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Abstract  

Alzheimer's disease (AD) is associated with heterogeneous atrophy patterns,1,2 which are 

increasingly manifested throughout the disease course, driven by underlying neuropathologic 

processes. Herein, we show that manifestations of these brain changes in early asymptomatic 

stages can be detected via a novel deep semi-supervised representation learning method.3 We 

first identified two dominant dimensions of brain atrophy in symptomatic mild cognitive 

impairment (MCI) and AD patients4: the <diffuse-AD= (R1) dimension shows widespread brain 

atrophy, and the <MTL-AD= (R2) dimension displays focal medial temporal lobe (MTL) 

atrophy. Critically, only R2 was associated with known genetic risk factors (e.g., APOE ε4) of 

AD in MCI and AD patients at baseline. We then showed that brain changes along these two 

dimensions were independently detected in early stages in a cohort representative of the general 

population5 and two cognitively unimpaired cohorts of asymptomatic participants.6,7 In the 

general population, genome-wide association studies found 77 genes unrelated to APOE 

differentially associated with R1 and R2. Functional analyses revealed that these genes were 

overrepresented in differentially expressed gene sets in organs beyond the brain (R1 and R2), 

including the heart (R1) and the pituitary gland, muscle, and kidney (R2). These genes were also 

enriched in biological pathways implicated in dendritic cells (R2), macrophage functions (R1), 

and cancer (R1 and R2). The longitudinal progression of R1 and R2 in the cognitively 

unimpaired populations, as well as in individuals with MCI and AD, showed variable 

associations with established AD risk factors, including APOE ε4, tau, and amyloid. Our findings 

deepen our understanding of the multifaceted pathogenesis of AD beyond the brain. In early 

asymptomatic stages, the two dimensions are associated with diverse pathological mechanisms, 
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including cardiovascular diseases8, inflammation,9–11 and hormonal dysfunction12,13 – driven by 

genes different from APOE – which collectively contribute to the early pathogenesis of AD.  
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Main 

Alzheimer's disease (AD) is the most common cause of dementia in older adults and remains 

incurable despite many pharmacotherapeutic clinical trials, including anti-amyloid drugs14,15 and 

anti-tau drugs.16 This is largely due to the complexity and multifaceted nature of the underlying 

neuropathological processes leading to dementia. The research community has embraced several 

mechanistic hypotheses to elucidate AD pathogenesis.17–19 Among these, the amyloid hypothesis 

has been dominant over the past decades and has proposed a dynamic biomarker chain: 

extracellular beta-amyloid (Aβ) triggers a cascade that leads to subsequent intracellular 

neurofibrillary tangles, including hyperphosphorylated tau protein (tau and p-tau), 

neurodegeneration, including medial temporal lobe atrophy, and cognitive decline.20,21 However, 

the amyloid hypothesis has been reexamined and revised due to substantial evidence which 

questions its current form21–23. While amyloid remains critical to AD development, the amyloid 

cascade model has been continually refined as other biological factors are discovered to 

influence the pathway from its accumulation to cell death.  

Cardiovascular dysfunction has been widely associated with an increased risk for AD.8 

There is also growing evidence that inflammatory10–12 and neuroendocrine processes5,13 influence 

pathways of amyloid accumulation and neuronal death. The inflammation hypothesis claims that 

microglia and astrocytes release pro-inflammatory cytokines as drivers, byproducts, or beneficial 

responses associated with AD progression and severity.11,24,25 The neuroendocrine hypothesis, 

first introduced in the context of aging26, has been extended to AD13, where it proposes that 

neurohormones secreted by the pituitary and other essential endocrine glands can affect the 

central nervous system (CNS), which subsequently contribute to developing AD. For example, 

Xiong and colleagues12 recently found that blocking the action of follicle-stimulating hormone in 
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mice abrogates the AD-like phenotype (e.g., cognitive decline) by inhibiting the neuronal 

C/EBPβ–δ-secretase pathway. These findings emphasize the need to further elucidate early brain 

and body changes well before they lead to irreversible clinical progression.27
  

Recent advances in artificial intelligence (AI), especially deep learning (DL), applied to 

magnetic resonance imaging (MRI), showed great promise in biomedical applications28,29. DL 

models discover complex non-linear relationships between phenotypic and genetic features and 

clinical outcomes, thereby providing informative imaging-derived endophenotypes30. In 

particular, AI has been applied to MRI to disentangle the neuroanatomical heterogeneity of AD 

with categorical disease subtypes.1,2,31 The genetic underpinnings32,33 of this neuroanatomical 

heterogeneity in AD are also complex and heterogeneous. The most recent large-scale genome-

wide association study32 (GWAS: 111,326 AD vs. 677,633 controls) has identified 75 genomic 

loci, including APOE genes, associated with AD. However, such case-control group comparisons 

conceal genetic factors that might contribute differentially to different dimensions of AD-related 

brain change. More importantly, the genetic variants that contribute to the initiation and early 

progression of brain change in younger and asymptomatic individuals are poorly understood.  

The current study models disease neuroanatomical heterogeneity using a newly-

developed semi-supervised representation deep learning method, Surreal-GAN.3 It provides 

multiple continuous dimensional scores (i.e., neuroanatomical dimensions) instead of categorical 

subtypes,1 considering disease heterogeneity spatially and temporally. These multiple 

dimensional scores reflect the co-expression level of respective brain atrophy dimensions. Refer 

to Method 1 and Supplementary eMethod 1 for more methodological details and strengths of 

semi-supervised representation learning. We hypothesized that genetic variants, potentially 

unrelated to APOE genes, contribute to early manifestations of multiple dimensions of brain 
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atrophy in early asymptomatic stages. To test this hypothesis, we first defined the Surreal-GAN 

dimensions in late symptomatic stages and then examined their expression back to early 

asymptomatic stages. In our previous study,3 we derived two neuroanatomical dimensions (R1 

and R2) by applying Surreal-GAN to the MCI/AD participants and cognitively unimpaired (CU) 

participants from the Alzheimer's Disease Neuroimaging Initiative study (ADNI4). Herein, we 

applied the trained model to three asymptomatic populations and one symptomatic population: 

the general population (N=39,575; age: 64.12±7.54 years) from the UK Biobank (UKBB5) 

excluding demented individuals; the cognitively unimpaired population (N=1658; age: 

65.75±10.90 years) from ADNI and the Baltimore Longitudinal Study of Aging study (BLSA7); 

the cognitively unimpaired population with a family risk (N=343; age: 63.63±5.05 years) from 

the Pre-symptomatic Evaluation of Experimental or Novel Treatments for Alzheimer's Disease 

(PREVENT-AD6); the MCI/AD population (N=1534; age: 73.45±7.69 years) from ADNI and 

BLSA. Refer to Method 2 and Table 1 for details of the definition of these populations.    

