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Abstract

Annotating coding genes and inferring orthologs are two classical challenges in genomics and
evolutionary biology that have traditionally been approached separately, which limits scalability.
We present TOGA, the first method that integrates gene annotation and orthology inference.
TOGA implements a novel paradigm to infer orthologous genes, improves ortholog detection and
annotation completeness compared to state-of-the-art methods, and handles even highly-
fragmented assemblies. TOGA scales to hundreds of genomes, which we demonstrate by
applying it to 488 placental mammal and 308 bird assemblies, creating the largest comparative
gene resources so far. Additionally, TOGA detects gene losses, enables selection screens, and
automatically provides a superior measure of mammalian genome quality. Together, TOGA is a
powerful and scalable method to annotate and compare genes in the genomic era.

Introduction

Distinguishing homologs -- genes with a common ancestry -- into orthologs and paralogs is a
fundamental problem in evolutionary and molecular biology. Orthology and paralogy are defined
for a pair of homologous genes that originated by either speciation (ortholog) or gene duplication
(paralog) (7). Inferring orthologous genes is a prerequisite for many genomic analyses, including
reconstructing phylogenetic trees from molecular data, predicting gene function, investigating
molecular and genome evolution, and discovering differences in genes that underlie phenotypes
of the sequenced species (2-7).

Current methods for orthology inference are either based on graph or tree approaches or a
combination of both (8). Graph-based methods cluster genes into pairs or groups of orthologs
based on pairwise sequence similarity such as (reciprocal) best alignment hits (9-18). Tree-based
methods determine whether the evolutionary lineages of a pair of genes coalesce in a speciation
or a duplication node in the gene tree (79-26). Importantly, the input for these approaches is a set
of annotated genes with their coding or protein sequences for each to-be-considered species. This
is why gene identification and annotation until now has preceded orthology inference, resulting in
two limitations. First, gene annotation quality has a large influence on the accuracy of orthology
inference (27). Second, since generating a high-quality annotation is time-consuming and typically
requires comprehensive transcriptomics (gene expression) data, there is a growing gap between
genome sequencing and genome annotation including orthology inference.

Here, we present TOGA (Tool to infer Orthologs from Genome Alignments), a new method that
provides several key innovations. First, TOGA uses a new paradigm to accurately infer
orthologous genes that largely relies on alignments of intronic and intergenic sequences instead

2
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71  of alignments of only coding sequences. Second, TOGA is the first method that integrates
72  orthology detection with comparative gene annotation, making it applicable to un-annotated
73 genome assemblies. Third, TOGA explicitly investigates whether orthologs likely encode an intact
74  protein, have missing exonic sequence, or have gene-inactivating mutations (e.g. frameshifts or
75  premature stop codons), which is important for distinguishing functional from inactivated
76  orthologous genes. We show that TOGA accurately detects orthologs and generates
77  comprehensive gene annotations at a quality similar to, or better, than state-of-the-art methods.
78  TOGA'’s ability to join fragments of orthologous genes facilitates the use of less contiguous
79 assemblies in comparative gene analyses. We also show that TOGA provides a superior
80  benchmark for mammalian genome quality. Finally, we demonstrate that TOGA scales to the
81  hundreds of already sequenced genomes by annotating genes and inferring orthologs for 488
82  placental mammals and 308 birds, creating the largest comparative gene datasets for both groups.
83

