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Abstract

The process of designing biomolecules, in particular proteins, is witnessing a rapid change in
available tooling and approaches, moving from design through physicochemical force fields, to
producing plausible, complex sequences fast via end-to-end differentiable statistical models. To
achieve conditional and controllable protein design, researchers at the interface of artificial
intelligence and biology leverage advances in natural language processing (NLP) and computer
vision techniques, coupled with advances in computing hardware to learn patterns from growing
biological databases, curated annotations thereof, or both. Once learned, these patterns can be
leveraged to provide novel insights into mechanistic biology and the design of biomolecules.
However, navigating and understanding the practical applications for the many recent protein
design tools is complex. To facilitate this, we 1) document recent advances in deep learning (DL)
assisted protein design from the last three years, 2) present a practical pipeline that allows to go
from de novo-generated sequences to their predicted properties and web-powered visualization
within minutes, and 3) leverage it to suggest a generated protein sequence which might be used
to engineer a biosynthetic gene cluster to produce a molecular glue-like compound. Lastly, we
discuss challenges and highlight opportunities for the protein design field.

Availability: pLM generated and UniRef50 sampled sequence sets and predictions are available
at http://data.bioembeddings.com/public/design. Code-base and Notebooks for analysis are
available at https:/github.com/hefeda/PGP. An online version of Table 1 can be found at
https://github.com/hefeda/design tools .

Keywords: protein design; protein prediction; drug discovery; deep learning; protein language
models

Abbreviations: ADMM - Alternating Direction Method of Multipliers; CNN - Convolutional
Neural Network; DL - Deep learning; FNN - fully-connected neural network; GAN - Generative
Adversarial Network; GCN - Graph Convolutional Network; GNN - Graph Neural Network; GO -
Gene Ontology; GVP - Geometric Vector Perceptron; LSTM - Long-Short Term Memory; MLP -
Multilayer Perceptron; MSA - Multiple Sequence Alignment; NLP - Natural Language Processing;
NSR - Natural Sequence Recovery; pLM - protein Language Model; VAE - Variational
Autoencoder.
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Introduction

Proteins take part in nearly every process of life, controlling a wide variety of functions. This
functional versatility and the fact that proteins are nanoscopic, biodegradable materials have
motivated tremendous efforts toward designing artificial proteins for medical and industrial
applications. In fact, human-designed proteins are widely used across medicine, agriculture and
manufacturing, constituting the active form of four out of the top five top selling
pharmaceuticals in 2021 [1]. To cite a few more examples, protein engineers have improved the
thermostability of a malaria invasion protein for use as a vaccine antigen [2] or developed an
enzyme capable of hydrolyzing Polyethylene terephthalate (PET), providing a new, green, and
scalable route for plastic waste recycling [3]. Despite the clear objective of designing functional
properties, most protein design and engineering strategies have traditionally leveraged a
structure-first approach [4], i.e. either by re-engineering known proteins or by designing novel
stable structures that then could be further tweaked to target desired functions, e.g. binding to
other molecules [5]. The reason why the concomitant design of sequence, structure, and
function has remained so challenging is due to the computational intractability of the problem:
traditionally, protein design has been tackled as a mathematical optimization, where an
algorithm, such as Monte Carlo [6], searched the global minima of a multi-dimensional
physicochemical energy function [7]. In recent months, however, an explosion of methods
leveraging advances in machine learning provide a fresh alternative for de-novo protein design,
including the design of long functional proteins. Motivated by the enormous success of structure
prediction methods [8]-[11] and the recent availability of large putative protein structure
databases [11], [12], some works are exploiting a structure-first approach to designing new folds
and proteins [13], [14]. In contrast, others operate sequence-first, by training large generative
language models on vast sequence databases [15], [16, p. 2], [17, p. 2], [18]. Advancing the field
by exploiting different modalities (sequence, structure and even function) is fundamental, as no
one modality may be able to explain all cell phenomena necessary for the design of biologics
[19].

For comprehensive reviews of protein engineering or machine learning methods for
protein research we refer to the works by Yang [20] and Defresne [21]. Yet, with fundamental
advances to protein design in a brief period of time, this manuscript attempts to provide an
overview of recent work using Al with a focus on the last three years. To showcase the practical
uses of the work presented, we engineer a pipeline for the generation of de novo protein
sequences selectable for tailored properties that may benefit the protein design community, and
make use of this novel pipeline to discover sequences that may generate natural products.

