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Abstract 33 
Annotating coding genes and inferring orthologs are two classical challenges in genomics and 34 
evolutionary biology that have traditionally been approached separately, which limits scalability. 35 
We present TOGA, the first method that integrates gene annotation and orthology inference. 36 
TOGA implements a novel paradigm to infer orthologous genes, improves ortholog detection and 37 
annotation completeness compared to state-of-the-art methods, and handles even highly-38 
fragmented assemblies. TOGA scales to hundreds of genomes, which we demonstrate by 39 
applying it to 488 placental mammal and 308 bird assemblies, creating the largest comparative 40 
gene resources so far. Additionally, TOGA detects gene losses, enables selection screens, and 41 
automatically provides a superior measure of mammalian genome quality. Together, TOGA is a 42 
powerful and scalable method to annotate and compare genes in the genomic era. 43 
 44 

 45 

 46 

Introduction 47 
Distinguishing homologs -- genes with a common ancestry -- into orthologs and paralogs is a 48 
fundamental problem in evolutionary and molecular biology. Orthology and paralogy are defined 49 
for a pair of homologous genes that originated by either speciation (ortholog) or gene duplication 50 
(paralog) (1). Inferring orthologous genes is a prerequisite for many genomic analyses, including 51 
reconstructing phylogenetic trees from molecular data, predicting gene function, investigating 52 
molecular and genome evolution, and discovering differences in genes that underlie phenotypes 53 
of the sequenced species (2-7).  54 
 55 
Current methods for orthology inference are either based on graph or tree approaches or a 56 
combination of both (8). Graph-based methods cluster genes into pairs or groups of orthologs 57 
based on pairwise sequence similarity such as (reciprocal) best alignment hits (9-18). Tree-based 58 
methods determine whether the evolutionary lineages of a pair of genes coalesce in a speciation 59 
or a duplication node in the gene tree (19-26). Importantly, the input for these approaches is a set 60 
of annotated genes with their coding or protein sequences for each to-be-considered species. This 61 
is why gene identification and annotation until now has preceded orthology inference, resulting in 62 
two limitations. First, gene annotation quality has a large influence on the accuracy of orthology 63 
inference (27). Second, since generating a high-quality annotation is time-consuming and typically 64 
requires comprehensive transcriptomics (gene expression) data, there is a growing gap between 65 
genome sequencing and genome annotation including orthology inference.  66 
 67 
Here, we present TOGA (Tool to infer Orthologs from Genome Alignments), a new method that 68 
provides several key innovations. First, TOGA uses a new paradigm to accurately infer 69 
orthologous genes that largely relies on alignments of intronic and intergenic sequences instead 70 
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of alignments of only coding sequences. Second, TOGA is the first method that integrates 71 
orthology detection with comparative gene annotation, making it applicable to un-annotated 72 
genome assemblies. Third, TOGA explicitly investigates whether orthologs likely encode an intact 73 
protein, have missing exonic sequence, or have gene-inactivating mutations (e.g. frameshifts or 74 
premature stop codons), which is important for distinguishing functional from inactivated 75 
orthologous genes. We show that TOGA accurately detects orthologs and generates 76 
comprehensive gene annotations at a quality similar to, or better, than state-of-the-art methods. 77 
TOGA’s ability to join fragments of orthologous genes facilitates the use of less contiguous 78 
assemblies in comparative gene analyses. We also show that TOGA provides a superior 79 
benchmark for mammalian genome quality. Finally, we demonstrate that TOGA scales to the 80 
hundreds of already sequenced genomes by annotating genes and inferring orthologs for 488 81 
placental mammals and 308 birds, creating the largest comparative gene datasets for both groups. 82 
 83 
 84 
 85 

Results 86 
A novel paradigm for orthology detection 87 
The principle used implicitly or explicitly by all orthology detection methods is that orthologous 88 
sequences are generally more similar to each other than to paralogous sequences (1). Existing 89 
methods focus on similarity between coding sequences that typically evolve under purifying 90 
selection. However, this principle also extends to non-exonic regions (introns, intergenic regions) 91 
that largely evolve neutrally. The key innovation implemented in TOGA is that intronic and flanking 92 
intergenic regions of orthologous gene loci will also be more similar to each other (Figure 1A), 93 
provided that the evolutionary distance between the species is sufficiently short such that neutrally 94 
evolving regions still partially align. This is given for placental mammals that shared a common 95 
ancestor up to ~100 Mya (28), since the evolutionary distance between human and other placental 96 
mammals is at most 0.55 substitutions per neutral site (Figure S1, Tables S1, S2). Similarly, the 97 
evolutionary  distance between chicken and other birds that shared a common ancestor up to 98 
~100 Mya (29) is at most 0.51 substitutions per neutral site (Table S2). This explains why 99 
