

1 TOGA integrates gene annotation with orthology inference at scale

2
3 Bogdan M. Kirilenko^{1,2,3,4,5,6}, Chetan Munegowda^{1,2,3}, Ekaterina Osipova^{1,2,3,4,5,6}, David
4 Jebb^{1,2,3}, Virag Sharma^{1,2,3}, Moritz Blumer^{1,2,3}, Ariadna Morales^{4,5,6}, Alexis-Walid
5 Ahmed^{4,5,6}, Dimitrios-Georgios Kontopoulos^{4,5,6}, Leon Hilgers^{4,5,6}, Zoonomia Consortium⁷,
6 and Michael Hiller^{1,2,3,4,5,6*}

7
8 ¹ Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany

9 ² Max Planck Institute for the Physics of Complex Systems, Dresden, Germany

10 ³ Center for Systems Biology Dresden, Germany

11 ⁴ LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325
12 Frankfurt, Germany

13 ⁵ Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany

14 ⁶ Goethe-University, Faculty of Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany

15 ⁷ Zoonomia Consortium Members are listed at the end of the document

16
17 *To whom correspondence should be addressed:

18 Michael Hiller

19 LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt,
20 Germany

21 Tel: +49 69 7542-1398

22 E-Mail: Michael.Hiller@senckenberg.de

23
24 25 Running title: TOGA annotates orthologous genes at scale

25
26 27 Keywords: comparative genomics, orthology inference, gene annotation, genome alignment, gene
28 loss, machine learning

29
30 31 1 sentence Summary: A scalable gene annotation approach using a novel paradigm to detect
32 orthologous loci provides comparative data for hundreds of mammals and birds.

33 **Abstract**

34 Annotating coding genes and inferring orthologs are two classical challenges in genomics and
35 evolutionary biology that have traditionally been approached separately, which limits scalability.
36 We present TOGA, the first method that integrates gene annotation and orthology inference.
37 TOGA implements a novel paradigm to infer orthologous genes, improves ortholog detection and
38 annotation completeness compared to state-of-the-art methods, and handles even highly-
39 fragmented assemblies. TOGA scales to hundreds of genomes, which we demonstrate by
40 applying it to 488 placental mammal and 308 bird assemblies, creating the largest comparative
41 gene resources so far. Additionally, TOGA detects gene losses, enables selection screens, and
42 automatically provides a superior measure of mammalian genome quality. Together, TOGA is a
43 powerful and scalable method to annotate and compare genes in the genomic era.

44

45

46

47 **Introduction**

48 Distinguishing homologs -- genes with a common ancestry -- into orthologs and paralogs is a
49 fundamental problem in evolutionary and molecular biology. Orthology and paralogy are defined
50 for a pair of homologous genes that originated by either speciation (ortholog) or gene duplication
51 (paralog) (1). Inferring orthologous genes is a prerequisite for many genomic analyses, including
52 reconstructing phylogenetic trees from molecular data, predicting gene function, investigating
53 molecular and genome evolution, and discovering differences in genes that underlie phenotypes
54 of the sequenced species (2-7).

55

56 Current methods for orthology inference are either based on graph or tree approaches or a
57 combination of both (8). Graph-based methods cluster genes into pairs or groups of orthologs
58 based on pairwise sequence similarity such as (reciprocal) best alignment hits (9-18). Tree-based
59 methods determine whether the evolutionary lineages of a pair of genes coalesce in a speciation
60 or a duplication node in the gene tree (19-26). Importantly, the input for these approaches is a set
61 of annotated genes with their coding or protein sequences for each to-be-considered species. This
62 is why gene identification and annotation until now has preceded orthology inference, resulting in
63 two limitations. First, gene annotation quality has a large influence on the accuracy of orthology
64 inference (27). Second, since generating a high-quality annotation is time-consuming and typically
65 requires comprehensive transcriptomics (gene expression) data, there is a growing gap between
66 genome sequencing and genome annotation including orthology inference.

67

68 Here, we present TOGA (Tool to infer Orthologs from Genome Alignments), a new method that
69 provides several key innovations. First, TOGA uses a new paradigm to accurately infer
70 orthologous genes that largely relies on alignments of intronic and intergenic sequences instead

71 of alignments of only coding sequences. Second, TOGA is the first method that integrates
72 orthology detection with comparative gene annotation, making it applicable to un-annotated
73 genome assemblies. Third, TOGA explicitly investigates whether orthologs likely encode an intact
74 protein, have missing exonic sequence, or have gene-inactivating mutations (e.g. frameshifts or
75 premature stop codons), which is important for distinguishing functional from inactivated
76 orthologous genes. We show that TOGA accurately detects orthologs and generates
77 comprehensive gene annotations at a quality similar to, or better, than state-of-the-art methods.
78 TOGA's ability to join fragments of orthologous genes facilitates the use of less contiguous
79 assemblies in comparative gene analyses. We also show that TOGA provides a superior
80 benchmark for mammalian genome quality. Finally, we demonstrate that TOGA scales to the
81 hundreds of already sequenced genomes by annotating genes and inferring orthologs for 488
82 placental mammals and 308 birds, creating the largest comparative gene datasets for both groups.
83
84
85

86 **Results**

87 **A novel paradigm for orthology detection**

88 The principle used implicitly or explicitly by all orthology detection methods is that orthologous
89 sequences are generally more similar to each other than to paralogous sequences (1). Existing
90 methods focus on similarity between coding sequences that typically evolve under purifying
91 selection. However, this principle also extends to non-exonic regions (introns, intergenic regions)
92 that largely evolve neutrally. The key innovation implemented in TOGA is that intronic and flanking
93 intergenic regions of orthologous gene loci will also be more similar to each other (Figure 1A),
94 provided that the evolutionary distance between the species is sufficiently short such that neutrally
95 evolving regions still partially align. This is given for placental mammals that shared a common
96 ancestor up to ~100 Mya (28), since the evolutionary distance between human and other placental
97 mammals is at most 0.55 substitutions per neutral site (Figure S1, Tables S1, S2). Similarly, the
98 evolutionary distance between chicken and other birds that shared a common ancestor up to
99 ~100 Mya (29) is at most 0.51 substitutions per neutral site (Table S2). This explains why
100 orthologous introns and intergenic regions retain enough sequence similarity that they partially
101 align between species within these clades (Figures 1A, S2). In contrast, the evolutionary distance
102 between paralogs that duplicated before the speciation event is often much larger and exceeds 1
103 substitution per neutral site (Figure 1C). At such distances, introns and intergenic regions of
104 paralogous genes have been largely randomized, and alignments can only be detected for coding
105 sequences that generally evolve slowly due to purifying selection (Figures 1A, S2). TOGA exploits
106 this principle by (i) taking a well annotated genome such as human, mouse or chicken as the
107 reference, (ii) inferring all (co-)orthologous loci for all genes from a genome alignment between
108 the reference and a query species (e.g. other placental mammals or birds), and (iii) annotating
109 and classifying these genes (Figure 1B).

110 **The TOGA annotation and orthology detection pipeline**

111 TOGA implements a multi-step pipeline, comprising the detection of orthologous loci, annotation
112 and classification, and orthology type determination. In the first step, TOGA uses machine learning
113 to distinguish orthologous from paralogous genomic loci or loci containing processed
114 pseudogenes, largely relying on alignments of intronic and intergenic regions around the gene of
115 interest. To this end, TOGA uses a whole genome alignment between an annotated reference
116 species and an aligned query species, exemplified by human and mouse in Figure 1A. A powerful
117 method to compute and visualize a pairwise genome alignment are chains of co-linear local
118 alignments that capture both orthologous as well as paralogous genes or processed pseudogene
119 loci (30). To distinguish between them, TOGA computes for each gene and each overlapping
120 chain four characteristic features that capture the amount of intronic and intergenic alignments
121 (Figure S3). Additionally, TOGA uses synteny (conserved gene order) as another feature, which
122 can help to distinguish orthologs from paralogs (24, 31-33).

123

124 We trained a machine learning classifier using known orthologous genes between human
125 (reference) and mouse (query) from Ensembl Compara (24) (Figure S4). We then tested the
126 classifier on several independent query species (rat, dog, armadillo) from different placental
127 mammalian orders. We obtained a near perfect orthologous chain classification for both multi- and
128 single-exon genes (Figure 1D, Table S3). The features capturing intronic/intergenic alignments
129 are most important for the classification performance (Figures 1E,F). In contrast, synteny is the
130 least important feature, likely reflecting our training data sets that we deliberately enriched with
131 translocated orthologs (Figures S5). Using synteny as an auxiliary but not determining feature
132 enables TOGA to also accurately detect orthologs that underwent rearrangements such as
133 translocations or inversions and therefore lack conserved gene order (Figure 1D), as exemplified
134 in Figure S6.

135

136 For the human-rat test dataset, we manually investigated discrepancies between TOGA's
137 classifications and Ensembl. We found that chains classified as false positives mostly represent
138 partial or full gene duplications in rat (Figure S7), indicating that TOGA is able to detect lineage-
139 specific gene duplications and actually correctly classified these chains as co-orthologous loci. A
140 limitation of our approach is exemplified by the 12 false negative chain classifications in the test
141 set. These exhibited both exceptional intron divergence and lacked intergenic alignments due to
142 rearrangements, resulting in alignment chains that resemble paralogous loci (Figure S8).
143 Interestingly, 7 of the 12 false negatives are X-chromosome linked genes, indicating that faster X
144 chromosome evolution (34) could be involved in the exceptional divergence of neutrally evolving
145 regions of these loci. It should be noted that TOGA still annotated these genes, but labeled them
146 as putative paralogs (Figure S8).