In particular, in the following:

1. We describe recent advances in protein design, namely those shifting from a
physical-based function paradigm to one that uses end-to-end differentiable
architectures for sequence and structure generation. We aim to give practitioners a
waymark to novel tools and their intended uses.

2. We offer a novel pipeline capable of generating protein sequences with tailored
properties. In short, we couple ProtGPT2 [16], which generates de novo sequences, with
ProtT5 [22, p. 5], which predicts properties from them in order to discriminate sequences
by desired functions.

3. We dig into the pipeline by presenting a use case for the selection of factory proteins
with the predicted ability to produce natural products.

4. We discuss challenges to the design of marketable proteins with controllable properties.

Moving from physicochemical functions to deep neural networks in protein research
The de novo design of proteins was traditionally approached as an optimization problem
where an algorithm searched the global minima of an energy function [23]. This function would
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evaluate an astronomical number of sequences for a given backbone, quickly leading to an
NP-hard problem that required turning to heuristic algorithms and static pairwise potential
energy functions to limit computational complexity [24], [25]. These approaches met enormous
success, with a myriad of de novo generated proteins in the last 20 years [26]. These designs
have remarkably evolved from often short, alpha-helical peptides [27] and bundles [28] to
complex multi-domain architectures [29]. Much has been said about physicochemical-based
protein design, we refer the readers to these comprehensive reviews [5], [7], [26].

More recently however, deep learning (DL) approaches have provided a new venue for
protein design research by showing high accuracy in prediction tasks. Highly publicized progress
from one such tool came from DeepMind's AlphaFold [30] in December 2018 at CASP13 [31], a
step-wise pipeline incorporating DL attempted to solve the decade-long problem of protein 3D
structure prediction from sequence. The sucessor AlphaFold 2 [9], an end-to-end engineered
solution, promoted even more excitement due to its incredible ability to accurately predict
protein structures from sequences in-silico [32], [33]. End-to-end solutions both in protein
predictions and design are of particular interest because they set out to learn complex
relationships between a complex output (e.g. 3D structure) and a principled input measurement
(e.g. sequence) based on mathematical, often biologically-informed formulation of their
relationships. Once trained and validated, these models encode a comprehensive notion of the
input and its relationships to the output [34], [35].

In parallel to AlphaFold, natural language processing (NLP) methods were leveraged to
learn novel protein representations by learning the protein language, offering an alternative
route to the explicit extraction of evolutionary information from MSAs, historically done by
collecting statistics on the co-evolution of residues within MSAs [24]. These models achieved an
understanding of proteins by tasking multi-million DL architectures to solve millions of cloze
tests from large protein sequence datasets, allowing to encode statistics of protein sequences
without supervision on physicochemical or evolutionary relationships [22], [36]. While at first
pLM representations (shorthand: embeddings) did outperform traditional exploitations of direct
physicochemical and evolutionary knowledge [37], [38], quick advancements in better
mechanisms to process embeddings led to competitive predictors for protein function and
structure [10], [39]-[49]. It is thus becoming clear that pLM embeddings are rich inputs to
downstream prediction methods of protein function and structure competing with those that
exploit MSAs. However, what is encoded in embeddings, including how much evolutionary
information as defined in MSAs (i.e., residue co-evolution) is implicitly captured, remains a subject
of debate, even in light of correlation between MSAs and pLM embeddings in accuracy for 3D
structure prediction [40].

While these pLMs excel at embedding representations of input sequences, other types of
pLMs (discussed below) are now capable of directly generating new sequences. With increasing
experimental validation of “black box” DL methods, the protein design field now has a unique
opportunity to generate sequences, interpret DL representations, and build pipelines aiding at
various stages of protein design and drug development, from initial library generation to
refinement and optimization.

The deep learning era of protein sequence and structure generation
Previous reviews have focused on describing the types of neural network architectures used in
protein design [21], [50]. We focus on the type of problem that these methods attempt to solve:

1) fixed-backbone design ( ) 2) sequence generation ( ), 3) structure
generation ( ), and 4) concomitant structure and sequence design most often via
hallucination ( ). We discuss several DL methods (bold and underlined to match

rows Table 1) from the last three years with a focus on those not using Potts models [51], [52]. A
virtual version of this table can be found at https://github.com/hefeda/design _tools.

