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Abstract 

The histopathological phenotype of tumors reflects the underlying genetic makeup. Deep learning 
can predict genetic alterations from tissue morphology, but it is unclear how well these predictions 
generalize to external datasets. Here, we present a deep learning pipeline based on self-supervised 
feature extraction which achieves a robust predictability of genetic alterations in two large multicentric 
datasets of seven tumor types.  

Main Text 

The genotype of any solid tumor determines its phenotype, giving rise to a large variety of patterns in 
cancer histopathology. Deep learning (DL), a tool from the realm of artificial intelligence, can infer 
genetic alterations directly from routine histopathology slides stained with hematoxylin and eosin 
(H&E). Initial studies demonstrated this predictability in lung cancer1, breast cancer2 and colorectal 
cancer.3 Since then, several “pan-cancer” studies have shown that DL-based prediction of 
biomarkers is feasible across the whole spectrum of human cancer.4–7 However, these studies are 
overwhelmingly performed in a single large cohort without externally validating the results on a large 
scale. This raises a number of potential concerns, as prediction performance can be heavily biased 
by batch effects occurring in such single multicentric datasets.8 To move closer to clinical 
applicability, external validation of any DL system is paramount.9 Finally, more recent technical 
benchmark studies have demonstrated that attention-based multiple instance learning (MIL)10 and 
self-supervised pre-training of feature extractors11,12 improves prediction performance for biomarkers 
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in computational pathology, but these technical advances have not yet been systematically applied to 
multi-cohort mutation prediction.  
 
We acquired two large, multi-centric datasets of cancer histopathology images with matched genetic 
profiling: the Cancer Genome Atlas (TCGA) and the Clinical Proteomic Tumor Analysis Consortium 
(CPTAC) dataset. We used all tumor types which were present in both datasets, namely: breast 
(BRCA; TCGA N=1062, CPTAC N=198 patients), colorectal (CRC; TCGA N=615, CPTAC N=178), 
glioblastoma (GBM; TCGA N=388, CPTAC N=189), lung adeno (LUAD; TCGA N=478, CPTAC 
N=244), lung squamous (LUSC; TCGA N=478, CPTAC N=212), pancreatic (PAAD; TCGA N=183, 
CPTAC N=168 patients) and (uterine) endometrial cancer (UCEC; TCGA N=505, CPTAC N=250; 
Figure 1A-B; Suppl. Figure 1A-B). We compiled a list of clinically relevant and targetable mutations 
of N=1066 genes from OnkoKb13, as well as mutation data from https://www.cbioportal.org/14, as 
shown in https://github.com/KatherLab/cancer-metadata. We used genes with a minimum of N=25 
mutants in TCGA, resulting in 321 analyzable genes in endometrial cancer (UCEC), down to 4 
analyzable genes in pancreatic cancer (PAAD, Figure 1C, Figure 2A). We developed a fully 
automatic DL pipeline based on a self-supervised feature extractor (https://github.com/Xiyue-
Wang/RetCCL) and attention-based multiple instance learning (attMIL)15. We trained models to 
predict mutations in TCGA (Figure 1A) and evaluated the performance on CPTAC (Figure 1B). We 
report the mean (�standard deviation) area under the receiver operating characteristic curve 
(AUROC) of five replicate experiments.  
 
In most tumor types, several genes were predictable from histology (Figure 1D, Suppl. Table 1). In 
accordance with previous studies16, endometrial cancer (UCEC) had the highest number of 
detectable mutations. N=145 out of n=321 analyzable genes had an with AUROC of over 0.60, of 
whom 31 had an AUROC between 0.70 and 0.80 in the external validation cohort, and an additional 
14 genes had an AUROC over 0.80 (Figure 2A). Among these were NTRK1 mutations (AUROC 
0.86�0.07), which are potentially clinically relevant17; MSH2 mutations (AUROC 0.73�0.26), which 
can cause microsatellite instability and are druggable with immune checkpoint inhibitors, and PTEN, 
which reached an AUROC of 0.71 (�0.05) and is involved in hereditary cancer.18 We identified 51 
predictable genes (out of 84 analyzable genes) for colorectal cancer (CRC) with AUROCs of over 
0.6, including 7 predictable genes with AUROCs over 0.7 in the external validation cohort. (Figure 
2B). This included prognostic alterations, such as CREBBP19 mutations, which reached an AUROC 
of 0.73�0.04 (Suppl. Table 1). Compared to the other tumor types in our study, the tumors with the 
most predictable genes (UCEC, COAD and LUAD) have a higher average tumor mutational burden.20 
We hypothesize that many morphological alterations are related to immune-mediated changes in the 
tumor microenvironment. Our method yielded interpretable spatial predictions (Figure 2G), and 
unlike previous studies21 provided separate heatmaps for attention (Figure 2H) and classification 
(Figure 2I, Suppl. Figure 3A-I). A key limitation is that many clinically relevant genes were not 
analyzable due to having fewer than 25 mutants in TCGA. Large-scale efforts are needed to create 
datasets with a sufficient size, which could be facilitated by federated22 or swarm23 learning. 
 
Since the early 2000s, studies have shown a link between genetic alterations and histological 
phenotypes24, which DL can exploit.4,5 While there is no biological reason why every frequent genetic 
alteration is actually manifest in histology, our results add to the growing amount of evidence which 
shows that many of these alterations are indeed determinable from H&E. Crucially, in contrast to 
previous studies, all our models have been externally validated, thereby minimizing the risk of 
overfitting.8 Our analysis shows that in tumor types with numerous predictable mutations, cross-
validated performance of attMIL is correlated to external validation performance (Figure 2A-F, Supp. 
Figure 2). Our study identifies several clinically relevant candidate genes amenable to DL-based pre-
screening as part of clinical routine practice, with the aim of identifying patients who are good 
candidates for confirmatory genetic testing. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 16, 2022. ; https://doi.org/10.1101/2022.09.15.507455doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.15.507455
http://creativecommons.org/licenses/by/4.0/


 

Figures 

 
Figure 1: Prediction of mutations in TCGA and validation in CPTAC. (A) We acquired pathology
images from The Cancer Genome Atlas (TCGA) (B) and the Clinical Proteomic Tumor Analysis
Consortium (CPTAC). (C) We collated genetic mutations and trained Deep Learning classifiers to
predict them from pathology slides in TCGA and externally validated them on CPTAC. (Icon source
https://smart.servier.com / www.flaticon.com, CC-BY). (D) Analyzable and predictable mutations in a
cohorts, AUROC = area under the receiver operating characteristic curve. 
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Figure 2: Classification performance for all genes in internal and external validation. (A-F
Internal cross-validated and external validation AUROC for six tumor types (PAAD in Suppl. Figur
2). The bubble size scales with the number of mutant patients in the external validation cohort. A
raw data are in Suppl. Table 1. (G-I) A representative patient from the CPTAC-BRCA cohort, with
attention map and prediction maps for CDH1 mutational status.  
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Additional Information 

Ethics statement 

All experiments were conducted in accordance with the Declaration of Helsinki. For this study, we 
used anonymized H&E-stained slides from public repositories.  

Data availability 

TCGA images are from https://portal.gdc.cancer.gov/, CPTAC images are from 
https://wiki.cancerimagingarchive.net/display/Public/CPTAC+Pathology+Slide+Downloads. Genetic 
data are available at https://www.cbioportal.org/. 

Code availability 

Our pipeline is available under an open-source license (https://github.com/KatherLab/marugoto).  
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