 

 

Results 

Two dominant dimensions of brain atrophy found in MCI and AD  

In MCI/AD patients, the <diffuse-AD= dimension (R1) showed widespread brain atrophy without 

an exclusive focus on the medial temporal lobe (Fig. 1A and Supplementary eTable 1 for P-

values and effect sizes). In contrast, the <MTL-AD= dimension (R2) displayed more focal medial 

temporal lobe atrophy, prominent in the bilateral parahippocampal gyrus, hippocampus, and 

entorhinal cortex (Fig. 1A). All results, including P-values and effect sizes (Pearson’s correlation 

coefficient r), are presented in Supplementary eTable 1. The atrophy patterns of the two 

dimensions defined in the symptomatic MCI/AD population (Fig. 1A) were present in the 
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asymptomatic populations, albeit with a smaller magnitude of r. (Supplementary eTable 1, 4, 

and 8). We visualized the expression of R1 and R2 and the age distribution in the four 

populations in Supplementary eFigure 1. The MCI/AD population exhibited more salient AD 

signatures than the three asymptomatic populations. 

 

 APOE genes are associated with R2 but not with R1 in the MCI/AD population 

In GWAS (Method 6 B & C), the R2 dimension, but not R1, was associated with well-

established AD genomic loci (rs429358, chromosome: 19, 45411941; minor allele: C, P-value: 

1.05 x 10-11) and genes (APOE, PVRL2, TOMM40, and APOC1) (Fig. 1B, Method 6B). The 

details of the identified genomic locus and annotated genes are presented in Supplementary 

eTable 2. The polygenic risk scores of AD (Method 6F) showed a slightly stronger positive 

association with the R2 dimension [r=0.11, -log10(P-value)=3.14] than with the R1 dimension 

[r=0.09, -log10(P-value)=2.31, Supplementary eFigure 2]. The QQ plots of baseline GWAS are 

presented in Supplementary eFigure 3.  

 

Clinical profiles of the R1 and R2 dimensions in the MCI/AD population 

Clinical association studies (Method 5) correlated the two dimensions with 45 clinical variables 

and biomarkers. Compared to the R1 dimension, R2 showed associations, to a larger extent than 

R1, with SPARE-AD and the Rey Auditory Verbal Learning Test (RAVLT). SPARE-AD 

quantifies the presence of a typical imaging signature of AD-related brain atrophy, which has 

been previously shown to predict clinical progression in both CU and MCI individuals.34 

RAVLT measures episodic memory, a reliable neuropsychological phenotype in AD, which is 

also correlated with medial temporal lobe atrophy.35,36 The R1 dimension was associated to a 
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greater extent with 1) SPARE-BA, which captures the individualized expression of advanced 

brain age from MRI37; 2) white matter lesions (WML), which are commonly associated with 

vascular risk factors and cognitive decline38, and 3) whole-brain uptake of 18F-

fluorodeoxyglucose (FDG) PET, which is a biomarker of brain metabolic function and atrophy. 

Both dimensions were positively associated with cerebrospinal fluid (CSF) levels of tau and p-

tau and negatively associated with the CSF level of Aβ4239 (Fig. 1C), as well as the whole-brain 

standardized uptake value ratio of 18F-AV-45 PET (Supplementary eTable 3). Results for all 

45 clinical variables, including cognitive scores, modifiable risk factors, CSF biomarkers, 

disease/condition labels, demographic variables, and imaging-derived phenotypes, are presented 

in Supplementary eTable 3 for P-values and effect sizes (i.e., beta coefficients). 
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Figure 1: The manifestation of the R1 and R2 dimensions of brain atrophy in the MCI/AD 

population.  

 
A) Brain association studies (Method 4) reveal two dominant brain atrophy dimensions. A linear 

regression model was fit to the 119 GM ROIs at baseline for the R1 and R2 dimensions. The –
log10(P-value) of each significant ROI (Bonferroni correction for the number of 119 ROIs: –
log10(P-value) > 3.38) is shown. A negative value denotes brain atrophy with a negative 

coefficient in the linear regression model. P-value and effect sizes (r, Pearson’s correlation 
coefficient) are presented in Supplementary eTable 1. The range of r for each dimension is also 

shown. Of note, the sample size (N) for R1 and R2 is the same for each ROI. B) Genome-wide 

association studies (Method 6) demonstrate that the R2, but not R1, dimension is associated with 

variants related to APOE genes (genome-wide P-value threshold with the red line: –log10(P-

value) > 7.30). We associated each common variant with R1 and R2 using the whole-genome 

sequencing data from ADNI. Gene annotations were performed via positional, expression 

quantitative trait loci, and chromatin interaction mappings using FUMA.40 We then manually 

queried whether they were previously associated with AD-related traits in the GWAS Catalog.41 

Red-colored loci/genes indicate variants associated with AD-related traits in previous literature. 

C) Clinical association studies (Method 5) show that the R2 dimension is associated to a larger 

extent with AD-specific biomarkers, including SPARE-AD34, an imaging surrogate to AD 

atrophy patterns, and APOE ε4, the well-established risk allele in sporadic AD. The R1 

dimension is associated to a larger extent with aging (e.g., SPARE-BA,37 an imaging surrogate 

for brain aging) and vascular-related biomarkers (e.g., WML, white matter lesion). The same 

linear regression model was used to associate the R1 and R2 dimensions with the 45 clinical 
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variables, including cognitive scores, modifiable risk factors, CSF biomarkers, disease/condition 

labels, demographic variables, and imaging-derived phenotypes. The radar plot shows 

representative clinical variables; results for all 45 clinical variables are presented in 

Supplementary eTable 3. The SPARE-AD and SPARE-BA scores are rescaled for visualization 

purposes. The gray-colored circle lines indicate the P-value threshold in both directions 

(Bonferroni correction for the 45 variables: –log10(P-value) > 2.95). A positive/negative –
log10(P-value) value indicates a positive/negative correlation (beta). The transparent dots 

represent the associations that do not pass the Bonferroni correction; the blue-colored dots and 

red-colored dots indicate significant associations for the R1 and R2 dimensions, respectively.   

  

Clinical profiles of the R1 and R2 dimensions in the general population  

Brain association studies (Method 4) confirmed the presence of the two atrophy patterns in the 

general population (Fig. 2A and Supplementary eTable 4 for P-values and effect sizes). In 

clinical association studies (Method 5), the R1 dimension was significantly associated, to a 

larger extent than R2, with cardiovascular (e.g., triglycerides) and diabetes factors (e.g., Hba1c 

and glucose), executive function (TMT-B), intelligence, physical measures (e.g., diastolic blood 

pressure), SPARE-BA [–log10(P-value) = 236.89 for R1 and -46.35 for R2] and WML [–log10(P-

value) = 120.24 for R1 and 2.06 for R2]. In contrast, the R2 dimension was more significantly 

associated with SPARE-AD [–log10(P-value) = 136.01 for R1 and 250.41 for R2] and 

prospective memory. (Fig. 2B). Results for all 61 clinical variables, including cardiovascular 

factors, diabetic blood markers, social demographics, lifestyle, physical measures, cognitive 

scores, and imaging-derived phenotypes, are presented in Supplementary eTable 5 for P-values 

and effect sizes.  