The first category of methods we describe focus on solving the traditional protein design
problem, i.e., finding a sequence that optimally adopts a desired backbone ( ). The
performance of these methods is usually evaluated by native sequence recovery (NSR), i.e., the
percentage of wild-type amino acids recovered for an input sequence by the design method.
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While this metric imposes some limitations, given that the identity percentage does not
necessarily correlate with expression or functional levels [53] and the lack of common
benchmark sequences, it is nevertheless a convenient measure to evaluate how well the method
recapitulates wild-type sequences. Some of the first attempts came from SPIN [54] and SPIN2
[55, p. 2], which leveraged three-layered fully-connected neural networks (FNN) to learn from
structural features embedded as a 1-dimensional (1D) tensor representing backbone torsion
angles, local fragment-derived profiles, and global energy-based features. While SPIN and SPIN2
achieved an NSR of 30 % and 34%, respectively, they suffered from information loss due to the
1D input representation and the lack of FNNs to encode local and global context. Their
successor, SPROF [56], tried to remedy information loss by leveraging a 2D input and a 2D
Convolutional Neural Network (CNN), which brought NSR to 39.8%. 2D CNN models excelled for
years in computer vision tasks as they handle local and global information better than FNNs [57].
In the protein context, these may be spatial and geometric features of 3D structure, which can
be extracted in an unsupervised fashion through CNNs, given that protein 3D structures can be
proxied accurately (up to symmetry) by 2D representations like contact- or distance maps. For
instance, ProDCoNN [58] learned to reconstruct sequences by representing atomic discretized
environments through voxelized 18 A-cubic boxes, leading to a NSR of over 45%. Anand [13]'s
tool designed sidechain rotamers besides recovering sequence identity at a given input
backbone position, reaching an NSR of 57%. Three of the designs were validated with X-ray
crystallography. Meanwhile, Deep Learning researchers attempted to solve training challenges of
CNNs, such as the elevated computational cost associated with increasing neural network depth.
For instance, DenseNet [59] expanded on the concept of residual connections, i.e. wiring a layer's
input to all subsequent residual blocks, which inspired DenseCPD [60]. Other attempts tried to
encode more information in the input to CNNs, e.g. CNN protein landscape [61], which
amongst others encoded side chain atoms, partial charges and solvent accessibility reaching 60%
NSR, and TIMED [62], which also includes reimplementations of several CNN-based protein
design methods.

Protein 3D structures can also be represented by graphs where nodes are residues (or
atoms) and edges represent structural proximity. Graph neural networks (GNN) directly harness
graph representations, and thus attempts like TERMinator [63], [64] or ProteinSolver [65], a
GNN inspired by Sudoku problems, emerged. ProteinSolver generated sequences from four
different folds, two of which were experimentally characterized with circular dichroism.
Ingraham [34] trained a encoder-decoder Structured Transformer, where the GNN encoder learnt
protein structures represented by graphs, while the decoder sampled sequences conditioned on
the encoder-learn structure representations. Graph Vector Perceptrons (GVP-GNN) [66] which
replaced MLPs in GNNs improved performance in protein design and model quality assessment.
Through modifications of the GVPs architecture, Orellana [67] improved the median sequence
recovery from 40.2% to 44.7%. In recent work, McPartlon [68] introduced a partial masking
scheme and side-chain conformation loss to GNNs achieving an NSR of 50.5% on independent
CASP, CATH and TS50 test sets. Other recent studies leveraged encoder-decoder Transformer
architectures, e.g. Fold2seq [69] learned protein representations jointly from sequence and
structure through two encoder modules connected to a decoder module tasked with sampling
sequences from the learnt sequence and structure representations. ESM-1F [70] used GVP-GNN
encoder layers to represent geometric features, followed by a generic autoregressive
encoder-decoder, improving performance over previous GVP-GNN networks. ProteinMPNN [14]
implemented a Transformer whose encoder embeds the protein backbone coordinates, whilst
the decoder outputs suitable sequences. The method was experimentally validated, showing
high expression yields (in some cases rates over 88%) across different tasks. One design was
crystallized, showing a more complex fold than most de novo proteins up to date [14].

