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Abstract
Background:  The  largest  sequence-based  models  of  transcription  control  to  date

have been obtained by predicting genome-wide gene regulatory assays across the

human  genome.  This  setting  is  fundamentally  correlative,  as  those  models  are

exposed during training solely to the sequence variation between human genes that

arose  through  evolution,  questioning  the  extent  to  which  those  models  capture

genuine causal signals. 

Results:  Here  we  confront  predictions  of  state-of-the-art  models  of  transcription

regulation  against  data  from  two  large-scale  observational  studies  and  five  deep

perturbation assays. The most advanced of these sequence-based models, Enformer,

by and large captures causal determinants of human promoters. However, models fail

to capture the causal effects of enhancers on expression, notably in medium to long

distances  and  particularly  for  highly  expressed  promoters.  More  generally,  the

predicted impact of distal elements on gene expression predictions is small and the

ability to correctly integrate long-range information is significantly more limited than

the receptive fields of the models suggest. This is likely caused by the escalating

class  imbalance  between  actual  and  candidate  regulatory  elements  as  distance

increases.

Conclusions: Our results suggest that sequence-based models have advanced to the

point  that  in-silico  study  of  promoter  regions  and  promoter  variants  can  provide

meaningful  insights  and  we  provide  practical  guidance  on  how  to  use  them.

Moreover, we foresee that it will require significantly more and particularly new kinds

of data to train models accurately accounting for distal elements.
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Introduction

Regulatory regions in the genome encode instructions determining gene product abundance
in response to developmental and environmental cues encode instructions determining gene
product  abundance  in  response  to  developmental  and  environmental  cues.  Inherited  or
acquired genetic alterations in these regulatory regions can result  in the dysregulation of
gene expression,  which ultimately  can cause a variety  of  diseases.  Accordingly,  models
which can reliably  predict  gene expression directly  from sequence would  not  only  be of
scientific  interest  but  could  potentially  find  many  uses  in  the  design  of  personalized
diagnoses and treatments. 

Currently, no sequence-based model is capable of holistically accounting for all stages of
gene expression from transcription initiation to protein degradation and can thus predict the
abundance of each processed protein isoform in any given cellular context. However, deep
learning  models  have  recently  been  proposed  which  -  at  least  in  theory  -  can  predict
measures of RNA abundance directly from arbitrary input sequences centered on a gene of
interest  for  large  sets  of  human  cell  types  and  tissues.  The  focus  of  this  study  is  to
understand how successful these models are. For the sake of simplicity, we will follow the
convention in the literature and use RNA abundance and gene expression synonymously,
even if the former is only an imperfect proxy of the latter [1,2]. 

We will study Xpresso [3], a cell-type agnostic model which predicts gene expression from a
small sequence window around the transcription start site (TSS), Basenji1 [4] and 2 [5], deep
convolutional models which were trained on many genome-wide assays and cell lines of the
ENCODE project [6,7] and use about 40 kilobases (kb) of context, and Expecto [8], a linear
model trained on top of the deep convolutional model DeepSea [9], itself trained to predict
ENCODE genome-wide assays. Moreover, we will investigate the performance of the largest
model trained to date, Enformer  [10], a deep transformer  [11] with ~250 million trainable
parameters - an order of magnitude more than preceding models. As input, Enformer gets a
196 kb long sequence and predicts the value of 5,313 different ENCODE tracks in bins of
128bp.  These  tracks  include  chromatin-immunoprecipitation  signal  for  hundreds  of
transcription  factors,  DNase  footprinting  (DNase),  which  measures  genome accessibility,
and  cap-analysis  of  gene  expression  (CAGE)  measurements  for  hundreds  of  cellular
contexts (defined as combinations of cell lines and treatments). For this study, the CAGE
predictions  are  the  most  relevant,  as  these  provide  the  sought-after  measure  of  RNA
abundance. 

As  Avsec  et  al.  [10] convincingly  show  in  their  paper,  Enformer  provides  unparalleled
performance when predicting  CAGE signal  of  held-out  test  genes.  At  least  in  some cell
types, the model is close to experimental accuracy. However, such aggregate measures of
performance carry significant caveats. The main issue is that all the models we named were
trained using the sole genetic diversity available across the human and mouse genomes.
This setting is fundamentally correlative, as genomic sequences of any organism are not a
random sample from the space of possible sequences but rather have been selected and
co-evolved over millions of years of evolution. Thus, it is unclear to what extent the models
have learned and employ causal  principles,  rather than mere correlations,  to make their
predictions.  If  so,  predictions  may  become  very  misleading  when  applied  in  a  medical
diagnostic context to interpret rare germline or somatic variants, or if the model is used to
generate new mechanistic hypotheses.

Additionally,  improved  performance  of  a  model  on  aggregate  measures  such  as  total
explained variance does not provide insights into the reasons for the improvement. Enformer
has more parameters than previous models, but also a much wider receptive field - i.e. the
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size  of  the  sequence  window it  can  integrate  over  to  predict  expression at  a  particular
location.  Is  the  wider  receptive  field  the  deciding  factor  for  its  improved  performance?
Understanding the actual source of performance improvements will  help to design better
models.

To  address  these  questions,  we  conducted  in-silico  reproductions  of  two  large-scale
observational assays which measured gene expression in different tissues and stages of
development  and  five  deep  perturbation  assays,  including  designed  massively  parallel
reporter assays for promoters and enhancers, CRISPRi enhancer-knockdown and saturation
mutagenesis experiments. Moreover, we conducted two in-silico perturbation studies. In this
way, we can probe in a targeted fashion to what extent a model actually makes use of
particular regulatory elements in its expression predictions and whether it does so in a way
consistent with experiments. 
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Results

Evaluating Deep Models through in-silico reproduction of experiments

Figure 1: Overview of our in-silico experiments. To assess the generalization power of
the models we performed analyses (rows), in which certain sequences varied (first column)
while others were kept fixed (second column).   

The overview figure (Fig 1) summarizes the different datasets we used in our study, which
regulatory element(s) each dataset focuses on, and how we reproduced the experiment in-
silico.  Generally,  replicating  an  experiment  with  a  sequence-based  model  is  not
straightforward and requires three preparatory steps:

1. As many experiments involve some modification of  the endogenous genome,  we
must construct in silico the correct sequences.

2. Most  datasets  do  not  report  CAGE  tracks  but  alternative  measures  of  gene
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expression  including  gene-level  RNA-sequencing  read  counts  and  reporter
fluorescence.  Hence,  with  the  exception  of  Xpresso,  which  gives  gene-level
predictions, we need to decide for which transcription start site predictions should be
made, i.e. from which bins to record the CAGE predictions.

3. Many experiments are conducted in cell types and tissues that do not exactly match
those of ENCODE. Some matching or mapping between those cellular contexts must
therefore be done.

The  first  step  is  the  most  intricate  one.  Several  experiments  we  analyzed  integrated
sequences into the endogenous genome. Usually, these sequences consist of the regulatory
element of interest, a reporter, post-transcriptional elements (e.g. chimeric introns and viral
polyadenylation sites), and technical elements which facilitate the genomic integration (e.g.
retrotransposon long terminal repeats) and sequencing. Many of these technical elements
are highly artificial and thus unlike anything the deep models we consider will have seen in
their training data. For this reason, we performed each replication twice, once with a faithful
reproduction of the full insert and once with a minimal insert, consisting only of the regulatory
element of interest and the reporter. Interestingly, almost always this minimal insert led to
predictions that better correlated with the experiment. Therefore, We decided to report only
the results from these minimal inserts. When possible, we avoided plasmid-based assays,
as there is no way to represent a circular chromosome in the models we consider. For lack
of alternatives, we made two exceptions, namely the Bergman et al. [12] promoter-enhancer
compatibility study and the Kircher et al. [13] saturation mutagenesis study. 