orthologous introns and intergenic regions retain enough sequence similarity that they partially 100 
align between species within these clades (Figures 1A, S2). In contrast, the evolutionary distance 101 
between paralogs that duplicated before the speciation event is often much larger and exceeds 1 102 
substitution per neutral site (Figure 1C). At such distances, introns and intergenic regions of 103 
paralogous genes have been largely randomized, and alignments can only be detected for coding 104 
sequences that generally evolve slowly due to purifying selection (Figures 1A, S2). TOGA exploits 105 
this principle by (i) taking a well annotated genome such as human, mouse or chicken as the 106 
reference, (ii) inferring all (co-)orthologous loci for all genes from a genome alignment between 107 
the reference and a query species (e.g. other placental mammals or birds), and (iii) annotating 108 
and classifying these genes (Figure 1B). 109 
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The TOGA annotation and orthology detection pipeline 110 
TOGA implements a multi-step pipeline, comprising the detection of orthologous loci, annotation 111 
and classification, and orthology type determination. In the first step, TOGA uses machine learning 112 
to distinguish orthologous from paralogous genomic loci or loci containing processed 113 
pseudogenes, largely relying on alignments of intronic and intergenic regions around the gene of 114 
interest. To this end, TOGA uses a whole genome alignment between an annotated reference 115 
species and an aligned query species, exemplified by human and mouse in Figure 1A. A powerful 116 
method to compute and visualize a pairwise genome alignment are chains of co-linear local 117 
alignments that capture both orthologous as well as paralogous genes or processed pseudogene 118 
loci (30). To distinguish between them, TOGA computes for each gene and each overlapping 119 
chain four characteristic features that capture the amount of intronic and intergenic alignments 120 
(Figure S3). Additionally, TOGA uses synteny (conserved gene order) as another feature, which 121 
can help to distinguish orthologs from paralogs (24, 31-33).  122 
 123 
We trained a machine learning classifier using known orthologous genes between human 124 
(reference) and mouse (query) from Ensembl Compara (24) (Figure S4). We then tested the 125 
classifier on several independent query species (rat, dog, armadillo) from different placental 126 
mammalian orders. We obtained a near perfect orthologous chain classification for both multi- and 127 
single-exon genes (Figure 1D, Table S3). The features capturing intronic/intergenic alignments 128 
are most important for the classification performance (Figures 1E,F). In contrast, synteny is the 129 
least important feature, likely reflecting our training data sets that we deliberately enriched with 130 
translocated orthologs (Figures S5). Using synteny as an auxiliary but not determining feature 131 
enables TOGA to also accurately detect orthologs that underwent rearrangements such as 132 
translocations or inversions and therefore lack conserved gene order (Figure 1D), as exemplified 133 
in Figure S6.  134 
  135 
For the human-rat test dataset, we manually investigated discrepancies between TOGA’s 136 
classifications and Ensembl. We found that chains classified as false positives mostly represent 137 
partial or full gene duplications in rat (Figure S7), indicating that TOGA is able to detect lineage-138 
specific gene duplications and actually correctly classified these chains as co-orthologous loci. A 139 
limitation of our approach is exemplified by the 12 false negative chain classifications in the test 140 
set. These exhibited both exceptional intron divergence and lacked intergenic alignments due to 141 
rearrangements, resulting in alignment chains that resemble paralogous loci (Figure S8). 142 
Interestingly, 7 of the 12 false negatives are X-chromosome linked genes, indicating that faster X 143 
chromosome evolution (34) could be involved in the exceptional divergence of neutrally evolving 144 
regions of these loci. It should be noted that TOGA still annotated these genes, but labeled them 145 
as putative paralogs (Figure S8).  146 
 147 
In a second step, TOGA uses CESAR 2.0 (35, 36) to determine the positions and boundaries of 148 
all coding exons for each (co-)orthologous query locus of the gene (Figures 1B, S9, S10). Since 149 
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orthology between genomic loci, as determined in the first step, does not imply that the gene 150 
encodes a functional protein, TOGA subsequently assesses for each transcript and each 151 
orthologous locus whether it preserves the intact reading frame (Figure S11). To this end, TOGA 152 
identifies gene-inactivating mutations (frameshifting, stop codon or splice site mutations, exon or 153 
gene deletions) by implementing an improved version of our gene loss detection approach (6) 154 
(Figures 1B, S12-S17). We only classified a gene as lost, if all transcripts at all (co-)orthologous 155 
loci are classified as lost. We benchmarked this approach on a large set of 11,161 conserved 156 
genes that are annotated as 1:1 orthologs by Ensembl in mouse, rat, cow and dog. Only 21, 22, 157 
12 and 21 genes are misclassified as inactivated for the four species, indicating a very high 158 
specificity of 99.80 to 99.89% (Table S4). Manual inspection showed that the few mis-classified 159 
