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Abstract

The condition of having a healthy, functional proteome is known as protein homeostasis,
or proteostasis. Establishing and maintaining proteostasis is the province of the proteostasis
network, approximately 2,500 genes that regulate protein synthesis, folding, localization, and
degradation. The proteostasis network is a fundamental entity in biology with direct relevance to
many diseases of protein conformation. However, it is not well defined or annotated, which hinders
its functional characterization in health and disease. In this series of manuscripts, we aim to
operationally define the human proteostasis network by providing a comprehensive, annotated list
of its components. Here, we provide a curated list of 959 unique genes that comprise the protein
synthesis machinery, chaperones, folding enzymes, systems for trafficking proteins into and out
of organelles, and organelle-specific degradation systems. In subsequent manuscripts, we will
delineate the human autophagy-lysosome pathway, the ubiquitin-proteasome system, and the

proteostasis networks of model organisms.
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Introduction

The process by which nascent proteins fold into their native structures co- or post-
translationally is imperfect and can fail (Balch et al., 2008; Chiti and Dobson, 2017; Clark, 2004;
Gershenson et al., 2014; Powers and Gierasch, 2021; Sala et al., 2017). These failures leave
proteins in non-native states that are nonfunctional and potentially toxic, especially if they form
aggregates that alter the stoichiometry of macromolecular complexes or interfere with fundamental
cellular processes (Balch et al., 2008; Chiti and Dobson, 2017; Chung et al., 2018; Hartl et al.,
2011; Knowles et al., 2014). To maintain the proteome in a healthy, functional state—a condition
known as protein homeostasis, or proteostasis—all organisms, beginning with the last universal
common ancestor (Balch et al., 2008; Draceni and Pechmann, 2019; Powers and Balch, 2013),
have cellular components that manage the synthesis, folding, trafficking, and degradation of
proteins. These components are collectively designated the proteostasis network (Balch et al.,
2008; Jayaraj et al., 2020; Powers and Gierasch, 2021; Powers et al., 2009; Sala et al., 2017). The
proteostasis network, while widely discussed in the literature, remains loosely defined because
there is no systematic and comprehensive list of its components. The efforts made toward this end
have mostly focused on chaperones (Brehme et al., 2014; Shemesh et al., 2021), with less effort
devoted to other equally important arms of the proteostasis network involved in transport and
degradation. The widespread interest in diseases characterized by failures of proteostasis—
especially aging-related neurodegenerative diseases (Hipp et al., 2019; Kaushik and Cuervo, 2015;
Labbadia and Morimoto, 2015; Lopez-Otin et al., 2013; Sonninen et al., 2020)—and intensive
efforts to identify critical limiting targets for therapeutic interventions suggest that having such a
comprehensive description of this network would be invaluable. We address this gap in our
knowledge in this and subsequent papers in this series by presenting an enumeration of the human
proteostasis network. In this paper, we focus on chaperones, folding enzymes, systems for
trafficking proteins into and out of organelles, and the machinery of protein synthesis. Subsequent
work will present the annotation of two large and complex systems for protein degradation in
eukaryotes, namely the autophagy-lysosome pathway (ALP) and the ubiquitin-proteasome system

(UPS), followed by the proteostasis networks of model organisms.
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Results
Categorization of proteostasis network components

The proteostasis network consists of the systems that regulate and manage protein
synthesis, folding, localization, and degradation (Balch et al., 2008; Jayaraj et al., 2020; Powers
and Gierasch, 2021; Powers et al., 2009; Sala et al., 2017). The components of protein synthesis
include the ribosome and ribosome biogenesis factors; translation initiation, elongation, and
termination factors; and the ribosomal quality control (RQC) machinery. The components of
protein folding include the canonical chaperone systems (the HSP70s, HSP90s, small HSPs, and
TRiC/CCT, and their associated co-chaperones); the folding enzymes (peptidyl-prolyl isomerases
and protein disulfide isomerases), some of which also function as co-chaperones; the glycoprotein
folding machinery of the endoplasmic reticulum (ER), ranging from oligosaccharyl transferase to
the lectin chaperones to the folding-state-responsive glycan trimming enzymes; and other, more
substrate- or organelle-specific folding systems (e.g., for collagen). The components of protein
localization include the channels through which proteins are shuttled into and out of organelles
and the components that recognize substrates for transport. Finally, the components of degradation
include the organelle-specific degradation systems in the ER (ER associated degradation, or
ERAD) and mitochondria (mitochondrial proteases), the ALP and the UPS, but as noted above the
ALP and the UPS will be covered in subsequent papers in the series. We have excluded processes
that are essential for protein biogenesis and transport but with indirect influences on proteostasis
like, for example, amino acid synthesis and core metabolism (which produces amino acids for
protein synthesis), gene transcription and mRNA quality control (which influence proteome

composition), and cytoskeletal transport (which contributes to protein localization).