The second step is somewhat easier. For RNA-seq datasets (GTEx [14], Cardoso-Moreira et
al. [15], GTEx eQTL [16]), we considered CAGE prediction for the TSS of the Ensembl [17]
canonical  transcript.  This  might  not  be  the  correct  transcript  in  some  tissues,  but
considerably reduces the number of predictions to be made. The only exception to this rule
is the CRISPRi enhancer-knockout study, where we used the same TSS sites as Avsec et
al. [10] If we did not know the location of the TSS, but we knew where the core promoter was
located (e.g. because the experiment involves integrating promoters at arbitrary locations,
then we took the prediction around the promoter midpoint. For the Kircher et al. saturation
mutagenesis study, we took the prediction at the variant as done previously ([10]). 

For the third step, all but three of the experiments we considered were done in K562 cells. In
these cases, we simply took the K562 CAGE track. For the studies done using RNA-seq of
human tissue biosamples, we fitted for each tissue a simple linear model (ridge regression)
predicting  RNA  abundance  from  all  ENCODE  CAGE  tracks.  We  held  out  the
Enformer/Basenji2 test-set genes while fitting these regressions and evaluated only on this
held-out  data.  These fitted regressions were also used to analyze GTEx eQTL. For the
Kircher et al. saturation mutagenesis data, we used a manual matching procedure.

Once these preparatory steps are completed, we can run the sequence-based model on the
constructed sequences and collect the relevant predictions. Here it is important to note that
many  of  these  models  are  sensitive  to  small  changes  in  the  input  (e.g.  small  shifts),
particularly  if  regulatory  elements  fall  directly  on  bin  boundaries.  To  mitigate  this,  we
computed each prediction six times - for both strands and with small offsets respectively -
and took the average. We also always summed predictions over three neighboring bins. The
same technique was used by Avsec et al. [10], presumably for the same reason. 
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Deep Models, particularly Enformer, provide very accurate predictions of
gene expression in human tissues and during human development

Figure 2:  Enformer  provides effective gene expression prediction for  endogenous
genes. A) Pearson correlation between predicted and measured log-transformed expression
on GTEx tissues for different models. Enformer can predict endogenous RNA abundance, as
measured in adult tissues (GTEx [14]), better than previous models. Adding the exon-intron
ratio,  a  (weak)  proxy  of  RNA  half-life,  as  an  additional  predictor  slightly  improves
performance. B) Same as A) for Enformer predictions on developmental samples (Cardoso-
Moreira et al. [15] dataset). Enformer predicts endogenous gene expression very well overall
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yet somewhat worse for later stages of development. C) Distribution of deviations of GTEx
measured log expression values from (1) the global mean (across genes and tissues, blue),
(2) the gene mean (across tissues, red), and (3) the Enformer prediction (green). The first
indicates overall variation in expression, the second indicates between-tissue variation and
the third indicates the magnitude of errors of Enformer. Enformer accuracy is sufficient to
explain  much of  the  between-gene variation  but  not  for  the variation  of  genes between
tissues.  D) Measured  between-tissue  deviations  of  gene  expression  against  prediction.
Enformer predicts large between-tissue changes in expression reasonably well on average,
but there is significant room for improvement. The numbers indicate the percentages of true
positives  (TP),  false  positives  (FP),  false  negatives (FN),  and true negatives  (TN) when
predicting 2-fold changes (black lines).

Avsec et al. [10] already provide ample evidence that Enformer can predict the expression of
endogenous genes very well. However, these validations were mostly done on ENCODE,
which is highly enriched for cancer cell lines that may provide an imperfect proxy of in-vivo
expression. Thus, to provide a slightly more complete picture, we benchmarked the model
on two additional RNA-Seq datasets: GTEx  [14], which measured gene expression in 49
human tissues,  and  Cardoso-Moreira  et  al.  [15] which  measured  gene  expression  in  7
tissues for 23 stages of development - from 4 weeks post-conception to senescence. 

In both datasets, Enformer performs very well at predicting the between-gene variation (Fig
2A). For the median GTEx tissue, predictions and measurements correlate with r = 0.79.
Moreover, Enformer consistently outperforms both Xpresso and Basenji2. Adding the tissue-
specific exon-intron ratio of each gene - a (weak) proxy of RNA stability - as an additional
predictor improves the performance on GTEx. This suggests that Enformer predictions could
be augmented using a model that better captures post-transcriptional regulation. The median
correlation  in  the  Cardoso-Moreira  et  al. dataset  is  very  similar  (r  =  0.77). Notably,
performance is uneven across tissues and also degrades in later stages of development (Fig
2B, Fig S1). This might be due to varying data quality, the influence of environmental factors,
because  some  tissues  and  stages  of  development  intrinsically  feature  more  complex
regulation (e.g. testis  [18]) or because they are not properly covered by the ENCODE cell
lines Enformer was trained on. 

The  above-mentioned  correlations  are  computed  across  all  genes,  which  span  a  large
dynamic range. Specifically, the mean absolute deviation from the grand mean of log RNA
abundance (across expressed genes and tissues) in the GTEx data is ~4-fold (Fig 2C). In
contrast, the mean absolute deviation to the mean per gene across tissue is only ~1.5-fold.
As Enformer has a mean-absolute error of about 2-fold (Fig  2C), it  naturally struggles to
predict  smaller  differences  between  tissues.  Nevertheless,  the  correlation  between
measured and predicted log fold changes of genes between GTEx tissues is still remarkable
(r = 0.64, Fig 2D, Basenji2: r = 0.54). This performance translates to a decent precision of
66% for a recall of 30% at predicting 2-fold changes between GTEx tissues.   

Overall,  we  find  that  Enformer  can  predict  endogenous  RNA abundance  very  well  and
consistently  outperforms  previous  models.  This  being  said,  when  we  compare  the
expression of  different  genes,  we are comparing highly  dissimilar  regulatory sequences.
These  genes  will  generally  have  different  promoters,  different  GC-content,  different
enhancers, and will be located in different chromosomal contexts. Thus, these aggregated
results do not tell us which features of the sequence the model uses to make its predictions.
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Most of the receptive field has a very minor impact on Enformer gene 
expression predictions

Figure 3: Enformer has very similar predictive power even if we severely restrict its
input window, partially because most strong regulators are proximal. A)  Fraction of
variance in log-transformed expression, both between conditions and between genes, which
Enformer  can explain  given varying amounts of  sequence context.  Values computed on
Enformer held-out data. Most of the signal comes from the sequence immediately around
the TSS, with the distal two-thirds of the input window contributing very little. B) Distribution
of the distance within 98 kb of TSS of bona fide regulatory elements (eQTL, purple, and
CRISPRi validated enhancers, blue) and candidate elements (ENCODE CRE with enhancer-
like signal, red) and CRISPRi tested but not validated enhancers (green). Most bona fide
regulatory elements lie close to their target gene whereas candidate elements are uniformly
distributed.  We  only  consider  elements  within  98kb  of  a  TSS,  i.e.  within  the  Enformer
receptive field. 

Due to its wide receptive field (196kb), Enformer can theoretically account for the impact of
regulatory  elements  up  to  a  distance  of  98  kb  on  either  side  of  a  TSS.  Given  our
observations in the previous section, we wondered to what extent Enformer relies on these
distal elements to correctly predict gene expression.

To this end, we created sequence windows of varying sizes centered on the TSS of genes
by masking distal parts of the endogenous sequence (with “N” nucleotides).  We then let
Enformer predict the CAGE gene expression at these TSS for each window size. In this way,
we can evaluate how the predictive power of Enformer on the GTEx [14] and the Cardoso-
Moreira et al.  [15] data changes when it  can no longer use distal  elements to inform its
predictions. 