147

148 In a second step, TOGA uses CESAR 2.0 (35, 36) to determine the positions and boundaries of
149 all coding exons for each (co-)orthologous query locus of the gene (Figures 1B, S9, S10). Since

150 orthology between genomic loci, as determined in the first step, does not imply that the gene
151 encodes a functional protein, TOGA subsequently assesses for each transcript and each
152 orthologous locus whether it preserves the intact reading frame (Figure S11). To this end, TOGA
153 identifies gene-inactivating mutations (frameshifting, stop codon or splice site mutations, exon or
154 gene deletions) by implementing an improved version of our gene loss detection approach (6)
155 (Figures 1B, S12-S17). We only classified a gene as lost, if all transcripts at all (co-)orthologous
156 loci are classified as lost. We benchmarked this approach on a large set of 11,161 conserved
157 genes that are annotated as 1:1 orthologs by Ensembl in mouse, rat, cow and dog. Only 21, 22,
158 12 and 21 genes are misclassified as inactivated for the four species, indicating a very high
159 specificity of 99.80 to 99.89% (Table S4). Manual inspection showed that the few mis-classified
160 cases include highly-diverged genes, genes that evolved drastic changes in exon-intron structure
161 or protein length, and a lost gene that is compensated by a processed pseudogene copy, which
162 highlights cases of less certain gene conservation (Figures S18-S22).

163
164 An interesting example demonstrating the importance of detecting all orthologous loci and
165 determining reading frame intactness is the *STRC* and *CKMT1B* gene locus. This locus was
166 duplicated four times in the lineage leading to guinea pig, and TOGA recognizes all co-orthologous
167 loci with high probabilities (Figure 1G). However, despite the quadruplication, only one copy of
168 each gene encodes an intact reading frame. In case of *STRC*, the gene encoded by the ancestral
169 locus became inactivated, while one of the new copies maintained an intact reading frame. TOGA
170 correctly classifies and annotates both genes as 1:1 orthologs, but also annotates exons of the
171 remnants of the otherwise inactivated gene copies in the guinea pig genome (Figure 1G).

172
173 In the third step, TOGA determines the orthology type by considering all reference genes and all
174 orthologous query loci that encode an intact reading frame (Figure 1B, S23). Finally, TOGA uses
175 an orthology graph approach to resolve weakly-supported orthology relationships among
176 many:many orthologs (Figures 1B, S24).

177
178 **TOGA improves ortholog detection**
179 To assess the performance of TOGA's orthology detection pipeline, we compared it against
180 Ensembl Compara, which integrates graph- and tree-based methods and provides high-quality
181 ortholog gene sets (24). Using orthologs between human and three representative mammals (rat,
182 cow, elephant), we found that TOGA detected 97.6%, 98.9% and 96.5% of the orthologs provided
183 by Ensembl (Figure 2A, Table S5), showing a good agreement. Furthermore, for >90% of these
184 commonly-detected orthologs, TOGA inferred the same orthology type as Ensembl (1:1, 1:many,
185 many:1, many:many) (Figure 2C). A quarter of the discrepancies are cases where TOGA infers
186 1:1 and Ensembl 1:many. In several of these cases, Ensembl annotates a processed pseudogene
187 copy as a second ortholog (Figure S25).

188

189 For the orthologs detected only by Ensembl, TOGA did identify an orthologous locus in >93% of
190 the cases, but detected either inactivating mutations indicating gene loss or that large parts of the
191 gene overlap assembly gaps (classified as a missing gene) (Figures 2D, S26, S27). Consistent
192 with these cases including more questionable orthologs, parameters measuring alignment identity
193 (mean 51%), alignment coverage (mean 44%) and orthology confidence (mean 32%) are
194 substantially lower compared to orthologs detected by both methods (means 81%, 94%, 91%)
195 (Figure 2B).

196

197 TOGA predicted for the three species 1,532 (rat), 1,711 (cow) and 2,174 (elephant) additional
198 orthologs that are not listed in Ensembl (Figure 2A). For rat, this includes *PAX1*, an important
199 developmental transcription factor that was potentially missed by Ensembl because of a mis-
200 annotated N-terminus (Figure S28). About half of these genes belong to large families such as
201 zinc finger genes, olfactory receptors or keratin associated proteins (Figure 2C). While
202 establishing orthology between genes in large families is generally more challenging, these genes
203 exhibit alignment identity (mean 70%), alignment coverage (mean 83%) and orthology confidence
204 (mean 94%) values that are more similar to the orthologs detected by both methods (means 82%,
205 94%, 99%) (Figure 2B), supporting that these genes are undetected orthologs.

206

207 **TOGA improves gene annotation completeness**

208 To assess the completeness of annotations generated by TOGA, we performed a direct
209 comparison to annotations generated by Ensembl and by the NCBI Eukaryotic Genome
210 Annotation Pipeline (37, 38), two state-of-the-art methods that integrate transcriptomics,
211 homology-based data (transcripts and proteins from RefSeq and GenBank) and *ab initio* gene
212 predictions. To this end, we applied TOGA using human as the reference to genomes of 70 / 118
213 placental mammals that have Ensembl / NCBI annotations. Using BUSCO (Benchmarking
214 Universal Single-Copy Orthologs), a widely used tool to assess the completeness of protein-
215 coding gene annotations (39), we surprisingly found that TOGA annotations have a higher
216 completeness score for the mammalian BUSCO odb10 gene set for 97% (Ensembl) and 91.5%
217 (NCBI) of the species (Figure 3A, B, Tables S6, S7). On average, TOGA's annotations have a
218 4.1% (Ensembl) and 0.7% (NCBI) higher completeness, which corresponds to ~377 and ~64
219 genes in the set of 9,226 BUSCO genes.

220

221 To show that this performance is not specific to the use of human as the reference, we compared
222 Ensembl and NCBI to TOGA annotations obtained by using mouse (mm10 assembly) as the
223 reference. Like human, mouse also provides a high-quality gene annotation, which is important
224 for reference-based methods like TOGA. Using mouse, we found that TOGA annotations have a
225 higher BUSCO completeness for 98.5% (Ensembl) and 64% (NCBI) of the species (Figure 3A, B,
226 Tables S6, S7). While reference-based methods cannot annotate orthologs of genes not contained
227 in the reference annotation, this downside can be counteracted by combining multiple references.
228 Indeed, combining the human- and mouse-based TOGA annotations achieves a higher

229 completeness for almost all (>98%) of the assemblies with an average increase of 4.5% (Ensembl)
230 and 0.97% (NCBI) (Figure 3A, B). These tests show that the BUSCO gene completeness of
231 TOGA's comparative annotations are often higher than those produced by state-of-the-art
232 annotation pipelines that include transcriptomics data.

233
234 **TOGA improves annotation completeness even if transcriptomics data are available**
235 Transcriptomics data is undoubtedly very useful for gene annotation, as it provides direct evidence
236 of transcripts expressed in the sampled tissues. Therefore, we next tested whether TOGA can
237 increase annotation completeness, even if transcriptomics data and other gene evidence are
238 already available. To this end, we used six high-quality bat genomes (7) and first annotated genes
239 by integrating available transcriptomics data (both RNA-seq and Iso-seq), *ab initio* gene
240 predictions (Augustus (40)), aligned proteins from closely related bats, and comparative gene
241 predictions (Augustus-CGP applied to a multiple genome alignment (41)). For the six bats, these
242 annotations contained 87.7% to 95.4% of the genes in the mammalian BUSCO odb10 set (Figure
243 3C, Table S8). Adding TOGA with human as the reference as an additional evidence consistently
244 increased the annotation completeness by 3.9% to 11.4%, reaching a BUSCO completeness
245 score of 98.8% to 99.3%. This shows that even if a comprehensive set of gene evidence including
246 transcriptomics data are available, annotation completeness can still be improved by TOGA.
247

248 **TOGA joins split genes in fragmented assemblies**

249 Genes that are split between different scaffolds are currently either missed or annotated as
250 fragments, hampering downstream analyses. Although current genome projects aim to generate
251 highly-complete, chromosome-level assemblies (7, 42), even such assemblies can contain a few
252 fragmented genes (Figure S29). Furthermore, many currently available mammal or bird
253 assemblies exhibit fragmentation (43, 44) and are therefore more difficult to annotate. To improve
254 comparative annotation and orthology inference of fragmented genes, we leveraged TOGA's
255 ability to detect orthologous loci of partial genes. We implemented a gene joining procedure that
256 recognizes orthologous parts of 1:1 orthologous genes, joins them together, and generates an
257 annotation and codon/protein alignments for the full gene. Figure 4A illustrates this procedure for
258 a gene split into six parts in the fragmented pygmy sperm whale assembly (43).
259

260 To evaluate the accuracy of this step, we utilized the fact that orthologous but not paralogous
261 genes from two closely related species are expected to be highly similar. We used assemblies of
262 two sperm whale species: *Kogia breviceps* with a low scaffold N50 of 29 kb (43) and *Physeter*
263 *macrocephalus* with a high scaffold N50 of 122 Mb (45). Orthologous genes, for which no joining
264 is necessary as they are contained on a single scaffold in both species, have a high median coding
265 exon identity of 98.28% (mean 98.70%) (Figure 4B), which serves as a positive control. In contrast,
266 paralogous genes, which we used as a negative control, have a lower median coding exon identity
267 of 77% (mean 75.18%). Consequently, if TOGA's gene joining procedure was misidentifying
268 paralogous as orthologous fragments, we would expect a decreased nucleotide identity compared

269 to orthologs located on a single scaffold. However, we observed an equally high identity for
270 orthologous genes joined from two, three and at least four fragments (Figures 4B, S30), indicating
271 a high accuracy.