 

Twenty-four genomic loci and seventy-seven genes unrelated to APOE are associated with 

the R1 and R2 dimensions in the general population 

GWAS (Method 6B & C) identified 24 genomic loci, 14 of which are novel (refer to Method 

6E for the definition of novel loci/genes), and 77 genes unrelated to APOE associated with R1 or 
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R2. In particular, the R1 dimension was significantly associated with 11 genomic loci and 49 

annotated genes. Eight genes (blue-colored genes in Fig. 2C) were previously associated with 

AD-related traits; 12 novel loci/genes (pink-colored in bold genes in Fig. 2C) have not been 

previously associated with any clinical traits (Method 6C). The R2 dimension was significantly 

associated with 13 genomic loci and 40 annotated genes. 13 genes (red-colored genes in Fig. 2C) 

were associated with AD-related traits; 8 loci/genes (pink-colored in bold genes in Fig. 2C) were 

novel (Fig. 2C, Supplementary eTable 6, Method 6C, D, E). These genomic loci and genes 

were also associated with many clinical traits in the literature from the GWAS Catalog.41 These 

included hormones (e.g., sex hormone-binding globulin measurement vs. CCKN2C), 

inflammatory factors (e.g., macrophage inflammatory protein 1b measurement vs. CDC25A), 

imaging-derived phenotypes (e.g., cerebellar volume measurement from MRIs vs. DMRTA2), 

and psychiatric disorders (e.g., unipolar depression vs. ASTN2) (Fig. 2D). Details of the GWAS 

Catalog results are presented in Supplementary eFile 1. The QQ plots are presented in 

Supplementary eFigure 4. The two dimensions were significantly heritable in the general 

population based on the SNP-based heritability estimates (R1: h2 = 0.49 ± 0.02; R2: h2 = 0.55 ± 

0.02) (Method 6B). The polygenic risk scores of AD (Method 6F) showed a marginal positive 

association with the R2 dimension [-log10(P-value)=1.42], but not with the R1 dimension [-

log10(P-value)=0.47<1.31] in this population.    
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Figure 2: The expression of the R1 and R2 dimensions in the general population.  

 
A) Brain association studies (Method 4) confirm the presence of the two dimensions in the 

general population: the R1 dimension shows widespread brain atrophy, whereas the R2 

dimension displays focal medial temporal lobe atrophy. P-value and effect sizes (r, Pearson’s 
correlation coefficient) are presented in Supplementary eTable 4. The range of r for each 

dimension is also shown. Of note, the sample size (N) for R1 and R2 is the same for each ROI. 

B) Clinical association studies (Method 5) further show that the R2 dimension is associated with 

prospective memory, and the R1 dimension is associated with several cognitive dysfunctions, 

cardiovascular risk factors (e.g., triglycerides), and diabetes (e.g., HbA1c). The same linear 

regression models were used to associate the R1 and R2 dimensions with the 61 clinical 

variables, including cardiovascular factors, diabetic blood markers, social demographics, 

lifestyle, physical measures, cognitive scores, and imaging-derived phenotypes. The radar plot 

shows representative clinical variables; all other results are presented in Supplementary eTable 

5. The gray circle lines indicate the P-value threshold in both directions (Bonferroni correction 

for the 61 variables: –log10(P-value) > 3.08). A positive/negative –log10(P-value) value indicates 

a positive/negative correlation (beta). Transparent dots represent the associations that do not pass 

the Bonferroni correction; the blue-colored dots and red-colored dots indicate significant 

associations for the R1 and R2 dimensions, respectively. C) Genome-wide association studies 
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(Method 6) demonstrate that the R2 dimension is associated to a larger extent with genomic loci 

and genes previously associated with AD-related traits in the literature (genome-wide P-value 

threshold with the red line: –log10(P-value) > 7.30). The R1 dimension identified 8 (blue-colored 

in bold) out of the 49 mapped genes associated with AD-related traits; 12 novel loci/genes (pink-

colored in bold, Method 6C) were not associated with any clinical traits. The R2 dimension 

identified 13 (red-colored in bold) out of 40 mapped genes associated with AD-related traits; 8 

loci/genes were novel (pink-colored in bold). Gene annotations were performed via positional, 

expression quantitative trait loci, and chromatin interaction mappings using FUMA.40 The 

genomic loci and mapped genes were manually queried in the GWAS Catalog41 to determine 

whether they were previously associated with AD (novel or not). D) Besides AD-related traits, 

the genes and genomic loci in the two dimensions were also associated with other clinical traits, 

including inflammation, neurohormones, and imaging-derived phenotypes, in the literature from 

the GWAS Catalog.41 The flowchart first maps the genomic loci and genes (left) identified in the 

two dimensions onto the human genome (middle). It then links these variants to any clinical 

traits identified in previous literature from the GWAS Catalog (right). In the middle of the 

human genome, we show chromosomes 1 to 22 (above to below); the blue and red-colored genes 

are AD-related for the R1 and R2 dimensions, respectively. The black-colored genes (Fig. C) are 

not annotated. INF: inflammation; PD: psychiatric disorder; PM: physical measure; Novel (pink-

colored in bold, corresponding to the novel loci/genes in Fig C) indicates that the locus or gene 

was not associated with any traits in the literature.  

 

Genes associated with the R1 and R2 dimensions are overrepresented in organs beyond the 

brain in the general population  

Tissue specificity analyses test whether the input genes (Fig. 2C) are overrepresented in 

differentially expressed gene sets (DEG) in one organ/tissue compared to all other organs/tissues 

using different gene expression data40 (Method 6D). The genes associated with the R1 

dimension were overrepresented in caudate, hippocampus, putamen, amygdala, substantia nigra, 

liver, heart, and pancreas; the genes associated with the R2 dimension were overrepresented in 

caudate, hippocampus, putamen, amygdala, anterior cingulate, pituitary, liver, muscle, kidney, 

and pancreas (Fig. 3A and Supplementary eFigure 5). Genes in DEG over-expressed in the 

heart were only associated with R1, while those in DEG over-expressed in the pituitary gland, 

muscle, and kidney were unique in R2. The expression values of every single gene for all tissues 

are presented in Supplementary eFigure 6. 
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Genes associated with the R1 and R2 dimensions are enriched in key biological pathways in 

the general population  

Genes associated with the two dimensions were enriched in different biological pathways 

(Method 6D). Genes associated with the two dimensions were implicated in several types of 

cancer, including up-regulation of fibroblast, breast cancer, and neuroblastoma tumors (Fig. 3B), 

which indicate a certain extent of genetic overlaps and shared pathways that may explain the 

intriguing inverse relationship between AD and cancer.42 Genes associated with the R1 

dimension were implicated in pathways involved in the down-regulation of macrophages (Fig. 