For the proteostasis network, we established “entity-based” and “domain-based” criteria to
determine whether a given component should be included in the proteostasis network. The former
refers to inclusion of an “entity” (a protein or non-coding RNA) based on positive biochemical,
cell biological, or genetic evidence in the literature that it functions in proteostasis. The latter refers
to inclusion based on a protein containing a structural domain that is strongly associated with
proteostasis; for example, the J-domain, which characterizes cochaperones in the HSP70 system
(Kampinga and Craig, 2010). Preliminary lists of proteostasis network components were generated

based on reviews and other literature on the relevant systems (see Methods). These preliminary
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lists were then vetted gene by gene by the authors. For borderline cases, rationales for inclusion or
exclusion were presented by Proteostasis Consortium members with subject area expertise and a

decision was made based on the consensus of the group.

To organize the proteostasis network components, we sought an annotation system that
would convey at a glance a component’s localization and function in proteostasis. Such an
approach complements other formalized annotation systems that rely on structured vocabularies,
such as the Gene Ontology (Ashburner et al., 2000; Consortium, 2021). Thus, we developed a
simple taxonomic scheme consisting of five levels: Branch, Class, Group, Type, and Subtype. We
found that five levels were sufficient to convey a general sense of each component’s localization
and function while minimizing the number of descriptors. The broadest category, Branch, refers
to a component’s localization or membership in an overarching pathway. We defined eight Branch
categories: cytonuclear proteostasis, ER proteostasis, mitochondrial proteostasis, nuclear
proteostasis, cytosolic translation, proteostasis regulation, the ALP, and the UPS (Figure 1). Note
that the term “cytonuclear” refers to components that support proteostasis in both the cytosol and
the nucleus, whereas “nuclear” refers to components that primarily support nuclear proteostasis
(e.g., histone chaperones). Also note that “proteostasis regulation” refers to components that either
control transcription of proteostasis network components genes or control translation as part of,
for example, a cell stress response. Class refers to a component’s function in proteostasis (e.g.,
chaperones, protein transport, etc.), while Group, Type, and Subtype provide increasingly specific
descriptors of proteostasis functions within a Class. Our goal was to use only as many descriptors
as are minimally necessary to give a basic understanding of a component’s role in proteostasis.
Thus, not every component has Type or Subtype annotations. Also, some components have
multiple roles in the proteostasis network. These are given multiple entries in our list to reflect

each separate role.
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Figure 1. The proteostasis network. The branches of the proteostasis network in our taxonomic
system are shown in boxes. The number of components is shown for the six branches covered in
this manuscript.
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As an illustrative example, we applied our taxonomic scheme to BAG1 (BAG cochaperone
1), a cytonuclear BAG-domain-containing nucleotide exchange factor for HSP70. As shown in
Figure 2, this yielded the following annotations: Branch = cytonuclear proteostasis; Class =
chaperones; Group = HSP70 system; Type = HSP70 nucleotide exchange factor; Subtype = BAG
domain family. Note that annotations are in general not unique to individual proteostasis network

components. For example, the five remaining BAG-domain-containing nucleotide exchange
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factors in humans (BAG2-BAG6) all have the same set of annotations as BAG1 (Figure 2). It is
also noteworthy that BAG6 has multiple entries because it is both an HSP70 nucleotide exchange
factor and part of a complex involved in the GET pathway for insertion of tail anchored proteins

into the ER membrane (Borgese et al., 2019).

Figure 2. Illustration of the five-level taxonomic scheme applied to proteostasis network
components herein using the HSP70 nucleotide exchange factor BAG1 as an example.
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The proteostasis network, excluding the degradative ALP and UPS

The list of proteostasis network components, less the ALP and the UPS, is presented in
Supplemental Table 1. There are 1,014 entries in this subset of the proteostasis network
representing 959 unique components. Of these, 906 have one entry, 52 have two entries, and one
(valsolin containing protein) has four entries. These entries are divided among the Branches shown
in Figure 1. All 1,014 entries have Class annotations, divided among 16 categories. Four of these
Class categories are used in multiple Branches. For example, the Class annotation “chaperone”
applies in the cytonuclear, nuclear, ER, and mitochondrial Branches. This multiplicity reflects the
presence of distinct complements of chaperones that have analogous functions in the subcellular
compartments in which they reside. The Class annotations “folding enzyme”, “protein transport”,

and “organelle-specific protein degradation” also appear in multiple branches and likewise

represent sets of components with corresponding proteostasis functions in different compartments.
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The distribution of Classes among the Branches and the number of components in each Class is

illustrated in Figure 3.

