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Abstract

Multivalent antigen display is a well-established design principle to enhance humoral immunity
elicited by subunit vaccines. Protein-based virus-like particles (VLPs) are an important vaccine
platform that implements this principle but also contain thymus-dependent off-target epitopes,
thereby generating neutralizing and defocused antibody responses against the scaffold itself.
Here, we present DNA origami as an alternative platform to display the receptor binding domain
(RBD) of SARS-CoV-2. DNA-based scaffolds provide nanoscale control over antigen organization
and, as thymus-independent antigens, are expected to induce only extrafollicular B-cell
responses. Our icosahedral DNA-based VLPs elicited valency-dependent BCR signaling in two
reporter B-cell lines, with corresponding increases in RBD-specific antibody responses following
sequential immunization in mice. Mouse sera also neutralized the Wuhan strain of SARS-CoV-
2—>but did not contain boosted, DNA-specific antibodies. Thus, multivalent display using DNA
origami can enhance immunogenicity of protein antigens without generating scaffold-directed
immunological memory and may prove useful for rational vaccine design.
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Introduction

The multivalent display of antigens at the nanoscale has been demonstrated to improve the
immunogenicity of subunit vaccines'3. Nanoparticulate vaccines with diameters between 20 and
200 nm ensure efficient trafficking to secondary lymphoid organs*. In secondary lymphoid organs,
high valency and avidity promote B-cell receptor (BCR) crosslinking and signaling as well as BCR-
mediated antigen uptake, thereby driving early B-cell activation and humoral immunity5-'2. The
importance of BCR signaling for antibody responses was initially recognized for thymus-
independent (TI) antigens, particularly of the TI-2 class'3'5. The multivalent display of these non-
protein antigens induces BCR crosslinking in the absence of T-cell help, ensuring that antibody
responses proceed through extrafollicular B-cell pathways and thereby limiting germinal center
(GC) reactions, affinity maturation and induction of B-cell memory'6-'7. Multivalent antigen display
also enhances the BCR-mediated response to thymus-dependent (TD) antigens including
proteins’-8. In this context, follicular T-cell help enables GC reactions to generate affinity-matured
B-cell memory that can be boosted or recalled upon antigen reexposure'®-2°. Consequently, the
nanoscale organization of antigens represents a well-established vaccine design principle, not
only for Tl antigens, but also to elicit humoral immunity through the TD pathway'-3.

Leveraging this design principle, native and engineered protein-based virus-like particles
(P-VLPs) have emerged as an important platform for multivalent subunit vaccines?'-%¢. P-VLPs
enable the rigid display of antigens and have recently been used to investigate the impact of
valency on B-cell activation in vivo to greater detail, suggesting differential regulation of affinity
maturation and enhanced breadth of antibody responses at high valency’-°. However, valency
control remains limited by the number of distinct protein components used for VLP assembly or
by statistical functionalization with antigens—and is typically dependent on scaffold size and
geometry. Notably, protein-based scaffolds are also TD antigens that elicit humoral immunity,
including both T- and B-cell memory3®%-3". These scaffolds contain, and multivalently display, off-
target epitopes that can defocus antibody responses, and such defocusing competes with the
principles of rational vaccine design38-3°. Scaffold-directed immunological memory can further
complicate sequential or diversified immunizations with a given P-VLP, resulting in antibody-
dependent clearance of the vaccine platform#0-41,

