined early manifestations of the R1 and
R2 dimensions in asymptomatic populations with varying levels of AD risks and their
associations with genetics, amyloid plaques and tau tangles, biological pathways, and body
organs. We identified that 24 genomic loci, 14 of which are novel (Method 6E), and 77
annotated genes contribute to early manifestations of the two dimensions. Functional analyses
showed that genes unrelated to APOE were overrepresented in DEG sets in organs beyond the
brain (R1 and R2), including the heart (R1) and the pituitary gland (R2), and enriched in several
biological pathways involved in dendritic cells (R2), macrophage functions (R1), and cancer (R1
and R2). Longitudinal findings in the cognitively unimpaired populations showed that the rate of
change of the R2 dimension, but not R1, was marginally associated with the APOE &4 allele, the
CSF level of tau, and AB42 (R1 and R2). Our findings suggested that diverse pathologic
processes, including cardiovascular risk factors, neurohormone dysfunction, and inflammation,
might occur in the early asymptomatic stages, supporting and expanding the current amyloid

cascade.?0?!
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Figure 5: Genes unrelated to APOE influence early manifestations of R1 and R2.
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Genes unrelated to APOE and overrepresented in organs beyond the human brain are associated
with early manifestations of the R1 (diffuse-AD) and R2 (MTL-AD) dimensions, which capture
the heterogeneity of AD-related brain atrophy. For visualization purposes, we display the two
genes with the highest expression values in the tissue specificity analyses for each organ/tissue
(Supplementary eFigure 6). Along these two dimensions, the black arrow line emulates the
longitudinal progression trajectory of AD. The positions of beta-amyloid, tau and the text
“increasing APOE-mediated progression” indicate the time point when they are associations with
the two dimensions. The blue/red gradient-color background indicates a higher influence of
APOE-related genes (left to right). The brain atrophy patterns are presented in the 3D view. In
early asymptomatic stages, the R1-related genes are implicated in cardiovascular diseases and
inflammation; the R2-related genes are involved in hormone-related dysfunction. Critically,
longitudinal progression of the dimension demonstrates an impact of the APOE genes in early
asymptomatic stages in R2, but this longitudinal effect occurs only in late symptomatic stages in
R1. These results suggest that comorbidities (e.g., cardiovascular conditions) or normal aging in
R1 may alter or delay the trajectory of neurodegeneration in early asymptomatic stages; APOE-
related genes may play a pronounced role in the acceleration and progression in late symptomatic
stages for both dimensions. Of note, the underlying pathological processes that initiate and drive
the progression of the two dimensions are not mutually exclusive. Hence, both R1 and R2 can be
co-expressed in the same individual. In addition, the two dimensions can also be affected by
other AD hypotheses, such as the mitochondrial hypothesis*® and the metabolic hypothesis.*’
MTL: medial temporal lobe.
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AD has been regarded as a CNS disorder. However, increasing evidence has indicated
that the origins or facilitators of the pathogenesis of AD might involve processes outside the
brain.'® For example, recent findings revealed that gut microbiota disturbances might influence
the brain through the immune and endocrine system and the bacteria-derived metabolites.***°
Our findings support the view that multiple pathological processes might contribute to early AD
pathogenesis and identify non-APOE genes in the two dimensions overrepresented in tissues
beyond the brain (e.g., the heart, pituitary gland, muscle, and kidney). Pathological processes
may be involved in different cells, molecular functions, and biological pathways, exaggerating
amyloid plaque and tau tangle accumulation and leading to the downstream manifestation of
neurodegeneration and cognitive decline.

The genetic and clinical underpinnings of the R1 dimension support inflammation, as
well as cardiovascular diseases, as a core pathology contributing to AD.”"!! Genes associated
with the R1 dimension were previously associated with various inflammation-related clinical
traits (Fig. 2D), and enriched in biological pathways involved in immunological response (e.g.,
up-regulation in macrophages™, Fig. 3B). In addition, genes in this dimension were
overrepresented in DEG sets in the heart (Fig. 3A). Previous literature indicated that
inflammation is likely an early step that initiates the amyloidogenic pathway — the expression of
inflammatory cytokines leads to the production of p-amyloid plaques.?* Several markers of
inflammation are also present in serum and CSF before any indications of Af or tau tangles.!
For example, clusterin, a glycoprotein involved in many processes and conditions (e.g.,
inflammation, proliferation, and AD) induced by tumor necrosis factor (TNF), was present ten
years earlier than AP deposition.>? In addition, the R1 dimension was also strongly associated

with cardiovascular and diabetes biomarkers (Fig. 2B). Inflammatory processes have been
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critical, well-established risk factors for compromised cardiovascular function,? such as
coronary artery disease and the breakdown of the blood-brain barrier. Our results corroborated
the close relationships between AD, cardiovascular diseases, and inflammation.