272
273 Demonstrating the effectiveness of this fragment joining procedure, the median length of the
274 coding sequence of split *Kogia* genes after joining orthologous fragments is 100% (mean 97%) of
275 the length of the orthologous human gene. This is a substantial improvement over the largest
276 orthologous fragment in the assembly (median 58%, mean 59%) (Figure 4C, Table S9). We
277 obtained similar improvements for other highly-fragmented assemblies. Even for an assembly of
278 the extinct Steller's sea cow with a scaffold N50 value of 1.4 kb (46), TOGA improved relative
279 coding sequence length from 28% to 70% (Figure 4C, Table S9).

280

281 **TOGA scales to hundreds of genomes**

282 Given the wealth of genomes that are generated in the current era, there is a strong need for
283 annotation and orthology inference methods that are able to handle hundreds or thousands of
284 genomes. Unlike previous graph- or tree-based methods that often perform all-against-all
285 comparisons that scale quadratically with the number of species, TOGA considers a pair of
286 reference-query species and thus scales linearly with the number of query species. To
287 demonstrate this, we applied TOGA with human as the reference to a large set of placental
288 mammals, comprising 488 different assemblies of 427 distinct species (Figure 5A, Table S1). As
289 expected, with an average of 19,144 (median 19,192) genes, TOGA annotates more genes in the
290 six Hominoidea (apes) species that are closely related to human. Importantly, for the remaining
291 482 assemblies, TOGA also annotated on average 17,779 (median 18,049) genes, indicating that
292 TOGA is an effective annotation method across placental mammals.

293

294 Fitting generalized linear models shows that the number of annotated orthologs is influenced by
295 several factors. These include assembly quality metrics (contig and scaffold N50), which are both
296 positively correlated with the number of detected orthologs, and the evolutionary distance
297 (substitutions per neutral site) and divergence time (millions of years) to human, which are both
298 negatively correlated (Figure S31, Table S10). Evolutionary distance has a stronger influence than
299 divergence time. This is exemplified for Perissodactyla, where TOGA consistently annotates more
300 genes than in many rodents, despite the fact that the rodent lineage split from human more
301 recently.

302

303 To explore the influence of the reference genome, we next applied TOGA to the same 488
304 placental mammal assemblies using mouse as the reference (Figure 5B, Table S1). Corroborating
305 the influence of evolutionary distance and divergence time, TOGA annotated more genes for the
306 20 closely related Muridae assemblies (mean 20,597, median 20,918) than for the remaining 466
307 assemblies (mean 17,852, median 18,115). Overall, the number of annotated genes is similar to
308 the human-based annotations.

309 **TOGA provides a superior approach for assessing mammalian assembly quality**

310 In addition to annotation and orthology inference, TOGA's gene classification also provides a
311 powerful benchmark to measure assembly completeness and quality. To this end, we first
312 compiled a comprehensive set of 18,430 ancestral placental mammal genes, defined as human
313 coding genes that have an intact reading frame in the basal placental clades Afrotheria and
314 Xenarthra (Table S11). For each of the 488 placental mammal assemblies, we then used TOGA's
315 gene classification to determine which percent of these ancestral genes have an intact reading
316 frame without missing sequence. We found that this completeness measure is significantly
317 correlated with the completeness value computed by BUSCO (Pearson $r = 0.73$, $P=10^{-81}$) (Figure
318 6A). However, BUSCO's values saturate at ~97% for highly complete assemblies, while TOGA's
319 completeness values exhibit a larger dynamic range (Figure 6B), which is important to distinguish
320 highly- from less-contiguous assemblies. This is exemplified by two closely related bats: a high-
321 quality assembly of *Rhinolophus ferrumequinum* (contig N50 21.7 Mb) and a less-contiguous
322 assembly of *R. sinicus* (contig N50 38 kb) that have a very similar BUSCO completeness (96.4%
323 vs. 96.3% complete genes) but are separated markedly by TOGA's completeness value (94.4 vs.
324 88.2%) (Figure 6C).

325

326 BUSCO's fragmented or missing gene classification indicates how much of the gene was
327 detected, but does not distinguish between the two major underlying reasons: assembly gaps that
328 result in missing gene sequence vs. assembly base errors that destroy the reading frame. TOGA's
329 gene classification explicitly distinguishes between these two different assembly issues, which
330 provides valuable information on assembly quality. For example, TOGA detects a substantially
331 higher percentage of genes exhibiting inactivating mutations in the *Bos gaurus* (gaur, 14.2%)
332 compared to the *Bos taurus* (cow, 4.3%) assembly, indicating that the *B. gaurus* assembly has an
333 elevated base error rate, whereas both assemblies are indistinguishable in terms of BUSCO
334 completeness scores (95.8 vs. 95.5%) (Figure 6D). Similarly, TOGA shows that the dog canFam5
335 assembly exhibits an elevated base error rate compared to dog canFam4 or the dingo, whereas
336 all three assemblies have highly similar BUSCO scores (Figure 6E). An informative example
337 illustrating that assemblies can suffer from different issues are two assemblies of the spotted
338 hyena: the NCBI GCA_008692635.1 assembly has less missing sequence, but a noticeably higher
339 base error rate compared to the DNAzoo assembly of the same species (Figure 6E). Finally,
340 illustrating extreme cases among seal assemblies, TOGA reveals that 56% of the genes in the
341 Antarctic fur seal have inactivating mutations and that 31% of the genes in the Weddell seal have
342 missing exonic sequence (Figure 6F).

343

344 In summary, TOGA automatically provides a measure for mammalian genome completeness with
345 two advantages. High sensitivity provides the resolution to detect smaller differences in gene
346 completeness of high-quality assemblies and the ability to distinguish between assembly
347 incompleteness and base error rate provides insight into these two distinct assembly challenges.

348

349 **TOGA facilitates more accurate codon alignments**

350 Codon or protein alignments are important to screen for selection patterns and to reconstruct
351 phylogenetic trees, but alignment error can substantially impact the outcome (28, 47). TOGA
352 implements two features that help to avoid errors when aligning coding sequences. First, TOGA
353 masks all gene-inactivating mutations such as frameshifts, which can otherwise result in
354 misalignments (Figure S32). Second, whereas existing methods consider entire orthologous
355 coding or protein sequences, TOGA is aware of orthology at the exon level. This enables a new
356 “exon by exon” procedure that generates codon or protein alignments by first aligning orthologous
357 exons and then joining exon alignments together with potential split codons at exon boundaries.
358 Figure S33 illustrates that this procedure avoids alignment errors in case of insertions or deletions
359 that occurred at exon boundaries.

360

361 **Applying TOGA to 308 bird as well as other non-mammalian genomes**

362 To further demonstrate TOGA’s ability to scale to many genomes, we used chicken (galGal6) as
363 the reference and applied TOGA to a large set of bird genomes generated by the B10K project
364 and many individual laboratories (29, 44, 48). The set comprises 308 different assemblies of 298
365 distinct species. Across all assemblies, TOGA annotated on average 13,994 (median: 14,058)
366 orthologous genes (Figure 5C, Table S12).

367

368 We also explored whether TOGA can be applied to species other than mammals and birds. Our
369 tests with turtles, fish, and sea urchins provide encouraging results (Figure 5D) that may be further
370 improved by adjusting the method to these clades.

371

372 **Comprehensive resources for comparative genomics**

373 For the 488 placental mammal and 308 bird assemblies, we provide comparative gene
374 annotations, ortholog sets, lists of inactivated genes and multiple codon alignments generated
375 with MACSE v2 (49) for download at <http://genome.senckenberg.de/download/TOGA/>. To our
376 knowledge, these comprise the largest comparative genomics datasets for both clades so far. To
377 facilitate visualizing and analyzing these data, we further implemented a TOGA annotation track
378 as part of the UCSC genome browser (50) (Figure S34). Our UCSC browser mirror at
379 <https://genome.senckenberg.de/> provides these annotation tracks for all analyzed mammal and
380 bird assemblies.

381

382

383

384

385 Discussion

386 TOGA is an integrative pipeline that jointly addresses two fundamental problems in genomics and
387 evolutionary biology: gene annotation and orthology inference. We show that alignments between
388 non-coding sequences in introns and intergenic regions enable an accurate detection of
389 orthologous gene loci, establishing a novel paradigm for inference of orthologous genes.
390 Comparisons with state-of-the-art methods show that TOGA often improves gene annotation
391 completeness, even if transcriptomics data are available. Here, TOGA benefits from great efforts
392 that generated high-quality annotations for human and mouse (38, 51), and provides an approach
393 to effectively utilize these to annotate other placental mammals. Furthermore, by joining split
394 genes in fragmented assemblies, TOGA increases the utility of such genomes for comparative
395 analyses. In addition to generating annotations, TOGA detects inactivated genes and provides
396 orthologous sequences for codon alignments. These enable phylogenomic analyses as well as
397 screens for selection patterns and gene losses that are linked to relevant phenotypes, as
398 previously demonstrated in the Bat1K and other projects (7, 52-54). TOGA's gene annotations
399 and classifications can also be used to assess assembly quality, featuring an increased sensitivity
400 and the ability to distinguish assembly incompleteness from assembly base errors, which are both
401 important as more and more highly complete and accurate assemblies are being produced (7, 42,
402 55, 56). Finally, TOGA's reference-based methodology scales linearly, handling hundreds and --
403 when available in the clades of interest -- even thousands of genomes.
404

405 TOGA's application range comprises species with "alignable" genomes, which we define in our
406 context as genomes where orthologous neutrally evolving regions partially align. In general, this
407 holds for evolutionary distances of ~0.6 substitutions per neutral site, which from a human or
408 mouse point of view includes other placental mammals. At larger evolutionary distances, neutrally
409 evolving intronic and intergenic regions are too diverged to be of use for TOGA's orthologous locus
410 detection approach (Figure S35A). Interestingly, applying TOGA with human as the reference to
411 18 marsupial and two monotreme species reveals that TOGA is still able to annotate on average
412 13,096 orthologs (Figure 5A,B), largely because gene order is often conserved (Figure S35B).
413 Nevertheless, human is obviously not a powerful reference for these more distant clades. Instead,
414 a marsupial and a monotreme species should be used as the reference to annotate genes and
415 infer orthologs in these clades.
416

417 With the tree of life becoming more densely populated with genomes thanks to great efforts of
418 large-scale projects (42-44, 57), TOGA provides a general strategy to cope with the annotation
419 and orthology inference bottleneck. For every "alignable" clade of interest, one can select one (or
420 a few) species to be used as the reference for others in the clade. The resulting annotations can
421 be enriched with transcriptomics data of the query species (when available) to detect novel
422 lineage-specific genes or novel splice variants that are expressed in the sampled tissues. Genome
423 and annotation of the reference(s) should ideally be highly complete, since the quality of the input

424 impacts the quality of the output. References can be defined for different taxonomic ranks, from
425 the class to the family or genus level. For example, in the Bat1K project (58), we aim at generating
426 a high-quality assembly and gene annotation for representatives of all bat families to serve as
427 references for dozens or hundreds of other bats in these families.