3B), which are involved in the initiation and progression of various inflammatory processes, 

including neuroinflammation and AD.24 Inflammation is also known to be associated with 

vascular compromise and dysfunction. This further concurs with the stronger cardiovascular 

profile of R1, especially with increased WML and predominant SPARE-BA increases. Genes 

associated with the R2 dimensions were enriched in pathways involved in AD onset, 

hippocampus-related brain volumes, and dendritic cells (Fig. 3B). In particular, dendritic cells 

may regulate amyloid-β-specific T-cell entry into the brain,43 as well as the inflammatory status 

of the brain.44 The gene set enrichment analysis results are presented in Supplementary eTable 

7.  
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Figure 3: Tissue specificity and biological pathway enrichment analysis of the R1 and R2 

dimensions in the general population.  

 
A) Tissue specificity analyses (Method 6D) show that genes associated with the two dimensions 

of neurodegeneration are overrepresented in organs/tissues beyond the human brain (R1 and R2). 

The unique overrepresentation of genes in differentially expressed gene sets (DEG) in the heart 

(R1) and the pituitary gland, muscle, and kidney (R2) may imply the involvement of 

inflammation9–11 and neurohormone dysfunction12,13,26, respectively. The GENE2FUNC40 

pipeline from FUMA was performed to examine the overrepresentation of prioritized genes (Fig. 

2C) in pre-defined DEGs (up-regulated, down-regulated, and both-side DEGs) from different 

gene expression data. The input genes (Fig. 2C) were tested against each DEG using the 

hypergeometric test. We present only the organs/tissues that passed the Bonferroni correction for 

multiple comparisons. B) Gene set enrichment analysis (Method 6D) shows that genes 

associated with the two dimensions are enriched in different biological pathways. For example, 
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genes associated with the R1 dimension are implicated in down-regulated macrophage functions, 

which have been shown to be associated with inflammation.24 In contrast, the R2 dimension is 

enriched in AD hallmarks (e.g., hippocampus), AD-related gene sets, and the pathway involved 

in dendritic cells, which may regulate amyloid-β-specific T-cell entry into the brain.43 Both 

dimensions are enriched in gene sets involved in cancer, which may indicate overlapped genetic 

underpinnings between AD and cancer.42 The GENE2FUNC40 pipeline from FUMA was 

performed to examine the enrichment of prioritized genes (Fig. 2C) in pre-defined gene sets. 

Hypergeometric tests were performed to test whether the input genes were overrepresented in 

any pre-defined gene sets. Gene sets were obtained from different sources, including MsigDB45 

and GWAS Catalog.41 We show the significant results from gene sets defined in the GWAS 

Catalog, curated gene sets, and immunologic signature gene sets. All results are shown in 

Supplementary eTable 7. 
 

 

The longitudinal rate of change in the R2 dimension, but not R1, is marginally associated 

with the APOE ε4 allele, tau in cognitively unimpaired individuals 

Using cognitively unimpaired participants from ADNI and BLSA, longitudinal brain association 

studies (Method 4B) showed that the rate of change in the R1 dimension was associated with the 

change of brain volume in widespread brain regions. In contrast, the rate of change in the R2 

dimension was associated with the change of brain volume in the focal medial temporal lobe (Fig. 

4A and Supplementary eTable 8 for P-values and effect sizes). This further indicates that the two 

dominant patterns discovered cross-sectionally also progress in consistent directions 

longitudinally. The two dimensions were not associated with CSF biomarkers (Aβ42, tau, and p-

tau) and the APOE ε4 allele (rs429358) at baseline [–log10(P-value) < 1.31)]. The rate of change 

of the R2 dimension, but not R1, was marginally [nominal threshold: –log10(P-value) > 1.31] 

associated with the APOE ε4 allele, the CSF level of tau, and p-tau (Fig. 4B and Supplementary 

eTable 9 for P-values and effect sizes), but they did not survive the Bonferroni correction [–

log10(P-value) = 2.95]. The longitudinal rate of change of both dimensions was negatively 

associated [–log10(P-value) > 2.95] with the total CSF level of Aβ42.  
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We tested these associations using cognitively unimpaired individuals with a high risk of 

AD based on their family history (refer to Method 2 for details) from the PREVENT-AD cohort. 

Similarly, at baseline, the two dimensions were not associated with CSF biomarkers or the APOE 

ε4 allele (rs429358). The longitudinal rate of change in the R2 dimension, but not R1, was 

marginally [nominal threshold: –log10(P-value) > 1.31] associated with the APOE ε4 allele [–

log10(P-value) = 1.92], the CSF level of tau [–log10(P-value) = 1.65], and p-tau [–log10(P-value) = 

1.66].  

Longitudinal brain association studies also confirmed the longitudinal progression of the 

two dimensions in the MCI/AD population (Supplementary eFigure 7A). The rates of change in 

the two dimensions were both associated with APOE ε4 [–log10(P-value) = 12.54 for R1 and 9.05 

for R2] in GWAS (Supplementary eFigure 7B), and related to CSF levels of tau [–log10(P-value) 

= 16.47 for R1 and 9.73 for R2], p-tau [–log10(P-value) = 19.13 for R1 and 10.81 for R2], and 

Aβ42 [–log10(P-value) = 13.64 for R1 and 13.55 for R2] (Supplementary eFigure 7C).  
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Figure 4: The longitudinal rate of change in R1 and R2 in the cognitively unimpaired 

population. 

 
A) Longitudinal brain association studies (Method 4B) show that the R1 dimension exhibits 

longitudinal brain volume decrease in widespread brain regions, whereas the R2 dimension 

displays longitudinal brain volume decrease in the focal medial temporal lobe. We first derived 

the rate of change of the 119 GM ROIs and the R1 and R2 dimensions using a linear mixed 

effect model; a linear regression model was then fit to the rate of change of the ROIs, R1, and R2 

to derive the beta coefficient value of each ROI. A negative value denotes longitudinal brain 

changes with a negative coefficient of the rate of change in the linear regression model. P-value 

and effect sizes (r, Pearson’s correlation coefficient) are presented in Supplementary eTable 8. 