The genetic and clinical underpinnings of the R2 dimension support that neuroendocrine
dysfunction might be an early event contributing to the pathogenesis of AD.'*!* Genes in the R2
dimension were previously associated with different hormone and pancreas-related traits from
GWAS Catalog (Fig. 2D); they were also overrepresented in DEG in the pituitary and pancreas
glands, muscle and kidney (Fig. 3A), which are master glands or key organs in the endocrine
system.>* Previous literature suggested that neuroendocrine dysfunction might contribute to AD
development by secreting neurohormonal analogs and affecting CNS function.'® For example,
luteinizing hormone-releasing hormone and follicle-stimulating hormone in serum or neurons
were associated with the accumulation of AB plaques in the brain.!>% 3¢ However, early
experimental studies on antagonists of Luteinizing hormone-releasing hormone and growth
hormone-releasing hormone in animal models of AD have shown promising but not entirely
convincing evidence.'® Taken together, neurodegeneration in the R2 dimension represents an
AD-specific phenotype that might be driven by hormonal dysfunction, leading to rapid
accumulation of amyloid plaques, and was potentially accelerated by the APOE ¢4 allele — the
rate of change in R2, but not R1, was associated with the APOE ¢4 allele in cognitively
unimpaired individuals (Fig. 4B).

The hypothesized implications above of the R1 and R2 dimensions on inflammation,
cardiovascular functions, and neuroendocrine dysfunctions are not mutually exclusive and may
collectively contribute to AD pathogenesis. It has been shown that dysregulation of the

hypothalamic-pituitary-gonadal axis is associated with dyotic signaling, modulating the
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expression of TNF and related cytokines in systemic inflammation, and the induction of
downstream neurodegenerative cascades within the brain.>’® These studies hypothesized that
the neuroendocrine dysfunction and the inflammation mechanism might be the upstream and
downstream neuropathological processes along the disease course of AD.!® That is, the loss of
sex steroids and the elevation of gonadotropins might lead to a higher level of inflammatory
factors in the brain. Finally, other competing hypotheses may also play a role in developing AD
in early asymptomatic stages, including the mitochondrial hypothesis,*® the metabolic
hypothesis,*’ and the tau hypothesis.'®

The NIA-AA framework™ claims that AD is a continuum in which AD pathogenesis is
initiated in early asymptomatic cognitively unimpaired stages and progresses to amyloid-positive
and tau-positive (A+T+) in late symptomatic stages.>® Our findings are consistent with this
framework and elucidate the cross-sectional and longitudinal associations of the two dimensions
with genetic and clinical markers from early asymptomatic to late symptomatic stages. In early
asymptomatic stages, the rates of change in the two dimensions are both associated with
amyloid. However, only the R2 dimension, not R1, is marginally associated with the APOE ¢4
allele and the CSF level of tau (Fig. 4B). In contrast, in late symptomatic stages, the rates of
change in the two dimensions are both associated with the APOE ¢4 allele, CSF levels of tau, p-
tau, and amyloid (Supplementary eFigure 7). Our findings suggest that comorbidities or normal
aging in R1 may alter the rate or trajectory of neurodegeneration at early asymptomatic stages,
but APOE-related genes might play a more pronounced role in the acceleration and progression
during late symptomatic stages for both dimensions (Fig. 5).