Figure 3. The six Branches of the proteostasis network covered in this manuscript with their
cognate Classes. The numbers in the gray boxes correspond to the number of components in each
class. The Classes each partition further into Groups, and in some cases, those are elaborated as
Types and Subtypes. The complete hierarchy is available in Supplemental Table 1.
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All 1,014 entries also have Group annotations, divided among 79 categories. A minority
of entries (446, encompassing 432 components) have Type annotations, divided among 47
categories, while 153 entries (150 components) have Subtype annotations divided among 25
categories. To demonstrate how Group, Type, and Subtype annotations were assigned, we show
how the cytonuclear chaperones are distributed within these finer-grained categories in Table 1.
The cytonuclear chaperones (Branch = cytonuclear proteostasis, Class = chaperones) are divided
into four Groups that are structurally and mechanistically distinct: the HSP70 system, the
CCT/TRIC system, the sHSP (small heat shock protein) system, and the HSP90 system. Each of

these Groups is then divided into the Types of components that exist within the Group. Thus, for
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example, there are three Types in the HSP70 system Group (Mayer and Gierasch, 2019): the
HSP70 chaperones themselves, the J-domain containing cochaperones, and the HSP70 nucleotide
exchange factors. Similarly, the CCT/TRiC, sHSP, and HSP90 system Groups contain three, two,
and two Types respectively (Table 1). In all three of these Groups, one of the Types contains the
Group’s parent chaperone (CCT/TRiC subunits, sHSPs, or HSP90). The other Types contain
cochaperones, other accessory proteins, or in the CCT/TRiC system Group, components that have
sequence similarity to the parent chaperone but are not part of the CCT/TRiC complex. This last
Type (“sequence similar non-CCT/TRiC subunit”) was included in the proteostasis network via
the domain-based criterion, but also because there is evidence that the three members of this Type
form a complex with CCT/TRiC components that mediates assembly of the BBSome complex

(Seo et al., 2010).

Some of the Types in Table 1 (three out of ten) can be further divided into Subtypes based
on structural or functional criteria or both. The nucleotide exchange factor Type of the HSP70
system Group consists of three clear Subtypes based on their structures (Bracher and Verghese,
2015): the HSP110/GRP170 subtype, whose members consist of HSP70-like nucleotide- and
substrate-binding domains fused to an a-helix bundle domain via an insertion of variable length (3
members); the BAG domain subtype, whose members contain a BAG domain (6 members); and
the HSPBP1 subtype, whose members contain Armadillo domain repeats (1 member). There are
three Subtypes of CCT/TRiC cochaperones, two of which are characterized by their functions—
actin folding (5 members) and tubulin folding (5 members)—and one of which consists of subunits
of the prefoldin complex (9 members). Finally, there are five Subtypes of HSP90 cochaperones

whose members are characterized by the presence or absence of CS, TPR, and PPlase domains.
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Table 1. Groups, Types, and Subtypes within the cytonuclear chaperone Class.

HSP70 - 9
J-domain containing HSP70 B 78
cochaperone
HSP70" system HSP110/GRP170° subtype
HSP70 nucleotide exchange factor BAG' domain sbtype 6
HSPBP1# subtype 1
CCT/TRIiC subunit - 10
sequence similar non-CCT/TRiC subunit = — 3
Tall
CCT/TRIC Phosducin-like proteins 5
system
CCT/TRIiC cochaperone Tubulin folding
Prefoldin subunit 9
small HSP - 12
sHSP® system o .
small HSP binding protein = 1
HSP90 - 2
CS" domain containing 16
TPR! domain containing 20
HSP90! system i i
y HSP90 cochaperone TPR E.m.d PPlase! domain 5
containing
TPR and CS domain containing 2

no characteristic domain

“HSP70 = heat shock protein 70. °CCT = chaperonin containing TCP1, TRiC = T-complex protein
ring complex. sHSP = small heat shock protein. ‘HSP90 = heat shock protein 90. S(HSP110 = heat
shock protein 110, GRP170 = glucose regulated protein 170. 'BAG = BCL2-associated
athanogene. SHSPBP1 = HSPA binding protein 1. "CS domain = CHORD and SGT1 domain; 'TPR
domain = tetratricopeptide repeat domain; 'PPIase domain = peptidylprolyl isomerase domain

Discussion

We have defined the boundaries of the human proteostasis network and presented a curated
and annotated list of a selection of its components, including the cellular components responsible
for protein synthesis, folding and trafficking, and protein degradation in organelles (ERAD and
mitochondrial proteases). This corresponds to 959 genes, or just under 5% of human protein-
coding genes. This level of investment by evolution into proteostasis illustrates the intricacies of
the problem of maintaining proteostasis, which becomes more acute as organisms become more

complex (Draceni and Pechmann, 2019; Powers and Balch, 2013). This observation will become
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even clearer in the next installments in this series, in which we will enumerate the components of
the ALP and the UPS. Each of these degradative pathways are approximately the same size as the
subset of proteostasis network genes described herein, illustrating just how finely tuned are the

processes for protein turnover.