cases include highly-diverged genes, genes that evolved drastic changes in exon-intron structure 160 
or protein length, and a lost gene that is compensated by a processed pseudogene copy, which 161 
highlights cases of less certain gene conservation (Figures S18-S22). 162 
 163 
An interesting example demonstrating the importance of detecting all orthologous loci and 164 
determining reading frame intactness is the STRC and CKMT1B gene locus. This locus was 165 
duplicated four times in the lineage leading to guinea pig, and TOGA recognizes all co-orthologous 166 
loci with high probabilities (Figure 1G). However, despite the quadruplication, only one copy of 167 
each gene encodes an intact reading frame. In case of STRC, the gene encoded by the ancestral 168 
locus became inactivated, while one of the new copies maintained an intact reading frame. TOGA 169 
correctly classifies and annotates both genes as 1:1 orthologs, but also annotates exons of the 170 
remnants of the otherwise inactivated gene copies in the guinea pig genome (Figure 1G). 171 
 172 
In the third step, TOGA determines the orthology type by considering all reference genes and all 173 
orthologous query loci that encode an intact reading frame (Figure 1B, S23). Finally, TOGA uses 174 
an orthology graph approach to resolve weakly-supported orthology relationships among 175 
many:many orthologs (Figures 1B, S24). 176 
 177 
TOGA improves ortholog detection 178 
To assess the performance of TOGA’s orthology detection pipeline, we compared it against 179 
Ensembl Compara, which integrates graph- and tree-based methods and provides high-quality 180 
ortholog gene sets (24). Using orthologs between human and three representative mammals (rat, 181 
cow, elephant), we found that TOGA detected 97.6%, 98.9% and 96.5% of the orthologs provided 182 
by Ensembl (Figure 2A, Table S5), showing a good agreement. Furthermore, for >90% of these 183 
commonly-detected orthologs, TOGA inferred the same orthology type as Ensembl (1:1, 1:many, 184 
many:1, many:many) (Figure 2C). A quarter of the discrepancies are cases where TOGA infers 185 
1:1 and Ensembl 1:many. In several of these cases, Ensembl annotates a processed pseudogene 186 
copy as a second ortholog (Figure S25).  187 
 188 
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For the orthologs detected only by Ensembl, TOGA did identify an orthologous locus in >93% of 189 
the cases, but detected either inactivating mutations indicating gene loss or that large parts of the 190 
gene overlap assembly gaps (classified as a missing gene) (Figures 2D, S26, S27). Consistent 191 
with these cases including more questionable orthologs, parameters measuring alignment identity 192 
(mean 51%), alignment coverage (mean 44%) and orthology confidence (mean 32%) are 193 
substantially lower compared to orthologs detected by both methods (means 81%, 94%, 91%) 194 
(Figure 2B).  195 
 196 
TOGA predicted for the three species 1,532 (rat), 1,711 (cow) and 2,174 (elephant) additional 197 
orthologs that are not listed in Ensembl (Figure 2A). For rat, this includes PAX1, an important 198 
developmental transcription factor that was potentially missed by Ensembl because of a mis-199 
annotated N-terminus (Figure S28). About half of these genes belong to large families such as 200 
zinc finger genes, olfactory receptors or keratin associated proteins (Figure 2C). While 201 
establishing orthology between genes in large families is generally more challenging, these genes 202 
exhibit alignment identity (mean 70%), alignment coverage (mean 83%) and orthology confidence 203 
(mean 94%) values that are more similar to the orthologs detected by both methods (means 82%, 204 
94%, 99%) (Figure 2B), supporting that these genes are undetected orthologs.  205 
 206 
TOGA improves gene annotation completeness 207 
To assess the completeness of annotations generated by TOGA, we performed a direct 208 
comparison to annotations generated by Ensembl and by the NCBI Eukaryotic Genome 209 
Annotation Pipeline (37, 38), two state-of-the-art methods that integrate transcriptomics, 210 
homology-based data (transcripts and proteins from RefSeq and GenBank) and ab initio gene 211 
predictions. To this end, we applied TOGA using human as the reference to genomes of 70 / 118 212 
placental mammals that have Ensembl / NCBI annotations. Using BUSCO (Benchmarking 213 
Universal Single-Copy Orthologs), a widely used tool to assess the completeness of protein-214 
coding gene annotations (39), we surprisingly found that TOGA annotations have a higher 215 
completeness score for the mammalian BUSCO odb10 gene set for 97% (Ensembl) and 91.5% 216 
(NCBI) of the species (Figure 3A, B, Tables S6, S7). On average, TOGA’s annotations have a 217 
4.1% (Ensembl) and 0.7% (NCBI) higher completeness, which corresponds to ~377 and ~64 218 
genes in the set of 9,226 BUSCO genes. 219 
 220 
To show that this performance is not specific to the use of human as the reference, we compared 221 
Ensembl and NCBI to TOGA annotations obtained by using mouse (mm10 assembly) as the 222 
reference. Like human, mouse also provides a high-quality gene annotation, which is important 223 
for reference-based methods like TOGA. Using mouse, we found that TOGA annotations have a 224 
higher BUSCO completeness for 98.5% (Ensembl) and 64% (NCBI) of the species (Figure 3A, B, 225 
Tables S6, S7). While reference-based methods cannot annotate orthologs of genes not contained 226 
in the reference annotation, this downside can be counteracted by combining multiple references. 227 