Reassuringly, expanding the sequence window consistently improves the gene expression
predictions (Fig 3A).  However,  Enformer already achieves substantial  explained variance
(about  two-thirds  of  what  is  achieved  with the full  sequence)  with only  a  tiny sequence
window of 1001bp (~0.5% of the total receptive field) around the TSS. Moreover, we face
strong diminishing returns when adding additional sequence context. While expanding from
1kb to ~40kb yields substantial improvements, the entire distal two-thirds of the sequence
only added ~1% of the total explained variation. Importantly, the improvement of Enformer
against  its  predecessor  Basenji2  appears  consistent  across  all  distances  (Fig  S2), with
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substantially better predictions even when Enformer can only access the same amount of
sequence than Basenji2 (~40kb), particularly for between-condition predictions.

In conclusion, Enformer extracts most of the signal to predict gene expression from promoter
and promoter-proximal sequences, with sequences further than 30kb from the TSS having a
negligible impact on its overall explained variance. Surprisingly, distal sequences also have
little  impact  on  predicting  between-condition  variation,  where  we  would  have  expected
relatively more influence from distal elements. What is not clear from this analysis is whether
the seeming irrelevance of distal elements reflects biological reality. 

Most known strong regulators are located close to their target genes, 
leading to an extreme class imbalance at higher distances
Our  previous  results  indicate  that  Enformer  considers  most  distal  sequences  to  have a
negligible  impact  on gene expression at  the  TSS.  We sought  to  examine the biological
plausibility of this. 

For this purpose, we computed the distance distribution of  bona fide regulatory elements,
specifically,  eQTL  [16] (which  pass  a  series  of  filters,  Methods)  and  CRISPRi  validated
enhancers [19,20]. Most of these bona fide regulatory elements are located close to the TSS
of  their  target  gene,  in  striking  contrast  to  CRISPRi-tested  but  not  validated  candidate
enhancers  (Fig  3B).  Because  of  the  limited power  of  the  underlying  assays,  we cannot
necessarily conclude from this that most regulators of a gene will be proximal, but we can
conclude that the majority of strong regulators (i.e. those with large, individual effects) will be
proximal. These observations, consistent with previous studies [19,21,22], suggest that there
is a biological basis for Enformer to attribute more importance to local sequences. 

However, the distribution of bona fide regulatory elements seems to not be as imbalanced as
the one implied by Enformer explained variance. Specifically,  we see that the distal  two-
thirds of the sequence still contains ~20% of known eQTL and ~25% of validated enhancers.
Interestingly,  candidate  regulatory  elements  from  ENCODE  (ENCODE  SCREEN  cis-
Regulatory Elements with enhancer-like signature  [23]) show a uniform distribution within
100 kb of TSS (Fig 3B). Thus, for a typical gene, we can usually find similar amounts of
„enhancer-like“ sequences at every distance to the TSS. The result  is  that,  as we move
further from the TSS, the ratio of relevant regulatory elements to candidates (i.e. sequences
which  look  reasonably  similar  to  regulatory  elements)  will  necessarily  become  very
unfavorable very quickly.  Thus,  at  higher distances,  every long-range model will  face an
extreme  class  imbalance.  Perhaps  this  class  imbalance  and  the  difficulty  to  distinguish
enhancers targeting a given TSS from other enhancer-like elements is  the cause of  the
apparent under-usage of distal regulatory sequences. 

We  next  examined  perturbation  experiments  in  detail  to  determine  whether  individual
regulatory elements contribute to Enformer predictions in a causal manner.
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Deep Models, particularly Enformer, correctly predict promoter strength 
and the impact of many promoter modifications

Figure  4:  Enformer  accurately  predicts  genetic  perturbations  of  promoters.  A)
Correlation between model predictions and measurements across synthetic promoters of the
Weingarten-Gabbay  et  al.  [24] parallel  reporter  assay.  Enformer  outperforms  preceding
models, notably in targeted perturbation experiments (Transcription factor motif ablation and
core promoter motif perturbations). B) Enformer can detect and often correctly interpret the
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impact on expression of subtle locational shifts of the TATA box in the RPLP0 promoter
background.  C) In-silico mutagenesis analysis suggests that the large drop of expression
around position -50 likely from panel B is due to the disruption of a CAT-box at this location,
rather  than the positional  preference of  the  TATA box.  D) Pearson  correlation  between
predicted and observed variant  effects  for  the different  loci  tested by Kircher  et  al.  [13]
Enformer outperforms other models for most loci. E) Measured vs. predicted variant effects
for two loci (F9, LDLR) individually and then both loci combined for CAGE (top) and DNase
(bottom). The CAGE predictions appear to be miscalibrated across those two loci. 

Most of the signal used by Enformer to predict gene expression seems to derive from the
promoter and promoter-proximal elements. Thus we first sought to assess to what extent
Enformer - and previous models - can predict the causal determinants of human promoters.

For this purpose, we performed an in-silico replication of the MPRA study by Weingarten-
Gabbay  et  al.  [24] who  measured  the  impact  of  different  endogenous  and  synthetic
promoters on the expression of a reporter in K562 cells.  In this study,  2274 164bp long
sequence fragments corresponding to known human promoters and pre-initiation complex
binding  sites  were  inserted  together  with  a  fluorescence  reporter  at  the  AAVS1  viral
integration site. 

Generally, Enformer predicts the relative effects of those promoters very well (the Pearson
correlation  between  measured  and  predicted  log  expression  values  is  0.68,  Fig  4A).
Moreover, Enformer outperforms all other models on this task.

Weingarten-Gabbay et  al.  additionally  constructed synthetic  sequences  to  measure  how
individual promoter elements affect its overall strength. In one experiment, they inserted 133
different TF binding sites in two different backgrounds. We find that Enformer predicts the
expression impact of these different TF motifs very well in both backgrounds (r = 0.75 and
0.73 respectively) and outperforms all other models (Fig 4A). We conclude that Enformer not
only recognizes these motifs but also generally correctly determines whether they act as
repressors, activators, or neither in K562 cells.

In yet another experiment, Weingarten-Gabbay et al. tested many combinations of six known
core  promoter  motifs  (including  the  TATA  box  and  the  initiator)  in  five  backgrounds.
Enformer predicts the impact of these perturbations in two backgrounds (r = 0.78 and 0.59
respectively,  Fig  S3),  but  no  significant  correlation  between  predictions  and  measured
values was found for the other three backgrounds (but this is also true for the other models
tested). On these two backgrounds, Enformer once again outperforms the competition (Fig
4A).

Additionally, Weingarten-Gabbay et al. measured the effect of shifting the position of a TATA
box in four different backgrounds. In two out of four backgrounds, Enformer predictions show
significant  correlations with the measured effects (Fig S4).  In the RPLP0 background, in
particular, the correlation is almost perfect (r = 0.9, Fig 4B). Given that Enformer pools the
sequence into 128bp bins, it is quite impressive that it is sensitive to such small shifts. Note,
however, that Basenji1 and Basenji2 - but not Xpresso - deliver similar predictions on this
task.

We wondered whether the large drop in both measured and predicted expression when the
TATA was placed around position -50 was a result of the position preference of the TATA or
due to another factor. As Weingarten-Gabbay et al. do not discuss this, we sought to use
Enformer  to  answer  this  question.  For  this  purpose,  we  first  shifted  a  neutral  k-mer
(NNNNNNNN) through the sequence instead of the TATA. We find that this had little impact,
except  again  around position  -50 (Fig  S5).  We then performed an in-silico  mutagenesis
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around this  position  and found that  the expression prediction  was most  sensitive  to the
bases  ATTGG  (Fig  4C).  This  Enformer-based  analysis  provides  a  biologically  plausible
hypothesis, namely that the drop in expression is caused by a disruption of a CAT-box rather
than due to a positional preference of the TATA box. 

Lastly, we reanalyzed the Kircher et al. [13] saturation mutagenesis data which was already
used as validation in the Avsec et al.  [10] paper and additionally provided a comparison to
Basenji1, Basenji2, and Expecto. In this experiment, short stretches of sequence from 15
loci (mostly promoters) were selected to serve as regulatory elements for a reporter gene in
a plasmid. The authors then introduced almost every possible single nucleotide variant in
these sequences and recorded their respective impacts on the expression of the reporter.