84

85

86 Results

87 A novel paradigm for orthology detection
88  The principle used implicitly or explicitly by all orthology detection methods is that orthologous
89  sequences are generally more similar to each other than to paralogous sequences (7). Existing
90 methods focus on similarity between coding sequences that typically evolve under purifying
91 selection. However, this principle also extends to non-exonic regions (introns, intergenic regions)
92  thatlargely evolve neutrally. The key innovation implemented in TOGA is that intronic and flanking
93  intergenic regions of orthologous gene loci will also be more similar to each other (Figure 1A),
94  provided that the evolutionary distance between the species is sufficiently short such that neutrally
95  evolving regions still partially align. This is given for placental mammals that shared a common
96  ancestor up to ~100 Mya (28), since the evolutionary distance between human and other placental
97  mammals is at most 0.55 substitutions per neutral site (Figure S1, Tables S1, S2). Similarly, the
98 evolutionary distance between chicken and other birds that shared a common ancestor up to
99 ~100 Mya (29) is at most 0.51 substitutions per neutral site (Table S2). This explains why
100  orthologous introns and intergenic regions retain enough sequence similarity that they partially
101  align between species within these clades (Figures 1A, S2). In contrast, the evolutionary distance
102 between paralogs that duplicated before the speciation event is often much larger and exceeds 1
103 substitution per neutral site (Figure 1C). At such distances, introns and intergenic regions of
104  paralogous genes have been largely randomized, and alignments can only be detected for coding
105  sequences that generally evolve slowly due to purifying selection (Figures 1A, S2). TOGA exploits
106  this principle by (i) taking a well annotated genome such as human, mouse or chicken as the
107  reference, (ii) inferring all (co-)orthologous loci for all genes from a genome alignment between
108  the reference and a query species (e.g. other placental mammals or birds), and (iii) annotating
109  and classifying these genes (Figure 1B).
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110 The TOGA annotation and orthology detection pipeline
111 TOGA implements a multi-step pipeline, comprising the detection of orthologous loci, annotation
112 and classification, and orthology type determination. In the first step, TOGA uses machine learning
113  to distinguish orthologous from paralogous genomic loci or loci containing processed
114  pseudogenes, largely relying on alignments of intronic and intergenic regions around the gene of
115 interest. To this end, TOGA uses a whole genome alignment between an annotated reference
116  species and an aligned query species, exemplified by human and mouse in Figure 1A. A powerful
117  method to compute and visualize a pairwise genome alignment are chains of co-linear local
118  alignments that capture both orthologous as well as paralogous genes or processed pseudogene
119  loci (30). To distinguish between them, TOGA computes for each gene and each overlapping
120 chain four characteristic features that capture the amount of intronic and intergenic alignments
121  (Figure S3). Additionally, TOGA uses synteny (conserved gene order) as another feature, which
122 can help to distinguish orthologs from paralogs (24, 37-33).
123
124 We trained a machine learning classifier using known orthologous genes between human
125  (reference) and mouse (query) from Ensembl Compara (24) (Figure S4). We then tested the
126  classifier on several independent query species (rat, dog, armadillo) from different placental
127  mammalian orders. We obtained a near perfect orthologous chain classification for both multi- and
128  single-exon genes (Figure 1D, Table S3). The features capturing intronic/intergenic alignments
129  are most important for the classification performance (Figures 1E,F). In contrast, synteny is the
130  least important feature, likely reflecting our training data sets that we deliberately enriched with
131  translocated orthologs (Figures S5). Using synteny as an auxiliary but not determining feature
132 enables TOGA to also accurately detect orthologs that underwent rearrangements such as
133 translocations or inversions and therefore lack conserved gene order (Figure 1D), as exemplified
134 in Figure S6.
135
136  For the human-rat test dataset, we manually investigated discrepancies between TOGA's
137  classifications and Ensembl. We found that chains classified as false positives mostly represent
138  partial or full gene duplications in rat (Figure S7), indicating that TOGA is able to detect lineage-
139  specific gene duplications and actually correctly classified these chains as co-orthologous loci. A
140  limitation of our approach is exemplified by the 12 false negative chain classifications in the test
141  set. These exhibited both exceptional intron divergence and lacked intergenic alignments due to
142 rearrangements, resulting in alignment chains that resemble paralogous loci (Figure S8).
143 Interestingly, 7 of the 12 false negatives are X-chromosome linked genes, indicating that faster X
144 chromosome evolution (34) could be involved in the exceptional divergence of neutrally evolving
145  regions of these loci. It should be noted that TOGA still annotated these genes, but labeled them
146  as putative paralogs (Figure S8).
147
148  In a second step, TOGA uses CESAR 2.0 (35, 36) to determine the positions and boundaries of
149  all coding exons for each (co-)orthologous query locus of the gene (Figures 1B, S9, S10). Since
4
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150  orthology between genomic loci, as determined in the first step, does not imply that the gene
151 encodes a functional protein, TOGA subsequently assesses for each transcript and each
152 orthologous locus whether it preserves the intact reading frame (Figure S11). To this end, TOGA
153  identifies gene-inactivating mutations (frameshifting, stop codon or splice site mutations, exon or
154  gene deletions) by implementing an improved version of our gene loss detection approach (6)
155  (Figures 1B, S12-S17). We only classified a gene as lost, if all transcripts at all (co-)orthologous
156 loci are classified as lost. We benchmarked this approach on a large set of 11,161 conserved
157  genes that are annotated as 1:1 orthologs by Ensembl in mouse, rat, cow and dog. Only 21, 22,
158 12 and 21 genes are misclassified as inactivated for the four species, indicating a very high
159  specificity of 99.80 to 99.89% (Table S4). Manual inspection showed that the few mis-classified
160  cases include highly-diverged genes, genes that evolved drastic changes in exon-intron structure
161  or protein length, and a lost gene that is compensated by a processed pseudogene copy, which
162  highlights cases of less certain gene conservation (Figures S18-S22).