Indeed, combining the human- and mouse-based TOGA annotations achieves a higher 228 
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completeness for almost all (>98%) of the assemblies with an average increase of 4.5% (Ensembl) 229 
and 0.97% (NCBI) (Figure 3A, B). These tests show that the BUSCO gene completeness of 230 
TOGA’s comparative annotations are often higher than those produced by state-of-the-art 231 
annotation pipelines that include transcriptomics data. 232 
 233 
TOGA improves annotation completeness even if transcriptomics data are available 234 
Transcriptomics data is undoubtedly very useful for gene annotation, as it provides direct evidence 235 
of transcripts expressed in the sampled tissues. Therefore, we next tested whether TOGA can 236 
increase annotation completeness, even if transcriptomics data and other gene evidence are 237 
already available. To this end, we used six high-quality bat genomes (7) and first annotated genes 238 
by integrating available transcriptomics data (both RNA-seq and Iso-seq), ab initio gene 239 
predictions (Augustus (40)), aligned proteins from closely related bats, and comparative gene 240 
predictions (Augustus-CGP applied to a multiple genome alignment (41)). For the six bats, these 241 
annotations contained 87.7% to 95.4% of the genes in the mammalian BUSCO odb10 set (Figure 242 
3C, Table S8). Adding TOGA with human as the reference as an additional evidence consistently 243 
increased the annotation completeness by 3.9% to 11.4%, reaching a BUSCO completeness 244 
score of 98.8% to 99.3%. This shows that even if a comprehensive set of gene evidence including 245 
transcriptomics data are available, annotation completeness can still be improved by TOGA.  246 
 247 
TOGA joins split genes in fragmented assemblies 248 
Genes that are split between different scaffolds are currently either missed or annotated as 249 
fragments, hampering downstream analyses. Although current genome projects aim to generate 250 
highly-complete, chromosome-level assemblies (7, 42), even such assemblies can contain a few 251 
fragmented genes (Figure S29). Furthermore, many currently available mammal or bird 252 
assemblies exhibit fragmentation (43, 44) and are therefore more difficult to annotate. To improve 253 
comparative annotation and orthology inference of fragmented genes, we leveraged TOGA’s 254 
ability to detect orthologous loci of partial genes. We implemented a gene joining procedure that 255 
recognizes orthologous parts of 1:1 orthologous genes, joins them together, and generates an 256 
annotation and codon/protein alignments for the full gene. Figure 4A illustrates this procedure for 257 
a gene split into six parts in the fragmented pygmy sperm whale assembly (43).  258 
 259 
To evaluate the accuracy of this step, we utilized the fact that orthologous but not paralogous 260 
genes from two closely related species are expected to be highly similar. We used assemblies of 261 
two sperm whale species: Kogia breviceps with a low scaffold N50 of 29 kb (43) and Physeter 262 
macrocephalus with a high scaffold N50 of 122 Mb (45). Orthologous genes, for which no joining 263 
is necessary as they are contained on a single scaffold in both species, have a high median coding 264 
exon identity of 98.28% (mean 98.70%) (Figure 4B), which serves as a positive control. In contrast, 265 
paralogous genes, which we used as a negative control, have a lower median coding exon identity 266 
of 77% (mean 75.18%). Consequently, if TOGA’s gene joining procedure was misidentifying 267 
paralogous as orthologous fragments, we would expect a decreased nucleotide identity compared 268 
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to orthologs located on a single scaffold. However, we observed an equally high identity for 269 
orthologous genes joined from two, three and at least four fragments (Figures 4B, S30), indicating 270 
a high accuracy.  271 
 272 
Demonstrating the effectiveness of this fragment joining procedure, the median length of the 273 
coding sequence of split Kogia genes after joining orthologous fragments is 100% (mean 97%) of 274 
the length of the orthologous human gene. This is a substantial improvement over the largest 275 
orthologous fragment in the assembly (median 58%, mean 59%) (Figure 4C, Table S9). We 276 
obtained similar improvements for other highly-fragmented assemblies. Even for an assembly of 277 
the extinct Steller’s sea cow with a scaffold N50 value of 1.4 kb (46), TOGA improved relative 278 
coding sequence length from 28% to 70% (Figure 4C, Table S9). 279 
 280 
TOGA scales to hundreds of genomes 281 
Given the wealth of genomes that are generated in the current era, there is a strong need for 282 
annotation and orthology inference methods that are able to handle hundreds or thousands of 283 
genomes. Unlike previous graph- or tree-based methods that often perform all-against-all 284 
comparisons that scale quadratically with the number of species, TOGA considers a pair of 285 
reference-query species and thus scales linearly with the number of query species. To 286 
demonstrate this, we applied TOGA with human as the reference to a large set of placental 287 
mammals, comprising 488 different assemblies of 427 distinct species (Figure 5A, Table S1). As 288 
expected, with an average of 19,144 (median 19,192) genes, TOGA annotates more genes in the 289 
six Hominoidea (apes) species that are closely related to human. Importantly, for the remaining 290 