Consistent with  Avsec et al., we found that observed and predicted relative variant effects
(computed as log2 fold change of predicted expression at the variant, Methods) correlated
well for most loci. Moreover, Enformer outperformed all other models (Fig 4D). 

However, Enformer predictions appeared to be miscalibrated between loci (Fig S6). While a
linear correlation is often present, the value of the slope varied drastically between loci. The
problem is striking when comparing the F9 and LDLR loci, which were both measured and
predicted  in  HepG2  (Fig  4E). As  a  consequence,  while  the  individual  correlations  are
significant for both loci (r = 0.3 and r = 0.64 respectively), the correlation drops substantially
(r = 0.1) when pooling the data of the two loci. As those correlations are computed on log-
transformed abundance, these observations imply that Enformer variant effect predictions
only accurately reflect the experimental values up to a locus-specific exponential factor. This
being said, it  is unclear whether this discrepancy is due to Enformer or an artifact of the
plasmid-based assay. 

Interestingly,  if  we use accessibility  (DNase) predictions as a proxy for  RNA abundance
predictions, then the effects are on average too small (a predicted log2 fold change of 0.65
corresponds  roughly  to  a  measured effect  of  1),  but  this  scaling  factor  is  by  and large
consistent between loci (Fig 4E, Fig S7). Thus, for use cases such as genome-wide variant
prioritization, DNase prediction score will likely be more useful. 

Overall,  we  see  that  current  sequence-based  models,  particularly  Enformer,  can  match
experimental data measuring the expression of different promoters in a controlled synthetic
context very well.  Moreover, it  can predict the impact of different TF-binding sites, single
nucleotide  variants,  and  core  promoter  motifs,  at  least  in  some  backgrounds.  These
analyses thus show that Enformer significantly captures genuine causal regulatory elements
of the promoter.
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Enformer attributes considerably less importance to enhancers than 
experiments suggest
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Figure  5:  The  predicted  impact  of  enhancers,  particularly  distal  enhancers,  is
significantly  smaller  than  experiments  suggest.  A) Predicted  promoter  strength  vs
measured promoter strength. These strengths are determined by fitting linear models to the
data/predictions  B) Predicted enhancer strength vs measured enhancer strength.  C) The
promoter can explain 54% of the variation in the measurements of Bergmann et al. [12], with
enhancers explaining another 36%. However, 90% of the variation in Enformer predictions
for the same sequences is driven by the promoter alone.  Thus, at least in a plasmid context,
Enformer  strongly  underestimates  the  importance  of  the  enhancer  for  determining  gene
expression.  D) In Enformer, the predicted variation of expression induced by the enhancer
also heavily depends on the promoter. Only promoters of intermediate predicted strength are
sensitive  to  the  choice  of  Enhancer.  In  the  experimental  data,  strong  and  intermediate
promoters  show  similar  sensitivity.  C) The  measured  and  predicted  changes  in  gene
expression (expressed as an unsigned percentage) due to enhancer knockout as a function
of  the  distance  between  the  gene  and  the  enhancer.  Values  <  0.1% and  >  100% are
truncated.  Shown  are  only  validated  enhancer-gene  pairs  from  Fulco  et  al.  [20] and
Gasperini et al. [19]. Enformer attributes significantly less effect to most validated enhancers
than the experiments suggest. The effect is particularly strong for distal enhancers.

Having established that Enformer captures causal elements located in promoters, we next
study to what extent it  can correctly predict the effect of enhancers. Bergman et al.  [12]
assayed all combinations of one thousand 264 bp human promoter and one thousand 264
bp human enhancer fragments using a plasmid-based MPRA. A major result of this study
was that  transcriptional  output  appeared to be well  modeled as the product  of  promoter
strength and enhancer strength.

In  agreement  with  our  above-mentioned  analysis  of  promoters,  Enformer  predicted  the
promoter  strength  of  the  Bergman et  al.  assay  remarkably  well  (r  =  0.81,  Fig.  5A).  In
contrast, the predicted enhancer effect correlates poorly with the reported enhancer strength
(r = 0.137, Fig. 5B). Moreover, promoters alone explained most of the Enformer predictions
(90% predicted variation  in  log expression)  but  only  half  of  the experimentally  observed
variation (54%, Fig. 5C). 

This is not to say that the enhancers never matter in the predictions. If we plot, for each
promoter,  the  standard  deviation  in  predicted  log  expression  induced  by  the  different
enhancers,  we notice  that  the  choice  of  enhancer  does sometimes matter,  but  only  for
promoters of intermediate predicted strength (Fig 5D). Promoters that Enformer considers
very strong seem to basically override the enhancer. In the experimental data, we do not
observe such a pattern.

Overall,  this  analysis  indicates  that  Enformer  inadequately  accounts  for  the  impact  of
enhancers on gene expression and cannot predict their measured average effects. However,
one limitation of the Bergman et al. study is that it is based on a plasmid construct, which
Enformer  was  not  trained  to  handle  and  may  not  reflect  endogenous  gene  regulation.
Moreover, in this assay, enhancers are placed very close to the promoter and are part of the
transcript, which may interfere with co- and post-transcriptional mechanisms. 

Given these concerns, we wondered whether the results described above generalize when
we apply Enformer to enhancer-promoter pairs in the endogenous genome. To find such
pairs, we use the enhancer knockdown screens performed by Gasperini et al. [19] and Fulco
et al.  [20] In these screens, CRISPR interference (CRISPRi) is used to perturb enhancers
and then the corresponding impact on gene expression is measured.

To  replicate  the  CRISPRi  knockdown  experiments  in  the  model,  we  used  an  in-silico
mutagenesis (ISM) approach. Specifically, we computed the change in predicted expression
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at the gene TSS upon shuffling the enhancer sequence (Methods), assuming that a shuffled
enhancer  sequence  should  generally  be  non-functional.  To  account  for  random  noise
introduced by  shuffling,  we repeated the procedure 25 times and recorded the average
impact. 

We find that the model sometimes attributes plausibly large effects to enhancers, particularly
if they are promoter-proximal. However, as the distance between the TSS and the enhancer
increases,  the  model  very  quickly  begins  to  excessively  discount  the  importance of  the
enhancer for gene expression (Fig 5E). This discounting scales proportionally to the inverse
of distance, which is not what is observed for validated enhancers. This is a strong decay,
which is already substantial at a distance of only 10 kb (2% for Fulco et al, 5% for Gasperini
et al., Fig 5E).

In the respective assays, knocking down the median validated enhancer (n = 522) has a
measured impact on expression of ~20%. According to Enformer, this median effect is only
~4%. Moreover, for ~60% of genes with a validated enhancer (n = 385), none of the tested
candidates (whether validated or not, n = 2070) has an impact on expression that exceeds
10% (Fig S8).

As  for  the  Bergman  et  al.  [12] data,  Enformer  predicts  smaller  effects  of  enhancer
knockdown for genes with high predicted basal expression (i.e. the predicted expression
after knockdown, Fig S9). Whether or not a similar relationship exists in the experimental
data is difficult to say, because the underlying assays have higher power to detect smaller
effects for more highly expressed genes.

