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Abstract 

The condition of having a healthy, functional proteome is known as protein homeostasis, 

or proteostasis. Establishing and maintaining proteostasis is the province of the proteostasis 

network, approximately 2,500 genes that regulate protein synthesis, folding, localization, and 

degradation. The proteostasis network is a fundamental entity in biology with direct relevance to 

many diseases of protein conformation. However, it is not well defined or annotated, which hinders 

its functional characterization in health and disease. In this series of manuscripts, we aim to 

operationally define the human proteostasis network by providing a comprehensive, annotated list 

of its components. Here, we provide a curated list of 959 unique genes that comprise the protein 

synthesis machinery, chaperones, folding enzymes, systems for trafficking proteins into and out 

of organelles, and organelle-specific degradation systems. In subsequent manuscripts, we will 

delineate the human autophagy-lysosome pathway, the ubiquitin-proteasome system, and the 

proteostasis networks of model organisms. 
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Introduction 

The process by which nascent proteins fold into their native structures co- or post-

translationally is imperfect and can fail  (Balch et al., 2008; Chiti and Dobson, 2017; Clark, 2004; 

Gershenson et al., 2014; Powers and Gierasch, 2021; Sala et al., 2017). These failures leave 

proteins in non-native states that are nonfunctional and potentially toxic, especially if they form 

aggregates that alter the stoichiometry of macromolecular complexes or interfere with fundamental 

cellular processes (Balch et al., 2008; Chiti and Dobson, 2017; Chung et al., 2018; Hartl et al., 

2011; Knowles et al., 2014). To maintain the proteome in a healthy, functional state—a condition 

known as protein homeostasis, or proteostasis—all organisms, beginning with the last universal 

common ancestor (Balch et al., 2008; Draceni and Pechmann, 2019; Powers and Balch, 2013), 

have cellular components that manage the synthesis, folding, trafficking, and degradation of 

proteins. These components are collectively designated the proteostasis network (Balch et al., 

2008; Jayaraj et al., 2020; Powers and Gierasch, 2021; Powers et al., 2009; Sala et al., 2017). The 

proteostasis network, while widely discussed in the literature, remains loosely defined because 

there is no systematic and comprehensive list of its components. The efforts made toward this end 

have mostly focused on chaperones (Brehme et al., 2014; Shemesh et al., 2021), with less effort 

devoted to other equally important arms of the proteostasis network involved in transport and 

degradation. The widespread interest in diseases characterized by failures of proteostasis—

especially aging-related neurodegenerative diseases (Hipp et al., 2019; Kaushik and Cuervo, 2015; 

Labbadia and Morimoto, 2015; Lopez-Otin et al., 2013; Sonninen et al., 2020)—and intensive 

efforts to identify critical limiting targets for therapeutic interventions suggest that having such a 

comprehensive description of this network would be invaluable. We address this gap in our 

knowledge in this and subsequent papers in this series by presenting an enumeration of the human 

proteostasis network. In this paper, we focus on chaperones, folding enzymes, systems for 

trafficking proteins into and out of organelles, and the machinery of protein synthesis. Subsequent 

work will present the annotation of two large and complex systems for protein degradation in 

eukaryotes, namely the autophagy-lysosome pathway (ALP) and the ubiquitin-proteasome system 

(UPS), followed by the proteostasis networks of model organisms. 
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Results 

Categorization of proteostasis network components 

The proteostasis network consists of the systems that regulate and manage protein 

synthesis, folding, localization, and degradation (Balch et al., 2008; Jayaraj et al., 2020; Powers 

and Gierasch, 2021; Powers et al., 2009; Sala et al., 2017). The components of protein synthesis 

include the ribosome and ribosome biogenesis factors; translation initiation, elongation, and 

termination factors; and the ribosomal quality control (RQC) machinery. The components of 

protein folding include the canonical chaperone systems (the HSP70s, HSP90s, small HSPs, and 

TRiC/CCT, and their associated co-chaperones); the folding enzymes (peptidyl-prolyl isomerases 

and protein disulfide isomerases), some of which also function as co-chaperones; the glycoprotein 

folding machinery of the endoplasmic reticulum (ER), ranging from oligosaccharyl transferase to 

the lectin chaperones to the folding-state-responsive glycan trimming enzymes; and other, more 

substrate- or organelle-specific folding systems (e.g., for collagen). The components of protein 

localization include the channels through which proteins are shuttled into and out of organelles 

and the components that recognize substrates for transport. Finally, the components of degradation 

include the organelle-specific degradation systems in the ER (ER associated degradation, or 