163

164  An interesting example demonstrating the importance of detecting all orthologous loci and
165  determining reading frame intactness is the STRC and CKMT1B gene locus. This locus was
166  duplicated four times in the lineage leading to guinea pig, and TOGA recognizes all co-orthologous
167  loci with high probabilities (Figure 1G). However, despite the quadruplication, only one copy of
168  each gene encodes an intact reading frame. In case of STRC, the gene encoded by the ancestral
169  locus became inactivated, while one of the new copies maintained an intact reading frame. TOGA
170  correctly classifies and annotates both genes as 1:1 orthologs, but also annotates exons of the
171  remnants of the otherwise inactivated gene copies in the guinea pig genome (Figure 1G).

172

173 In the third step, TOGA determines the orthology type by considering all reference genes and all
174  orthologous query loci that encode an intact reading frame (Figure 1B, S23). Finally, TOGA uses
175 an orthology graph approach to resolve weakly-supported orthology relationships among
176  many:many orthologs (Figures 1B, S24).

177

178  TOGA improves ortholog detection

179  To assess the performance of TOGA'’s orthology detection pipeline, we compared it against
180  Ensembl Compara, which integrates graph- and tree-based methods and provides high-quality
181  ortholog gene sets (24). Using orthologs between human and three representative mammals (rat,
182  cow, elephant), we found that TOGA detected 97.6%, 98.9% and 96.5% of the orthologs provided
183 by Ensembl (Figure 2A, Table S5), showing a good agreement. Furthermore, for >90% of these
184  commonly-detected orthologs, TOGA inferred the same orthology type as Ensembl (1:1, 1:many,
185  many:1, many:many) (Figure 2C). A quarter of the discrepancies are cases where TOGA infers
186  1:1and Ensembl 1:many. In several of these cases, Ensembl annotates a processed pseudogene
187  copy as a second ortholog (Figure S25).