The range of r for each dimension is also shown. Of note, the sample size (N) for R1 and R2 is 

the same for each ROI. B) The rate of change, not the baseline measurement, in the two 

dimensions is negatively associated with the CSF level of Aβ42 (Bonferroni correction for the 45 
variables: –log10(P-value) > 2.95). The rate of change in the R2 dimension, not the R1 

dimension, was marginally (–log10(P-value) > 1.31) associated with the CSF level of tau and p-

tau, and APOE ε4. All other clinical associations are presented in Supplementary eFile 9. The 

gray-colored circle lines indicate different P-value thresholds in both directions (Bonferroni 

correction for the 45 variables: –log10(P-value) > 2.95 and the nominal P-value threshold: –
log10(P-value) > 1.31). A positive/negative –log10(P-value) value indicates a positive/negative 

correlation (beta). Transparent dots represent the associations that do not pass the nominal P-

value threshold [log10(P-value) = 1.31]; the blue-colored dots and red-colored dots indicate 

significant associations [log10(P-value) > 1.31] for the R1 and R2 dimensions, respectively.  
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Discussion 

The current study leveraged a deep semi-supervised representation learning method to establish 

two predominant dimensions in the symptomatic MCI/AD population, which were independently 

found to be expressed, to a lesser degree, in three asymptomatic populations. In particular, the 

R1 dimension represented a <diffuse-AD= atrophy pattern: varying degrees of brain atrophy 

throughout the entire brain. In contrast, the R2 dimension showed an <MTL-AD= atrophy 

pattern: brain atrophy predominantly concentrated in the medial temporal lobe (Fig. 1A). 

Importantly, only R2 was found to be significantly associated with genetic variants of the APOE 

genes in MCI/AD patients. Furthermore, our study examined early manifestations of the R1 and 

R2 dimensions in asymptomatic populations with varying levels of AD risks and their 

associations with genetics, amyloid plaques and tau tangles, biological pathways, and body 

organs. We identified that 24 genomic loci, 14 of which are novel (Method 6E), and 77 

annotated genes contribute to early manifestations of the two dimensions. Functional analyses 

showed that genes unrelated to APOE were overrepresented in DEG sets in organs beyond the 

brain (R1 and R2), including the heart (R1) and the pituitary gland (R2), and enriched in several 

biological pathways involved in dendritic cells (R2), macrophage functions (R1), and cancer (R1 

and R2). Longitudinal findings in the cognitively unimpaired populations showed that the rate of 

change of the R2 dimension, but not R1, was marginally associated with the APOE ε4 allele, the 

CSF level of tau, and Aβ42 (R1 and R2). Our findings suggested that diverse pathologic 

processes, including cardiovascular risk factors, neurohormone dysfunction, and inflammation, 

might occur in the early asymptomatic stages, supporting and expanding the current amyloid 

cascade.20,21  
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Figure 5: Genes unrelated to APOE influence early manifestations of R1 and R2. 

 
Genes unrelated to APOE and overrepresented in organs beyond the human brain are associated 

with early manifestations of the R1 (diffuse-AD) and R2 (MTL-AD) dimensions, which capture 

the heterogeneity of AD-related brain atrophy. For visualization purposes, we display the two 

genes with the highest expression values in the tissue specificity analyses for each organ/tissue 

(Supplementary eFigure 6). Along these two dimensions, the black arrow line emulates the 

longitudinal progression trajectory of AD. The positions of beta-amyloid, tau and the text 

<increasing APOE-mediated progression= indicate the time point when they are associations with 

the two dimensions. The blue/red gradient-color background indicates a higher influence of 

APOE-related genes (left to right). The brain atrophy patterns are presented in the 3D view. In 

early asymptomatic stages, the R1-related genes are implicated in cardiovascular diseases and 

inflammation; the R2-related genes are involved in hormone-related dysfunction. Critically, 

longitudinal progression of the dimension demonstrates an impact of the APOE genes in early 

asymptomatic stages in R2, but this longitudinal effect occurs only in late symptomatic stages in 

R1. These results suggest that comorbidities (e.g., cardiovascular conditions) or normal aging in 

R1 may alter or delay the trajectory of neurodegeneration in early asymptomatic stages; APOE-

related genes may play a pronounced role in the acceleration and progression in late symptomatic 

stages for both dimensions. Of note, the underlying pathological processes that initiate and drive 

the progression of the two dimensions are not mutually exclusive. Hence, both R1 and R2 can be 

co-expressed in the same individual. In addition, the two dimensions can also be affected by 

other AD hypotheses, such as the mitochondrial hypothesis46 and the metabolic hypothesis.47 

MTL: medial temporal lobe. 
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AD has been regarded as a CNS disorder. However, increasing evidence has indicated 

that the origins or facilitators of the pathogenesis of AD might involve processes outside the 

brain.19 For example, recent findings revealed that gut microbiota disturbances might influence 

the brain through the immune and endocrine system and the bacteria-derived metabolites.48,49 

Our findings support the view that multiple pathological processes might contribute to early AD 

pathogenesis and identify non-APOE genes in the two dimensions overrepresented in tissues 

beyond the brain (e.g., the heart, pituitary gland, muscle, and kidney). Pathological processes 

may be involved in different cells, molecular functions, and biological pathways, exaggerating 

amyloid plaque and tau tangle accumulation and leading to the downstream manifestation of 

neurodegeneration and cognitive decline.  

The genetic and clinical underpinnings of the R1 dimension support inflammation, as 

well as cardiovascular diseases, as a core pathology contributing to AD.9–11 Genes associated 

with the R1 dimension were previously associated with various inflammation-related clinical 

traits (Fig. 2D), and enriched in biological pathways involved in immunological response (e.g., 

up-regulation in macrophages50, Fig. 3B). In addition, genes in this dimension were 

overrepresented in DEG sets in the heart (Fig. 3A). Previous literature indicated that 

inflammation is likely an early step that initiates the amyloidogenic pathway – the expression of 

inflammatory cytokines leads to the production of β-amyloid plaques.24 Several markers of 

inflammation are also present in serum and CSF before any indications of Aβ or tau tangles.51 

For example, clusterin, a glycoprotein involved in many processes and conditions (e.g., 

inflammation, proliferation, and AD) induced by tumor necrosis factor (TNF), was present ten 

years earlier than Aβ deposition.52 In addition, the R1 dimension was also strongly associated 

with cardiovascular and diabetes biomarkers (Fig. 2B). Inflammatory processes have been 
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critical, well-established risk factors for compromised cardiovascular function,53 such as 

coronary artery disease and the breakdown of the blood-brain barrier. Our results corroborated 

the close relationships between AD, cardiovascular diseases, and inflammation. 

The genetic and clinical underpinnings of the R2 dimension support that neuroendocrine 

dysfunction might be an early event contributing to the pathogenesis of AD.12,13 Genes in the R2 

dimension were previously associated with different hormone and pancreas-related traits from 

GWAS Catalog (Fig. 2D); they were also overrepresented in DEG in the pituitary and pancreas 

glands, muscle and kidney (Fig. 3A), which are master glands or key organs in the endocrine 

system.54 Previous literature suggested that neuroendocrine dysfunction might contribute to AD 

development by secreting neurohormonal analogs and affecting CNS function.13 For example, 

luteinizing hormone-releasing hormone and follicle-stimulating hormone in serum or neurons 

were associated with the accumulation of Aβ plaques in the brain.12,55.56 However, early 

experimental studies on antagonists of Luteinizing hormone-releasing hormone and growth 

hormone-releasing hormone in animal models of AD have shown promising but not entirely 

convincing evidence.13 Taken together, neurodegeneration in the R2 dimension represents an 

AD-specific phenotype that might be driven by hormonal dysfunction, leading to rapid 

accumulation of amyloid plaques, and was potentially accelerated by the APOE ε4 allele – the 

rate of change in R2, but not R1, was associated with the APOE ε4 allele in cognitively 

unimpaired individuals (Fig. 4B).    