ERAD) and mitochondria (mitochondrial proteases), the ALP and the UPS, but as noted above the 

ALP and the UPS will be covered in subsequent papers in the series. We have excluded processes 

that are essential for protein biogenesis and transport but with indirect influences on proteostasis 

like, for example, amino acid synthesis and core metabolism (which produces amino acids for 

protein synthesis), gene transcription and mRNA quality control (which influence proteome 

composition), and cytoskeletal transport (which contributes to protein localization). 

For the proteostasis network, we established “entity-based” and “domain-based” criteria to 

determine whether a given component should be included in the proteostasis network. The former 

refers to inclusion of an “entity” (a protein or non-coding RNA) based on positive biochemical, 

cell biological, or genetic evidence in the literature that it functions in proteostasis. The latter refers 

to inclusion based on a protein containing a structural domain that is strongly associated with 

proteostasis; for example, the J-domain, which characterizes cochaperones in the HSP70 system 

(Kampinga and Craig, 2010). Preliminary lists of proteostasis network components were generated 

based on reviews and other literature on the relevant systems (see Methods). These preliminary 
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lists were then vetted gene by gene by the authors. For borderline cases, rationales for inclusion or 

exclusion were presented by Proteostasis Consortium members with subject area expertise and a 

decision was made based on the consensus of the group.  

To organize the proteostasis network components, we sought an annotation system that 

would convey at a glance a component’s localization and function in proteostasis. Such an 

approach complements other formalized annotation systems that rely on structured vocabularies, 

such as the Gene Ontology (Ashburner et al., 2000; Consortium, 2021). Thus, we developed a 

simple taxonomic scheme consisting of five levels: Branch, Class, Group, Type, and Subtype. We 

found that five levels were sufficient to convey a general sense of each component’s localization 

and function while minimizing the number of descriptors. The broadest category, Branch, refers 

to a component’s localization or membership in an overarching pathway. We defined eight Branch 

categories: cytonuclear proteostasis, ER proteostasis, mitochondrial proteostasis, nuclear 

proteostasis, cytosolic translation, proteostasis regulation, the ALP, and the UPS (Figure 1). Note 

that the term “cytonuclear” refers to components that support proteostasis in both the cytosol and 

the nucleus, whereas “nuclear” refers to components that primarily support nuclear proteostasis 

(e.g., histone chaperones). Also note that “proteostasis regulation” refers to components that either 

control transcription of proteostasis network components genes or control translation as part of, 

for example, a cell stress response. Class refers to a component’s function in proteostasis (e.g., 

chaperones, protein transport, etc.), while Group, Type, and Subtype provide increasingly specific 

descriptors of proteostasis functions within a Class. Our goal was to use only as many descriptors 

as are minimally necessary to give a basic understanding of a component’s role in proteostasis. 

Thus, not every component has Type or Subtype annotations. Also, some components have 

multiple roles in the proteostasis network. These are given multiple entries in our list to reflect 

each separate role. 
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Figure 1. The proteostasis network. The branches of the proteostasis network in our taxonomic 
system are shown in boxes. The number of components is shown for the six branches covered in 
this manuscript. 

 

 

As an illustrative example, we applied our taxonomic scheme to BAG1 (BAG cochaperone 

1), a cytonuclear BAG-domain-containing nucleotide exchange factor for HSP70. As shown in 

Figure 2, this yielded the following annotations: Branch = cytonuclear proteostasis; Class = 

chaperones; Group = HSP70 system; Type = HSP70 nucleotide exchange factor; Subtype = BAG 

domain family. Note that annotations are in general not unique to individual proteostasis network 

components. For example, the five remaining BAG-domain-containing nucleotide exchange 
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factors in humans (BAG2-BAG6) all have the same set of annotations as BAG1 (Figure 2). It is 

also noteworthy that BAG6 has multiple entries because it is both an HSP70 nucleotide exchange 

factor and part of a complex involved in the GET pathway for insertion of tail anchored proteins 

into the ER membrane (Borgese et al., 2019). 