Most of the early work in the second category of methods generating structure encoding
objects ( ) came from the Po-Ssu Huang lab, which initially trained generative
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adversarial networks (GANs) on contact maps used as input to a convex optimization algorithm
(ADMM) to recover 3D coordinates [71]. Later, the network was improved in Anand2 to learn
from distance maps, and included a learned coordinate recovery module replacing ADMM [72].
In these methods, sequences were generated from the designed backbones using Rosetta [73].
GANs were subject to a lack of satisfactory accuracy in the coordinate recovery process and the
loss of resolution when inputting structures as either contact or distance maps, which led to
missing biochemical features and unrealistic designs [74]. 1G-VAE [74] addressed some of these
shortcomings by training a variational autoencoder (VAE) that directly generated 3D coordinates
of backbone atoms for class-specific Immunoglobulin proteins. The VAE implemented in Lai [75]
instead outputs a conformational ensemble of protein structures. Similar methods with the goal
of generating structures are RamaNet [76], a long-short term memory network (LSTM), trained
in an autoregressive manner to output a sequence of ¢ and { angles to design alpha-helical
structures, and DECO-VAE [77], based on VAEs. As opposed to the fixed-backbone methods (

), these generative structure methods allowed to explore novel, unseen topologies,
which could host novel functions. Nevertheless, it is often desirable to control the design
process, i.e., to condition the sampling towards aspects of function, structure, or sequence. Two
methods (SCUBA and GENESIS) allow to do so through inputting a series of secondary structure
rules of sketches (such as ‘helix-loop-helix’), which guide the network. SCUBA [78] used statistical
representations of backbones by tasking FNNs to learn from radial kernels encoding different
representations of 3D structure. Designs from SCUBA were experimentally evaluated through
X-ray crystallography, leading to the discovery of three novel topologies. GENESIS [79]
implemented a VAE that takes secondary structure sketches and outputs contact maps with finer
definitions of secondary structural elements.

Another emerging protein design branch focuses on sequence generation (

), mostly inspired by the impressive advances in natural language processing (NLP) over the last
few years [50], [80]. Possibly the first advance in this area came from ProteinGAN [81], a GAN
trained on the family of malate dehydrogenases (MDH) capable of producing novel functional
MDH sequences with as low as 66% identity to natural protein sequences. Since then, a myriad
of autoregressive protein language models (pLMs) with generative capabilities, often leveraging
the successful Transformer architecture [82], have followed. Since the applications of
autoregressive Transformers to create protein language models have extensively been reviewed
[50], we will only briefly mention these. ProGen [15] was the first reported decoder-only model
specifically trained for protein sequence design and included over 1,100 UniProt [83] control tags
(keywords). These tags could be used to control the generation process, e.g. by selecting for
acyltransferase activity. Transformer models can also be “fine-tuned” to achieve a desired goal,
practically an alternative technique to using tags for controllable generation. ProGen was
employed for the generation of Lysozimes using fine-tuning on five fold diverse Lysozimes
families resulting in about 50.000 sequences. Generated sequences showed enzymatic activity in
the range of natural counterparts, and one sequence was purified and its structure resolved via
X-ray [84]. ProtTrans [22], an extensive probe into the ability of six transformer-based
architectures to encode protein sequence knowledge, included the training of autoregressive
models (ProtXL, ProtXLNet, ProtElectra-Generator-BFD, and ProtT5) which have, in principle,
sequence generation ability. DARK3 [18] is a decoder-only model with 100M parameters trained
on synthetic sequences. Following the principles of DARK3, ProtGPT2 |everaged a GPT2-like
model [85] an trained on the Uniref50 dataset [83], leading to a model able to generate proteins
in unexplored regions of the natural protein space, while presenting natural-like properties [16].
RITA [86] included a study on the scalability of generative Transformer models with several
model-specific (e.g. perplexity) and application-specific (e.g. sequence properties) benchmarks,
similar to ProGen2 [17, p. 2], which was accompanied by the release of all pre-trained weights
and architectures, ranging from 151M to 6.4B parameter models. Another model with generative
ability is EVE [87], a VAE used to predict the pathogenicity of protein variants.
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The last category of design methods encompasses those capable of concomitantly
designing sequence and structure ( ). Possibly the first method in this class,
Hallucination [88] allowed to “hallucinate” 100-amino acid long de-novo protein sequences
leveraging trRosetta. The term hallucination was inspired by DeepDream [89], a CNN capable of
generating mesmerizing, psychedelic images by combining input patterns iteratively (e.g.
generating a house from eyes and faces). Protein hallucination works similarly: random
sequences (which only have arbitrary local structural patterns) are passed to a structure
prediction method, such as trRosetta, which predicts a distance map. The difference between
this map and a background distribution trained on high-resolution natural structures is
iteratively minimized by mutating the sequence one mutation at the time and re-computing its
distance map in order to ultimately reach a minimal (or optimal) distance between background
distribution and distance map. Iterating over this process for 40,000 steps using Monte Carlo led
to sharply defined distance maps. 129 designs were expressed in E.coli, of which 27 were
monomeric and well-folded, with three being validated through crystallization [88]. Similar to
other applications, it is often paramount to gain control over specific properties, such as
building a scaffold around a particular structural motif, like a binding pocket. Constrained
hallucination [90] modified the hallucination process in two ways: first by using a composite
loss function, combining the losses from Norn [91] and Anishchenko [88], which allowed to
create a model to concomitantly find a sequence for the structural motif, while hallucinating the
scaffold around it; second, the Monte Carlo sampling procedure was replaced by a
gradient-based sequence optimization, leading to an 18-fold decrease in sampling time (from 90
to 5 minutes). In RFjoint [92], this approach was further enhanced by employing RoseTTAFold
[93] instead of trRosetta, thus leading to finding a minimum for 3D structure differences instead
of distance maps [92]. However, this constrained hallucination schema was still too
computationally expensive, and thus RFjoint also fine-tuned a RoseTTAFold variant with a
three-term loss which allowed inpainting missing sequences and structures in a few seconds.
The method was extensively evaluated experimentally [92]. Lastly, Protein Diffusion [94]
leveraged diffusion models [95]-[97] popularized by generative image approaches [98] to train a
model capable of generating sequence and structure based on a set of secondary structure
input constraints.