482 assemblies, TOGA also annotated on average 17,779 (median 18,049) genes, indicating that 291 
TOGA is an effective annotation method across placental mammals. 292 
 293 
Fitting generalized linear models shows that the number of annotated orthologs is influenced by 294 
several factors. These include assembly quality metrics (contig and scaffold N50), which are both 295 
positively correlated with the number of detected orthologs, and the evolutionary distance 296 
(substitutions per neutral site) and divergence time (millions of years) to human, which are both 297 
negatively correlated (Figure S31, Table S10). Evolutionary distance has a stronger influence than 298 
divergence time. This is exemplified for Perissodactyla, where TOGA consistently annotates more 299 
genes than in many rodents, despite the fact that the rodent lineage split from human more 300 
recently.  301 
 302 
To explore the influence of the reference genome, we next applied TOGA to the same 488 303 
placental mammal assemblies using mouse as the reference (Figure 5B, Table S1). Corroborating 304 
the influence of evolutionary distance and divergence time, TOGA annotated more genes for the 305 
20 closely related Muridae assemblies (mean 20,597, median 20,918) than for the remaining 466 306 
assemblies (mean 17,852, median 18,115). Overall, the number of annotated genes is similar to 307 
the human-based annotations. 308 
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TOGA provides a superior approach for assessing mammalian assembly quality 309 
In addition to annotation and orthology inference, TOGA’s gene classification also provides a 310 
powerful benchmark to measure assembly completeness and quality. To this end, we first 311 
compiled a comprehensive set of 18,430 ancestral placental mammal genes, defined as human 312 
coding genes that have an intact reading frame in the basal placental clades Afrotheria and 313 
Xenarthra (Table S11). For each of the 488 placental mammal assemblies, we then used TOGA’s 314 
gene classification to determine which percent of these ancestral genes have an intact reading 315 
frame without missing sequence. We found that this completeness measure is significantly 316 
correlated with the completeness value computed by BUSCO (Pearson r = 0.73, P=10-81) (Figure 317 
6A). However, BUSCO’s values saturate at ~97% for highly complete assemblies, while TOGA’s 318 
completeness values exhibit a larger dynamic range (Figure 6B), which is important to distinguish 319 
highly- from less-contiguous assemblies. This is exemplified by two closely related bats: a high-320 
quality assembly of Rhinolophus ferrumequinum (contig N50 21.7 Mb) and a less-contiguous 321 
assembly of R. sinicus (contig N50 38 kb) that have a very similar BUSCO completeness (96.4% 322 
vs. 96.3% complete genes) but are separated markedly by TOGA’s completeness value (94.4 vs. 323 
88.2%) (Figure 6C).  324 
 325 
BUSCO’s fragmented or missing gene classification indicates how much of the gene was 326 
detected, but does not distinguish between the two major underlying reasons: assembly gaps that 327 
result in missing gene sequence vs. assembly base errors that destroy the reading frame. TOGA’s 328 
gene classification explicitly distinguishes between these two different assembly issues, which 329 
provides valuable information on assembly quality. For example, TOGA detects a substantially 330 
higher percentage of genes exhibiting inactivating mutations in the Bos gaurus (gaur, 14.2%) 331 
compared to the Bos taurus (cow, 4.3%) assembly, indicating that the B. gaurus assembly has an 332 
elevated base error rate, whereas both assemblies are indistinguishable in terms of BUSCO 333 
completeness scores (95.8 vs. 95.5%) (Figure 6D). Similarly, TOGA shows that the dog canFam5 334 
assembly exhibits an elevated base error rate compared to dog canFam4 or the dingo, whereas 335 
all three assemblies have highly similar BUSCO scores (Figure 6E). An informative example 336 
illustrating that assemblies can suffer from different issues are two assemblies of the spotted 337 
hyena: the NCBI GCA_008692635.1 assembly has less missing sequence, but a noticeably higher 338 
base error rate compared to the DNAzoo assembly of the same species (Figure 6E). Finally, 339 
illustrating extreme cases among seal assemblies, TOGA reveals that 56% of the genes in the 340 
Antarctic fur seal have inactivating mutations and that 31% of the genes in the Weddell seal have 341 
missing exonic sequence (Figure 6F).  342 
 343 
In summary, TOGA automatically provides a measure for mammalian genome completeness with 344 
two advantages. High sensitivity provides the resolution to detect smaller differences in gene 345 
completeness of high-quality assemblies and the ability to distinguish between assembly 346 
incompleteness and base error rate provides insight into these two distinct assembly challenges.  347 
 348 
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TOGA facilitates more accurate codon alignments 349 
Codon or protein alignments are important to screen for selection patterns and to reconstruct 350 
phylogenetic trees, but alignment error can substantially impact the outcome (28, 47). TOGA 351 
implements two features that help to avoid errors when aligning coding sequences. First, TOGA 352 
masks all gene-inactivating mutations such as frameshifts, which can otherwise result in 353 
misalignments (Figure S32). Second, whereas existing methods consider entire orthologous 354 