In conclusion, the current study used a novel deep semi-supervised representation

learning method to establish two AD dimensions. Our findings support that those diverse
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pathological mechanisms, including cardiovascular diseases, inflammation, hormonal
dysfunction, and involving multiple organs,® collectively affect AD pathogenesis in
asymptomatic stages. Disentangling diverse pathological mechanisms into homogeneous
dimensions may guide future therapies in the early asymptomatic stages of AD to target multi-

organ dysfunctions beyond the brain.
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Methods

Method 1: Surreal-GAN deciphers the neuroanatomical heterogeneity of Alzheimer's
disease

Surreal-GAN? dissects underlying disease-related heterogeneity via a deep representation
learning approach under the principle of semi-supervised clustering. Semi-supervised
clustering'=! seeks the "I-to-k" mapping between the reference healthy control group and the
patient group, thereby teasing out clusters or subtypes driven by different pathological
trajectories instead of global similarity/dissimilarity in data. Refer to Supplementary eMethod
1’s schematic figure for the intuition of deep semi-supervised learning.

The methodological advance of Surreal-GAN is to model neuroanatomical heterogeneity
by considering both spatial and temporal (i.e., disease severity) variation using only cross-
sectional MRI data. Its precursor, the Smile-GAN model', disentangled this heterogeneity in
MCI/AD patients into four subtypes: i) P1, preserved cognitively unimpaired-like brain, exhibits
intact brain neuroanatomy compared to cognitively unimpaired participants; ii) P2, mild diffuse
atrophy without pronounced medial temporal lobe atrophys; iii) P3, focal medial temporal lobe
atrophy; iv) P4, advanced diffuse atrophy over the whole brain, and two longitudinal pathways: 7)
P1—-P2—P4; ii) P1-P3—P4. However, Smile-GAN sought to derive categorical disease
subtypes, ignoring that disease heterogeneity spatially and temporally expands along a
continuum (i.e., disease severity or stages). To address this, Surreal-GAN models this
heterogeneity as a continuous dimensional representation, enforces monophasic disease severity
in each neuroanatomical dimension, and allows non-exclusive manifestations of multiple
dimensions. As a result, Surreal-GAN dissects the heterogeneity of AD in two different

dimensions: i) R1: diffuse brain atrophy without an exclusive focus on the medial temporal lobe;
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ii) R2: focalized atrophy in medial temporal lobes. Each participant can be presented with
different levels of expression in both two dimensions.

By modeling, Surreal-GAN's R1 and R2 dimensions are more appropriate for
dimensional analyses as continuous variables. In contrast, the four neuroanatomical subtypes of
Smile-GAN are better instruments for case-control analyses as categorical variables. We used
ADNI data to show that the R1 and R2 dimensional scores were approximately normally
distributed, and the P1, P2, P3, and P4 probability scores followed bimodal distributions

(Supplementary eFigure 8). Refer to Supplementary eMethod 1 for mathematical details.

Method 2: Study populations
The current study consists of four main populations (Table 1), which were jointly consolidated
by the iISTAGING and the AI4AD consortia:
e the MCI/AD population: MCI/AD patients from ADNI* and BLSA”.
e the general population: all participants excluding demented from UKBB? (refer to Table
1 for inclusion criteria).
o the cognitively unimpaired population: cognitively unimpaired participants from ADNI
and BLSA.
e the cognitively unimpaired population with a family risk: cognitively unimpaired
participants from PREVENT-AD® (refer to Table 1 for inclusion criteria).
The Surreal-GAN model was trained in the MCI/AD patients and healthy controls from
ADNI and then applied to all populations. The iSTAGING consortium®! consolidated all

imaging and clinical data; imputed genotyping data were originally downloaded from UKBB; the
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AI4AD consortium (http://ai4ad.org/) consolidated the whole-genome sequencing (WGS) data

for the ADNI study.

For ADNI, cognitively unimpaired (CU), MCI, and AD participants were recruited from
multiple centers in the United States. The primary goal of ADNI was to derive the two MCI/AD
Al- and imaging-derived dimensions by applying the Surreal-GAN model to TIw MRIs. We
included all baseline and longitudinal T1w MRI scans and cognitive data available from ADNI
in iISTAGING. In addition, we also included whole-genome sequencing (WGS) data for ADNI in
AI4AD. BLSA is a longitudinal study that aims to study aging and related diseases, such as AD.
At baseline recruitment, participants were mostly cognitively normal and had multiple time
points of longitudinal follow-ups for MRIs and cognition. Participants enrolled in PREVENT-
AD were cognitively normal older adults with a family history of AD (at least one parent or
multiple siblings)®. The inclusion criteria are generally similar but more stringent than the proxy-