188
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189  For the orthologs detected only by Ensembl, TOGA did identify an orthologous locus in >93% of
190 the cases, but detected either inactivating mutations indicating gene loss or that large parts of the
191  gene overlap assembly gaps (classified as a missing gene) (Figures 2D, S26, S27). Consistent
192 with these cases including more questionable orthologs, parameters measuring alignment identity
193  (mean 51%), alignment coverage (mean 44%) and orthology confidence (mean 32%) are
194  substantially lower compared to orthologs detected by both methods (means 81%, 94%, 91%)
195  (Figure 2B).
196
197  TOGA predicted for the three species 1,532 (rat), 1,711 (cow) and 2,174 (elephant) additional
198  orthologs that are not listed in Ensembl (Figure 2A). For rat, this includes PAX1, an important
199  developmental transcription factor that was potentially missed by Ensembl because of a mis-
200  annotated N-terminus (Figure S28). About half of these genes belong to large families such as
201  zinc finger genes, olfactory receptors or keratin associated proteins (Figure 2C). While
202  establishing orthology between genes in large families is generally more challenging, these genes
203  exhibit alignment identity (mean 70%), alignment coverage (mean 83%) and orthology confidence
204  (mean 94%) values that are more similar to the orthologs detected by both methods (means 82%,
205  94%, 99%) (Figure 2B), supporting that these genes are undetected orthologs.
206
207 TOGA improves gene annotation completeness
208 To assess the completeness of annotations generated by TOGA, we performed a direct
209  comparison to annotations generated by Ensembl and by the NCBI Eukaryotic Genome
210  Annotation Pipeline (37, 38), two state-of-the-art methods that integrate transcriptomics,
211  homology-based data (transcripts and proteins from RefSeq and GenBank) and ab initio gene
212 predictions. To this end, we applied TOGA using human as the reference to genomes of 70 / 118
213 placental mammals that have Ensembl / NCBI annotations. Using BUSCO (Benchmarking
214 Universal Single-Copy Orthologs), a widely used tool to assess the completeness of protein-
215 coding gene annotations (39), we surprisingly found that TOGA annotations have a higher
216  completeness score for the mammalian BUSCO odb10 gene set for 97% (Ensembl) and 91.5%
217  (NCBI) of the species (Figure 3A, B, Tables S6, S7). On average, TOGA’s annotations have a
218  4.1% (Ensembl) and 0.7% (NCBI) higher completeness, which corresponds to ~377 and ~64
219  genes in the set of 9,226 BUSCO genes.
220
221  To show that this performance is not specific to the use of human as the reference, we compared
222 Ensembl and NCBI to TOGA annotations obtained by using mouse (mm10 assembly) as the
223  reference. Like human, mouse also provides a high-quality gene annotation, which is important
224 for reference-based methods like TOGA. Using mouse, we found that TOGA annotations have a
225  higher BUSCO completeness for 98.5% (Ensembl) and 64% (NCBI) of the species (Figure 3A, B,
226  Tables S6, S7). While reference-based methods cannot annotate orthologs of genes not contained
227  in the reference annotation, this downside can be counteracted by combining multiple references.
228 Indeed, combining the human- and mouse-based TOGA annotations achieves a higher
6
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229  completeness for almost all (>98%) of the assemblies with an average increase of 4.5% (Ensembl)
230 and 0.97% (NCBI) (Figure 3A, B). These tests show that the BUSCO gene completeness of
231 TOGA’s comparative annotations are often higher than those produced by state-of-the-art
232 annotation pipelines that include transcriptomics data.
233
234  TOGA improves annotation completeness even if transcriptomics data are available
235  Transcriptomics data is undoubtedly very useful for gene annotation, as it provides direct evidence
236  of transcripts expressed in the sampled tissues. Therefore, we next tested whether TOGA can
237  increase annotation completeness, even if transcriptomics data and other gene evidence are
238  already available. To this end, we used six high-quality bat genomes (7) and first annotated genes
239 by integrating available transcriptomics data (both RNA-seq and lIso-seq), ab initio gene
240  predictions (Augustus (40)), aligned proteins from closely related bats, and comparative gene
241  predictions (Augustus-CGP applied to a multiple genome alignment (47)). For the six bats, these
242 annotations contained 87.7% to 95.4% of the genes in the mammalian BUSCO odb10 set (Figure
243 3C, Table S8). Adding TOGA with human as the reference as an additional evidence consistently
244 increased the annotation completeness by 3.9% to 11.4%, reaching a BUSCO completeness
245  score of 98.8% to 99.3%. This shows that even if a comprehensive set of gene evidence including
246  transcriptomics data are available, annotation completeness can still be improved by TOGA.
247
248  TOGA joins split genes in fragmented assemblies
249  Genes that are split between different scaffolds are currently either missed or annotated as
250  fragments, hampering downstream analyses. Although current genome projects aim to generate
251  highly-complete, chromosome-level assemblies (7, 42), even such assemblies can contain a few
252  fragmented genes (Figure S29). Furthermore, many currently available mammal or bird
253  assemblies exhibit fragmentation (43, 44) and are therefore more difficult to annotate. To improve
254  comparative annotation and orthology inference of fragmented genes, we leveraged TOGA’s
255  ability to detect orthologous loci of partial genes. We implemented a gene joining procedure that
256  recognizes orthologous parts of 1:1 orthologous genes, joins them together, and generates an
257  annotation and codon/protein alignments for the full gene. Figure 4A illustrates this procedure for
258 agene splitinto six parts in the fragmented pygmy sperm whale assembly (43).
259
260  To evaluate the accuracy of this step, we utilized the fact that orthologous but not paralogous
261  genes from two closely related species are expected to be highly similar. We used assemblies of
262  two sperm whale species: Kogia breviceps with a low scaffold N50 of 29 kb (43) and Physeter
263  macrocephalus with a high scaffold N50 of 122 Mb (45). Orthologous genes, for which no joining
264  is necessary as they are contained on a single scaffold in both species, have a high median coding
265  exon identity of 98.28% (mean 98.70%) (Figure 4B), which serves as a positive control. In contrast,
266  paralogous genes, which we used as a negative control, have a lower median coding exon identity
267  of 77% (mean 75.18%). Consequently, if TOGA’s gene joining procedure was misidentifying
268  paralogous as orthologous fragments, we would expect a decreased nucleotide identity compared
7
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269 to orthologs located on a single scaffold. However, we observed an equally high identity for
270  orthologous genes joined from two, three and at least four fragments (Figures 4B, S30), indicating
271  ahigh accuracy.

272

273  Demonstrating the effectiveness of this fragment joining procedure, the median length of the
274  coding sequence of split Kogia genes after joining orthologous fragments is 100% (mean 97%) of
275  the length of the orthologous human gene. This is a substantial improvement over the largest
276  orthologous fragment in the assembly (median 58%, mean 59%) (Figure 4C, Table S9). We
277  obtained similar improvements for other highly-fragmented assemblies. Even for an assembly of
278  the extinct Steller's sea cow with a scaffold N50 value of 1.4 kb (46), TOGA improved relative
279  coding sequence length from 28% to 70% (Figure 4C, Table S9).

280

281 TOGA scales to hundreds of genomes

282  Given the wealth of genomes that are generated in the current era, there is a strong need for
283  annotation and orthology inference methods that are able to handle hundreds or thousands of
284 genomes. Unlike previous graph- or tree-based methods that often perform all-against-all
285  comparisons that scale quadratically with the number of species, TOGA considers a pair of
286  reference-query species and thus scales linearly with the number of query species. To
287  demonstrate this, we applied TOGA with human as the reference to a large set of placental
288  mammals, comprising 488 different assemblies of 427 distinct species (Figure 5A, Table S1). As
289  expected, with an average of 19,144 (median 19,192) genes, TOGA annotates more genes in the
290  six Hominoidea (apes) species that are closely related to human. Importantly, for the remaining
291 482 assemblies, TOGA also annotated on average 17,779 (median 18,049) genes, indicating that
292  TOGA is an effective annotation method across placental mammals.