coding or protein sequences, TOGA is aware of orthology at the exon level. This enables a new 355 
“exon by exon” procedure that generates codon or protein alignments by first aligning orthologous 356 
exons and then joining exon alignments together with potential split codons at exon boundaries. 357 
Figure S33 illustrates that this procedure avoids alignment errors in case of insertions or deletions 358 
that occurred at exon boundaries. 359 
 360 
Applying TOGA to 308 bird as well as other non-mammalian genomes 361 
To further demonstrate TOGA’s ability to scale to many genomes, we used chicken (galGal6) as 362 
the reference and applied TOGA to a large set of bird genomes generated by the B10K project 363 
and many individual laboratories (29, 44, 48). The set comprises 308 different assemblies of 298 364 
distinct species. Across all assemblies, TOGA annotated on average 13,994 (median: 14,058) 365 
orthologous genes (Figure 5C, Table S12).  366 
 367 
We also explored whether TOGA can be applied to species other than mammals and birds. Our 368 
tests with turtles, fish, and sea urchins provide encouraging results (Figure 5D) that may be further 369 
improved by adjusting the method to these clades.  370 
 371 
Comprehensive resources for comparative genomics 372 
For the 488 placental mammal and 308 bird assemblies, we provide comparative gene 373 
annotations, ortholog sets, lists of inactivated genes and multiple codon alignments generated 374 
with MACSE v2 (49) for download at http://genome.senckenberg.de/download/TOGA/. To our 375 
knowledge, these comprise the largest comparative genomics datasets for both clades so far. To 376 
facilitate visualizing and analyzing these data, we further implemented a TOGA annotation track 377 
as part of the UCSC genome browser (50) (Figure S34). Our UCSC browser mirror at 378 
https://genome.senckenberg.de/ provides these annotation tracks for all analyzed mammal and 379 
bird assemblies. 380 
 381 
 382 
 383 

384 
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Discussion 385 
TOGA is an integrative pipeline that jointly addresses two fundamental problems in genomics and 386 
evolutionary biology: gene annotation and orthology inference. We show that alignments between 387 
non-coding sequences in introns and intergenic regions enable an accurate detection of 388 
orthologous gene loci, establishing a novel paradigm for inference of orthologous genes. 389 
Comparisons with state-of-the-art methods show that TOGA often improves gene annotation 390 
completeness, even if transcriptomics data are available. Here, TOGA benefits from great efforts 391 
that generated high-quality annotations for human and mouse (38, 51), and provides an approach 392 
to effectively utilize these to annotate other placental mammals. Furthermore, by joining split 393 
genes in fragmented assemblies, TOGA increases the utility of such genomes for comparative 394 
analyses. In addition to generating annotations, TOGA detects inactivated genes and provides 395 
orthologous sequences for codon alignments. These enable phylogenomic analyses as well as 396 
screens for selection patterns and gene losses that are linked to relevant phenotypes, as 397 
previously demonstrated in the Bat1K and other projects (7, 52-54). TOGA's gene annotations 398 
and classifications can also be used to assess assembly quality, featuring an increased sensitivity 399 
and the ability to distinguish assembly incompleteness from assembly base errors, which are both 400 
important as more and more highly complete and accurate assemblies are being produced (7, 42, 401 
55, 56). Finally, TOGA’s reference-based methodology scales linearly, handling hundreds and -- 402 
when available in the clades of interest -- even thousands of genomes. 403 
 404 
TOGA's application range comprises species with "alignable" genomes, which we define in our 405 
context as genomes where orthologous neutrally evolving regions partially align. In general, this 406 
holds for evolutionary distances of ~0.6 substitutions per neutral site, which from a human or 407 
mouse point of view includes other placental mammals. At larger evolutionary distances, neutrally 408 
evolving intronic and intergenic regions are too diverged to be of use for TOGA's orthologous locus 409 
detection approach (Figure S35A). Interestingly, applying TOGA with human as the reference to 410 
18 marsupial and two monotreme species reveals that TOGA is still able to annotate on average 411 
13,096 orthologs (Figure 5A,B), largely because gene order is often conserved (Figure S35B). 412 
Nevertheless, human is obviously not a powerful reference for these more distant clades. Instead, 413 
a marsupial and a monotreme species should be used as the reference to annotate genes and 414 
infer orthologs in these clades.  415 
 416 
With the tree of life becoming more densely populated with genomes thanks to great efforts of 417 
large-scale projects (42-44, 57), TOGA provides a general strategy to cope with the annotation 418 
and orthology inference bottleneck. For every "alignable" clade of interest, one can select one (or 419 
a few) species to be used as the reference for others in the clade. The resulting annotations can 420 
be enriched with transcriptomics data of the query species (when available) to detect novel 421 
lineage-specific genes or novel splice variants that are expressed in the sampled tissues. Genome 422 