AD diagnosis®*®

used in UK Biobank (see below), including i) being cognitively normal, ii)
having a family history of AD, iii) aging within 15 years from the age of disease onset of their
youngest relative, and iv) no history of neurological or psychiatric diseases. For UKBB, we
defined asymptomatic participants® as those that did not have a diagnosis of all sources of
dementia (G30 in ICD-10 diagnoses, see below) in our data consolidation. However, these

asymptomatic participants might have diagnoses of other illnesses or comorbidities based on

ICD-10: https://biobank.ctsu.ox.ac.uk/crystal/coding.cgi?id=19&nl=1. Furthermore, we defined

proxy-AD¢ in UKBB as long as the participant satisfied one of the following criteria: i)

illnesses_of father {20107 and ii) illnesses_of_mother_f20110.
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Table 1. Study characteristics.

We present the age with the mean, min, and max in each population. The definition of
cognitively unimpaired (CU)* in PREVENT-AD, asymptomatic participants® in UKBB, and
proxy-AD® in UKBB are detailed as below:

a) Participants (proxy-AD and CU with a family risk) from the PREVENT-AD study were
recruited with the following criteria: i) being cognitively normal, i7) having a family
history of AD, iii) aging within 15 years from the age of disease onset of their youngest
relative, and iv) no history of neurological or psychiatric diseases.
b) The UKBB participants (the general population) represent a general population with
healthy aging and diseases (not AD, specifically). We excluded those diagnosed with all
sources of dementia (G30 in ICD-10 diagnoses, see below). However, these
asymptomatic participants might have diagnoses of other illnesses or comorbidities
based on ICD-10: https://biobank.ctsu.ox.ac.uk/crystal/coding.cgi?id=19&nl=1.
c) Participants with proxy-AD in UKBB are defined by a family history of AD with the
following criteria: i) illnesses_of_father_{20107 and ii) illnesses_of_mother_{20110.
. Participant Scan Age Sex
Population Study ) ) (year) Jfemale CU AD MCI proxy-AD
ADNI & 73.45(54.
MCI/AD BLSA 1534 7019 27.93.00) 888/58% 0 424 1110 NA
64.12(44. 18,625/47 39,574 ¢
General UKBB 39,575 40,981 56.82.27) % b NA 10,189
65.75(22.
ADNI &
CU BLSA 1658 6143 00,80.00)  939/57% 1658 0 0 NA
. 63.63(55.
CUwitha — PREVENT 343 1215 13,8422) 243/71% 343 NA NA 3430
family risk -AD
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Method 3: Image processing and statistical harmonization

(A): Image processing. The imaging quality check is detailed in Supplementary eMethod 2.
All images were first corrected for magnetic field intensity inhomogeneity.®* A deep learning-
based skull stripping algorithm was applied for the removal of extra-cranial material. In total,
145 anatomical regions of interest (ROIs) were generated in gray matter (GM, 119 ROIs), white
matter (WM, 20 ROIs), and ventricles (6 ROIs) using a multi-atlas label fusion method.®> The
119 GM ROIs were used for heterogeneity analyses via Surreal-GAN and for brain association
studies to examine the brain atrophy patterns of the two dimensions of Surreal-GAN. Of note,
this is not to validate the two dimensions® since the 119 GM ROIs were used in defining the two
dimensions. Instead, we showed the post hoc neuroanatomical patterns to elucidate these brain

features that drove the two dimensions.

(B): Statistical harmonization of MUSE ROI. The 119 ROIs were statistically harmonized by
an extensively validated approach, i.e., ComBat-GAM®’, using the entire imaging data of
1ISTAGING. Site-specific mean and variance were estimated based on variability observed within

and across control groups while preserving normal variance due to age, sex, and intracranial

volume (ICV).

Method 4: Brain association studies

(A): Baseline brain association studies: We performed brain association studies for the 119
GM ROIs. Linear regression models were fitted with R1 and R2 dimensions as dependent
variables, with each ROI as the exposure of interest, controlling for age, gender, ICV, and/or

diagnosis as confounders. A P-value statistic map was generated for each neuroanatomical
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dimension: a positive/negative -logio(P-value) value indicates a positive/negative correlation

(beta values) between the neuroanatomical dimension and the ROI.