An offline pipeline for protein generation and selection through visual exploration of
predicted features

Despite significant advances, the field appears to remain distant from tools allowing the
seamless design of proteins that fulfill specific properties in an end-to-end fashion, and even
farther for the end to be marketable devices primed to ace clinical trials or pass environmental
regulations. A step towards this goal would be DL models that prompted with a set of biological
mechanism and industry-relevant properties (e.g., desired thermostability, aggregate viscosity,
sequence length, subcellular localization, catalytic capabilities, or binding partners) output a
sequence or structure satisfying the selected criteria with high precision in a timely fashion.
Whilst this may not yet be possible, we present an offline attempt (i.e., not an end-to-end
solution) by combining a generative DL model producing sequences [16] with an oracle
discriminator DL model helping to query generated sequences for desired properties [22].

In particular, we unconditionally (i.e., without priors on family, function or structure)
generated a set of 100,000 protein sequences using ProtGPT2, and predicted secondary
structure [22], Gene Ontology (GO) terms [44], residue ability to bind small molecules,
nucleotides or metals [47], protein subcellular localization [46], transmembrane topology [41],
residue conservation [42], residue disorder [43] and CATH family [45]. Remarkably, this
generated a repertoire of 100,000 protein sequences with ~12 predicted features of structure
and function from a single script in approximately 3.5 hours (Supplement 1). To analyze
whether the generated sequences resemble natural ones, we prepared two more sets to
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compare against: 1) 100,000 sampled protein sequences from UniRef50 [83] which we call “U50”
and 2) a nonsense sequence set created by shuffling residues within the sequences of the
sampled UniRef50 set (e.g. “SEQVENCE” may become “QEEVNCSE") which we call “random”. We
then predict structure and function using the same methods and script applied to the generated
sequences for both sets.

Qualitatively comparing distributions of several predicted features for the three sets (

) suggests that generated protein sequences resemble natural sequences more than random
sequences. As generated sequences are accompanied by a wealth of interpretable predicted
features, we provide a simple Jupyter Notebook (https://github.com/hefeda/PGP) that allows to
query the generated protein set in quasi-natural language via the predicted features. To cite two
examples, a user could shortlist protein sequences with more than 200 residues that have at
least 30% of residues involved in alpha-helical secondary structure and that locate on the outer
cell membrane according to GO annotations, or select for sequences shorter than 100 residues
with transmembrane strand content and binding to small molecules. The resulting sequences
filtered by the desired query displayed in the Jupyter Notebook are linked to LambdaPP [99], a
web-server for visual exploration of predicted features that also predicts and displays protein 3D
structure using ColabFold [100] and allows 3D structure comparisons through FoldSeek [101].

Whilst not an end-to-end solution, carefully crafted combinations of lightning-fast DL
generators and predictors, easy query mechanisms, and rich visual tools allow to push the
envelope in discovery of novel candidates, as explored in the following use case.