293

294  Fitting generalized linear models shows that the number of annotated orthologs is influenced by
295  several factors. These include assembly quality metrics (contig and scaffold N50), which are both
296  positively correlated with the number of detected orthologs, and the evolutionary distance
297  (substitutions per neutral site) and divergence time (millions of years) to human, which are both
298  negatively correlated (Figure S31, Table S10). Evolutionary distance has a stronger influence than
299  divergence time. This is exemplified for Perissodactyla, where TOGA consistently annotates more
300 genes than in many rodents, despite the fact that the rodent lineage split from human more
301  recently.

302

303 To explore the influence of the reference genome, we next applied TOGA to the same 488
304 placental mammal assemblies using mouse as the reference (Figure 5B, Table S1). Corroborating
305 the influence of evolutionary distance and divergence time, TOGA annotated more genes for the
306 20 closely related Muridae assemblies (mean 20,597, median 20,918) than for the remaining 466
307 assemblies (mean 17,852, median 18,115). Overall, the number of annotated genes is similar to
308 the human-based annotations.
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309 TOGA provides a superior approach for assessing mammalian assembly quality

310 In addition to annotation and orthology inference, TOGA’s gene classification also provides a
311  powerful benchmark to measure assembly completeness and quality. To this end, we first
312  compiled a comprehensive set of 18,430 ancestral placental mammal genes, defined as human
313  coding genes that have an intact reading frame in the basal placental clades Afrotheria and
314  Xenarthra (Table S11). For each of the 488 placental mammal assemblies, we then used TOGA'’s
315  gene classification to determine which percent of these ancestral genes have an intact reading
316 frame without missing sequence. We found that this completeness measure is significantly
317  correlated with the completeness value computed by BUSCO (Pearson r = 0.73, P=10"®") (Figure
318 6A). However, BUSCO's values saturate at ~97% for highly complete assemblies, while TOGA’s
319  completeness values exhibit a larger dynamic range (Figure 6B), which is important to distinguish
320  highly- from less-contiguous assembilies. This is exemplified by two closely related bats: a high-
321  quality assembly of Rhinolophus ferrumequinum (contig N50 21.7 Mb) and a less-contiguous
322 assembly of R. sinicus (contig N50 38 kb) that have a very similar BUSCO completeness (96.4%
323 vs. 96.3% complete genes) but are separated markedly by TOGA’s completeness value (94.4 vs.
324  88.2%) (Figure 6C).

325

326 BUSCO’s fragmented or missing gene classification indicates how much of the gene was
327  detected, but does not distinguish between the two major underlying reasons: assembly gaps that
328  resultin missing gene sequence vs. assembly base errors that destroy the reading frame. TOGA’s
329  gene classification explicitly distinguishes between these two different assembly issues, which
330  provides valuable information on assembly quality. For example, TOGA detects a substantially
331  higher percentage of genes exhibiting inactivating mutations in the Bos gaurus (gaur, 14.2%)
332 compared to the Bos taurus (cow, 4.3%) assembly, indicating that the B. gaurus assembly has an
333  elevated base error rate, whereas both assemblies are indistinguishable in terms of BUSCO
334  completeness scores (95.8 vs. 95.5%) (Figure 6D). Similarly, TOGA shows that the dog canFam5
335 assembly exhibits an elevated base error rate compared to dog canFam4 or the dingo, whereas
336  all three assemblies have highly similar BUSCO scores (Figure 6E). An informative example
337 illustrating that assemblies can suffer from different issues are two assemblies of the spotted
338 hyena: the NCBI GCA_008692635.1 assembly has less missing sequence, but a noticeably higher
339  base error rate compared to the DNAzoo assembly of the same species (Figure 6E). Finally,
340 illustrating extreme cases among seal assemblies, TOGA reveals that 56% of the genes in the
341  Antarctic fur seal have inactivating mutations and that 31% of the genes in the Weddell seal have
342  missing exonic sequence (Figure 6F).