The hypothesized implications above of the R1 and R2 dimensions on inflammation, 

cardiovascular functions, and neuroendocrine dysfunctions are not mutually exclusive and may 

collectively contribute to AD pathogenesis. It has been shown that dysregulation of the 

hypothalamic-pituitary-gonadal axis is associated with dyotic signaling, modulating the 
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expression of TNF and related cytokines in systemic inflammation, and the induction of 

downstream neurodegenerative cascades within the brain.57,58 These studies hypothesized that 

the neuroendocrine dysfunction and the inflammation mechanism might be the upstream and 

downstream neuropathological processes along the disease course of AD.13 That is, the loss of 

sex steroids and the elevation of gonadotropins might lead to a higher level of inflammatory 

factors in the brain. Finally, other competing hypotheses may also play a role in developing AD 

in early asymptomatic stages, including the mitochondrial hypothesis,46 the metabolic 

hypothesis,47 and the tau hypothesis.16  

The NIA-AA framework59 claims that AD is a continuum in which AD pathogenesis is 

initiated in early asymptomatic cognitively unimpaired stages and progresses to amyloid-positive 

and tau-positive (A+T+) in late symptomatic stages.59 Our findings are consistent with this 

framework and elucidate the cross-sectional and longitudinal associations of the two dimensions 

with genetic and clinical markers from early asymptomatic to late symptomatic stages. In early 

asymptomatic stages, the rates of change in the two dimensions are both associated with 

amyloid. However, only the R2 dimension, not R1, is marginally associated with the APOE ε4 

allele and the CSF level of tau (Fig. 4B). In contrast, in late symptomatic stages, the rates of 

change in the two dimensions are both associated with the APOE ε4 allele, CSF levels of tau, p-

tau, and amyloid (Supplementary eFigure 7). Our findings suggest that comorbidities or normal 

aging in R1 may alter the rate or trajectory of neurodegeneration at early asymptomatic stages, 

but APOE-related genes might play a more pronounced role in the acceleration and progression 

during late symptomatic stages for both dimensions (Fig. 5).  

In conclusion, the current study used a novel deep semi-supervised representation 

learning method to establish two AD dimensions. Our findings support that those diverse 
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pathological mechanisms, including cardiovascular diseases, inflammation, hormonal 

dysfunction, and involving multiple organs,60 collectively affect AD pathogenesis in 

asymptomatic stages. Disentangling diverse pathological mechanisms into homogeneous 

dimensions may guide future therapies in the early asymptomatic stages of AD to target multi-

organ dysfunctions beyond the brain.  
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Methods 

Method 1: Surreal-GAN deciphers the neuroanatomical heterogeneity of Alzheimer's 

disease 

Surreal-GAN3 dissects underlying disease-related heterogeneity via a deep representation 

learning approach under the principle of semi-supervised clustering. Semi-supervised 

clustering1,31 seeks the "1-to-k" mapping between the reference healthy control group and the 

patient group, thereby teasing out clusters or subtypes driven by different pathological 

trajectories instead of global similarity/dissimilarity in data. Refer to Supplementary eMethod 

1’s schematic figure for the intuition of deep semi-supervised learning.  

The methodological advance of Surreal-GAN is to model neuroanatomical heterogeneity 

by considering both spatial and temporal (i.e., disease severity) variation using only cross-

sectional MRI data. Its precursor, the Smile-GAN model1, disentangled this heterogeneity in 

MCI/AD patients into four subtypes: i) P1, preserved cognitively unimpaired-like brain, exhibits 

intact brain neuroanatomy compared to cognitively unimpaired participants; ii) P2, mild diffuse 

atrophy without pronounced medial temporal lobe atrophy; iii) P3, focal medial temporal lobe 

atrophy; iv) P4, advanced diffuse atrophy over the whole brain, and two longitudinal pathways: i) 

P1→P2→P4; ii) P1→P3→P4. However, Smile-GAN sought to derive categorical disease 

subtypes, ignoring that disease heterogeneity spatially and temporally expands along a 

continuum (i.e., disease severity or stages). To address this, Surreal-GAN models this 

heterogeneity as a continuous dimensional representation, enforces monophasic disease severity 

in each neuroanatomical dimension, and allows non-exclusive manifestations of multiple 

dimensions. As a result, Surreal-GAN dissects the heterogeneity of AD in two different 

dimensions: i) R1: diffuse brain atrophy without an exclusive focus on the medial temporal lobe; 
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ii) R2: focalized atrophy in medial temporal lobes. Each participant can be presented with 

different levels of expression in both two dimensions. 

By modeling, Surreal-GAN's R1 and R2 dimensions are more appropriate for 

dimensional analyses as continuous variables. In contrast, the four neuroanatomical subtypes of 

Smile-GAN are better instruments for case-control analyses as categorical variables. We used 

ADNI data to show that the R1 and R2 dimensional scores were approximately normally 

distributed, and the P1, P2, P3, and P4 probability scores followed bimodal distributions 

(Supplementary eFigure 8). Refer to Supplementary eMethod 1 for mathematical details.  

 

Method 2: Study populations 

The current study consists of four main populations (Table 1), which were jointly consolidated 

by the iSTAGING and the AI4AD consortia: 

 the MCI/AD population: MCI/AD patients from ADNI4 and BLSA7.  

 the general population: all participants excluding demented from UKBB5 (refer to Table 

1 for inclusion criteria).  

 the cognitively unimpaired population: cognitively unimpaired participants from ADNI 

and BLSA.  

 the cognitively unimpaired population with a family risk: cognitively unimpaired 

participants from PREVENT-AD6 (refer to Table 1 for inclusion criteria). 

The Surreal-GAN model was trained in the MCI/AD patients and healthy controls from 

ADNI and then applied to all populations. The iSTAGING consortium61 consolidated all 

imaging and clinical data; imputed genotyping data were originally downloaded from UKBB; the 
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AI4AD consortium (http://ai4ad.org/) consolidated the whole-genome sequencing (WGS) data 

for the ADNI study. 