(B): Longitudinal brain association studies: We performed two-step brain association studies
for the 119 GM ROIs using longitudinal data in the MCI/AD and the cognitively unimpaired
populations (> 4-time points). First, we estimated the RC of age using a linear mixed-effects
model. Specifically, we included age as the main variable of interest while adjusting for study
and ICV as fixed effects. We fit linear mixed-effects models with a participant-specific random
slope for age and random intercept. The slope of age for each participant is estimated as the
summation of two parts: i) the fixed coefficient of age and ii) the random coefficient of age for
each participant. For the second step, the same linear regression model, as in baseline brain
association studies, was fitted with the age change rate in the R1 and R2 dimensions. Bonferroni

correction of 119 GM ROIs was performed to adjust for the multiple comparisons.

Method 5: Clinical association studies

We performed clinical association studies for all clinical biomarkers and neuropsychological
testing available in the ISTAGING consolidation for each population. Linear regression models
were fitted with the R1 and R2 dimensions as dependent variables, with each clinical variable as
the variable of interest, controlling for age, gender, ICV, and/or diagnosis as confounders. A P-
value statistic was generated for each clinical variable: a positive/negative -logio(P-value) value
indicates a positive/negative correlation (beta values). Bonferroni correction was performed to

adjust for the multiple comparisons.
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Method 6: Genetic analyses

Genetic analyses were performed for the whole-genome sequencing (WGS) data from ADNI and
the imputed genotype data from UKBB. Our quality check protocol (Method SA) for ADNI
resulted in 1487 participants and 24,194,338 SNPs. For UKBB, we limited our analysis to

European ancestry participants, resulting in 33,541 participants and 8,469,833 SNPs.

(A): Genetic data quality check protocol. For ADNI WGS data, we first convert the VCF files
into plink binary format. We excluded related individuals (up to 2"-degree) using the KING
software for family relationship inference.®® Further QC steps are: excluding criteria were: 1)
individuals with more than 2% of missing genotypes; ii) variants with minor allele frequency
(MAF) of less than 0.1%; ii1) variants with larger than 5% missing genotyping rate; iv) variants
that failed the Hardy-Weinberg test at 1x107°. We then removed duplicated variants from all 22
autosomal chromosomes. We also excluded individuals for whom either imaging or genetic data
were not available. To adjust for population stratification,* we derived the first 40 genetic
principal components (PC) using the SmartPCA software’®. For UKBB, the genetic pipeline was
previously described elsewhere.”"”> All QC steps were documented in our BRIDGEPORT web

portal: https://www.cbica.upenn.edu/bridgeport/data/pdf/BIGS genetic protocol.pdf.

(B): Heritability estimates and genome-wide association analysis. Using UKBB data, we first
estimated the SNP-based heritability using GCTA-GREML,"® controlling for confounders of age
(at imaging), age-squared, sex, age-sex interaction, age-squared-sex interaction, ICV, and the
first 40 genetic principal components, following a previous pioneer study.”* In GWAS, we

performed a linear regression for each neuroanatomical dimension and included the same
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covariates as in the heritability estimates. We adopted the genome-wide P-value threshold (5 x

10®) in all GWAS.

(C): Annotation of genomic loci and gene mappings. The annotation of genomic loci and gene

mappings was performed on the online platform of FUMA (SNP2GENE, https://fuma.ctglab.nl/,

version: v1.3.8). For annotation of genomic loci, default parameters were set in FUMA. First, lead
SNPs (correlation * < 0.1, distance < 250 kilobases) are assigned to a genomic locus (non-
overlapping). The SNP with the lowest P-value represents each genomic locus. For gene mappings,
three different strategies were used to map the SNPs to genes. First, positional mapping maps
SNPs to genes if the SNPs are physically located inside a gene (a 10 kb window by default).
Second, expression quantitative trait loci (eQTL) mapping maps SNPs to genes showing a
significant eQTL association. Lastly, chromatin interaction mapping maps SNPs to genes when
there is a significant chromatin interaction between the disease-associated regions and nearby or