343

344  In summary, TOGA automatically provides a measure for mammalian genome completeness with
345 two advantages. High sensitivity provides the resolution to detect smaller differences in gene
346  completeness of high-quality assemblies and the ability to distinguish between assembly
347  incompleteness and base error rate provides insight into these two distinct assembly challenges.
348
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349  TOGA facilitates more accurate codon alignments

350 Codon or protein alignments are important to screen for selection patterns and to reconstruct
351 phylogenetic trees, but alignment error can substantially impact the outcome (28, 47). TOGA
352  implements two features that help to avoid errors when aligning coding sequences. First, TOGA
353 masks all gene-inactivating mutations such as frameshifts, which can otherwise result in
354  misalignments (Figure S32). Second, whereas existing methods consider entire orthologous
355  coding or protein sequences, TOGA is aware of orthology at the exon level. This enables a new
356  “exon by exon” procedure that generates codon or protein alignments by first aligning orthologous
357 exons and then joining exon alignments together with potential split codons at exon boundaries.
358  Figure S33 illustrates that this procedure avoids alignment errors in case of insertions or deletions
359  that occurred at exon boundaries.

360

361 Applying TOGA to 308 bird as well as other non-mammalian genomes

362  To further demonstrate TOGA'’s ability to scale to many genomes, we used chicken (galGal6) as
363 the reference and applied TOGA to a large set of bird genomes generated by the B10K project
364 and many individual laboratories (29, 44, 48). The set comprises 308 different assemblies of 298
365  distinct species. Across all assemblies, TOGA annotated on average 13,994 (median: 14,058)
366  orthologous genes (Figure 5C, Table S12).

367

368 We also explored whether TOGA can be applied to species other than mammals and birds. Our
369 tests with turtles, fish, and sea urchins provide encouraging results (Figure 5D) that may be further
370  improved by adjusting the method to these clades.

371

372  Comprehensive resources for comparative genomics

373  For the 488 placental mammal and 308 bird assemblies, we provide comparative gene
374  annotations, ortholog sets, lists of inactivated genes and multiple codon alignments generated
375  with MACSE v2 (49) for download at http://genome.senckenberg.de/download/TOGA/. To our
376  knowledge, these comprise the largest comparative genomics datasets for both clades so far. To

377 facilitate visualizing and analyzing these data, we further implemented a TOGA annotation track
378 as part of the UCSC genome browser (50) (Figure S34). Our UCSC browser mirror at
379  https://genome.senckenberg.de/ provides these annotation tracks for all analyzed mammal and
380  bird assemblies.

381

382

383

384
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385 Discussion

386 TOGA is an integrative pipeline that jointly addresses two fundamental problems in genomics and
387  evolutionary biology: gene annotation and orthology inference. We show that alignments between
388  non-coding sequences in introns and intergenic regions enable an accurate detection of
389  orthologous gene loci, establishing a novel paradigm for inference of orthologous genes.
390 Comparisons with state-of-the-art methods show that TOGA often improves gene annotation
391 completeness, even if transcriptomics data are available. Here, TOGA benefits from great efforts
392  that generated high-quality annotations for human and mouse (38, 57), and provides an approach
393  to effectively utilize these to annotate other placental mammals. Furthermore, by joining split
394  genes in fragmented assemblies, TOGA increases the utility of such genomes for comparative
395 analyses. In addition to generating annotations, TOGA detects inactivated genes and provides
396  orthologous sequences for codon alignments. These enable phylogenomic analyses as well as
397 screens for selection patterns and gene losses that are linked to relevant phenotypes, as
398  previously demonstrated in the Bat1K and other projects (7, 52-54). TOGA's gene annotations
399  and classifications can also be used to assess assembly quality, featuring an increased sensitivity
400  and the ability to distinguish assembly incompleteness from assembly base errors, which are both
401  important as more and more highly complete and accurate assemblies are being produced (7, 42,
402 55, 56). Finally, TOGA'’s reference-based methodology scales linearly, handling hundreds and --
403  when available in the clades of interest -- even thousands of genomes.

404

405 TOGA's application range comprises species with "alignable" genomes, which we define in our
406  context as genomes where orthologous neutrally evolving regions partially align. In general, this
407  holds for evolutionary distances of ~0.6 substitutions per neutral site, which from a human or
408  mouse point of view includes other placental mammals. At larger evolutionary distances, neutrally
409  evolving intronic and intergenic regions are too diverged to be of use for TOGA's orthologous locus
410  detection approach (Figure S35A). Interestingly, applying TOGA with human as the reference to
411 18 marsupial and two monotreme species reveals that TOGA is still able to annotate on average
412 13,096 orthologs (Figure 5A,B), largely because gene order is often conserved (Figure S35B).
413  Nevertheless, human is obviously not a powerful reference for these more distant clades. Instead,
414  a marsupial and a monotreme species should be used as the reference to annotate genes and
415 infer orthologs in these clades.