428
429
430
431

432 **Data and code availability**

433 The TOGA source code, and all scripts to run TOGA, create training and test data sets and
434 browser tracks are available at <https://github.com/hillerlab/TOGA>. TOGA is also available in a
435 singularity container environment. All data generated in this manuscript are available for download
436 at <http://genome.senckenberg.de/download/TOGA/> and for browsing in our UCSC genome
437 browser mirror at <https://genome.senckenberg.de>.

438
439

440 **Competing interests**

441 The authors have no competing interests.

442
443

444 **Acknowledgment**

445 We thank the genomics community for sequencing and assembling the genomes and the UCSC
446 genome browser group for providing software, and Ensembl for genome annotations. We also
447 thank Ingo Ebersberger and Kerstin Lindblad-Toh for helpful comments on the manuscript,
448 Franziska Friedrich for help with the TOGA logo, and the Computer Service Facilities of the MPI-
449 CBG and MPI-PKS and Christoph Sinai for their excellent technical support. This work was
450 supported by the Max Planck Society and the LOEWE-Centre for Translational Biodiversity
451 Genomics (TBG) funded by the Hessen State Ministry of Higher Education, Research and the Arts
452 (HMWK).

453
454

455 **Supplementary Materials**

456 Materials and Methods

457 Tables S1 – S13

458 Figures S1 – S37

459
460

461 References

- 462 1. T. Gabaldon, E. V. Koonin, Functional and evolutionary implications of gene orthology. *Nature reviews. Genetics* **14**, 360-366 (2013).
- 463 2. P. Kapli, Z. Yang, M. J. Telford, Phylogenetic tree building in the genomic age. *Nature reviews. Genetics* **21**, 428-444 (2020).
- 464 3. A. Meyer *et al.*, Giant lungfish genome elucidates the conquest of land by vertebrates. *Nature* **590**, 284-289 (2021).
- 465 4. A. M. Altenhoff, R. A. Studer, M. Robinson-Rechavi, C. Dessimoz, Resolving the ortholog conjecture: orthologs tend to be weakly, but significantly, more similar in function than paralogs. *PLoS computational biology* **8**, e1002514 (2012).
- 466 5. J. Huerta-Cepas *et al.*, Fast Genome-Wide Functional Annotation through Orthology Assignment by eggNOG-Mapper. *Molecular biology and evolution* **34**, 2115-2122 (2017).
- 467 6. V. Sharma *et al.*, A genomics approach reveals insights into the importance of gene losses for mammalian adaptations. *Nature communications* **9**, 1215 (2018).
- 468 7. D. Jebb *et al.*, Six reference-quality genomes reveal evolution of bat adaptations. *Nature* **583**, 578-584 (2020).
- 469 8. A. M. Altenhoff, N. M. Glover, C. Dessimoz, Inferring Orthology and Paralogy. *Methods in molecular biology* **1910**, 149-175 (2019).
- 470 9. M. Remm, C. E. Storm, E. L. Sonnhammer, Automatic clustering of orthologs and in-paralogs from pairwise species comparisons. *Journal of molecular biology* **314**, 1041-1052 (2001).
- 471 10. L. Li, C. J. Stoeckert, Jr., D. S. Roos, OrthoMCL: identification of ortholog groups for eukaryotic genomes. *Genome Res* **13**, 2178-2189 (2003).
- 472 11. C. Dessimoz *et al.* (Springer Berlin Heidelberg, Berlin, Heidelberg, 2005), pp. 61-72.
- 473 12. A. C. Roth, G. H. Gonnet, C. Dessimoz, Algorithm of OMA for large-scale orthology inference. *BMC Bioinformatics* **9**, 518 (2008).
- 474 13. C. M. Train, N. M. Glover, G. H. Gonnet, A. M. Altenhoff, C. Dessimoz, Orthologous Matrix (OMA) algorithm 2.0: more robust to asymmetric evolutionary rates and more scalable hierarchical orthologous group inference. *Bioinformatics* **33**, i75-i82 (2017).
- 475 14. E. V. Kriventseva, N. Rahman, O. Espinosa, E. M. Zdobnov, OrthoDB: the hierarchical catalog of eukaryotic orthologs. *Nucleic Acids Res* **36**, D271-275 (2008).
- 476 15. E. M. Zdobnov *et al.*, OrthoDB v9.1: cataloging evolutionary and functional annotations for animal, fungal, plant, archaeal, bacterial and viral orthologs. *Nucleic Acids Res* **45**, D744-D749 (2017).
- 477 16. L. J. Jensen *et al.*, eggNOG: automated construction and annotation of orthologous groups of genes. *Nucleic Acids Res* **36**, D250-254 (2008).
- 478 17. B. Linard, J. D. Thompson, O. Poch, O. Lecompte, OrthoInspector: comprehensive orthology analysis and visual exploration. *BMC Bioinformatics* **12**, 11 (2011).
- 479 18. D. M. Emms, S. Kelly, OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. *Genome Biol* **16**, 157 (2015).
- 480 19. C. M. Zmasek, S. R. Eddy, A simple algorithm to infer gene duplication and speciation events on a gene tree. *Bioinformatics* **17**, 821-828 (2001).
- 481 20. H. Li *et al.*, TreeFam: a curated database of phylogenetic trees of animal gene families. *Nucleic Acids Res* **34**, D572-580 (2006).

503 21. J. Huerta-Cepas, H. Dopazo, J. Dopazo, T. Gabaldon, The human phylome. *Genome Biol* **8**, R109
504 (2007).

505 22. J. Huerta-Cepas, S. Capella-Gutierrez, L. P. Pryszzcz, M. Marcet-Houben, T. Gabaldon, PhylomeDB
506 v4: zooming into the plurality of evolutionary histories of a genome. *Nucleic Acids Res* **42**, D897-
507 902 (2014).

508 23. R. T. van der Heijden, B. Snel, V. van Noort, M. A. Huynen, Orthology prediction at scalable
509 resolution by phylogenetic tree analysis. *BMC Bioinformatics* **8**, 83 (2007).

510 24. A. J. Vilella *et al.*, EnsemblCompara GeneTrees: Complete, duplication-aware phylogenetic trees
511 in vertebrates. *Genome Res* **19**, 327-335 (2009).

512 25. J. Herrero *et al.*, Ensembl comparative genomics resources. *Database : the journal of biological
513 databases and curation* **2016**, (2016).

514 26. D. M. Emms, S. Kelly, OrthoFinder: phylogenetic orthology inference for comparative genomics.
515 *Genome Biol* **20**, 238 (2019).

516 27. K. Trachana *et al.*, Orthology prediction methods: a quality assessment using curated protein
517 families. *Bioessays* **33**, 769-780 (2011).

518 28. W. J. Murphy, N. M. Foley, K. R. Bredemeyer, J. Gatesy, M. S. Springer, Phylogenomics and the
519 Genetic Architecture of the Placental Mammal Radiation. *Annu Rev Anim Biosci*, (2020).

520 29. E. D. Jarvis *et al.*, Whole-genome analyses resolve early branches in the tree of life of modern birds.
521 *Science* **346**, 1320-1331 (2014).

522 30. W. J. Kent, R. Baertsch, A. Hinrichs, W. Miller, D. Haussler, Evolution's cauldron: duplication,
523 deletion, and rearrangement in the mouse and human genomes. *Proceedings of the National
524 Academy of Sciences of the United States of America* **100**, 11484-11489 (2003).

525 31. J. Lehmann, P. F. Stadler, S. J. Prohaska, SynBlast: assisting the analysis of conserved synteny
526 information. *BMC Bioinformatics* **9**, 351 (2008).

527 32. J. Jun, Mandoiu, II, C. E. Nelson, Identification of mammalian orthologs using local synteny. *BMC
528 Genomics* **10**, 630 (2009).

529 33. S. Jahangiri-Tazehkand, L. Wong, C. Eslahchi, OrthoGNC: A Software for Accurate Identification
530 of Orthologs Based on Gene Neighborhood Conservation. *Genomics Proteomics Bioinformatics* **15**,
531 361-370 (2017).

532 34. R. P. Meisel, T. Connallon, The faster-X effect: integrating theory and data. *Trends in Genetics* **29**,
533 537-544 (2013).

534 35. V. Sharma, P. Schwede, M. Hiller, CESAR 2.0 substantially improves speed and accuracy of
535 comparative gene annotation. *Bioinformatics* **33**, 3985-3987 (2017).

536 36. V. Sharma, A. Elghafari, M. Hiller, Coding exon-structure aware realigner (CESAR) utilizes genome
537 alignments for accurate comparative gene annotation. *Nucleic Acids Res* **44**, e103 (2016).

538 37. F. Thibaud-Nissen *et al.*, P8008 The NCBI Eukaryotic Genome Annotation Pipeline. *Journal of
539 Animal Science* **94**, 184-184 (2016).