Our results do not contradict those of Avsec et al. [10], who showed with the same data that
Enformer performs reasonably well at prioritizing validated enhancer-promoter pairs. In fact,
on  average,  Enformer  does  attribute  somewhat  larger  effects  to  validated  than  to  non-
validated enhancers, after controlling for distance and basal expression of the promoter (Fig
S10). However, even when it correctly links enhancer and gene, this impact is usually small.
If  we  rank  enhancers  by  their  effect,  then  the  threshold  for  ~50%  recall  of  validated
enhancers is a ~3% predicted effect  (Fig S11). Moreover, we here defined the enhancer
impact in relative terms, i.e. as percentage change, as we consider this to be the biologically
plausible metric. However, it is possible to achieve a slightly better classification in enhancer
prioritization using the predicted absolute change as in the original study (Fig S12). This is
because,  in  contrast  to  the  predicted  percentage  change,  which  as  we  noted  above,
decreases  with  promoter  strength,  the  absolute  change  increases  proportionally  to  the
predicted basal expression (Fig S13). Since predicted expression correlates well with actual
expression,  this  metric  thus  privileges  highly  expressed  genes.  This  likely  adds  to  the
classification performance because highly expressed genes mechanically will tend to have
more validated regulatory elements, due to the limited power of the underlying assay (Fig
S14). We, therefore, believe that the predicted absolute change delivers somewhat inflated
performance.

Overall, the model strongly underestimates the effect of known enhancers, particularly if they
are distal to the TSS, for gene expression regulation.
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Most distal eQTLs do not have a meaningful impact on expression 
predictions

Figure 6:  Enformer attributes no meaningful  impact  to distal  eQTLs and performs
poorly  on  tasks  where  long-range  information  is  crucial.  A)  The  measured  and
predicted changes in gene expression (expressed as an unsigned percentage) due to eQTL
variants are plotted as a function of the distance between the (canonical) TSS and the eQTL.
To account for linkage, we always take the maximal effect of all variants in the credible set.
This predicted effect quickly decays with distance. B) The GTEx eQTL normalized effect size
is plotted against the distance to the TSS. We observe no systematic decay with distance.
C) Enformer  struggles  to  predict  the  overall  impact  of  the  genomic  environment  on
expression of the hk1 promoter, as measured by TRIP-seq. Note that this is the promoter for
which the model performs best. D) Performance of Basenji2 and Enformer on the TRIP-Seq
data.  For  Enformer,  we  computed  predictions  after  restricting  the  input  window,  as
previously. We find that most of the (limited) signal on this task once again derives from the
proximal 20% of the input sequence.

Given our results for enhancers, we next asked whether similar observations also apply for 
expression Quantitative Trait Loci (eQTLs).
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To test this, we let Enformer predict the impact on gene expression of GTEx eQTLs [16]. We
applied a set of filters to exclude eQTLs that may act post-transcriptionally, have unclear 
associated TSS, and for which Enformer cannot be straightforwardly applied (Methods). A 
fine-mapping method was applied to associate each eQTL with a credible set of likely-causal
variants and account for linkage (SuSie [25,26]). We then computed the predicted impact on 
expression at the canonical TSS of the target gene for all variants in the credible set. We 
defined the predicted eQTL effect as the maximum of these individual impacts.

As for the enhancer analysis, Enformer predicted effects of eQTLs were large when close to 
the TSS but decayed quickly and proportionally to the inverse of distance (Fig 6A). This 
decay was extreme, showing an average predicted effect of less than 1% from 1kb on. We 
do not see such decay in the measured normalized effect sizes of these eQTLs (Fig 6B). 
Although the GTEx normalized effect sizes do not correspond to expression fold-changes 
due to non-linear and gene-specific data preprocessing [16], a decreasing relationship with 
distance would be expected if Enformer’s predictions were correct. Moreover, Enformer 
predicts for those eQTLs surprisingly tiny effects (median = 0.5% change). This gives further
evidence that the model strongly underweights the causal effect of distal regulatory elements
on gene expression. 

Current deep models mostly cannot predict the general impact of the 
genomic environment
To further probe the ability of Enformer to correctly account for distal sequence context in its
predictions, we used TRIP (thousands of reporters integrated in parallel) sequencing data
compiled by Hong et al. [27]. In this experiment, six different short promoter fragments were
integrated at  thousands  of  locations  across  the  genome and  then their  activity  at  each
location  was  measured.  This  assays  the impact  of  the  overall  genomic  environment  on
promoter activity. We replicated this experiment in-silico by inserting the fragments at the
same locations and recording the predicted expression.

Consistent with the results described previously, Enformer perfectly ranked the promoters
according to their median expression (Fig S15). However, its ability to predict the variation in
expression of individual promoters when integrated at different genomic locations was quite
limited  (r  =  0.24-0.4 depending  on  the  promoter,  Fig  6C,D,  Fig  S16),  albeit  statistically
significant. Moreover, Enformer once again outperformed Basenji2 on this task, even when it
was limited to the same receptive field (Fig 6D).

Hong et al. also tested the impact of placing 676 different promoters in 4 different locations
in the genome (Patch-MPRA). When we reproduced this experiment in Enformer, we found
very coherent results: (1) Enformer predicts the average impact of promoters well (r = 0.73,
Fig S17), (2) the promoters alone explain more variation in Enformer predictions than in the
experimental  data  (69% vs  55%),  and (3)  only  intermediate-strength  promoters,  but  not
strong promoters, are predicted to be strongly affected by the genomic environment (Fig
S18). Of note, this is somewhat consistent with the experimental data, but there the effect is
far less pronounced (Fig S19).

Admittedly, the fact that both Basenji2 and more so Enformer have any predictive power on
the TRIP-seq data at all  is  impressive since it  requires predicting the impact of a rather
extreme and unnatural modification of the genome. Nevertheless, the limited performance

17

17

485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503

504

505

506
507
508
509
510
511
512

513
514
515
516
517
518

519
520
521
522
523
524
525
526

527
528
529

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 17, 2022. ; https://doi.org/10.1101/2022.09.15.508087doi: bioRxiv preprint 

https://paperpile.com/c/64Zd3L/PqNW
https://paperpile.com/c/64Zd3L/rpnv
https://paperpile.com/c/64Zd3L/Ij5i+hWTj
https://paperpile.com/c/64Zd3L/rpnv
https://doi.org/10.1101/2022.09.15.508087
http://creativecommons.org/licenses/by/4.0/


on  this  data  further  indicates  that  more  research  is  needed  to  achieve  models  of
transcriptional regulation which properly capture the effects of distal elements and genomic
context. 

Enformer’s promoter-enhancer logic is (mostly) multiplicative

A remarkable result, obtained independently by Bergman et al. [12]  and Hong et al. [27], is
that  promoters  and  enhancers  generally  act  multiplicatively  on  transcriptional  input.  We
asked whether Enformer qualitatively captured the same rule. To this end, we designed an
in-silico experiment. This is not trivial to test because, as discussed previously, the promoter
usually  dominates  all  other  sequence  elements  in  Enformer.  Therefore,  we  selected
endogenous triplets of promoter, enhancer and sequence background which were such that
the enhancer had a notable predicted impact on the promoter in that particular background
(Methods).  We  then  predicted  for  every  combination  of  these  promoters  (n  =  89)  and
enhancers (n = 115) in each background (n = 32). Remarkably, the Enformer predictions
could be well  approximated as the product of promoter strength, enhancer strength, and
background strength (77% of the variance, Methods). 

If we focus on individual backgrounds, we find that in some cases the enhancers can explain
up to 25% of the variation in predicted expression at the promoter (Fig S20). Moreover,
except for a few backgrounds where the variation in expression can be almost completely
explained  by  a  background  strength,  we  find  that  the  enhancer  strengths  are  highly
correlated across backgrounds (Fig S21). We find very similar results if we focus on each
individual promoter (Fig S22). Thus, it appears that the background and promoter determine
whether enhancers have any impact, but if they do, this impact is consistent. 

Altogether, this analysis showed that Enformer qualitatively agrees with the recently reported
multiplicative model of promoter and enhancer effects, despite quantitatively underestimating
the effects of distant regulatory elements.