Our intent in providing this information on the human proteostasis network is for the
community to be able to incorporate this genetic network—central for all biology—into their
studies. With a comprehensive list, it will now be possible to assess which components of the
proteostasis network are important for robustness and stress resilience in youth that lose capacity
in aging. Likewise, assessments of the proteostasis network across the range of human diseases
will uncover novel insights on protective mechanisms, basis of failure, and adaptive mechanisms.
With a more complete list of the proteostasis network, it is now possible to delve deeper into
Alzheimer’s diseases and related dementias and other neurodegenerative diseases to determine
how and when protein quality control fails. This, in turn, will better identify potential targets for

detection and therapeutic approaches.

Furthermore, we hope to facilitate the identification of systems and processes that were not
known previously to engage the proteostasis network by enabling others to view their analytical
frameworks through the lens of proteostasis. For example, the overlaps between a list of hits from
a biochemical or bioinformatic screen and the proteostasis network could inform researchers from
other fields on the contribution (or lack thereof) of proteostasis network members to the process
that is the subject of the screen. Finally, we also hope to obtain feedback regarding the composition
of the proteostasis network which is also shared on the Proteostasis Consortium website
(proteostasisconsortium.com). Please contact us at pnannotation@gmail.com with suggestions
for components that we have excluded that should have been included, or vice versa. We regard
this list as the first version of the compilation that will evolve as new experimental data on human

proteostasis becomes available.
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Methods
Criteria for inclusion in the proteostasis network

We used two criteria to decide whether a given macromolecule should be in the proteostasis
network. The first was the “entity-based” criterion: an “entity” (an individual protein or non-
coding RNA, or a complex) was included as a member of the proteostasis network simply if there
was specific evidence in the literature that it has a role in proteostasis. The second was the
“domain-based” criterion: a protein was included as a member of the proteostasis network even if
there was no literature evidence that it had a role in proteostasis if it contained a domain or domains
that were otherwise very strongly associated with proteostasis. This latter criterion was important
for the inclusion of uncharacterized proteins that are clearly members of structural families that
usually have roles in proteostasis. For example, HSPA12A and HSPAI12B have not, to our
knowledge, been shown to have chaperone activity, yet by sequence homology they are clearly
members of the HSP70 family of chaperones (Brocchieri et al., 2008) and were therefore included
as members of the proteostasis network. We show in Table 2 the literature sources that we
primarily used to build our preliminary lists of proteostasis network components for the various
systems mentioned above. We also used annotation databases like the Gene Ontology Resource
(Consortium, 2021), the Reactome Pathway Database (Jassal et al.,, 2020), and the Kyoto
Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al., 2016), as well as more general
databases like UniProt (UniProt, 2021) and InterPro (Hunter et al., 2009) to supplement the
information from the references in Table 2. The preliminary lists generated from these sources
were then vetted gene by gene by the authors, with members of the Proteostasis Consortium with
subject-area expertise presenting rationales for inclusion or exclusion of genes that were borderline
cases. Final decisions on whether to include or exclude genes were made based on the consensus

of the group.
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Table 2. Primary literature sources for proteostasis network components.
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(DiChiara et al., 2016)

(Diederichs et al., 2021; Dudek et al., 2013; Hewitt et al.,
2014; Kozjak-Pavlovic, 2017; Neupert, 2015; Pfanner et al.,
2019)

(Ttakura et al., 2016; Martensson et al., 2019; Quiros et al.,
2015; Song et al., 2021)
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- Histone chaperones (Hammond et al., 2017; Hogan and Foltz, 2021)

=

ié Nuclear pore complex (Hampoelz et al., 2019; Lin and Hoelz, 2019)

z Nuclear transport (Kimura and Imamoto, 2014; Yasuhara et al., 2009)
Transcription factors (Akerfelt et al., 2010; Costa-Mattioli and Walter, 2020;

=

£ Jones et al., 2020; Munoz-Carvajal and Sanhueza, 2020;

=

—?n Shoulders et al., 2013; Sonninen et al., 2020; Sykiotis and

]

; Bohmann, 2010)

- Other regulators (Francisco et al., 2022)
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