540 38. N. A. O'Leary *et al.*, Reference sequence (RefSeq) database at NCBI: current status, taxonomic
541 expansion, and functional annotation. *Nucleic Acids Res* **44**, D733-745 (2016).

542 39. M. Manni, M. R. Berkeley, M. Seppey, F. A. Simao, E. M. Zdobnov, BUSCO Update: Novel and
543 Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of
544 Eukaryotic, Prokaryotic, and Viral Genomes. *Molecular biology and evolution* **38**, 4647-4654 (2021).

545 40. M. Stanke, O. Schoffmann, B. Morgenstern, S. Waack, Gene prediction in eukaryotes with a
546 generalized hidden Markov model that uses hints from external sources. *BMC Bioinformatics* **7**, 62
547 (2006).

548 41. S. Konig, L. W. Romoth, L. Gerischer, M. Stanke, Simultaneous gene finding in multiple genomes.
549 *Bioinformatics* **32**, 3388-3395 (2016).

550 42. A. Rhie *et al.*, Towards complete and error-free genome assemblies of all vertebrate species.
551 *Nature* **592**, 737-746 (2021).

552 43. C. Zoonomia, A comparative genomics multitool for scientific discovery and conservation. *Nature*
553 **587**, 240-245 (2020).

554 44. S. Feng *et al.*, Dense sampling of bird diversity increases power of comparative genomics. *Nature*
555 **587**, 252-257 (2020).

556 45. G. Fan *et al.*, The first chromosome-level genome for a marine mammal as a resource to study
557 ecology and evolution. *Mol Ecol Resour* **19**, 944-956 (2019).

558 46. F. S. Sharko *et al.*, Steller's sea cow genome suggests this species began going extinct before the
559 arrival of Paleolithic humans. *Nature communications* **12**, 2215 (2021).

560 47. G. Jordan, N. Goldman, The effects of alignment error and alignment filtering on the sitewise
561 detection of positive selection. *Molecular biology and evolution* **29**, 1125-1139 (2012).

562 48. T. B. Sackton *et al.*, Convergent regulatory evolution and loss of flight in paleognathous birds.
563 *Science* **364**, 74-78 (2019).

564 49. V. Ranwez, E. J. P. Douzery, C. Cambon, N. Chantret, F. Delsuc, MACSE v2: Toolkit for the
565 Alignment of Coding Sequences Accounting for Frameshifts and Stop Codons. *Molecular biology*
566 and evolution

567 **35**, 2582-2584 (2018).

568 50. B. T. Lee *et al.*, The UCSC Genome Browser database: 2022 update. *Nucleic Acids Res.* (2021).

569 51. A. Frankish *et al.*, Gencode 2021. *Nucleic Acids Res.* (2020).

570 52. J. Damas *et al.*, Broad host range of SARS-CoV-2 predicted by comparative and structural analysis
571 of ACE2 in vertebrates. *Proceedings of the National Academy of Sciences of the United States of
572 America* **117**, 22311-22322 (2020).

573 53. D. E. Gordon *et al.*, Comparative host-coronavirus protein interaction networks reveal pan-viral
574 disease mechanisms. *Science* **370**, (2020).

575 54. M. Blumer *et al.*, Gene losses in the common vampire bat illuminate molecular adaptations to blood
576 feeding. *bioRxiv*, 2021.2010.2018.462363 (2021).

577 55. K. H. Miga *et al.*, Telomere-to-telomere assembly of a complete human X chromosome. *Nature* **585**,
578 79-84 (2020).

579 56. A. M. M. Cartney *et al.*, Chasing perfection: validation and polishing strategies for telomere-to-
580 telomere genome assemblies. *bioRxiv*, 2021.2007.2002.450803 (2021).

581 57. H. A. Lewin *et al.*, Earth BioGenome Project: Sequencing life for the future of life. *Proceedings of
582 the National Academy of Sciences of the United States of America* **115**, 4325-4333 (2018).

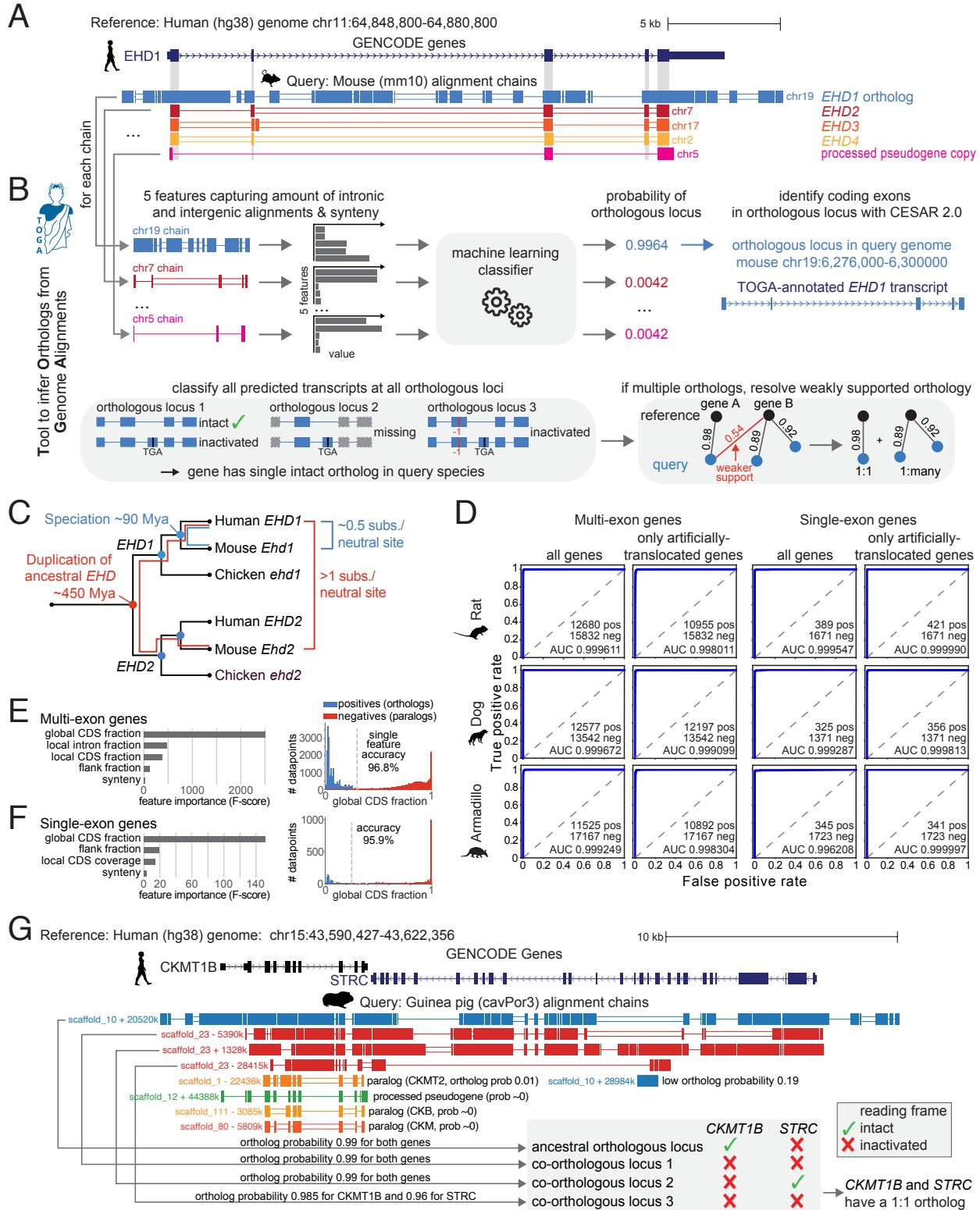
583 58. E. Teeling *et al.*, Bat Biology, Genomes, and the Bat1K Project: To Generate Chromosome-Level
584 Genomes for all Living Bat Species. *Annu Rev Anim Biosci.* (2017).

585

586

587

588 **Figures**



589

590 **Figure 1: TOGA utilizes a novel methodology to detect orthologous genes.**

591 (A) Illustration of TOGA and the key principle that orthologous genes have intronic and intergenic
592 alignments. A UCSC genome browser view of the human *EHD1* gene locus shows five alignment
593 chains (boxes represent local alignments that occur in a co-linear order, single lines represent
594 deletions and double lines unaligning sequence) to the query species mouse, indicating that five
595 mouse loci (chr19, 7, 17, 2, 5) have sequence similarity to coding exons of *EHD1*. The chr19 locus
596 that encodes the mouse *Ehd1* ortholog aligns both exons and parts of introns and flanking
597 intergenic regions, whereas the other loci that encode paralogs or processed pseudogene copies
598 align only coding exons. Alignments for other placental mammals show similar properties (Figure
599 S2).

600 (B) Illustration of TOGA. For each gene of interest and each alignment chain, we compute
601 characteristic alignment features and use machine learning to obtain a probability that the chain
602 alignment represents an orthologous locus. For each orthologous locus in the query, coding exons
603 are inferred for every reference transcript of this gene. TOGA then determines for each transcript
604 at each orthologous locus whether it encodes an intact reading frame, taking assembly
605 incompleteness and real inactivating mutations into account. Finally, for many:many orthologs, an
606 orthology graph is used to resolve potential weak orthology connections.