 

Figure 2. Illustration of the five-level taxonomic scheme applied to proteostasis network 
components herein using the HSP70 nucleotide exchange factor BAG1 as an example. 

 

 

The proteostasis network, excluding the degradative ALP and UPS 

The list of proteostasis network components, less the ALP and the UPS, is presented in 

Supplemental Table 1. There are 1,014 entries in this subset of the proteostasis network 

representing 959 unique components. Of these, 906 have one entry, 52 have two entries, and one 

(valsolin containing protein) has four entries. These entries are divided among the Branches shown 

in Figure 1. All 1,014 entries have Class annotations, divided among 16 categories. Four of these 

Class categories are used in multiple Branches. For example, the Class annotation “chaperone” 

applies in the cytonuclear, nuclear, ER, and mitochondrial Branches. This multiplicity reflects the 

presence of distinct complements of chaperones that have analogous functions in the subcellular 

compartments in which they reside. The Class annotations “folding enzyme”, “protein transport”, 

and “organelle-specific protein degradation” also appear in multiple branches and likewise 

represent sets of components with corresponding proteostasis functions in different compartments. 
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The distribution of Classes among the Branches and the number of components in each Class is 

illustrated in Figure 3. 

 

Figure 3. The six Branches of the proteostasis network covered in this manuscript with their 
cognate Classes. The numbers in the gray boxes correspond to the number of components in each 
class. The Classes each partition further into Groups, and in some cases, those are elaborated as 
Types and Subtypes. The complete hierarchy is available in Supplemental Table 1. 

 
 

All 1,014 entries also have Group annotations, divided among 79 categories. A minority 

of entries (446, encompassing 432 components) have Type annotations, divided among 47 

categories, while 153 entries (150 components) have Subtype annotations divided among 25 

categories. To demonstrate how Group, Type, and Subtype annotations were assigned, we show 

how the cytonuclear chaperones are distributed within these finer-grained categories in Table 1. 

The cytonuclear chaperones (Branch = cytonuclear proteostasis, Class = chaperones) are divided 

into four Groups that are structurally and mechanistically distinct: the HSP70 system, the 

CCT/TRiC system, the sHSP (small heat shock protein) system, and the HSP90 system. Each of 

these Groups is then divided into the Types of components that exist within the Group. Thus, for 
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example, there are three Types in the HSP70 system Group (Mayer and Gierasch, 2019): the 

HSP70 chaperones themselves, the J-domain containing cochaperones, and the HSP70 nucleotide 

exchange factors. Similarly, the CCT/TRiC, sHSP, and HSP90 system Groups contain three, two, 

and two Types respectively (Table 1). In all three of these Groups, one of the Types contains the 

Group’s parent chaperone (CCT/TRiC subunits, sHSPs, or HSP90). The other Types contain 

cochaperones, other accessory proteins, or in the CCT/TRiC system Group, components that have 

sequence similarity to the parent chaperone but are not part of the CCT/TRiC complex. This last 

Type (“sequence similar non-CCT/TRiC subunit”) was included in the proteostasis network via 

the domain-based criterion, but also because there is evidence that the three members of this Type 

form a complex with CCT/TRiC components that mediates assembly of the BBSome complex 

(Seo et al., 2010). 

Some of the Types in Table 1 (three out of ten) can be further divided into Subtypes based 

on structural or functional criteria or both. The nucleotide exchange factor Type of the HSP70 

system Group consists of three clear Subtypes based on their structures (Bracher and Verghese, 

2015): the HSP110/GRP170 subtype, whose members consist of HSP70-like nucleotide- and 

substrate-binding domains fused to an α-helix bundle domain via an insertion of variable length (3 

members); the BAG domain subtype, whose members contain a BAG domain (6 members); and 

the HSPBP1 subtype, whose members contain Armadillo domain repeats (1 member). There are 

three Subtypes of CCT/TRiC cochaperones, two of which are characterized by their functions—

actin folding (5 members) and tubulin folding (5 members)—and one of which consists of subunits 

of the prefoldin complex (9 members). Finally, there are five Subtypes of HSP90 cochaperones 

whose members are characterized by the presence or absence of CS, TPR, and PPIase domains. 
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Table 1. Groups, Types, and Subtypes within the cytonuclear chaperone Class.  