Discussion
Here we have performed the most extensive benchmark of sequence-based models of gene
expression to unseen data. Specifically, we compared the predictions of the models against
two large-scale observational RNA-seq datasets of adult and developmental tissue, as well
as  five  deep  perturbation  assays,  comprising  designed  reporter  assays  and  CRISPRi
screens. With our approach, we specifically probed to what extent current sequence-based
models can account for the regulatory role of promoters, enhancers, eQTLs, and genomic
environment. This allowed us to evaluate the generalization power of these models.  We
found  that  current  sequence-based  models  show  a  remarkable  ability  to  predict  the
expression associated with human promoters. However, we observed that even Enformer,
with its very wide receptive field, can account for distal regulators only to a limited extent.

We will now discuss in more detail our findings and provide suggestions on how the field
could use and improve sequence-based models of gene expression.    

Do current sequence-based models learn causal effects?

Across a wide range of  analyses,  we repeatedly  observed that  current  sequence-based
models, particularly Enformer, predict the impact of different promoters very well. It does not
matter  if  the  strength  of  a  promoter  is  measured  in  its  proper  genomic  context,  in  a
completely  different  context,  or  even  in  a  plasmid  -  Enformer  predictions  of  expression

18

18

530
531
532

533

534
535
536
537
538
539
540
541
542
543
544

545
546
547
548
549
550
551

552
553
554

555

556
557
558
559
560
561
562
563
564
565

566
567

568

569
570
571
572

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 17, 2022. ; https://doi.org/10.1101/2022.09.15.508087doi: bioRxiv preprint 

https://paperpile.com/c/64Zd3L/PqNW
https://paperpile.com/c/64Zd3L/HYu5
https://doi.org/10.1101/2022.09.15.508087
http://creativecommons.org/licenses/by/4.0/


generally will show substantial correlations with these measurements.

Moreover, we observed that Enformer often correctly predicts the impact on expression of
diverse promoter modifications. These include single-nucleotide variants, addition or removal
of TF-binding sites, and in some cases mutagenesis or shifts of core-promoter motifs. This is
strong evidence that the model captures causal determinants of the promoter. 

In contrast to the strong performance for promoters, the model underperforms when it comes
to accounting for the expression effect of enhancers, particularly if they are distal. However,
we note that, since our analysis was focused on expression, we did not analyze whether the
deep  models  can  correctly  account  for  the  causal  impact  of  enhancer  variants  or
perturbations on epigenetic marks at the enhancer itself. Performing a similar analysis as we
have done but focused on ATAC-Seq or CHIP-Seq-based MPRA or allele-specific binding
data [28] could shed light on this question. 

Accordingly, our results should not be construed to mean that such models do not further our
understanding of enhancer biology or enhancer variants. We focused on showing that these
models attribute far  too little  importance to enhancers when predicting  gene expression.
Indeed it  has been repeatedly  demonstrated in the literature that  using the full  range of
epigenetic predictions can provide real added value in enhancer prioritization or variant fine-
mapping [8–10,29].

Do current sequence-based models learn long-range effects?

Overall, we found limited evidence that the sequence-based models we studied make use of
long-range information. For Enformer, the model with the largest receptive field (196kb), we
found that we can safely remove two-thirds of the input sequence, with minimal impact on
predictions. As we saw from the distribution of eQTLs and validated enhancers this does to
some extent reflect the underlying biology. Indeed, most strong regulatory elements do seem
to be located relatively close to their target gene. However, the datasets we analyzed clearly
showed that distal elements with large causal impacts on expression exist and that Enformer
will  generally  strongly  underestimate  their  impact.  As  a  result,  the  majority  of  validated
enhancers and eQTLs do not have a meaningful impact on Enformer predictions of gene
expression.

We hypothesize that a large part of the problem is the escalating class imbalance: The ratio
between actual regulatory elements among all candidate regulatory elements decreases with
increasing distance from a gene. Perhaps, the model responds to this worsening signal-to-
noise ratio by down weighting distal  elements and thus, in some sense, distributing their
effect. One possible underlying reason is the model being unable to correctly identify which
distal  regulatory elements will  be functional  in a certain cell  type. Another non-exclusive,
possibility is that the model is unable to correctly link distal regulatory elements to their target
genes. In other words, is the source of difficulty the complexity of the enhancer code or is it
the complexity of the “folding code”? Disentangling these issues will help to determine which
additional  training  data  and  modeling  assumptions  are  most  likely  to  yield  substantial
improvements.

Do current sequence-based models learn between-condition regulation?

We showed  that  Enformer,  and  to  a  lesser  extent  also  Basenji2,  predictions  do  exhibit
significant  correlations with measured between-condition differences in expression.  Thus,
clearly,  the  models  capture  some  signal  on  this  task.  However,  the  between-condition
predictions are less impressive, yet decent, than the between-gene ones. 
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We showed that this is partially because even Enformer has not yet reached the level of
precision necessary to predict between-condition variation, which is generally of a smaller
magnitude than between-gene variation. Thus, in principle, as models improve overall, they
should particularly improve on between-condition tasks. 

Our between-condition analysis was performed using endogenous gene expression and not
using controlled perturbation experiments. For this reason, we cannot exclude the possibility
that some of the between-condition predictive power is correlative. Furthermore, we cannot
determine whether Enformer struggles at between-condition predictions precisely because of
its limited understanding of  distal  regulatory elements.  Since distal  enhancers appear  to
mostly be a feature of multicellular organisms, one of their main roles could be to control
cell-type specific expression. Deep perturbation assays performed across multiple cell types
are needed to address these issues.  

Implications for in-silico investigations of gene expression

Our results indicate that sequence-based models can now be usefully employed to study
promoter mutations in silico. This could prove useful for fine mapping in GWAS studies, for
the  detection  of  possibly  pathogenic  variants  in  rare  disease  diagnostics  and  oncology
settings,  and  to  study  the  evolution  of  human  promoters.  In-silico  experimentation  and
interpretation techniques may even yield new candidate motifs or mechanistic hypotheses,
which  can  then  be  tested  in  future  designed  MPRA  studies.  Assuming  sufficient  GPU
resources,  we recommend using Enformer for these tasks, as it  clearly outperformed all
other methods. However, some limitations of Enformer should be considered.  Because it
predicts in 128bp bins, Enformer cannot be used to predict the exact locations of TSS sites.
Also, the model cannot reliably predict the directionality of a promoter because it is trained to
predict similar values for both strands.

We found that variant effect predictions on gene expression from Enformer appear to be
miscalibrated  when  comparing  between  promoters.  Thus,  genome-wide  rankings  of
promoter variants made using Enformer may be misleading. We cannot fully exclude the
possibility that this is an artifact of the plasmid-based measurements, rather than a failure of
the model. Nevertheless, if a genome-wide ranking is the goal, using the predicted DNase
variant effects (or a mixture of CAGE and DNase) appears to be the safer choice.

Our results indicate that predicting the impact of a distal variant on expression at the TSS
rarely leads to meaningful results. 

Finally, we note that, in addition to using sequence-based models to analyze variants or to
prioritize enhancers, they also have potential use as an in-silico experimental platform to
explore more abstract biological questions. A recent study, for example, used a deep model
to analyze the impact  of  helical  periodicity  on TF binding  [30].  As models mature,  open
questions  in  epigenomics,  such  as  the  pioneer  factor  hypothesis,  the  billboard  vs.
enhanceosome discussion,  and others may become amenable  to in-silico  analysis.  This
could  help  to  design  more  targeted  experiments  and  also  aid  in  the  interpretation  of
experimental results. 

Implications of our study for model development

The recent  trend in  deep  supervised  models  of  regulatory  genomics  has  been  towards
expanded receptive  fields,  through the use of  dilated  convolutions  and  attention.  These
expansions have usually been associated with increased performance, suggesting that the
wider receptive field is the main cause of the improvement.
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Paradoxically, however, we observed that Enformer, despite its huge receptive field, derives
most  of  its  predictive power  from a small  fraction of  the sequence.  Moreover,  Enformer
substantially  outperformed Basenji2  even when it  is  restricted to the latter  model‘s  input
window and even on tasks where the receptive field size is irrelevant  (such as plasmid-
based saturation mutagenesis). Therefore, it  is unclear to what extent the large receptive
field of Enformer actually contributes meaningfully to its predictive power. Perhaps, similar to
results in natural language processing  [11,31], the mere amount of parameters combined
with the transformer architecture, is the driving force behind the improvement.