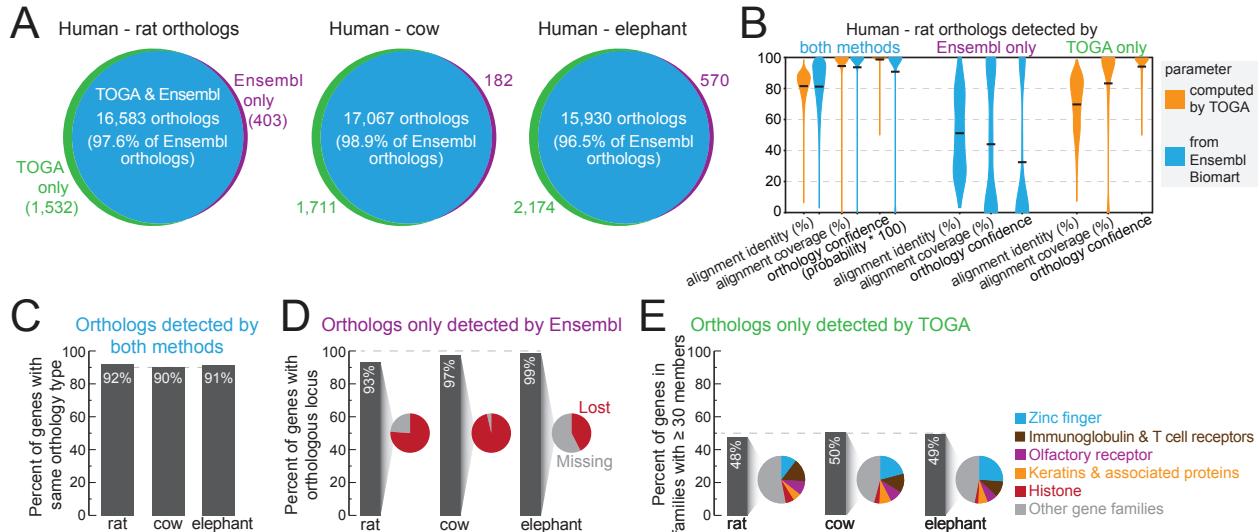
607 (C) The principle exploited in TOGA. The difference in the number of substitutions separating
608 aligning orthologous and paralogous loci explains the characteristic difference that only
609 orthologous loci show partial intronic and intergenic alignments.

610 (D) Orthology detection performance. Receiver Operating Characteristics curves show the true
611 positive rate for a given false positive rate in blue. Dashed lines indicate a random classifier. The
612 areas under these curves are close to 1 for three independent test species (rat, dog, armadillo),
613 indicating a very high accuracy in distinguishing orthologous from non-orthologous loci. This holds
614 both for single- and multi-exon genes as well as for genes that lack synteny due to artificial
615 translocations that we introduced.

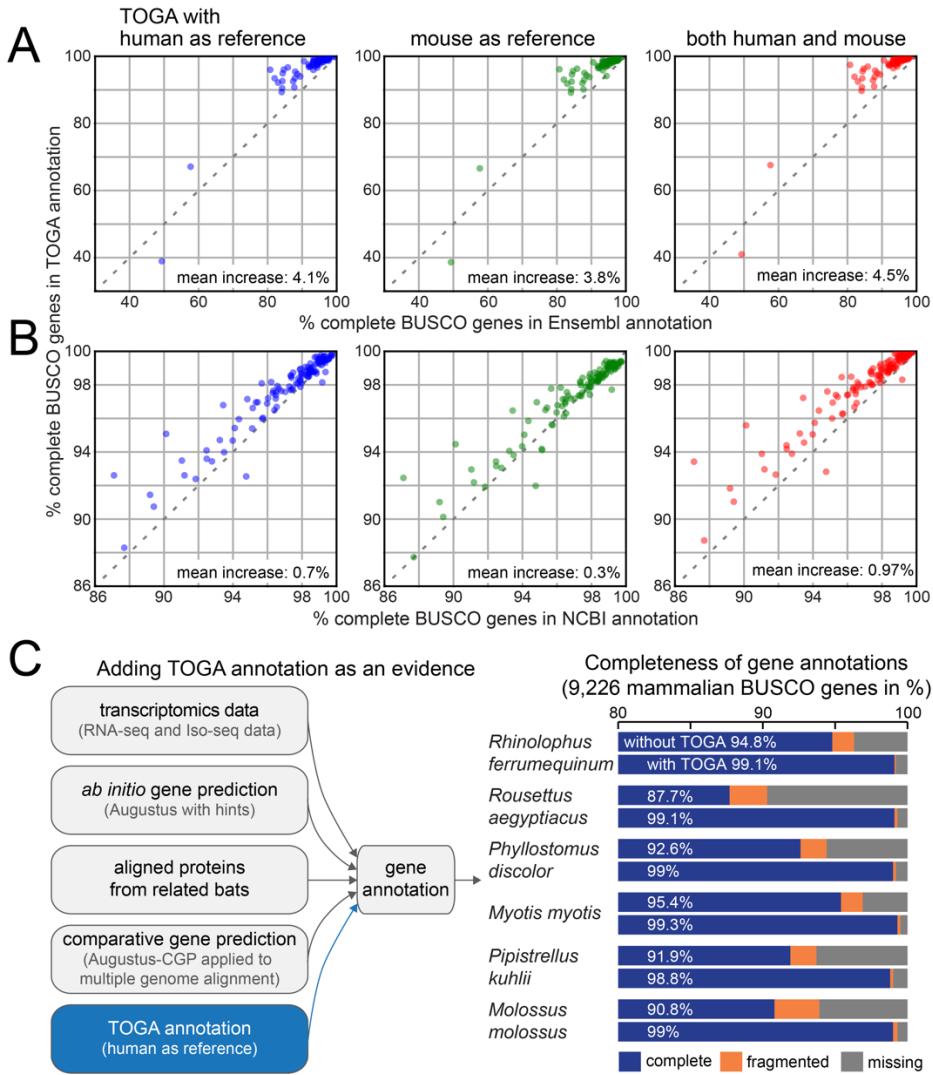
616 (E/F) Importance of the features used by TOGA to detect orthologous multi-exon (E) and single-
617 exon (F) genes (left side). The distribution of the single most important feature (global CDS
618 fraction, which measures the proportion of coding exon alignments in all aligning blocks of a chain)
619 shows a clear difference between orthologous and non-orthologous chains (blue and red) for the
620 human-rat comparison (right side). Indeed, this feature alone has high predictive power, resulting
621 in a classification accuracy of >95%.

622 (G) Importance of detecting all orthologous loci and determining reading frame intactness. UCSC
623 genome browser view shows the human genomic locus comprising *STRC* and *CKMT1B*, which is
624 quadruplicated in the guinea pig (top four alignment chains). TOGA correctly recognizes the four
625 co-orthologous loci with a high probability (>0.96) and distinguishes them from non-orthologous
626 alignment chains representing paralogs and a processed pseudogene copy (probabilities <0.01).
627 Analyzing reading frame intactness of both genes, TOGA finds that only one of the four co-
628 orthologous loci encodes an intact reading frame (green checkmark), and correctly infers a 1:1
629 orthology relationship.

630



631
632 **Figure 2: TOGA improves ortholog detection.**
633 (A) Overlap of orthologs provided by Ensembl Compara and detected by TOGA for three
634 representative placental mammals.
635 (B) Violin plots compare the identity and coverage of the coding region alignment and the orthology
636 confidence probability for human-rat orthologs, detected by both or either Ensembl and TOGA.
637 Horizontal black lines represent the mean. Note that for orthologs only detected by TOGA, these
638 features are not available on Ensembl Biomart, and vice versa.
639 (C) Percent of orthologs detected by both methods, for which Ensembl and TOGA infer the same
640 orthology type (1:1, 1:many, many:1, many:many).
641 (D) Percent of orthologs only detected by Ensembl, for which TOGA detects an orthologous locus
642 (bar chart) but classifies the gene as lost (inactivated reading frame) or missing (more than half of
643 the coding region overlaps assembly gaps), as shown by the pie charts.
644 (E) Percent of orthologs only detected by TOGA that belong to gene families with at least 30
645 members (bar chart). Pie charts show the proportion of the most frequent gene families.



648

649 **Figure 3: TOGA improves gene annotation completeness.**

650 (A,B) Comparison of the completeness of annotations generated by TOGA and Ensembl (panel
 651 A, 70 placental mammals) and the NCBI Eukaryotic Genome Annotation Pipeline (panel B, 118
 652 placental mammals). For most species, TOGA annotations have a higher annotation
 653 completeness according to the percent of completely detected mammalian BUSCO genes. Note
 654 that the set of species in A and B overlaps but is not identical.

655 (C) List of gene evidence that was integrated to annotate six bat species, once without TOGA and
 656 once with TOGA. Bar charts compare annotation completeness as a percentage of detected
 657 mammalian BUSCO genes. Adding TOGA as evidence increases annotation completeness by
 658 3.9% to 11.4%.