Group Type Subtype Members 

HSP70a system  

HSP70 – 9 
J-domain containing HSP70 
cochaperone – 28 

HSP70 nucleotide exchange factor  

HSP110/GRP170e subtype 3 
BAGf domain sbtype 6 
HSPBP1g subtype 1 

CCT/TRiCb 
system 

CCT/TRiC subunit – 10 
sequence similar non-CCT/TRiC subunit – 3 

CCT/TRiC cochaperone 
Phosducin-like proteins 5 
Tubulin folding 5 
Prefoldin subunit 9 

sHSPc system 
small HSP – 12 
small HSP binding protein – 1 

HSP90d system 

HSP90 – 2 

HSP90 cochaperone 

CSh domain containing 16 
TPRi domain containing 20 
TPR and PPIasej domain 
containing 5 

TPR and CS domain containing 2 
no characteristic domain 9 

aHSP70 = heat shock protein 70. bCCT = chaperonin containing TCP1, TRiC = T-complex protein 
ring complex. csHSP = small heat shock protein. dHSP90 = heat shock protein 90. eHSP110 = heat 
shock protein 110, GRP170 = glucose regulated protein 170. fBAG = BCL2-associated 
athanogene. gHSPBP1 = HSPA binding protein 1. hCS domain = CHORD and SGT1 domain; iTPR 
domain = tetratricopeptide repeat domain; jPPIase domain = peptidylprolyl isomerase domain 

 
Discussion 

We have defined the boundaries of the human proteostasis network and presented a curated 

and annotated list of a selection of its components, including the cellular components responsible 

for protein synthesis, folding and trafficking, and protein degradation in organelles (ERAD and 

mitochondrial proteases). This corresponds to 959 genes, or just under 5% of human protein-

coding genes. This level of investment by evolution into proteostasis illustrates the intricacies of 

the problem of maintaining proteostasis, which becomes more acute as organisms become more 

complex (Draceni and Pechmann, 2019; Powers and Balch, 2013). This observation will become 
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even clearer in the next installments in this series, in which we will enumerate the components of 

the ALP and the UPS. Each of these degradative pathways are approximately the same size as the 

subset of proteostasis network genes described herein, illustrating just how finely tuned are the 

processes for protein turnover. 

Our intent in providing this information on the human proteostasis network is for the 

community to be able to incorporate this genetic network—central for all biology—into their 

studies. With a comprehensive list, it will now be possible to assess which components of the 

proteostasis network are important for robustness and stress resilience in youth that lose capacity 

in aging. Likewise, assessments of the proteostasis network across the range of human diseases 

will uncover novel insights on protective mechanisms, basis of failure, and adaptive mechanisms. 

With a more complete list of the proteostasis network, it is now possible to delve deeper into 

Alzheimer’s diseases and related dementias and other neurodegenerative diseases to determine 

how and when protein quality control fails. This, in turn, will better identify potential targets for 

detection and therapeutic approaches. 

Furthermore, we hope to facilitate the identification of systems and processes that were not 

known previously to engage the proteostasis network by enabling others to view their analytical 

frameworks through the lens of proteostasis. For example, the overlaps between a list of hits from 

a biochemical or bioinformatic screen and the proteostasis network could inform researchers from 

other fields on the contribution (or lack thereof) of proteostasis network members to the process 

that is the subject of the screen. Finally, we also hope to obtain feedback regarding the composition 

of the proteostasis network which is also shared on the Proteostasis Consortium website 

(proteostasisconsortium.com). Please contact us at pnannotation@gmail.com with suggestions 

for components that we have excluded that should have been included, or vice versa. We regard 

this list as the first version of the compilation that will evolve as new experimental data on human 

proteostasis becomes available. 
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Methods 

Criteria for inclusion in the proteostasis network 

We used two criteria to decide whether a given macromolecule should be in the proteostasis 

network. The first was the “entity-based” criterion: an “entity” (an individual protein or non-

coding RNA, or a complex) was included as a member of the proteostasis network simply if there 

was specific evidence in the literature that it has a role in proteostasis. The second was the 