416

417  With the tree of life becoming more densely populated with genomes thanks to great efforts of
418 large-scale projects (42-44, 57), TOGA provides a general strategy to cope with the annotation
419  and orthology inference bottleneck. For every "alignable" clade of interest, one can select one (or
420  afew) species to be used as the reference for others in the clade. The resulting annotations can
421  be enriched with transcriptomics data of the query species (when available) to detect novel
422 lineage-specific genes or novel splice variants that are expressed in the sampled tissues. Genome
423  and annotation of the reference(s) should ideally be highly complete, since the quality of the input
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424  impacts the quality of the output. References can be defined for different taxonomic ranks, from
425  the class to the family or genus level. For example, in the Bat1K project (58), we aim at generating
426  a high-quality assembly and gene annotation for representatives of all bat families to serve as
427  references for dozens or hundreds of other bats in these families.

428

429

430

431

432 Data and code availability

433  The TOGA source code, and all scripts to run TOGA, create training and test data sets and
434  browser tracks are available at https://github.com/hillerlab/TOGA. TOGA is also available in a
435  singularity container environment. All data generated in this manuscript are available for download
436  at http://genome.senckenberg.de/download/TOGA/ and for browsing in our UCSC genome
437  browser mirror at https://genome.senckenberg.de.
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Figure 1: TOGA utilizes a novel methodology to detect orthologous genes.
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591  (A) lllustration of TOGA and the key principle that orthologous genes have intronic and intergenic
592 alignments. A UCSC genome browser view of the human EHD1 gene locus shows five alignment
593  chains (boxes represent local alignments that occur in a co-linear order, single lines represent
594  deletions and double lines unaligning sequence) to the query species mouse, indicating that five
595  mouse loci (chr19, 7, 17, 2, 5) have sequence similarity to coding exons of EHD1. The chr19 locus
596  that encodes the mouse Ehd1 ortholog aligns both exons and parts of introns and flanking
597 intergenic regions, whereas the other loci that encode paralogs or processed pseudogene copies
598 align only coding exons. Alignments for other placental mammals show similar properties (Figure
599  S2).
600  (B) lllustration of TOGA. For each gene of interest and each alignment chain, we compute
601  characteristic alignment features and use machine learning to obtain a probability that the chain
602  alignment represents an orthologous locus. For each orthologous locus in the query, coding exons
603  are inferred for every reference transcript of this gene. TOGA then determines for each transcript
604 at each orthologous locus whether it encodes an intact reading frame, taking assembly
605 incompleteness and real inactivating mutations into account. Finally, for many:many orthologs, an
606  orthology graph is used to resolve potential weak orthology connections.
607  (C) The principle exploited in TOGA. The difference in the number of substitutions separating
608  aligning orthologous and paralogous loci explains the characteristic difference that only
609  orthologous loci show partial intronic and intergenic alignments.
610 (D) Orthology detection performance. Receiver Operating Characteristics curves show the true
611  positive rate for a given false positive rate in blue. Dashed lines indicate a random classifier. The
612  areas under these curves are close to 1 for three independent test species (rat, dog, armadillo),
613 indicating a very high accuracy in distinguishing orthologous from non-orthologous loci. This holds
614  both for single- and multi-exon genes as well as for genes that lack synteny due to artificial
615  translocations that we introduced.
616  (E/F) Importance of the features used by TOGA to detect orthologous multi-exon (E) and single-
617 exon (F) genes (left side). The distribution of the single most important feature (global CDS
618  fraction, which measures the proportion of coding exon alignments in all aligning blocks of a chain)
619  shows a clear difference between orthologous and non-orthologous chains (blue and red) for the
620  human-rat comparison (right side). Indeed, this feature alone has high predictive power, resulting
621 in a classification accuracy of >95%.
622  (G) Importance of detecting all orthologous loci and determining reading frame intactness. UCSC
623  genome browser view shows the human genomic locus comprising STRC and CKMT1B, which is
624  quadruplicated in the guinea pig (top four alignment chains). TOGA correctly recognizes the four
625  co-orthologous loci with a high probability (>0.96) and distinguishes them from non-orthologous
626  alignment chains representing paralogs and a processed pseudogene copy (probabilities <0.01).
627  Analyzing reading frame intactness of both genes, TOGA finds that only one of the four co-
628  orthologous loci encodes an intact reading frame (green checkmark), and correctly infers a 1:1
629  orthology relationship.
630
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632  Figure 2: TOGA improves ortholog detection.

633  (A) Overlap of orthologs provided by Ensembl Compara and detected by TOGA for three
634  representative placental mammals.

635  (B) Violin plots compare the identity and coverage of the coding region alignment and the orthology
636  confidence probability for human-rat orthologs, detected by both or either Ensembl and TOGA.
637  Horizontal black lines represent the mean. Note that for orthologs only detected by TOGA, these
638  features are not available on Ensembl Biomart, and vice versa.