distant genes.*

(D): Prioritized gene set enrichment and tissue specificity analysis. FUMA provides the
functionality GENE2FUNC to study the expression of prioritized genes and test for enrichment
of the set of genes in pre-defined pathways. We used the mapped genes as prioritized gene
inputs. The background genes were specified as all genes in FUMA, and default values were
defined for all other parameters. GENE2FUNC outputs a single gene-level expression heat map
that quantifies the expression values (average expression per label or average of normalized
expression per label) in different tissues, including the GTEx v87 54 tissue types and 30 general

tissue types. For tissue specificity analysis, differentially expressed gene sets (DEG) were pre-
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calculated by performing a two-sided t-test for any one label of tissue against all others. Input
genes were tested against the pre-defined DEG sets using the hypergeometric test. The tissue

specificity plot highlights significant enrichment at the Bonferroni corrected P-value < 0.05.

(E): Annotation of novel genomic loci and genes related to AD. A two-step procedure was
performed to determine if a genomic locus or gene was associated with any AD-related clinical
traits. First, we manually queried the identified genomic loci, mapped genes, checked if any AD-
related traits were previously reported in GWAS Catalog, and downloaded these associations. In
addition, we checked if any input genes overlap with the gene set pathways (defined in GWAS
catalog reported genes) related to AD in (D). We defined a genomic locus or a gene as a novel
association if the variant was not associated with any clinical traits in GWAS Catalog. For these
clinical traits reported in GWAS Catalog, we mapped them into several different categories (Fig.

2D, Supplementary eFile 5).

(F): Polygenic risk score calculation. We calculated the PRS’® using both ADNI and UKBB
genetic data. The weights of the PRS were defined based on independent base data,** ensuring
that the base population does not overlap with the target population in ADNI and UKBB
(European ancestry). The QC steps for the base data are as follows: i) SNP-based heritability
estimate (4° > 0.05) using LDSC”” to avoid spurious SNP data; ii) the genome reference
consortium human build of the base data is on GRCh378; iii) removal of duplicated and
ambiguous SNPs. The QC steps for the target data are as follows: i) using LiftOver’® to convert
the ADNI WGS from GRCh38 to GRCh37; ii) standard GWAS QC (low minor allele frequency,

low genotyping rate, etc.); iii) pruning to remove highly correlated SNPs; iv) removal of high
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heterozygosity samples; v) removal of duplicated, mismatching and ambiguous SNPs. After
rigorous QC, we used PLINK to generate PRS for ADNI and UKBB by adopting the classic C+T
method (clumping + thresholding: C+T). To approximate the "best-fit" PRS, we performed a
logistic regression using the PRS calculated at different P-value thresholds, controlling for age,
sex, and the first five genetic PCs. We chose the PRS that explains the highest phenotypic

variance (AD vs. CU in ADNI) (Supplementary eFigure 9).
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Data Availability

The GWAS summary statistics corresponding to this study are publicly available on the

BRIDGEPORT web portal (https://www.cbica.upenn.edu/bridgeport/), the FUMA online

platform (https://fuma.ctglab.nl/), and the GWAS Catalog platform

(https://www.ebi.ac.uk/ewas/home).
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Code Availability

The software and resources used in this study are all publicly available:

Surreal-GAN: https://pypi.org/project/Surreal GAN/, generation of R1 and R2

Smile-GAN: https://pypi.org/project/SmileGAN/, generation of P1, P2, P3, and P4

BIGS: https://www.cbica.upenn.edu/bridgeport/data/pdf/BIGS genetic_protocol.pdf,

genetic processing protocol

BRIDGEPORT: https://www.cbica.upenn.edu/bridgeport/, web portal for dissemination

MUSE: https://www.med.upenn.edu/sbia/muse.html, image preprocessing

PLINK: https://www.cog-genomics.org/plink/, GWAS

FUMA: https://fuma.ctglab.nl/, genetic analysis

GCTA: https://yanglab.westlake.edu.cn/software/gcta/#Overview, heritability estimates

MAGMA: https://ctg.cncr.nl/software/magma, gene analysis

LDSC: https://github.com/bulik/ldsc, PRS
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