“domain-based” criterion: a protein was included as a member of the proteostasis network even if 

there was no literature evidence that it had a role in proteostasis if it contained a domain or domains 

that were otherwise very strongly associated with proteostasis. This latter criterion was important 

for the inclusion of uncharacterized proteins that are clearly members of structural families that 

usually have roles in proteostasis. For example, HSPA12A and HSPA12B have not, to our 

knowledge, been shown to have chaperone activity, yet by sequence homology they are clearly 

members of the HSP70 family of chaperones (Brocchieri et al., 2008) and were therefore included 

as members of the proteostasis network. We show in Table 2 the literature sources that we 

primarily used to build our preliminary lists of proteostasis network components for the various 

systems mentioned above. We also used annotation databases like the Gene Ontology Resource 

(Consortium, 2021), the Reactome Pathway Database (Jassal et al., 2020), and the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al., 2016), as well as more general 

databases like UniProt (UniProt, 2021) and InterPro (Hunter et al., 2009) to supplement the 

information from the references in Table 2. The preliminary lists generated from these sources 

were then vetted gene by gene by the authors, with members of the Proteostasis Consortium with 

subject-area expertise presenting rationales for inclusion or exclusion of genes that were borderline 

cases. Final decisions on whether to include or exclude genes were made based on the consensus 

of the group. 
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Table 2. Primary literature sources for proteostasis network components. 

 Subject References 
Pr

ot
ei

n 
sy

nt
he

si
s 

Ribosome (Khatter et al., 2015) 

Ribosome biogenesis (Ameismeier et al., 2018; Bohnsack and Bohnsack, 2019; 

Liang et al., 2020) 

Translation initiation (Jackson et al., 2010) 

Translation elongation (Antonellis and Green, 2008; Dever et al., 2018) 

Translation termination (Hellen, 2018) 

Ribosomal quality control (Brandman and Hegde, 2016; Duttler et al., 2013; Joazeiro, 

2019) 

C
ha

pe
ro

ne
s a

nd
 fo

ld
in

g 
en

zy
m

es
 

General (Brehme et al., 2014; Jayaraj et al., 2020; Shemesh et al., 

2021) 

HSP70 system (Bracher and Verghese, 2015; Brocchieri et al., 2008; 

Kampinga and Craig, 2010; Mayer and Gierasch, 2019; 

Rosenzweig et al., 2019) 

HSP90 system (Pearl, 2016; Schopf et al., 2017; Taipale et al., 2014) 

TRiC/CCT system (Gestaut et al., 2019; Herranz-Montoya et al., 2021; 

Mukherjee et al., 2010; Tian and Cowan, 2013; Willardson 

and Howlett, 2007) 

sHSP (Boncoraglio et al., 2012; Garrido et al., 2012; Reinle et al., 

2022) 

PDI (Galligan and Petersen, 2012) 

PPIase (Pemberton and Kay, 2005) 

E
nd

op
la

sm
ic

 r
et

ic
ul

um
 

Import (Borgese et al., 2019; Lang et al., 2017; O'Donnell et al., 

2020; Shao and Hegde, 2011) 

Export (Adolf et al., 2019; Gomez-Navarro and Miller, 2016) 

Glycosylation/glycoprotein folding (Braakman and Hebert, 2013; Hebert et al., 2014; Ninagawa 

et al., 2021) 

ERAD (Guerriero and Brodsky, 2012; Hwang et al., 2017; Kaneko 

et al., 2016; Lopata et al., 2020; Ninagawa et al., 2021) 

Collagen (DiChiara et al., 2016) 

M
ito

ch
on

dr
ia

 Import (Diederichs et al., 2021; Dudek et al., 2013; Hewitt et al., 

2014; Kozjak-Pavlovic, 2017; Neupert, 2015; Pfanner et al., 

2019) 

Degradation (Itakura et al., 2016; Martensson et al., 2019; Quiros et al., 

2015; Song et al., 2021) 
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N
uc

le
us

 Histone chaperones (Hammond et al., 2017; Hogan and Foltz, 2021) 

Nuclear pore complex (Hampoelz et al., 2019; Lin and Hoelz, 2019) 

Nuclear transport (Kimura and Imamoto, 2014; Yasuhara et al., 2009) 
PN

 r
eg

ul
at

io
n 

Transcription factors (Akerfelt et al., 2010; Costa-Mattioli and Walter, 2020; 

Jones et al., 2020; Munoz-Carvajal and Sanhueza, 2020; 

Shoulders et al., 2013; Sonninen et al., 2020; Sykiotis and 

Bohmann, 2010) 

Other regulators (Francisco et al., 2022) 
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