and annotation of the reference(s) should ideally be highly complete, since the quality of the input 423 
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impacts the quality of the output. References can be defined for different taxonomic ranks, from 424 
the class to the family or genus level. For example, in the Bat1K project (58), we aim at generating 425 
a high-quality assembly and gene annotation for representatives of all bat families to serve as 426 
references for dozens or hundreds of other bats in these families.  427 
 428 
 429 
 430 
 431 

Data and code availability 432 
The TOGA source code, and all scripts to run TOGA, create training and test data sets and 433 
browser tracks are available at https://github.com/hillerlab/TOGA. TOGA is also available in a 434 
singularity container environment. All data generated in this manuscript are available for download 435 
at http://genome.senckenberg.de/download/TOGA/ and for browsing in our UCSC genome 436 
browser mirror at https://genome.senckenberg.de. 437 
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Figures 588 

 589 
Figure 1: TOGA utilizes a novel methodology to detect orthologous genes. 590 
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(A) Illustration of TOGA and the key principle that orthologous genes have intronic and intergenic 591 
alignments. A UCSC genome browser view of the human EHD1 gene locus shows five alignment 592 
chains (boxes represent local alignments that occur in a co-linear order, single lines represent 593 
deletions and double lines unaligning sequence) to the query species mouse, indicating that five 594 
mouse loci (chr19, 7, 17, 2, 5) have sequence similarity to coding exons of EHD1. The chr19 locus 595 
that encodes the mouse Ehd1 ortholog aligns both exons and parts of introns and flanking 596 
intergenic regions, whereas the other loci that encode paralogs or processed pseudogene copies 597 
align only coding exons. Alignments for other placental mammals show similar properties (Figure 598 
S2).  599 
(B) Illustration of TOGA. For each gene of interest and each alignment chain, we compute 600 
characteristic alignment features and use machine learning to obtain a probability that the chain 601 
alignment represents an orthologous locus. For each orthologous locus in the query, coding exons 602 
are inferred for every reference transcript of this gene. TOGA then determines for each transcript 603 
at each orthologous locus whether it encodes an intact reading frame, taking assembly 604 
incompleteness and real inactivating mutations into account. Finally, for many:many orthologs, an 605 
orthology graph is used to resolve potential weak orthology connections.  606 
(C) The principle exploited in TOGA. The difference in the number of substitutions separating 607 
aligning orthologous and paralogous loci explains the characteristic difference that only 608 
orthologous loci show partial intronic and intergenic alignments.  609 
(D) Orthology detection performance. Receiver Operating Characteristics curves show the true 610 
positive rate for a given false positive rate in blue. Dashed lines indicate a random classifier. The 611 
areas under these curves are close to 1 for three independent test species (rat, dog, armadillo), 612 
indicating a very high accuracy in distinguishing orthologous from non-orthologous loci. This holds 613 
both for single- and multi-exon genes as well as for genes that lack synteny due to artificial 614 
translocations that we introduced. 615 
(E/F) Importance of the features used by TOGA to detect orthologous multi-exon (E) and single-616 
exon (F) genes (left side). The distribution of the single most important feature (global CDS 617 
fraction, which measures the proportion of coding exon alignments in all aligning blocks of a chain) 618 
shows a clear difference between orthologous and non-orthologous chains (blue and red) for the 619 
human-rat comparison (right side). Indeed, this feature alone has high predictive power, resulting 620 
in a classification accuracy of >95%. 621 
(G) Importance of detecting all orthologous loci and determining reading frame intactness. UCSC 622 
genome browser view shows the human genomic locus comprising STRC and CKMT1B, which is 623 
quadruplicated in the guinea pig (top four alignment chains). TOGA correctly recognizes the four 624 
co-orthologous loci with a high probability (>0.96) and distinguishes them from non-orthologous 625 
alignment chains representing paralogs and a processed pseudogene copy (probabilities <0.01). 626 
Analyzing reading frame intactness of both genes, TOGA finds that only one of the four co-627 
orthologous loci encodes an intact reading frame (green checkmark), and correctly infers a 1:1 628 
orthology relationship.  629 

630 
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 631 
Figure 2: TOGA improves ortholog detection. 632 
(A) Overlap of orthologs provided by Ensembl Compara and detected by TOGA for three 633 
representative placental mammals. 634 
(B) Violin plots compare the identity and coverage of the coding region alignment and the orthology 635 
confidence probability for human-rat orthologs, detected by both or either Ensembl and TOGA. 636 
Horizontal black lines represent the mean. Note that for orthologs only detected by TOGA, these 637 
features are not available on Ensembl Biomart, and vice versa.  638 
(C) Percent of orthologs detected by both methods, for which Ensembl and TOGA infer the same 639 
orthology type (1:1, 1:many, many:1, many:many). 640 