We sought to address these limitations by combining rigid, multivalent antigen display with
scaffolds composed of Tl antigens. We hypothesized that such nanoscale organization could
promote TD antibody responses against protein antigens but confine scaffold-directed B-cell
responses to the non-boostable, extrafollicular pathway devoid of immunological memory.
Wireframe DNA origami provides access to designer VLPs of controlled geometry and size at the
20 to 200 nm scale with independently programmable geometry, valency and stoichiometry of
antigen display*?“6. We and others recently leveraged this platform to probe the nanoscale
parameters of IgM recognition and of BCR signaling in reporter B-cell lines, suggesting that
increased antigen spacing up to 30 nm promotes early B-cell activation*’8. However, these
nanoscale design rules remain to be validated in vivo. While the utility of DNA-based VLPs (DNA-
VLPs) to enhance antibody responses has not been demonstrated, DNA origami has been
successfully employed to deliver therapeutic cargo to tumors in mice*®-*°. Other examples of in
vivo delivery include the co-formulation of antigens and adjuvants to elicit T-cell immunity®'.
Importantly, and in contrast to P-VLPs, DNA-based scaffolds constitute Tl antigens and should
therefore be excluded from the boostable follicular pathway>'-52,
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81 As proof-of-concept, we report on the fabrication of DNA-VLPs functionalized with the
82  SARS-CoV-2 receptor binding domain (RBD) derived from the spike glycoprotein, a key target for
83 eliciting neutralizing antibodies against the virus®-%. Our nanoparticulate vaccine displayed
84  enhanced binding to ACE2-expressing cells and induced valency-dependent BCR signaling in
85  vitro. Following sequential immunization in mice, we observed corresponding valency-dependent
86 enhancement of RBD-specific antibody responses and B-cell memory recall. Mouse sera also
87 efficiently neutralized the Wuhan strain of SARS-CoV-2 for DNA-VLPs compared with monomeric
88 RBD—but did not contain boosted, DNA-specific antibodies. Taken together, our findings suggest
89 that DNA origami can be leveraged for multivalent antigen display without eliciting TD B-cell
90 responses against the DNA-based scaffold, rendering this platform useful for rational vaccine
91 design.

92 Results and Discussion
93 The spherical SARS-CoV-2 virion is approximately 100 nm in diameter and displays
94  approximately 100 trimeric spike glycoproteins®’. Each monomer contains the RBD which is
95  essential for engaging the ACE2 receptor and viral uptake, rendering it a key target of neutralizing
96  antibody responses®3-%¢. We adapted our previous DAEDALUS design, an icosahedral DNA-VLP
97  with 50 potential conjugation sites and approximately 34 nm in diameter, to display the RBD and
98 investigate impact of nanoscale antigen organization by DNA origami on B-cell activation*. A
99  covalent in situ functionalization strategy employing strain-promoted azide-alkyne cycloaddition
100 (SPAAC) chemistry was used for antigen attachment (Figure 1A)*. Towards this end, we
101 synthesized 30 oligonucleotide staples bearing triethylene glycol (TEG)-DBCO groups at their 5’
102 ends to assembly DNA-VLPs symmetrically displaying 1x, 6x or 30x DBCO groups on their
103  exterior (Figure S1, Table S1 to S3). Employing a reoxidation strategy, the RBD was selectively
104  modified at an engineered C-terminal Cys with a SMCC-TEG-azide linker and subsequently
105 incubated with DBCO-bearing DNA origami to fabricate 152-1x-, 6x-, 30x-RBD (Figures 1B and
106 82, Note S1). The optimization of reaction conditions yielded near-quantitative conversion and
107  coverage of more than 80% of conjugation sites on average as determined by denaturing,
108 reversed-phase HPLC and Trp fluorescence (Figures 1C and S3). Notably, conversion was
109  dependent on maximum DBCO concentrations and we obtained only up to 30% coverage for 152-
110  1x-RBD. The monodispersity of purified DNA-VLPs was validated by dynamic light scattering
111 (DLS) (Figure 1D). Analysis of 152-30x-RBD via negative-strain transmission electron microscopy
112  (TEM) validated structural integrity of the DNA origami (Figure 1E and S4). While the icosahedral
113  geometry could not be fully resolved, presumably due to accumulation of uranyl formate in the
114  interior of the DNA origami, antigens were clearly visible and organized symmetrically.