For ADNI, cognitively unimpaired (CU), MCI, and AD participants were recruited from 

multiple centers in the United States. The primary goal of ADNI was to derive the two MCI/AD 

AI- and imaging-derived dimensions by applying the Surreal-GAN model to T1w MRIs. We 

included all baseline and longitudinal T1w MRI scans and cognitive data available from ADNI 

in iSTAGING. In addition, we also included whole-genome sequencing (WGS) data for ADNI in 

AI4AD. BLSA is a longitudinal study that aims to study aging and related diseases, such as AD. 

At baseline recruitment, participants were mostly cognitively normal and had multiple time 

points of longitudinal follow-ups for MRIs and cognition. Participants enrolled in PREVENT-

AD were cognitively normal older adults with a family history of AD (at least one parent or 

multiple siblings)a. The inclusion criteria are generally similar but more stringent than the proxy-

AD diagnosis62,63 used in UK Biobank (see below), including i) being cognitively normal, ii) 

having a family history of AD, iii) aging within 15 years from the age of disease onset of their 

youngest relative, and iv) no history of neurological or psychiatric diseases. For UKBB, we 

defined asymptomatic participantsb as those that did not have a diagnosis of all sources of 

dementia (G30 in ICD-10 diagnoses, see below) in our data consolidation. However, these 

asymptomatic participants might have diagnoses of other illnesses or comorbidities based on 

ICD-10: https://biobank.ctsu.ox.ac.uk/crystal/coding.cgi?id=19&nl=1. Furthermore, we defined 

proxy-ADc in UKBB as long as the participant satisfied one of the following criteria: i) 

illnesses_of_father_f20107 and ii) illnesses_of_mother_f20110.  
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Table 1. Study characteristics. 

We present the age with the mean, min, and max in each population. The definition of 

cognitively unimpaired (CU)a in PREVENT-AD, asymptomatic participantsb in UKBB, and 

proxy-ADc in UKBB are detailed as below: 

a) Participants (proxy-AD and CU with a family risk) from the PREVENT-AD study were 

recruited with the following criteria: i) being cognitively normal, ii) having a family 

history of AD, iii) aging within 15 years from the age of disease onset of their youngest 

relative, and iv) no history of neurological or psychiatric diseases. 

b) The UKBB participants (the general population) represent a general population with 

healthy aging and diseases (not AD, specifically). We excluded those diagnosed with all 

sources of dementia (G30 in ICD-10 diagnoses, see below). However, these 

asymptomatic participants might have diagnoses of other illnesses or comorbidities 

based on ICD-10: https://biobank.ctsu.ox.ac.uk/crystal/coding.cgi?id=19&nl=1. 

c) Participants with proxy-AD in UKBB are defined by a family history of AD with the 

following criteria: i) illnesses_of_father_f20107 and ii) illnesses_of_mother_f20110.  

 

Population Study 
Participant 

(N) 

Scan 

(N) 

Age 

(year) 

Sex 

/female 
CU AD MCI proxy-AD 

MCI/AD 
ADNI & 

BLSA 
1534 7019 

73.45(54.

27, 93.00) 
888/58% 0 424 1110 NA 

General UKBB 39,575 40,981 
64.12(44.

56,82.27) 

18,625/47

% 

39,574
b
 

1 NA 10,189
c
 

CU 
ADNI & 

BLSA 
1658 6143 

65.75(22.

00,80.00) 

 

939/57% 1658 0 0 NA 

CU with a 

family risk 

PREVENT

-AD 
343 1215 

63.63(55.

13,84.22) 

 

243/71% 343
a
 NA NA 343

a
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Method 3: Image processing and statistical harmonization 

(A): Image processing. The imaging quality check is detailed in Supplementary eMethod 2. 

All images were first corrected for magnetic field intensity inhomogeneity.64 A deep learning-

based skull stripping algorithm was applied for the removal of extra-cranial material. In total, 

145 anatomical regions of interest (ROIs) were generated in gray matter (GM, 119 ROIs), white 

matter (WM, 20 ROIs), and ventricles (6 ROIs) using a multi‐atlas label fusion method.65 The 

119 GM ROIs were used for heterogeneity analyses via Surreal-GAN and for brain association 

studies to examine the brain atrophy patterns of the two dimensions of Surreal-GAN. Of note, 

this is not to validate the two dimensions66 since the 119 GM ROIs were used in defining the two 

dimensions. Instead, we showed the post hoc neuroanatomical patterns to elucidate these brain 

features that drove the two dimensions.    

 

(B): Statistical harmonization of MUSE ROI. The 119 ROIs were statistically harmonized by 

an extensively validated approach, i.e., ComBat-GAM67, using the entire imaging data of 

iSTAGING. Site-specific mean and variance were estimated based on variability observed within 

and across control groups while preserving normal variance due to age, sex, and intracranial 

volume (ICV). 

 

Method 4: Brain association studies 

(A): Baseline brain association studies: We performed brain association studies for the 119 

GM ROIs. Linear regression models were fitted with R1 and R2 dimensions as dependent 

variables, with each ROI as the exposure of interest, controlling for age, gender, ICV, and/or 

diagnosis as confounders. A P-value statistic map was generated for each neuroanatomical 
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dimension: a positive/negative -log10(P-value) value indicates a positive/negative correlation 

(beta values) between the neuroanatomical dimension and the ROI. 

 

(B): Longitudinal brain association studies: We performed two-step brain association studies 

for the 119 GM ROIs using longitudinal data in the MCI/AD and the cognitively unimpaired 

populations (g 4-time points). First, we estimated the RC of age using a linear mixed-effects 

model. Specifically, we included age as the main variable of interest while adjusting for study 

and ICV as fixed effects. We fit linear mixed-effects models with a participant-specific random 

slope for age and random intercept. The slope of age for each participant is estimated as the 

summation of two parts: i) the fixed coefficient of age and ii) the random coefficient of age for 

each participant. For the second step, the same linear regression model, as in baseline brain 

association studies, was fitted with the age change rate in the R1 and R2 dimensions. Bonferroni 

correction of 119 GM ROIs was performed to adjust for the multiple comparisons.  

 

Method 5: Clinical association studies 

We performed clinical association studies for all clinical biomarkers and neuropsychological 

testing available in the iSTAGING consolidation for each population. Linear regression models 

were fitted with the R1 and R2 dimensions as dependent variables, with each clinical variable as 

the variable of interest, controlling for age, gender, ICV, and/or diagnosis as confounders. A P-

value statistic was generated for each clinical variable: a positive/negative -log10(P-value) value 

indicates a positive/negative correlation (beta values). Bonferroni correction was performed to 

adjust for the multiple comparisons. 
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Method 6: Genetic analyses 

Genetic analyses were performed for the whole-genome sequencing (WGS) data from ADNI and 

the imputed genotype data from UKBB. Our quality check protocol (Method 5A) for ADNI 

resulted in 1487 participants and 24,194,338 SNPs. For UKBB, we limited our analysis to 

European ancestry participants, resulting in 33,541 participants and 8,469,833 SNPs. 