(D) Percent of orthologs only detected by Ensembl, for which TOGA detects an orthologous locus 641 
(bar chart) but classifies the gene as lost (inactivated reading frame) or missing (more than half of 642 
the coding region overlaps assembly gaps), as shown by the pie charts. 643 
(E) Percent of orthologs only detected by TOGA that belong to gene families with at least 30 644 
members (bar chart). Pie charts show the proportion of the most frequent gene families. 645 
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 648 
Figure 3: TOGA improves gene annotation completeness. 649 
(A,B) Comparison of the completeness of annotations generated by TOGA and Ensembl (panel 650 
A, 70 placental mammals) and the NCBI Eukaryotic Genome Annotation Pipeline (panel B, 118 651 
placental mammals). For most species, TOGA annotations have a higher annotation 652 
completeness according to the percent of completely detected mammalian BUSCO genes. Note 653 
that the set of species in A and B overlaps but is not identical. 654 
(C) List of gene evidence that was integrated to annotate six bat species, once without TOGA and 655 
once with TOGA. Bar charts compare annotation completeness as a percentage of detected 656 
mammalian BUSCO genes. Adding TOGA as evidence increases annotation completeness by 657 
3.9% to 11.4%. 658 

659 
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 660 
Figure 4: TOGA detects and joins genes split in fragmented genome assemblies. 661 
(A) The ortholog of human LRCH3 is split into six parts in the fragmented pygmy sperm whale 662 
(Kogia breviceps) assembly that comprises 1.2 million scaffolds (43). Different chain colors 663 
represent different scaffolds. Despite some chains aligning as little as one or two coding exons, 664 
TOGA correctly detects and joins all six orthologous chains to obtain the complete gene. For 665 
comparison, LRCH3 is located on a single scaffold (thus on a single chain) in the closely related 666 
sperm whale (Physeter macrocephalus), which highlights the highly-similar alignment block 667 
structure. 668 
(B) Violin plots show the coding exon identity between Kogia breviceps and Physeter 669 
macrocephalus. Horizontal black lines represent the median. Supporting the high accuracy of 670 
TOGA’s fragmented gene joining procedure, genes that are present as two or more fragments in 671 
the Kogia assembly have a highly-similar identity distribution compared to genes for which no 672 
joining was necessary as they are already present on a single scaffold. 673 
(C) Effectiveness of joining fragmented genes. Violin plots show the length of the coding sequence 674 
for the largest genomic fragment of split genes (blue) and after joining orthologous fragments 675 
(orange). Length is relative to the longest transcript of the orthologous human gene. In case of 676 
codon insertions, the relative length can be >100%. 677 
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 681 
Figure 5: Large-scale application of TOGA to hundreds of genomes. 682 
(A) TOGA with human as the reference. Left: Phylogenetic tree of mammal orders (7). Box plots 683 
with overlaid data points show the number of annotated orthologs. Hominoidea are shown as a 684 
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separate group. Non-placental mammals (marsupials and monotremes) are highlighted with a 685 
yellow background. Right: Box plots showing the distributions of evolutionary distances to human 686 
(Table S2). 687 
(B) TOGA with mouse as the reference. Muridae are shown as a separate group. 688 
(C) TOGA with chicken as the reference, applied to 308 bird assemblies. 689 
(D) Using TOGA with other reference species (blue) to annotate related query species (orange). 690 
The bar charts compare the BUSCO gene completeness of the input (reference) annotation, which 691 
provides an upper bound, and the query annotation generated by TOGA. It should be noted that 692 
the two sea urchins split ~200 Mya.  693 
 694 

695 
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 696 
Figure 6: TOGA provides a superior measure of mammalian genome quality. 697 
(A) Comparison of the percent complete BUSCO genes (Y-axis) and TOGA's percent of intact 698 
ancestral genes (X-axis) for 488 placental mammal assemblies. The inset shows that BUSCO’s 699 
completeness values saturate at a maximum of 97.3%, whereas TOGA's value offers a larger 700 
dynamic range.  701 
(B) Violin plots of BUSCO's and TOGA's completeness values. Horizontal black lines represent 702 
the median. 703 
(C) BUSCO and TOGA values for the 50 assemblies that are top-ranked by BUSCO. Three pairs 704 
of closely related species are highlighted that have substantially different assembly contiguity 705 
(contig N50) values and are distinguishable in terms of gene completeness by TOGA but not by 706 
BUSCO. 707 
(D-F) TOGA determines the percent of ancestral genes that have missing sequence and that have 708 
inactivating mutations (X and Y-axis in the dot plots at the top). Bar charts compare the TOGA 709 
gene classification with the percent of complete, fragmented and missing genes computed by 710 
BUSCO. The three panels highlight assemblies with a higher incompleteness or base error rate 711 
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(inferred from an increased percentage of genes with inactivating mutations) that is often not 712 
detectable by the BUSCO metrics.  713 
 714 
 715 
 716 

717 
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