115 To investigate the binding activity of RBD-Az before and after conjugation to DNA-VLPs,
116  we conducted flow cytometry experiments with ACE2-expressing HEK293 cells (Figure 2A).
117  Initially, monovalent binding of wild-type RBD and fluorophore-labeled RBD-Cy5, obtained by
118  selectively labeling the azide, was compared (Figure 2B and C). The RBD constructs were
119  incubated at 200 nM with the HEK293 cells and bound antigen was detected using the previously
120 described anti-RBD antibody CR3022%. These experiments revealed comparable binding
121 between the two constructs, demonstrating preservation of the receptor binding motif (RBM) and
122  the viability of the reoxidation strategy for selective labeling of the terminal Cys (Figure S2, Note
123  81). Next, we explored whether multivalent RBD display using DNA-VLPs would result in
124  increased avidity. Two additional fluorophore-labeled VLPs, 152-30x-RBD-5x-Cy5 and 152-5x-
125 Cy5, were synthesized to allow for direct detection of binding (Figure 1B and S1). Indeed, binding
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126  of the RBD-functionalized VLPs was significantly enhanced compared to monomeric RBD-Cy5,
127  while no binding was observed for the 152-5x-Cy5 (Figure 2D and E). When correcting for Cy5
128  brightness per RBD, 152-30x-RBD-5x-Cy5 displayed approximately one order of magnitude
129  higher median fluorescence intensity compared with monomeric RBD-Cy5, indicative of avidity
130 effects for VLP recognition.

131 We then evaluated the capacity of RBD-functionalized DNA-VLPs to induce BCR signaling
132 using a previously described Ca?* flux assay (Figure 2A)%. Specifically, Ramos B-cell lines
133  expressing the somatic CR3022 or B38 antibodies were established® %°. BCR signaling was
134 initially validated by incubation with an anti-IgM antibody. At 30 nM antigen, monomeric wild-type
135 RBD did not elicit B-cell activation in vitro (Figure 2F and G). By contrast, incubation of the Ramos
136 B cells with multivalent DNA-VLPs at the same antigen concentration resulted in efficient BCR
137  signaling. We further observed valency-dependent increases in total Ca?* flux for both cell lines
138  with 152-30x-RBD being more potent than 152-6x-RBD. CR3022 (Kp = 0.27 uM, Figure 2F) and
139 B38 (Kp = 1.00 uM, Figure 2G) bind distinct RBD epitopes with moderate monovalent affinity as
140 reported for the corresponding Fab fragments®®. Despite this 4-fold difference in affinity, we
141  observed comparable total BCR signaling relative to the IgM control for all functionalized DNA-
142  VLPs, consistent with previously described avidity effects at the B-cell surface®’. We concluded
143  that our DNA-VLPs efficiently interacted with and induced signaling by RBD-specific BCRs,
144  analogous to previous studies using similar assays to evaluate multivalent subunit vaccines®8 62-
145 88 The increased B-cell activation for 152-30x-RBD contrasts our previous findings for HIV
146  antigens for which total Ca?* flux saturated beyond a valency of 10x*8. Notably, the antigen-BCR
147  systems differ with respect to affinity and mode of antigen attachment: The affinity of the HIV
148  antigen was substantially higher (eOD-GT8, Kp = 30 pM) and the antigens were non-covalently
149  attached to DNA origami using rigid DNA-PNA duplexes.