How could a very good model of gene expression that does account for distal regulators be
built?  Given  that  Enformer  already  achieves  close  to  replicate  predictions  on  CAGE in
ENCODE, it is likely that data complementary to ENCODE is required. Which data will help
the most depends on the exact nature of the problem. If the issue is that Enformer does not
correctly interpret the enhancer code, then adding more epigenetic, as well as expression,
data from more cell  types and more species should be most beneficial.  More cell  types
provide  more  variation  in  enhancer  activity,  whereas  more  species  introduce  not  just
variation in activity but also variation in functional  enhancer sequence. Recent advances
have shown that, if done at a sufficient scale, perturbation experiments can also be used to
train  models  [32–34],  although  further  progress  will  require  modeling  advances  to
seamlessly integrate global and targeted assays. 

If the main difficulty is folding, then adding the prediction of Hi-C data as an auxiliary task, or
integrating a model which can predict Hi-C, would be the natural solution. Promising models
predicting  chromosomal  contacts  from  sequence  have  been  obtained  [35–37],  but
integration with gene expression prediction models remains to be explored.  

Methods

Models used
Basenji1/2 have a very similar structure as Enformer. Accordingly, Basenji1/2 predictions 
were always made in exactly the same way as Enformer predictions - the only difference 
being a smaller input window. We used the pretrained Basenji2 model from: 
https://storage.googleapis.com/basenji_barnyard/model_human.h5. For Basenji1, we used 
the model from the Kipoi model repository [38].
Xpresso only predicts a single value per sequence. Moreover, it is strand-specific and it 
expects the TSS to be at a particular position in the sequence. In cases where the TSS is 
known, we thus made only one prediction with Xpresso, namely with the TSS at the correct 
location and on the correct strand. In the Segal dataset, where the exact TSS is not known, 
we tried a number of offsets and selected the best ones. We used the Xpresso model from 
the Kipoi model repository, which does not account for RNA half-life covariates.
To get Expecto predictions of variant effects, we used the web interface at: 
https://hb.flatironinstitute.org/expecto/.  

Endogenous Expression: GTEx and Cardoso-Moreira et al.
We collected gene expression measurements for GTEx tissues from the GTEx consortium
webpage and for different development stages from ArrayExpress [39] (E-MTAB-6814). Note
that  this  data  was  already  normalized  for  sequencing  depth  and  gene  length.  We log-
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transformed the data, adding a pseudo count of one. We exclude mitochondrial genes and
the Y chromosome. We also exclude all genes which are never expressed in our data.

We extracted the reference genome sequence (hg38) around each gene, centered on the
canonical TSS (i.e. the TSS of the ENSEMBL [17] Canonical transcript), and computed the
predictions of expression at this TSS for each of the models.

Because Enformer/Basenji2 provide CAGE predictions only for certain ENCODE cell lines,
which do not permit a 1:1 matching to GTEx tissues, we instead perform the matching using
ridge regression. Specifically, we fit L2 regularized regressions for each tissue such that:

Where git is the (log-transformed) expression of gene i in tissue t,  is the vector of learned
weights  for  tissue  t  and   is  the  vector  of  (log-transformed)  Enformer/Basenji2  CAGE
predictions for gene i.  Note that the intercept is zero by construction (see below).

To fit these regressions, we split the genes into train and test-set, whereby every gene which
is fully enclosed in an Enformer test-set region is included in the test set, and all  genes
which never intersect any test-set region go to the train set. Genes which intersect a test-set
region, but are not contained by it, are excluded. In this way we prevent contamination of the
held out test-set. 

To make between-condition comparisons meaningful, we compute the mean for each tissue
(or tissue-development-stage in the Cardoso-Moreira et al. [15] data) on the training set and
remove this mean from both the training and the test set. This ensures that our regressions
cannot learn tissue means, in a way that prevents leakage from the test set.

For Xpresso we follow the same procedure, but as this model is cell-type agnostic, the ridge
regression only rescales the predictions.

We do not show the results for Basenji1 on this data, as Basenji1 used a different train-test
split,  thus  the  numbers  are  not  comparable  (nevertheless,  it  still  performs  worse  than
Enformer). Note that the same is true for Xpresso, but we consider it unlikely that this model
overfits very much.

Sequence context ablation study

We follow the same steps as we did previously for the GTEx and Cardoso-Moreira et al.
data. The only difference being that we now generate predictions with different sequence
window sizes around the TSS.  We use the following window sizes:  1001,  3001,  12501,
34501, 39321, 49153, 65537, 98305 and 131073 bp. The last six correspond to a fifth, a
fourth, a third, half and two-thirds of the total receptive field respectively. These windows are
always centered on the TSS (so a window size of 1001bp means we extract the TSS site +/-
500bp).  As  the  windows  are  smaller  than  Enformer’s  receptive  field,  we  pad  with  “N”
nucleotides on the flanks. 

We train separate regression models for each window size, using the same train-test split as
previously

Class Imbalance

We downloaded ENCODE CREs [23] from https://screen.encodeproject.org/. 
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We used PyRanges [40] to define “Enformer-sized” (i.e. 196kb) windows around each gene
of interest (i.e. the genes with validated enhancers or eQTL). We then intersected our sets of
regulatory elements (eQTL, CRISPRi validated and non-validated enhancers and ENCODE
CRE) with these windows and for each hit we recorded the distance to the gene. Note that
we apply the same filters we applied to the eQTL data also to the ENCODE CRE, so as to
make these sets comparable (these filters are discussed in the eQTL methods section). The
validated and non-validated enhancers are comparable by design.

Promoter determinants: Weingarten-Gabbay et al.
We collected the data from the supplementary materials of the Weingarten-Gabbay et al.
[24] manuscript and the construct sequences were kindly provided by the first author. We
followed the general procedures outlined previously to construct sequences and compute
predictions. As the exact TSS is, to our knowledge, unknown, we center predictions on the
midpoint of the promoter fragments. As this is a K562 experiment, we use the K562 CAGE
track as the predictor.

Saturation Mutagenesis: Kircher et al.

Vikram Agarwal kindly provided the Kircher et al. [13] data. 

To generate a variant effect prediction with Enformer (and other models),  we create two
sequences:  one  centered on  the  reference allele  and  one on  the alternative  allele.  We
predict for both (averaged over strands, offsets, and the neighboring bins as always), and
compute  the  log  fold  change  in  prediction  centered  on  the  variant  (averaged  over  the
neighboring bins).

Kircher et al. used a number of different cell  lines in their experiment, depending on the
locus. To match these cell  lines to ENCODE tracks, we followed the same procedure as
Avsec et al. [10]. Specifically, we used tracks (CAGE/DNASE) whose ENCODE descriptions
contained substrings that correspond (more or less) to the cell  line used for  a particular
locus:

- ‘HepG2’ for F9, LDLR, and SORT1
- ‘K562’ for GP1BB, HBB, HBG1, and PKLR
- ‘HEK293’ for HNF4A, MSMB, TERT and MYCrs6983267
- ‘pancreas’ for ZFAND3
- ‘glioblastoma’ for TERT 
- ‘keratinocyte’ for IRF6
- ‘SK-MEL’ for IRF4

If  there was more than one matching track,  we averaged predictions over  the matching
tracks. This is different from Avsec et al.,  who instead extract principal  components, but
ultimately this procedure yields very similar correlations. 

In cases where there was no match at all, we averaged predictions over all tracks. 

Promoter x Enhancer: Bergman et al.
We collected  the  data  and  plasmid  sequence  from  the  supplementary  materials  of  the
Bergman et al.  [12] manuscript. We employ the same filtering strategy, keeping only data
points supported by at least 25 plasmids and at least 2 barcodes.

