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Abstract

The histopathological phenotype of tumors reflects the underlying genetic makeup. Deep learning
can predict genetic alterations from tissue morphology, but it is unclear how well these predictions
generalize to external datasets. Here, we present a deep learning pipeline based on self-supervised
feature extraction which achieves a robust predictability of genetic alterations in two large multicentric
datasets of seven tumor types.

Main Text

The genotype of any solid tumor determines its phenotype, giving rise to a large variety of patterns in
cancer histopathology. Deep learning (DL), a tool from the realm of artificial intelligence, can infer
genetic alterations directly from routine histopathology slides stained with hematoxylin and eosin
(H&E). Initial studies demonstrated this predictability in lung cancer®, breast cancer? and colorectal
cancer.® Since then, several “pan-cancer’ studies have shown that DL-based prediction of
biomarkers is feasible across the whole spectrum of human cancer.*’ However, these studies are
overwhelmingly performed in a single large cohort without externally validating the results on a large
scale. This raises a number of potential concerns, as prediction performance can be heavily biased
by batch effects occurring in such single multicentric datasets.® To move closer to clinical
applicability, external validation of any DL system is paramount.” Finally, more recent technical
benchmark studies have demonstrated that attention-based multiple instance learning (MIL)'° and
self-supervised pre-training of feature extractors***? improves prediction performance for biomarkers
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in computational pathology, but these technical advances have not yet been systematically applied to
multi-cohort mutation prediction.

We acquired two large, multi-centric datasets of cancer histopathology images with matched genetic
profiling: the Cancer Genome Atlas (TCGA) and the Clinical Proteomic Tumor Analysis Consortium
(CPTAC) dataset. We used all tumor types which were present in both datasets, namely: breast
(BRCA; TCGA N=1062, CPTAC N=198 patients), colorectal (CRC; TCGA N=615, CPTAC N=178),
glioblastoma (GBM; TCGA N=388, CPTAC N=189), lung adeno (LUAD; TCGA N=478, CPTAC
N=244), lung squamous (LUSC; TCGA N=478, CPTAC N=212), pancreatic (PAAD; TCGA N=183,
CPTAC N=168 patients) and (uterine) endometrial cancer (UCEC; TCGA N=505, CPTAC N=250;
Figure 1A-B; Suppl. Figure 1A-B). We compiled a list of clinically relevant and targetable mutations
of N=1066 genes from OnkoKb®, as well as mutation data from https://www.cbioportal.org/**, as
shown in https://github.com/KatherLab/cancer-metadata. We used genes with a minimum of N=25
mutants in TCGA, resulting in 321 analyzable genes in endometrial cancer (UCEC), down to 4
analyzable genes in pancreatic cancer (PAAD, Figure 1C, Figure 2A). We developed a fully
automatic DL pipeline based on a self-supervised feature extractor (https://github.com/Xiyue-
Wang/RetCCL) and attention-based multiple instance learning (attMIL)*®. We trained models to
predict mutations in TCGA (Figure 1A) and evaluated the performance on CPTAC (Figure 1B). We
report the mean (+standard deviation) area under the receiver operating characteristic curve
(AUROQOC) of five replicate experiments.

In most tumor types, several genes were predictable from histology (Figure 1D, Suppl. Table 1). In
accordance with previous studies'®, endometrial cancer (UCEC) had the highest number of
detectable mutations. N=145 out of n=321 analyzable genes had an with AUROC of over 0.60, of
whom 31 had an AUROC between 0.70 and 0.80 in the external validation cohort, and an additional
14 genes had an AUROC over 0.80 (Figure 2A). Among these were NTRK1 mutations (AUROC
0.86+0.07), which are potentially clinically relevant'’; MSH2 mutations (AUROC 0.73+0.26), which
can cause microsatellite instability and are druggable with immune checkpoint inhibitors, and PTEN,
which reached an AUROC of 0.71 (+0.05) and is involved in hereditary cancer.’® We identified 51
predictable genes (out of 84 analyzable genes) for colorectal cancer (CRC) with AUROCs of over
0.6, including 7 predictable genes with AUROCs over 0.7 in the external validation cohort. (Figure
2B). This included prognostic alterations, such as CREBBP*® mutations, which reached an AUROC
of 0.73+0.04 (Suppl. Table 1). Compared to the other tumor types in our study, the tumors with the
most predictable genes (UCEC, COAD and LUAD) have a higher average tumor mutational burden.?
We hypothesize that many morphological alterations are related to immune-mediated changes in the
tumor microenvironment. Our method yielded interpretable spatial predictions (Figure 2G), and
unlike previous studies® provided separate heatmaps for attention (Figure 2H) and classification
(Figure 2l, Suppl. Figure 3A-1). A key limitation is that many clinically relevant genes were not
analyzable due to having fewer than 25 mutants in TCGA. Large-scale efforts are needed to create
datasets with a sufficient size, which could be facilitated by federated® or swarm? learning.

Since the early 2000s, studies have shown a link between genetic alterations and histological
phenotypes?*, which DL can exploit.*®> While there is no biological reason why every frequent genetic
alteration is actually manifest in histology, our results add to the growing amount of evidence which
shows that many of these alterations are indeed determinable from H&E. Crucially, in contrast to
previous studies, all our models have been externally validated, thereby minimizing the risk of
overfitting.® Our analysis shows that in tumor types with numerous predictable mutations, cross-
validated performance of attMIL is correlated to external validation performance (Figure 2A-F, Supp.
Figure 2). Our study identifies several clinically relevant candidate genes amenable to DL-based pre-
screening as part of clinical routine practice, with the aim of identifying patients who are good
candidates for confirmatory genetic testing.
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Figure 1: Prediction of mutations in TCGA and validation in CPTAC. (A) We acquired pathology
images from The Cancer Genome Atlas (TCGA) (B) and the Clinical Proteomic Tumor Analysis
Consortium (CPTAC). (C) We collated genetic mutations and trained Deep Learning classifiers to
predict them from pathology slides in TCGA and externally validated them on CPTAC. (Icon source
https://smart.servier.com / www.flaticon.com, CC-BY). (D) Analyzable and predictable mutations in all
cohorts, AUROC = area under the receiver operating characteristic curve.
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Figure 2: Classification performance for all genes in internal and external validation. (A-F)
Internal cross-validated and external validation AUROC for six tumor types (PAAD in Suppl. Figure
2). The bubble size scales with the number of mutant patients in the external validation cohort. All
raw data are in Suppl. Table 1. (G-1) A representative patient from the CPTAC-BRCA cohort, with
attention map and prediction maps for CDH1 mutational status.
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Code availability

Our pipeline is available under an open-source license (https://github.com/KatherLab/marugoto).

Funding

JNK is supported by the German Federal Ministry of Health (DEEP LIVER, ZMVI1-2520DAT111) and
the Max-Eder-Programme of the German Cancer Aid (grant #70113864).

Disclosures

JNK declares consulting services for Owkin, France and Panakeia, UK. No other potential conflicts of
interest are reported by any of the authors.

Author contributions

OLS, CMML, SR, ATP and JNK conceived the experiments. MVT developed the codes for analysis.
JMN tested and corrected the codes. CMMS and TPS curated the source data. KJH quality-checked
the source data. DC and GPV quality-checked the genetic data. OLS performed the experiments. All
authors interpreted the data and wrote the paper. All authors agreed to the submission of this paper.


https://doi.org/10.1101/2022.09.15.507455
http://creativecommons.org/licenses/by/4.0/