Use case: selecting protein factories for molecular glues through deep learning

Proteins can serve as factories increasingly engineered to manufacture other products, such as
the triterpene squalene [102]. Often protein factories are produced by genes in biosynthetic
gene clusters (BGC) found in many microorganisms. Protein language model-based deep
learning was used to create a tool able to scan genomes for BGCs, assess their functional
classification according to Pfam [103], and predict their output product [104]. These protein
factories are also the source of many therapeutically used natural products, of which an
estimated 50% of all FDA approved drugs are derived [105]. It was discovered that many of these
natural products act through a newly established mechanism [106] used by microbial, plant,
fungal and animal cells to regulate protein interaction networks at the proteome scale [106],
such as plant hormones Auxin and Jasmonate [107]. These small molecules are now aptly named
molecular glues as they work by gluing a protein of interest to a regulating protein, often an
enzyme called the effector protein. Multiple approved drugs with previously unknown
mechanisms of action have now been identified to work through this mechanism [108], [109].
Molecular glues hold tremendous promise, allowing to drug protein classes that are traditionally
considered undruggable, as they don't require binding enzymatically active sites, can work in
shallow, featureless pockets [110], as well as on intrinsically disordered proteins which can
become ordered at the stabilized protein interface [111], [112]. Approved molecular glues,
however, have all been discovered through serendipity, and it appears that nature has been
much more successful in designing this class systematically.

To show the therapeutic promise of artificially designed proteins, we mine
unconditionally ProtGPT2-generated protein sequences for their potential to act as factories to
produce novel molecular glues. These sequences could be used as a starting pool in a directed
evolution approach. Generating sequences, in contrast to the typically used point mutation and
shuffling strategies, can achieve a better balance between exploration of sequence diversity and
maintaining reaction stability. To do so, we filtered the set of ProtGPT2-generated sequences
discussed previously using embedding-based annotation transfer (EAT) of Gene Ontology (GO)
annotations [44] to filter 1,345 sequences matching either the GO term “secondary metabolite
biosynthetic process” (GO:0044550) or its children terms (including those sequences that match
up to embedding distance < 0.6). Using a reference embedding set of sequences from the
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annotated biosynthetic gene cluster dataset (MiBIG) [113], we discover that even with no further
optimization, 234 out of the 1,345 generated, filtered sequences are similar to naturally
occurring BGC proteins ( ).

We focus on one generated sequence (sequence in Supplement 1) which is close to a
short chain dehydrogenase BGC constituent involved in producing fusicoccin A (one of the
molecules depicted in Supplement 2, Fig. S1, panel A). Fusicoccin A is a phytotoxic molecular
glue which was originally discovered to stabilize the interface between the scaffolding protein
14-3-3 and H+-ATPases from Arabidopsis thaliana (AHA2) and Nicotiana plumbaginifolia (PMA2)
[114], [115], but has since then been expanded semi-synthetically as an anti-cancer drug [116].
By searching for similar proteins in embedding space ( ) and fold space (

), three natural proteins emerged. All three are fungal, short-chain dehydrogenases
with very similar folds, but are involved in the production of completely different natural
products, as expected from different BGCs. This demonstrates a potential workflow of
generating sequences with the aim of evolving specific BGCs to produce desired molecules, for
instance by applying directed evolution [117].

Discussion

Deep learning ushers in a new wave of tools for protein design, engineering, prediction,
and optimization. The efficient combination of in-silico and in-vitro approaches in multi-stage
pipelines, such as in drug discovery, remains complex, costly and often requires many types of
expertise. However, practitioners now have access to an increasing collection of in-silico DL tools
which particularly address the first stages of these pipelines (Table 1). DL methods have started
a revolution in protein design, a field that has undergone a paradigm shift over the last few
years, moving away from traditional physico-chemical energy functions. As we highlight in the
use case, generative sequence models can be employed to create large libraries of plausible
sequences for which oracle models predict structure and function properties in a matter of
hours ( ). This process requires no technical DL expertise and provides data from which
experts can select and refine to one or a set of promising candidates that constitute starting
points for in-vitro experiments ( ).

End-to-end protein design for marketable biologics remains remarkably complex. Despite
advances in end-to-end DL models for protein design, except for a few recent breakthroughs
[118], bridging the gap from computational to marketable remains difficult, an unfortunate reality
since proteins would have the potential to tackle many emerging biomedical and environmental
challenges [119].