150 Next, we investigated whether RBD-functionalized DNA-VLPs could activate B-cells in vivo and
151 induce antibody responses. C57BL/6 mice were sequentially immunized with monomeric wild-
152  type RBD, 152-6x-RBD and 152-30x-RBD at doses equivalent to 7.5 ug RBD (Figure 3A and S3).
153  IgG responses against the RBD were monitored throughout this regimen using ELISA and
154  correlated with our in vitro BCR signaling findings (Figure 3B and S5). Post-boost 1, we observed
155 an approximately 130-fold increase in endpoint dilutions for the 30-valent DNA-VLP over
156  monomeric RBD. 152-6x-RBD did not enhance the B-cell response and elicited comparable
157  antibody titers to monomeric RBD, both post-boost 1 and 2. Overall, endpoint dilutions were
158 further increased post-boost 2 but converged between the groups. Earlier and stronger boosting
159  of IgG titers and efficient B-cell memory recall is a hallmark of multivalent versus monomeric
160  subunit vaccines?*23. QOur findings are further consistent with enhanced IgG titers elicited by P-
161  VLPs of increasing the valency’°. Notably, we did not observe boosting of DNA-specific IgG titers
162  against the scaffold, indicating an absence of B-cell memory for the DNA-VLP (Figure 3C and
163  S6). While this finding was expected for Tl antigens such as DNA, it was also established that TD
164  antibody responses can be generated against Tl antigens by covalent attachment to protein
165 antigens®-0. The inverse case does not appear to be the default—scaffolding protein antigens
166  with Tl antigens does not direct the B-cell response to the extrafollicular pathway. By contrast, we
167  observed valency-dependent TD antibody responses to the RBD, akin to virosomal and ISCOM-
168 based vaccine design principles in which protein antigens are multivalently displayed by TI
169  antigen-composed matrices’'’4. The valency-dependent enhancement of RBD-specific antibody
170  responses was further reflected in the efficient neutralization of the wild-type, Wuhan strain of
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171 SARS-CoV-2 (Figure 3D)"57¢. These findings suggest that immunization with 152-30x-RBD not
172 only resulted in increased IgG titers but also induced functionally improved humoral immunity.

173  Conclusions

174  Here, we report on the use of wireframe DNA origami to program the display of SARS-CoV-2
175  antigens. RBD-functionalized DNA-VLPs efficiently bound to the ACE2 receptor and activated B
176  cells in vitro. BCR signaling increased with DNA-VLP valency and no saturation effects were
177  observed for up to 30x RBD antigens. We further demonstrate the utility of DNA-VLPs as an in
178  vivo platform for rational vaccine design. In particular, we provide proof-of-concept that multivalent
179 DNA-VLPs can enhance TD antigen-specific humoral immunity in mice, but, as Tl scaffolds, do
180 not generate boostable B-cell memory against the vaccine platform itself. Because DNA origami
181  also offers independent control over VLP size and geometry versus multivalent antigen display,
182 DNA-based scaffolds may prove particularly useful if epitope focusing and nanoscale control are
183  desired. By contrast, several P-VLPs explored as multivalent subunit vaccines against SARS-
184  CoV-2 and other viruses elicit scaffold-directed humoral immunity3°-3'. 36-37—and the defocusing
185 of RBD-specific antibody responses has been shown to reduce cross-neutralization of SARS-
186  CoV-2 variants®.

187  Maintaining antigen display in B-cell follicles over time has been shown to promote GC reactions
188 and humoral immunity””’8. While our findings suggest that non-protected, covalently
189 functionalized DNA-VLPs are sufficiently stable to enhance antibody responses, it will thus be
190 important to investigate to what extent multivalent antigen display is maintained in secondary
191  lymphoid organs in the presence of nuclease degradation”®-¢%, Trafficking to secondary lymphoid
192  organs and B-cell activation might also be enhanced by varying DNA-VLP size and valency, for
193  example to mimic SARS-CoV-2 virions®’. Beyond vaccine design, our findings are of potential
194  importance to gene therapy by addressing antibody-dependent clearance*®-4'—with DNA origami
195 emerging as an alternative delivery platform?’.

196 Methods
197  Methods are described in the Supporting Information.
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Figure 1. Design and synthesis of DNA-VLPs covalently displaying the SARS-CoV-2 RBD.