As this assay was conducted using a plasmid and has no clear analog in the endogenous
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genome, we reproduced the plasmid sequences in-silico and added N-padding on the flanks
to adapt it to the Enformer input length. We placed the promoter and enhancer fragments
into their respective locations in the plasmid and centered predictions on the midpoint of the
promoter fragment, as the exact TSS is - to our knowledge - unknown. 

Bergman et al. use their data to impute the intrinsic strengths of the promoter and enhancer
sequences. For this, they fit a Poisson model with promoter and enhancer indicators:

where RNA is the measured RNA count, DNA is the amount of plasmid used, β is a learned
weight, and P and E are the promoter and enhancer indicators (“strengths”) respectively. We
reproduced this analysis using the package statsmodels [41]. Note that we also fitted a log-
linear OLS to this data, which gave very similar results,  but we report the results of the
Poisson model to stay faithful to the source material. 

To  impute  the  predicted promoter  and  enhancer  strengths,  we  use  a  similar  strategy.
However, we do not fit  a Poisson model, as Enformer predictions are not integer-valued.
Instead we fit a Gamma model:

where CAGE is the Enformer CAGE prediction (for K562).

The Gamma distribution is often used to model the prior distribution of a Poisson lambda
and arguably the Enformer prediction in natural scale is a Poisson lambda, as Enformer is
trained using a Poisson loss function. 

To ensure that our results are robust, we additionally fitted a linear regression to the log-
transformed Enformer prediction:

This gave very similar results. 

Note that our calculations of explained variance refer to the variation in log expression. This
is why they slightly differ from the ones reported in Bergman et al. 

Enhancer knockdown

We collected the data from the supplements of the respective manuscripts. Additionally, the
sequences used for this benchmark in the Enformer paper were kindly provided by Ziga
Avsec. For each gene, Avsec et al. [10] determined the TSS site with the highest predicted
expression in  K562.  They then extracted sequences centered on these TSS,  unless the
distance between the gene and the enhancer is such that this was not possible given the
receptive field size, in which case the TSS is shifted to accommodate the tested enhancers.
Predictions are made at the TSS sites, as per usual.

For each reference sequence (with the enhancer intact) we create 25 “knockout” sequences,
where we shuffle 2000 bp centered on the enhancer. In this way, we destroy the enhancer
without  changing  the nucleotide  composition  of  the  underlying  sequence.  The  predicted
effect of enhancer knockout is then given by the average (over shuffles) change in predicted
gene expression at the TSS.
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eQTL

We downloaded SuSie credible sets for GTEx eQTL from the EBI eQTL catalog  [26]. We
additionally downloaded GTEx eQTL normalized effect sizes from the GTEx portal [14,16].

We apply the following filters:

- We only consider protein-coding eGenes.
- We exclude credible sets which span more than 5kb
- We demand that each variant in the credible set can be scored by Enformer when

the canonical  TSS is  placed  in  the center  of  the  sequence.  In  other  words,  the
furthest variant of a credible set must be no further than 98kb from the canonical TSS
of the eGene, otherwise the entire set is excluded.

- We demand that all variants in the credible set are upstream of the canonical TSS.
This  is  to  exclude  post-transcriptionally  acting  variants  (i.e.  NMD variants,  splice
variants, etc). If a credible set contains even one downstream variant, we exclude it.

- We exclude all eGenes which have a GENCODE annotated protein-coding transcript
upstream of the canonical one. In this way, we ensure that the canonical  TSS is
always the closest (protein-coding) TSS of the eGene to the variant.

6141 credible sets pass our filters, thus providing a total of 14139 variants to test.

For each variant in each credible set, we then compute predictions for all CAGE tracks at the
canonical TSS of the eGene (using our usual strategy of summing over neighboring bins and
averaging  over  strands  and  small  offsets).  We  then  use  the  previously  fitted  ridge
regressions to match these CAGE predictions to GTEx tissues. Next, we compute, for each
variant, the change in prediction vis-a-vis the predictions made with the reference sequence.
We define the eQTL effect as the effect of the strongest variant (i.e. the one leading to the
biggest change in predicted expression at the canonical TSS of the eGene in the tissue of
interest) in the credible set. This follows the usual assumption in the literature that generally
only one variant in a linkage block will be causal. Our strategy fails if the eQTL effect is the
result of an epistatic interaction between several variants in linkage - however testing this
possibility would require testing all combinations of variants in a credible set, which would be
prohibitively expensive. Moreover, we would expect that such cases are rare anyways.

Trip-Seq (Hong et al.)

We collected the data and relevant construct sequences from the supplements of the Hong
et al. [27] manuscript. We followed the standard procedure to replicate this experiment.

To compute the explained variances, we fit log-linear OLS models, similarly as we did for the
Bergman et al. data.

In-silico Multiplicativity Assay

To  identify  triplets  of  promoter,  enhancer,  and  background  where  Enformer  attributes
importance to the enhancer in determining expression at the promoter, we returned to our in-
silico reproduction of the CRISPRi data. We first selected promoter-enhancer pairs where:

- the enhancer is further than 3kb from the TSS
- the enhancer is within 90kb of the TSS
- the in-silico enhancer knockdown has a predicted impact of at least 30% (note that

this includes both repressive and activating enhancers)
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To cover a slightly bigger range of possible enhancer effects, we identified for the same
genes some weak ( < 1% predicted effect, despite being located within 20kb of the TSS) and
intermediate strength enhancers (between 4% and 8%) predicted effect. We finally selected
a few “non-functional” promoter-enhancer pairs where the enhancer had no real effect at all (
< 0.1%).

This  procedure yielded  89 unique promoters and 115 unique enhancers.  To extract  the
promoter sequences, as exact boundaries are unknown, we take a 1kb window around the
TSS. For the enhancer, we take a 2kb window around the enhancer midpoint.

Each promoter-enhancer pair comes with an endogenous sequence background, which also
determines the distance of  the enhancer to the promoter.  Ideally,  we would have tested
every promoter-enhancer combination in every background, but the combinatorial explosion
makes this computationally expensive - specifically  because we have to predict  for each
sequence six  times,  i.e.  for  both strands and with  small  shifts,  to  limit  the  noise  in  the
prediction. Thus we selected 32 backgrounds. We took 6 backgrounds from our set of non-
functional  triplets  (to  see  if  other  enhancer-promoter  pairs  could  be  linked  in  such  a
background) and we selected 6 backgrounds where the enhancer location is far from the
TSS location. The remaining backgrounds were selected from the strong triplets.

We then proceed as follows: for each background, we predict expression in K562 at the TSS
for  every  combination  of  promoter  and  enhancer.  Hereby,  we  always  replace  the
endogenous promoter of this background with the promoter of interest and we replace the
endogenous  enhancer  with  the enhancer  of  interest.  Thus,  for  a  given background,  the
distance between promoter and enhancer is constant. We focus on K562 as most of the
experiments on this topic were also performed in this cell type.

We get a total of 327,520 combinations (promoter x enhancer x background).  We then fit
log-linear models to explain the variation in log expression in this data. We first do this for
the entire dataset, using an indicator variable for each promoter, each enhancer, and each
background (236 parameters). This model thus assumes that the log expression of a certain
promoter-enhancer pair in a certain background is determined by the innate strength of the
promoter which is scaled by the background and the enhancer. 

We next fit log-linear models to explain the expression variation for each background, across
promoters and enhancers (32 backgrounds, with 10235 observations for each one). We use
promoter and enhancer indicators (204 parameters). We also fit log-linear models to explain
the  expression  variation  for  each  promoter,  across  backgrounds  and  enhancers  (89
promoters,  with  3680  observations  for  each one).  In  this  case  we use  background  and
enhancer  indicators  (147 parameters).  Lastly,  we correlate the enhancer  parameters we
estimated across promoters and across backgrounds.
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