Two interesting aspects of DL solutions are their end-to-end nature and the ability to
combine different losses, i.e. to condition the output (e.g. sequence) on the input (e.g. structure)
using a mathematical formulation which takes into account aspects (e.g. thermostability)
interesting in the application context (e.g. biopharma). DL models for protein design are
optimized end-to-end on large biological collections, which are often limited by experimental
shortcomings, for instance capturing a static notion of protein 3D structure, as opposed to its
dynamic nature (e.g., conformational modifications during protein-protein interactions). Thus,
while DL models for protein design may encode biological mechanisms required to propose
viable biologics, they cannot yet be blindly utilized without experimental validation, and do not
yet explicitly account for marketable variables. Similarly, as protein function lacks rigorous
definition (e.g., may be binding or localization, or both) and scale [120], designing around protein
function remains more challenging than designing around sequence or structure, and selecting
for function in production is often better validated through targeted functional assays.

An opportunity to connect in-silico with in-vitro approaches, where physical experiments,
accounting for all variables, inform DL models in a differentiable manner may come from
advancements in automated labs [121], [122] and a new frontier of cloud labs [123]. However, a
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bottleneck from combining DL models with physical experimentation is high-throughput [120],
as digital systems often vastly outpace physical counterparts in efficiency and scale. Yet, digital
copies of physical labs (or digital twins [124]), which have already been proven useful in boosting
manufacturing [125], [126] provide an opportunity for the future. A DL solution aiming at
outputting marketable devices should also account for non-biological variables, such as the ones
influencing production costs or clinical response. Data necessary to inform such models is
however lacking, although improvements are underway, such as for clinical trial design [127].

Looking forward: protein design community on a rigorous journey to establish goals. In
the first half of the 1990s, at a time when having solved the protein folding challenge sporadically
made headlines, the Critical Assessment of Structure Prediction (CASP) [31] set the standard
against which in-silico predictive methods for protein structure needed to prove advancement. In
combination with establishing data standardization and a single data repository, this led to
multiple revolutionary approaches, from early uses of single-frequency models (i.e., positional
scoring matrices), to complex co-evolutionary representations through direct-coupling analysis
[24], all the way to end-to-end DL solutions like AlphaFold 2 [9]. Arguably, the success of
structure prediction is a combination of many factors, including technical, biological
understanding and intuition, and more complex and principled statistical methods.
Fundamentally, however, structure prediction through CASP sets an example of how innovation
can be fostered.

As the protein design field moves to more complex DL approaches, benchmarks, which
promoted the success of structure prediction tools, appear to be lacking. Arguably, this is due to
the underlying complexity of defining, in principle, what protein design is supposed to be,
especially as it is moving from theoretical exercise to practical applications. Is it sequence
design? Is it structure design? Is it sequence and structure that culminate in function? In fact,
function would most likely be the design goal from a practical standpoint. Attempts at measuring
advancements in protein function prediction exist, e.g. CAFA [128] and CAGI [129], however they
focus on scoring how in-silico tools predict known function from sequence, rather than their
ability to infer proteins (sequences or structures) that perform a desired, sometimes
non-naturally found function. Conversely, model developers score their tools by metrics like
Natural Sequence Recovery (NSR), which validate a model’s ability to link structure to sequence,
but often not a model's ability to generate diverse sequences fitting a desired structure [53]. A
recent push in benchmarks scoring models' ability to engineer proteins [130]-[134] highlights
three aspects that protein design tools should strive to solve: 1) emulate laboratory conditions,
i.e., extrapolate from very little available data; 2) set multiple function generalization goals, i.e,
measure different aspects of function, with the intent of finding an optimal solution rather than
maximizing any one metric; 3) focus on the ability to address out of observed data distributions,
i.e., design proteins that achieve functions not observed in nature.

Ultimately, by overcoming the challenges of measuring advances, deep learning is set to
enable protein engineers to design sequence, structure, and function with controllable
properties.
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Tables

Table 1: machine-learning-based protein design methods. Methods ordered by their release
date, accounting for the date of pre-prints when available. Class (1-4) captured in
Expanded method detail in main text. Unnamed methods are referenced by the first name of the
first author. Online version at https://github.com/hefeda/design tools.

Legend: Architecture: The architecture of the deep learning model; E2E: an end-to-end
differentiable solution; Input: the input to run (infer from) the model, e.g. a contact map;
Output: the output, e.g. a protein sequence; Dataset: the number and type of samples used to

train the method; Params: the exact or estimated number of parameters of the model; ' : the 3D

recovery was performed in an external, second step; 2 : conditioned generation; - : no input
required for generation.