(A) Recombinant RBD bearing an additional Cys residue at the C-terminus was expressed. The C-terminal Cys was
selectively labeled with and SMCC-TEG-azide linker and subsequently conjugated to DBCO-bearing DNA-VLPs. The
icosahedral DNA origami objects of approximately 50 nm diameter displaying 1, 6 and 30 copies of the RBD were
fabricated. (B) Agarose gel electrophoresis (AGE) shows the gel shift due to increasing RBD copy number as well as
low polydispersity of the VLPs samples after purification. An additional VLP bearing 5 copies of Cy5 was produced for
ACE2-binding flow cytometry experiments. (C) The coverage of the DNA-VLPs with RBD was quantified via Trp
fluorescence. (D) Dynamic light scattering (DLS) was used to assess the dispersity of functionalized VLP samples.
Representative histograms are shown. (E) Transmission electron micrographs (TEM) of 152-30x-RBD were obtained
by negative staining using 2% uranyl formate and validate the symmetric nanoscale organization of antigens. Coverage
values were determined from n = 3 biological replicates for 152-1x-RBD and from n = 6 biological replicates for 152-6x
and 30x-RBD. Diameters were determined from 3 technical replicates.
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224 Figure 2. In vitro activity of RBD-functionalized DNA-VLPs.

225 (A) An overview of the in vitro activity assays and corresponding DNA-VLPs is shown. (B and C) ACE2-expressing
226  HEK293 cells were incubated with 200 nM RBD. Binding was detected in flow cytometry experiments using PE-labeled
227 CR3022 and a PE-labeled secondary antibody, demonstrating preserved binding activity for chemically modified RBD-
228  Cy5 compared to wild-type RBD. (D and E) Incubation with Cy5-labeled 152-30x-RBD at 100 nM RBD revealed
229 enhanced binding compared to RBD-Cy5 due to multivalency effects. No unspecific binding for non-functionalized 152
230 was observed. The brightness of Cy5-labeled 152-30x-RBD (5 Cy5 per 30 RBDs) and RBD-Cy5 (1 Cy5 per 1 RBD)
231 was quantified experimentally (Figure S4) and MFI values were corrected accordingly. (F and G) Ramos B cells
232 expressing the BCRs C3022 and B38 were incubated with a-IlgM, wild-type RBD or RBD-functionalized DNA-VLPs at
233 30 nM RBD. Ca?* flux in response to RBD incubation was assayed using Fura Red. Representative fluorescence
234 intensity curves are shown (top). Total Ca?* flux was quantified via the normalized AUC, revealing robust activation of
235 BCR-expressing Ramos B cells by functionalized DNA-VLPs (bottom). No stimulation was observed for wild-type RBD
236 or for non-functionalized 152. Representative histograms are shown for ACE2 binding assays and MFI values were
237 determined from n = 3 biological replicates. Normalized AUC values were determined from n = 3 biological replicates.
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Figure 3. Antibody responses to RBD-functionalized DNA-VLPs.

(A) Mice were immunized intraperitoneally with monomeric RBD and RBD-functionalized DNA-VLPs of varying copy number following
a prime-boost-boost regimen. (B) RBD-specific IgG endpoint dilutions were determined via ELISA, revealing enhanced antibody
responses for 152-30x-RBD compared to both monomeric RBD and 152-6x-RBD. (C) DNA-VLPs did not elicit enhanced DNA-specific
IgG titers compared to monomeric RBD as measured by ELISA. Importantly, DNA-specific IgG were not increased after boost
immunizations with DNA-VLPs. DNA-specific IgG was diluted from 10 pg/ml. (D) Serum neutralization titers expressed as NTs, values
against pseudoviruses modeling the wild-type, Wuhan strain were determined. We observed enhanced, valency-dependent
neutralization efficiency for 152-30x-RBD. Mice were immunized with 7.5 ug RBD. IgG titers, RBD-specific IgG B cell fractions and
NTso values were determined from n = 5 biological replicates. One-way ANOVA was performed followed by Dunnett’'s T3 multiple
comparison test at a = 0.05.
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