659

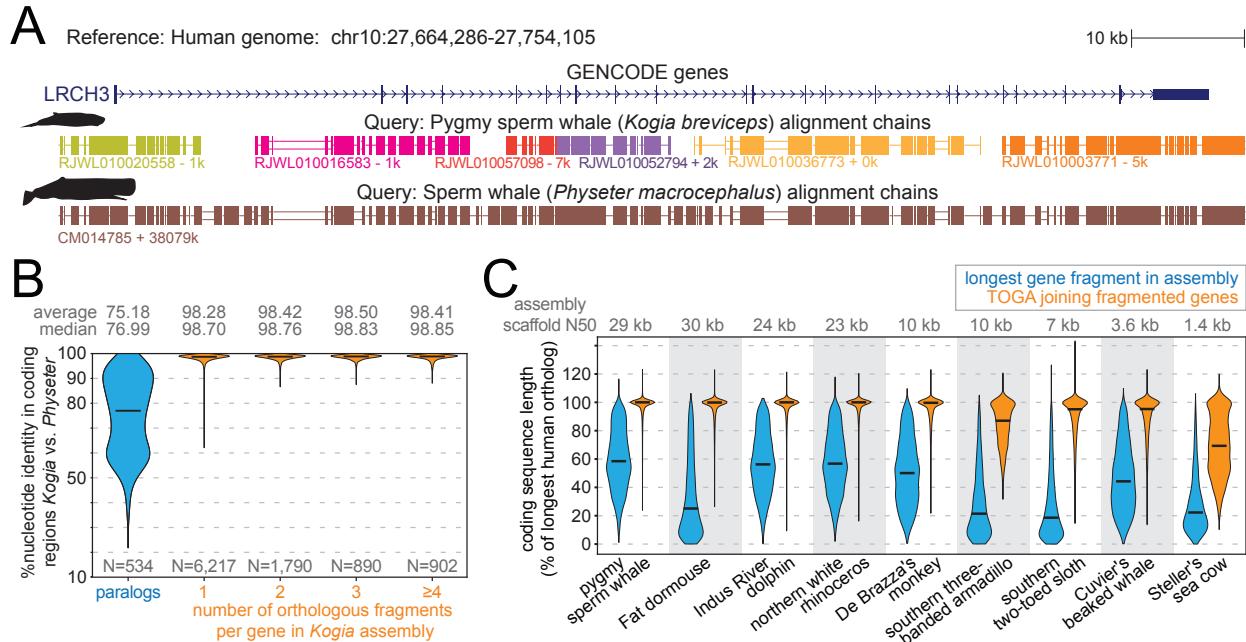
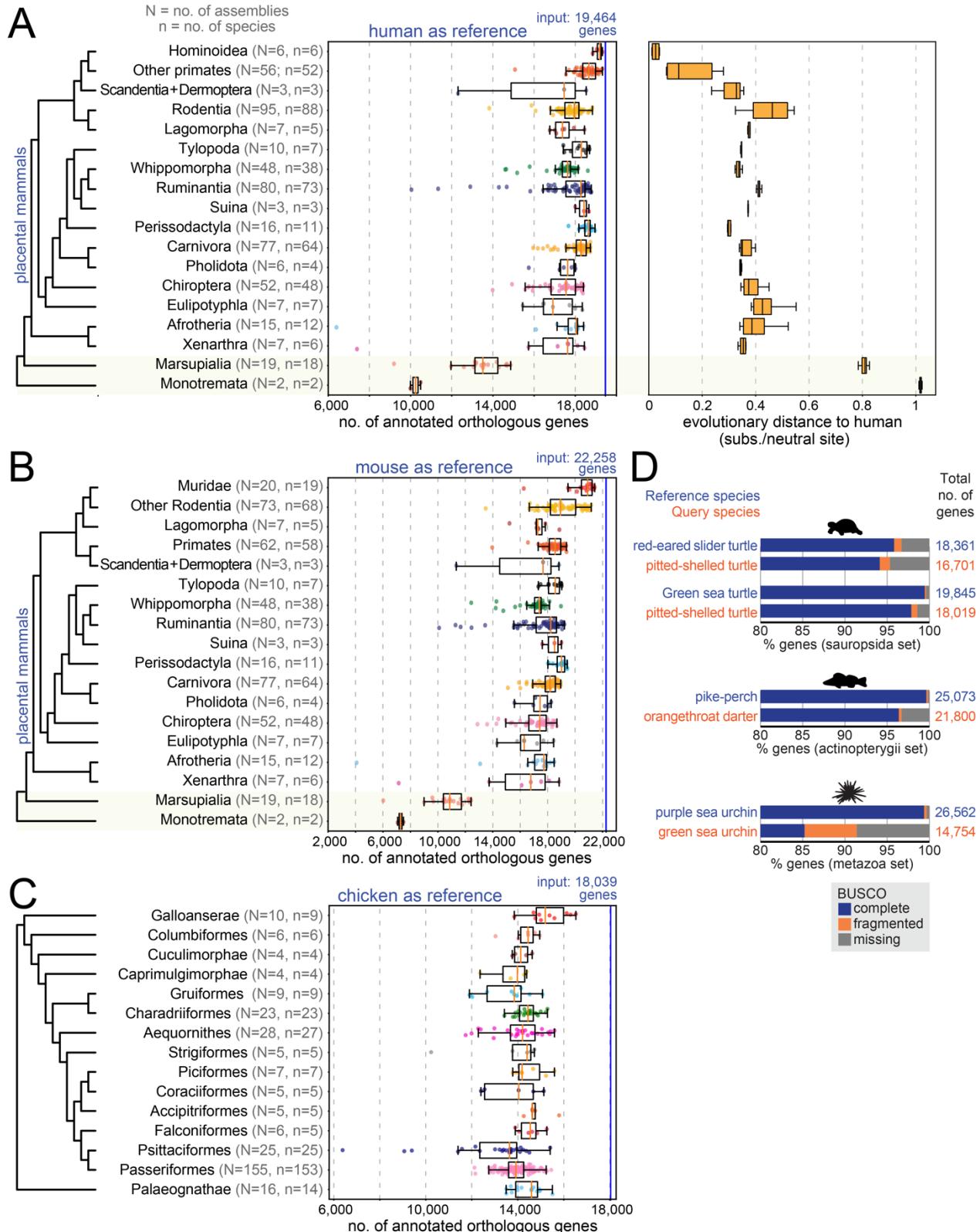


Figure 4: TOGA detects and joins genes split in fragmented genome assemblies.

662 (A) The ortholog of human *LRCH3* is split into six parts in the fragmented pygmy sperm whale
663 (*Kogia breviceps*) assembly that comprises 1.2 million scaffolds (43). Different chain colors
664 represent different scaffolds. Despite some chains aligning as little as one or two coding exons,
665 TOGA correctly detects and joins all six orthologous chains to obtain the complete gene. For
666 comparison, *LRCH3* is located on a single scaffold (thus on a single chain) in the closely related
667 sperm whale (*Physeter macrocephalus*), which highlights the highly-similar alignment block
668 structure.

669 (B) Violin plots show the coding exon identity between *Kogia breviceps* and *Physeter*
670 *macrocephalus*. Horizontal black lines represent the median. Supporting the high accuracy of
671 TOGA's fragmented gene joining procedure, genes that are present as two or more fragments in
672 the *Kogia* assembly have a highly-similar identity distribution compared to genes for which no
673 joining was necessary as they are already present on a single scaffold.

(C) Effectiveness of joining fragmented genes. Violin plots show the length of the coding sequence for the largest genomic fragment of split genes (blue) and after joining orthologous fragments (orange). Length is relative to the longest transcript of the orthologous human gene. In case of codon insertions, the relative length can be >100%.



681

682 **Figure 5: Large-scale application of TOGA to hundreds of genomes.**

683 (A) TOGA with human as the reference. Left: Phylogenetic tree of mammal orders (7). Box plots
684 with overlaid data points show the number of annotated orthologs. Hominoidea are shown as a

685 separate group. Non-placental mammals (marsupials and monotremes) are highlighted with a
686 yellow background. Right: Box plots showing the distributions of evolutionary distances to human
687 (Table S2).

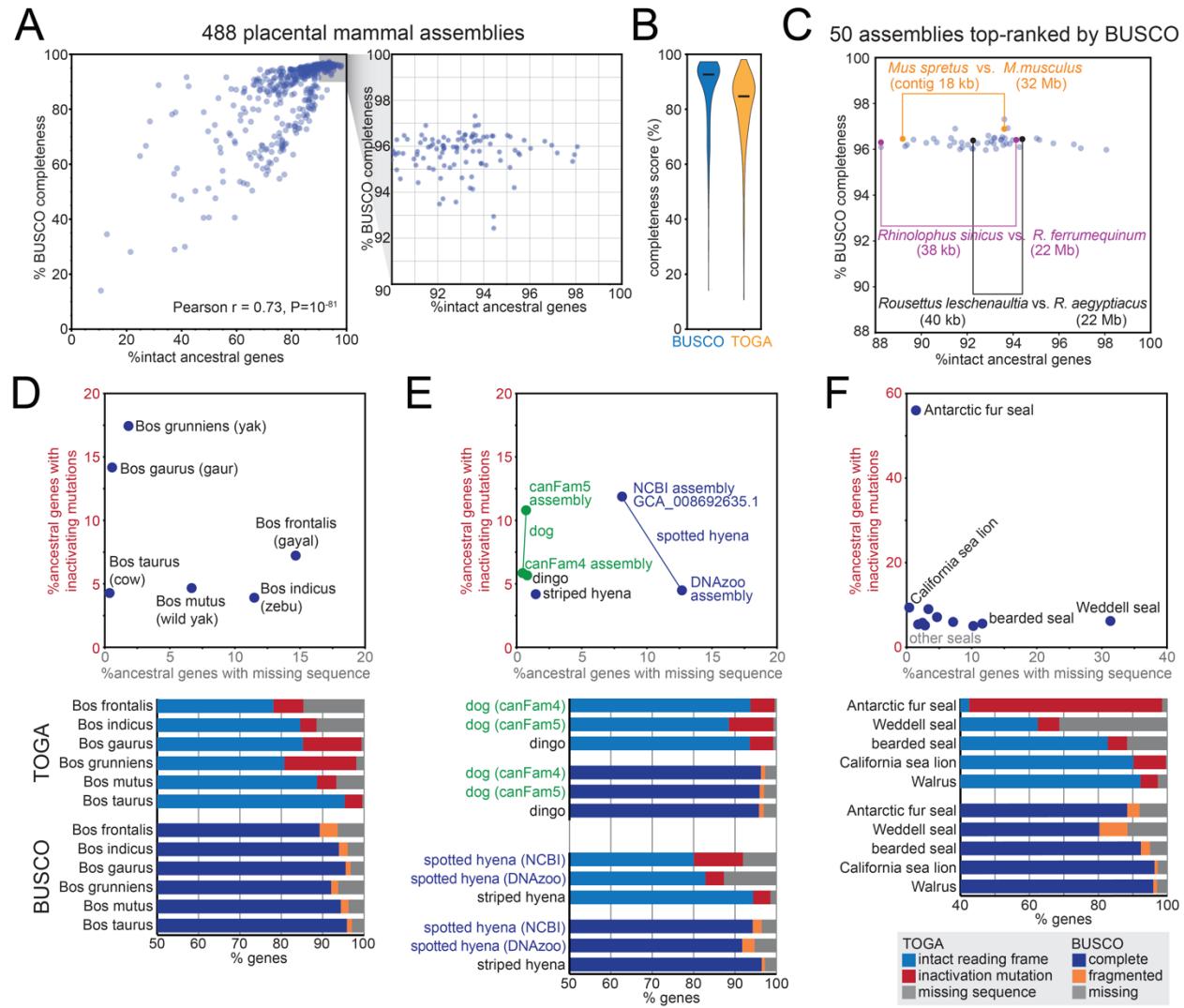
688 (B) TOGA with mouse as the reference. Muridae are shown as a separate group.