Class 1: ‘Fixed-backbone’ sequence design

Method Input Output Architecture| E2E Dataset Params| yy/mm
SPIN2[55] | 3Dstructure |  Sequence FNN yes | 1232XTay | 05| 18/02
structures
PROF -
SPRO 3D structure Sequence CNN-LSTM | yes | 1.232X-ray - 19/08
[56] structures
ProDCoNN 3D Structure Sequence CNN yes 21,071 Xray >28k 19/12
[58] structures
CATH 4.2
Ingraham dified @40%
& 3D structure Sequence Modifie yes | redundancy >3k 19/12
[34] Transformer
sequences/str
uctures
Ami .
Anand id(re]::tri]to aacr:fjj >3,414 CATH
3D structure . Y . CNN yes domain - 20/01
[13] side chain
structures

conformation

DenseCPD 3D structure Sequence CNN yes 11,227 3D 3M 20/01
[60] structures
72,464,122
Protein sequences
Solver 3D Structure Sequence GNN yes and - 20/03
[65] adjacency
matrices
Norn [91] Distance map Sequence CNN no N/A N/A 20/07
CATH 4.2
0,
GVP-GNN @40%
[66] 3D structures Sequence GVP yes redundancy - 20/05
sequences/str
uctures
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: leveraging deep learning for different protein design goals. We classify DL approaches
in (1) models that try to solve the traditional protein design problem of inverse folding, i.e. find
sequences that fold into a desired structure, (2) models capable of generating
structure-encoding objects, like contact or distance maps, (3) models that learn to generate
protein sequences or (4) concomitantly model sequence and structure to generate either.
Categories 1-4 are cross-linked in Table 1.
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A- EAT-dist. BPO B - EAT-dist. CCO C - EAT-dist. MFO D - EAT-dist. CATH

?
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0 1 0 1 0 1 0 1
Euclidean Distance

: distributions of predicted structural and functional features suggest generated
proteins closer to natural sequences than random. Legend: U50/orange: 100k sequences
sampled from UniRef50; ProtGPT2/violet: 100k Dl-generated sequences; Random/green:
sequences created by randomly shuffling the residues within the U50 set; Length: length of the
stretch, e.g. 10 consecutive residues; Euclidean Distance: the Euclidean distance in embedding
space to the first sequence in an annotated set. Structure at residue resolution: consecutive
residues forming stretches falling into predicted transmembrane strands (A), helices (B), or
general strands (C), helices (D) or disorder (E) follow similar stretch length distribution between
U50 (orange) and ProtGPT2 (violet), but differ from random (green). For instance, random
sequences have a preference for short stretches (B-E, left of distribution) and are much less likely
to be predicted as part of a TM-strand or -helix (A-B). Eunction at sequence resolution:
embedding-based annotation transfer (EAT) distribution of distance between proteins in U50,
ProtGPT2 and Random to the closest protein with existing GO annotations taken from SwissProt
of either biological processes (BPO/F), cellular compartment (CCO/G) or molecular function
(MFO/H), or to sequences with CATH annotations (I). The distance distribution in the high
confidence interval (up to euclidean distance of 0.6, indicated by black, dashed line) is similar for
U50 (orange) and ProtGPT2 (violet), but differs for random (green). Comparing the three sets
suggests that annotation transfers at euclidean distance greater than 0.6 in embedding space
(right of vertical dashed line, F-l) invite uncertainty, whilst transfers between proteins at
euclidean embedding distance lower than 0.6 may be considered reliable.
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TM score: 0.83
Sequence identity: 15.1%

TM score: 0.95
Sequence identity: 30.5%

TM score: 0.91
Sequence identity: 29.2%

: unconditionally generated protein sequences close to natural sequences with
desired function. t-SNE projection of protein embeddings for enzymes in biosynthetic gene
clusters (as taken from MiBIG [113]; gray), other biosynthetic enzymes (from UniProt; orange),
and generated sequences in green (panel A). On the left the structural superposition of the
chosen protein (% in panel A and green in B-D) with the closest biosynthetic protein from
UniProt (accession: D7UTDO; orange; panel B), the closest BGC protein from MiBig (UniProt:
D2IKP3, MiBIG: BGC0000304|9); gray; panel C), and the closest protein structure from the
AlphaFold database [12] found via FoldSeek [101] (id: AF-Q00674; purple; panel D).
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