639  (C) Percent of orthologs detected by both methods, for which Ensembl and TOGA infer the same
640  orthology type (1:1, 1:many, many:1, many:many).

641 (D) Percent of orthologs only detected by Ensembl, for which TOGA detects an orthologous locus
642  (bar chart) but classifies the gene as lost (inactivated reading frame) or missing (more than half of
643  the coding region overlaps assembly gaps), as shown by the pie charts.

644  (E) Percent of orthologs only detected by TOGA that belong to gene families with at least 30
645  members (bar chart). Pie charts show the proportion of the most frequent gene families.
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649  Figure 3: TOGA improves gene annotation completeness.

650  (A,B) Comparison of the completeness of annotations generated by TOGA and Ensembl (panel
651 A, 70 placental mammals) and the NCBI Eukaryotic Genome Annotation Pipeline (panel B, 118
652  placental mammals). For most species, TOGA annotations have a higher annotation
653  completeness according to the percent of completely detected mammalian BUSCO genes. Note
654  that the set of species in A and B overlaps but is not identical.

655  (C) List of gene evidence that was integrated to annotate six bat species, once without TOGA and
656  once with TOGA. Bar charts compare annotation completeness as a percentage of detected
657  mammalian BUSCO genes. Adding TOGA as evidence increases annotation completeness by
658  3.9% to 11.4%.
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Figure 4: TOGA detects and joins genes split in fragmented genome assembilies.

(A) The ortholog of human LRCH3 is split into six parts in the fragmented pygmy sperm whale
(Kogia breviceps) assembly that comprises 1.2 million scaffolds (43). Different chain colors
represent different scaffolds. Despite some chains aligning as little as one or two coding exons,
TOGA correctly detects and joins all six orthologous chains to obtain the complete gene. For
comparison, LRCH3 is located on a single scaffold (thus on a single chain) in the closely related
sperm whale (Physeter macrocephalus), which highlights the highly-similar alignment block
structure.

(B) Violin plots show the coding exon identity between Kogia breviceps and Physeter
macrocephalus. Horizontal black lines represent the median. Supporting the high accuracy of
TOGA'’s fragmented gene joining procedure, genes that are present as two or more fragments in
the Kogia assembly have a highly-similar identity distribution compared to genes for which no
joining was necessary as they are already present on a single scaffold.

(C) Effectiveness of joining fragmented genes. Violin plots show the length of the coding sequence
for the largest genomic fragment of split genes (blue) and after joining orthologous fragments
(orange). Length is relative to the longest transcript of the orthologous human gene. In case of
codon insertions, the relative length can be >100%.
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Figure 5: Large-scale application of TOGA to hundreds of genomes.
(A) TOGA with human as the reference. Left: Phylogenetic tree of mammal orders (7). Box plots
with overlaid data points show the number of annotated orthologs. Hominoidea are shown as a
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685  separate group. Non-placental mammals (marsupials and monotremes) are highlighted with a
686  yellow background. Right: Box plots showing the distributions of evolutionary distances to human
687 (Table S2).

688  (B) TOGA with mouse as the reference. Muridae are shown as a separate group.

689  (C) TOGA with chicken as the reference, applied to 308 bird assemblies.

690 (D) Using TOGA with other reference species (blue) to annotate related query species (orange).
691  The bar charts compare the BUSCO gene completeness of the input (reference) annotation, which
692  provides an upper bound, and the query annotation generated by TOGA. It should be noted that
693  the two sea urchins split ~200 Mya.

694

695
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697  Figure 6: TOGA provides a superior measure of mammalian genome quality.
698  (A) Comparison of the percent complete BUSCO genes (Y-axis) and TOGA's percent of intact
699  ancestral genes (X-axis) for 488 placental mammal assemblies. The inset shows that BUSCO’s
700  completeness values saturate at a maximum of 97.3%, whereas TOGA's value offers a larger
701  dynamic range.
702 (B) Violin plots of BUSCO's and TOGA's completeness values. Horizontal black lines represent
703  the median.
704  (C) BUSCO and TOGA values for the 50 assemblies that are top-ranked by BUSCO. Three pairs
705  of closely related species are highlighted that have substantially different assembly contiguity
706  (contig N50) values and are distinguishable in terms of gene completeness by TOGA but not by
707  BUSCO.
708  (D-F) TOGA determines the percent of ancestral genes that have missing sequence and that have
709 inactivating mutations (X and Y-axis in the dot plots at the top). Bar charts compare the TOGA
710  gene classification with the percent of complete, fragmented and missing genes computed by
711  BUSCO. The three panels highlight assemblies with a higher incompleteness or base error rate
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712 (inferred from an increased percentage of genes with inactivating mutations) that is often not
713  detectable by the BUSCO metrics.
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