689 (C) TOGA with chicken as the reference, applied to 308 bird assemblies.

690 (D) Using TOGA with other reference species (blue) to annotate related query species (orange).
691 The bar charts compare the BUSCO gene completeness of the input (reference) annotation, which
692 provides an upper bound, and the query annotation generated by TOGA. It should be noted that
693 the two sea urchins split ~200 Mya.

694

695



696

697 **Figure 6: TOGA provides a superior measure of mammalian genome quality.**

698 (A) Comparison of the percent complete BUSCO genes (Y-axis) and TOGA's percent of intact
699 ancestral genes (X-axis) for 488 placental mammal assemblies. The inset shows that BUSCO's
700 completeness values saturate at a maximum of 97.3%, whereas TOGA's value offers a larger
701 dynamic range.

702 (B) Violin plots of BUSCO's and TOGA's completeness values. Horizontal black lines represent
703 the median.

704 (C) BUSCO and TOGA values for the 50 assemblies that are top-ranked by BUSCO. Three pairs
705 of closely related species are highlighted that have substantially different assembly contiguity
706 (contig N50) values and are distinguishable in terms of gene completeness by TOGA but not by
707 BUSCO.

708 (D-F) TOGA determines the percent of ancestral genes that have missing sequence and that have
709 inactivating mutations (X and Y-axis in the dot plots at the top). Bar charts compare the TOGA
710 gene classification with the percent of complete, fragmented and missing genes computed by
711 BUSCO. The three panels highlight assemblies with a higher incompleteness or base error rate

712 (inferred from an increased percentage of genes with inactivating mutations) that is often not
713 detectable by the BUSCO metrics.

714

715

716

717

718 **Zoonomia Consortium:**

719 Gregory Andrews¹, Joel C. Armstrong², Matteo Bianchi³, Bruce W. Birren⁴, Kevin R Bredemeyer⁵, Ana M
720 Breit⁶, Matthew J Christmas³, Joana Damas⁷, Mark Diekhans², Michael X. Dong³, Eduardo Eizirik⁸, Kaili
721 Fan¹, Cornelia Fanter⁹, Nicole M. Foley⁵, Karin Forsberg-Nilsson¹⁰, Carlos J. Garcia¹¹, John Gatesy¹²,
722 Steven Gazal¹³, Diane P. Genereux⁴, Daniel Goodman¹⁴, Linda Goodman¹⁵, Jenna Grimshaw¹¹, Michaela
723 K. Halsey¹¹, Andrew J Harris⁵, Glenn Hickey¹⁶, Michael Hiller^{17,51,52}, Allyson G. Hindle⁹, Robert M. Hubley¹⁸,
724 Laura Huckins⁵³, Graham M. Hughes¹⁹, Jeremy Johnson⁴, David Juan²⁰, Irene M. Kaplow^{21,22}, Elinor K.
725 Karlsson^{1,4}, Kathleen C. Keough^{23,24}, Bogdan Kirilenko^{17,51,52}, Klaus-Pieter Koepfli⁵⁴, Jennifer M. Korstian¹¹,
726 Sergey V. Kozyrev³, Alyssa J. Lawler²⁵, Colleen Lawless¹⁹, Danielle L. Levesque⁶, Harris A. Lewin^{7,26,27},
727 Xue Li^{1,4}, Yun Li 47, Abigail Lind^{23,24}, Kerstin Lindblad-Toh^{3,4}, Voichita D. Marinescu³, Tomas Marques-
728 Bonet^{20,28,29,30}, Victor C Mason³¹, Jennifer R. S. Meadows³, Jill E. Moore¹, Diana D. Moreno-Santillan¹¹,
729 Kathleen M. Morrill^{1,4}, Gerard Muntané²⁰, William J Murphy⁵, Arcadi Navarro^{20,32,33,34}, Martin Nweeia^{35,36,37,38},
730 Austin Osmanski¹¹, Benedict Paten², Nicole S. Paultat¹¹, Eric Pederson³, Andreas R. Pfennig^{21,22}, BaDoi
731 N. Phan²¹, Katherine S. Pollard^{23,24,39}, Kavya Prasad²¹, Henry Pratt¹, David A. Ray¹¹, Jeb Rosen¹⁸, Irina Ruf
732⁴⁰, Louise Ryan¹⁹, Oliver A. Ryder^{41,42}, Daniel Schäffer²¹, Aitor Serres²⁰, Beth Shapiro^{43,44}, Arian F. A. Smit¹⁸,
733 Mark Springer⁴⁵, Chaitanya Srinivasan²¹, Cynthia Steiner⁴⁶, Jessica M. Storer¹⁸, Patrick F. Sullivan^{47,48},
734 Kevin A. M. Sullivan¹¹, Quan Sun⁴⁷, Elisabeth Sundström³, Megan A Supple⁴⁴, Ross Swofford⁴, Jin
735 Szatkiewicz⁴⁷, Joy-El Talbot⁴⁹, Emma Teeling¹⁹, Jason Turner-Maier⁴, Alejandro Valenzuela²⁰, Franziska
736 Wagner⁵⁰, Ola Wallerman³, Chao Wang³, Juehan Wang¹³, Jia Wen 47, Zhiping Weng¹, Aryn P. Wilder⁴¹,
737 Morgan E. Wirthlin^{21,22}, Shuyang Yao⁴⁸, Xiaomeng Zhang²¹

738

739 1 Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School,
740 Worcester, MA 01605, USA

741 2 Genomics Institute, UC Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA

742 3 Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University,
743 Uppsala, 751 32, Sweden

744 4 Broad Institute of MIT and Harvard, Cambridge MA 02139, USA

745 5 Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA

746 6 School of Biology and Ecology, University of Maine, Orono, Maine 04469, USA

747 7 The Genome Center, University of California Davis, Davis, CA 95616, USA

748 8 School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre,
749 90619-900, Brazil

750 9 School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA

751 10 Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University,
752 Uppsala, 751 85, Sweden

753 11 Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA

754 12 Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA

755 13 Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA

756 14 University of California San Francisco, San Francisco, CA 94143 USA

757 15 Fauna Bio Inc., Emeryville, CA 94608, USA

758 16 Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA

759 17 LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt,
760 Germany

761 18 Institute for Systems Biology, Seattle, WA 98109, USA

762 19 School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland

763 20 Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health Sciences,
764 Universitat Pompeu Fabra, Barcelona, 08003, Spain
765 21 Department of Computational Biology, School of Computer Science, Carnegie Mellon University,
766 Pittsburgh, PA 15213, USA
767 22 Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
768 23 Gladstone Institutes, San Francisco, CA 94158, USA
769 24 Department of Epidemiology & Biostatistics, University of California, San Francisco, CA 94158, USA
770 25 Department of Biology, Carnegie Mellon University, Pittsburgh, PA 15213, USA
771 26 Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
772 27 John Muir Institute for the Environment, University of California, Davis, CA 95616, USA
773 28 Catalan Institution of Research and Advanced Studies (ICREA), 08010, Barcelona, Spain
774 29 CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST),
775 08036, Barcelona, Spain
776 30 Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, 08193,
777 Cerdanyola del Vallès, Barcelona, Spain
778 31 Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
779 32 Catalan Institution of Research and Advanced Studies (ICREA), 08010, Barcelona, Spain
780 33 CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), 08036,
781 Barcelona, Spain
782 34 BarcelonaBeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, 08005 Spain
783 35 Narwhal Genome Initiative, Department of Restorative Dentistry and Biomaterials Sciences, Harvard
784 School of Dental Medicine, Boston, MA 02115, USA
785 36 Department of Comprehensive Care, School of Dental Medicine, Case Western Reserve University,
786 Cleveland, OH 44106, USA
787 37 Department of Vertebrate Zoology, Smithsonian Institution, Washington, DC 20002, USA
788 38 Department of Vertebrate Zoology, Canadian Museum of Nature, Ottawa, Ontario K2P 2R1, Canada
789 39 Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
790 40 Division of Messel Research and Mammalogy, Senckenberg Research Institute and Natural History
791 Museum Frankfurt, 60325 Frankfurt am Main, Germany
792 41 Conservation Genetics, San Diego Zoo Wildlife Alliance, Escondido, CA 92027, USA
793 42 Department of Evolution, Behavior and Ecology, Division of Biology, University of California, San Diego,
794 La Jolla, CA 92039 USA
795 43 Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
796 44 Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA
797 95064, USA
798 45 Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA 92521,
799 USA
800 46 Conservation Science Wildlife Health, San Diego Zoo Wildlife Alliance, Escondido CA 92027, USA
801 47 Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
802 48 Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
803 49 Iris Data Solutions, LLC, Orono, ME 04473, USA
804 50 Museum of Zoology, Senckenberg Natural History Collections Dresden, 01109 Dresden, Germany
805 51 Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
806 52 Goethe-University, Faculty of Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
807 53 Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
808 54 Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park,
809 Washington, DC, USA