 

(A): Genetic data quality check protocol. For ADNI WGS data, we first convert the VCF files 

into plink binary format. We excluded related individuals (up to 2nd-degree) using the KING 

software for family relationship inference.68 Further QC steps are: excluding criteria were: i) 

individuals with more than 2% of missing genotypes; ii) variants with minor allele frequency 

(MAF) of less than 0.1%; iii) variants with larger than 5% missing genotyping rate; iv) variants 

that failed the Hardy-Weinberg test at 1x10-5. We then removed duplicated variants from all 22 

autosomal chromosomes. We also excluded individuals for whom either imaging or genetic data 

were not available. To adjust for population stratification,69 we derived the first 40 genetic 

principal components (PC) using the SmartPCA software70. For UKBB, the genetic pipeline was 

previously described elsewhere.71,72 All QC steps were documented in our BRIDGEPORT web 

portal: https://www.cbica.upenn.edu/bridgeport/data/pdf/BIGS_genetic_protocol.pdf.  

 

(B): Heritability estimates and genome-wide association analysis. Using UKBB data, we first 

estimated the SNP-based heritability using GCTA-GREML,73 controlling for confounders of age 

(at imaging), age-squared, sex, age-sex interaction, age-squared-sex interaction, ICV, and the 

first 40 genetic principal components, following a previous pioneer study.74 In GWAS, we 

performed a linear regression for each neuroanatomical dimension and included the same 
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covariates as in the heritability estimates. We adopted the genome-wide P-value threshold (5 x 

10-8) in all GWAS. 

 

(C): Annotation of genomic loci and gene mappings. The annotation of genomic loci and gene 

mappings was performed on the online platform of FUMA (SNP2GENE, https://fuma.ctglab.nl/, 

version: v1.3.8). For annotation of genomic loci, default parameters were set in FUMA. First, lead 

SNPs (correlation r2 f 0.1, distance < 250 kilobases) are assigned to a genomic locus (non-

overlapping). The SNP with the lowest P-value represents each genomic locus. For gene mappings, 

three different strategies were used to map the SNPs to genes. First, positional mapping maps 

SNPs to genes if the SNPs are physically located inside a gene (a 10 kb window by default). 

Second, expression quantitative trait loci (eQTL) mapping maps SNPs to genes showing a 

significant eQTL association. Lastly, chromatin interaction mapping maps SNPs to genes when 

there is a significant chromatin interaction between the disease-associated regions and nearby or 

distant genes.40  

 

(D): Prioritized gene set enrichment and tissue specificity analysis. FUMA provides the 

functionality GENE2FUNC to study the expression of prioritized genes and test for enrichment 

of the set of genes in pre-defined pathways. We used the mapped genes as prioritized gene 

inputs. The background genes were specified as all genes in FUMA, and default values were 

defined for all other parameters. GENE2FUNC outputs a single gene-level expression heat map 

that quantifies the expression values (average expression per label or average of normalized 

expression per label) in different tissues, including the GTEx v875 54 tissue types and 30 general 

tissue types. For tissue specificity analysis, differentially expressed gene sets (DEG) were pre-
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calculated by performing a two-sided t-test for any one label of tissue against all others. Input 

genes were tested against the pre-defined DEG sets using the hypergeometric test. The tissue 

specificity plot highlights significant enrichment at the Bonferroni corrected P-value < 0.05.  

 

(E): Annotation of novel genomic loci and genes related to AD. A two-step procedure was 

performed to determine if a genomic locus or gene was associated with any AD-related clinical 

traits. First, we manually queried the identified genomic loci, mapped genes, checked if any AD-

related traits were previously reported in GWAS Catalog, and downloaded these associations. In 

addition, we checked if any input genes overlap with the gene set pathways (defined in GWAS 

catalog reported genes) related to AD in (D). We defined a genomic locus or a gene as a novel 

association if the variant was not associated with any clinical traits in GWAS Catalog. For these 

clinical traits reported in GWAS Catalog, we mapped them into several different categories (Fig. 

2D, Supplementary eFile 5).      

 

(F): Polygenic risk score calculation. We calculated the PRS76 using both ADNI and UKBB 

genetic data. The weights of the PRS were defined based on independent base data,33 ensuring 

that the base population does not overlap with the target population in ADNI and UKBB 

(European ancestry). The QC steps for the base data are as follows: i) SNP-based heritability 

estimate (h2 > 0.05) using LDSC77 to avoid spurious SNP data; ii) the genome reference 

consortium human build of the base data is on GRCh3778; iii) removal of duplicated and 

ambiguous SNPs. The QC steps for the target data are as follows: i) using LiftOver79 to convert 

the ADNI WGS from GRCh38 to GRCh37; ii) standard GWAS QC (low minor allele frequency, 

low genotyping rate, etc.); iii) pruning to remove highly correlated SNPs; iv) removal of high 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 25, 2022. ; https://doi.org/10.1101/2022.09.16.508329doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.16.508329
http://creativecommons.org/licenses/by-nc-nd/4.0/


 35 

heterozygosity samples; v) removal of duplicated, mismatching and ambiguous SNPs. After 

rigorous QC, we used PLINK to generate PRS for ADNI and UKBB by adopting the classic C+T 

method (clumping + thresholding: C+T). To approximate the "best-fit" PRS, we performed a 

logistic regression using the PRS calculated at different P-value thresholds, controlling for age, 

sex, and the first five genetic PCs. We chose the PRS that explains the highest phenotypic 

variance (AD vs. CU in ADNI) (Supplementary eFigure 9).  
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Data Availability 

The GWAS summary statistics corresponding to this study are publicly available on the 

BRIDGEPORT web portal (https://www.cbica.upenn.edu/bridgeport/), the FUMA online 

platform (https://fuma.ctglab.nl/), and the GWAS Catalog platform 

(https://www.ebi.ac.uk/gwas/home).  
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Code Availability 

The software and resources used in this study are all publicly available:  

 Surreal-GAN: https://pypi.org/project/SurrealGAN/, generation of R1 and R2 

 Smile-GAN: https://pypi.org/project/SmileGAN/, generation of P1, P2, P3, and P4 

 BIGS: https://www.cbica.upenn.edu/bridgeport/data/pdf/BIGS_genetic_protocol.pdf, 

genetic processing protocol  

 BRIDGEPORT: https://www.cbica.upenn.edu/bridgeport/, web portal for dissemination 

 MUSE: https://www.med.upenn.edu/sbia/muse.html, image preprocessing 

 PLINK: https://www.cog-genomics.org/plink/, GWAS 

 FUMA: https://fuma.ctglab.nl/, genetic analysis 

 GCTA: https://yanglab.westlake.edu.cn/software/gcta/#Overview, heritability estimates  

 MAGMA: https://ctg.cncr.nl/software/magma, gene analysis 

 LDSC: https://github.com/bulik/ldsc, PRS 
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