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Abstract 22 

Multivalent antigen display is a well-established design principle to enhance humoral immunity 23 

elicited by subunit vaccines. Protein-based virus-like particles (VLPs) are an important vaccine 24 

platform that implements this principle but also contain thymus-dependent off-target epitopes, 25 

thereby generating neutralizing and defocused antibody responses against the scaffold itself. 26 

Here, we present DNA origami as an alternative platform to display the receptor binding domain 27 

(RBD) of SARS-CoV-2. DNA-based scaffolds provide nanoscale control over antigen organization 28 

and, as thymus-independent antigens, are expected to induce only extrafollicular B-cell 29 

responses. Our icosahedral DNA-based VLPs elicited valency-dependent BCR signaling in two 30 

reporter B-cell lines, with corresponding increases in RBD-specific antibody responses following 31 

sequential immunization in mice. Mouse sera also neutralized the Wuhan strain of SARS-CoV-32 

2�but did not contain boosted, DNA-specific antibodies. Thus, multivalent display using DNA 33 

origami can enhance immunogenicity of protein antigens without generating scaffold-directed 34 

immunological memory and may prove useful for rational vaccine design. 35 
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Introduction 36 

The multivalent display of antigens at the nanoscale has been demonstrated to improve the 37 

immunogenicity of subunit vaccines1-3. Nanoparticulate vaccines with diameters between 20 and 38 

200 nm ensure efficient trafficking to secondary lymphoid organs4. In secondary lymphoid organs, 39 

high valency and avidity promote B-cell receptor (BCR) crosslinking and signaling as well as BCR-40 

mediated antigen uptake, thereby driving early B-cell activation and humoral immunity5-12. The 41 

importance of BCR signaling for antibody responses was initially recognized for thymus-42 

independent (TI) antigens, particularly of the TI-2 class13-15. The multivalent display of these non-43 

protein antigens induces BCR crosslinking in the absence of T-cell help, ensuring that antibody 44 

responses proceed through extrafollicular B-cell pathways and thereby limiting germinal center 45 

(GC) reactions, affinity maturation and induction of B-cell memory16-17. Multivalent antigen display 46 

also enhances the BCR-mediated response to thymus-dependent (TD) antigens including 47 

proteins7-8. In this context, follicular T-cell help enables GC reactions to generate affinity-matured 48 

B-cell memory that can be boosted or recalled upon antigen reexposure18-20. Consequently, the 49 

nanoscale organization of antigens represents a well-established vaccine design principle, not 50 

only for TI antigens, but also to elicit humoral immunity through the TD pathway1-3. 51 

Leveraging this design principle, native and engineered protein-based virus-like particles 52 

(P-VLPs) have emerged as an important platform for multivalent subunit vaccines21-36. P-VLPs 53 

enable the rigid display of antigens and have recently been used to investigate the impact of 54 

valency on B-cell activation in vivo to greater detail, suggesting differential regulation of affinity 55 

maturation and enhanced breadth of antibody responses at high valency7-9. However, valency 56 

control remains limited by the number of distinct protein components used for VLP assembly or 57 

by statistical functionalization with antigens�and is typically dependent on scaffold size and 58 

geometry. Notably, protein-based scaffolds are also TD antigens that elicit humoral immunity, 59 

including both T- and B-cell memory36-37. These scaffolds contain, and multivalently display, off-60 

target epitopes that can defocus antibody responses, and such defocusing competes with the 61 

principles of rational vaccine design38-39. Scaffold-directed immunological memory can further 62 

complicate sequential or diversified immunizations with a given P-VLP, resulting in antibody-63 

dependent clearance of the vaccine platform40-41. 64 

We sought to address these limitations by combining rigid, multivalent antigen display with 65 

scaffolds composed of TI antigens. We hypothesized that such nanoscale organization could 66 

promote TD antibody responses against protein antigens but confine scaffold-directed B-cell 67 

responses to the non-boostable, extrafollicular pathway devoid of immunological memory. 68 

Wireframe DNA origami provides access to designer VLPs of controlled geometry and size at the 69 

20 to 200 nm scale with independently programmable geometry, valency and stoichiometry of 70 

antigen display42-46. We and others recently leveraged this platform to probe the nanoscale 71 

parameters of IgM recognition and of BCR signaling in reporter B-cell lines, suggesting that 72 

increased antigen spacing up to 30 nm promotes early B-cell activation47-48. However, these 73 

nanoscale design rules remain to be validated in vivo. While the utility of DNA-based VLPs (DNA-74 

VLPs) to enhance antibody responses has not been demonstrated, DNA origami has been 75 

successfully employed to deliver therapeutic cargo to tumors in mice49-50. Other examples of in 76 

vivo delivery include the co-formulation of antigens and adjuvants to elicit T-cell immunity51. 77 

Importantly, and in contrast to P-VLPs, DNA-based scaffolds constitute TI antigens and should 78 

therefore be excluded from the boostable follicular pathway51-52. 79 

 80 
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As proof-of-concept, we report on the fabrication of DNA-VLPs functionalized with the 81 

SARS-CoV-2 receptor binding domain (RBD) derived from the spike glycoprotein, a key target for 82 

eliciting neutralizing antibodies against the virus53-56. Our nanoparticulate vaccine displayed 83 

enhanced binding to ACE2-expressing cells and induced valency-dependent BCR signaling in 84 

vitro. Following sequential immunization in mice, we observed corresponding valency-dependent 85 

enhancement of RBD-specific antibody responses and B-cell memory recall. Mouse sera also 86 

efficiently neutralized the Wuhan strain of SARS-CoV-2 for DNA-VLPs compared with monomeric 87 

RBD�but did not contain boosted, DNA-specific antibodies. Taken together, our findings suggest 88 

that DNA origami can be leveraged for multivalent antigen display without eliciting TD B-cell 89 

responses against the DNA-based scaffold, rendering this platform useful for rational vaccine 90 

design. 91 

Results and Discussion 92 

The spherical SARS-CoV-2 virion is approximately 100 nm in diameter and displays 93 

approximately 100 trimeric spike glycoproteins57. Each monomer contains the RBD which is 94 

essential for engaging the ACE2 receptor and viral uptake, rendering it a key target of neutralizing 95 

antibody responses53-56. We adapted our previous DAEDALUS design, an icosahedral DNA-VLP 96 

with 50 potential conjugation sites and approximately 34 nm in diameter, to display the RBD and 97 

investigate impact of nanoscale antigen organization by DNA origami on B-cell activation48. A 98 

covalent in situ functionalization strategy employing strain-promoted azide-alkyne cycloaddition 99 

(SPAAC) chemistry was used for antigen attachment (Figure 1A)44. Towards this end, we 100 

synthesized 30 oligonucleotide staples bearing triethylene glycol (TEG)-DBCO groups at their 5� 101 

ends to assembly DNA-VLPs symmetrically displaying 1x, 6x or 30x DBCO groups on their 102 

exterior (Figure S1, Table S1 to S3). Employing a reoxidation strategy, the RBD was selectively 103 

modified at an engineered C-terminal Cys with a SMCC-TEG-azide linker and subsequently 104 

incubated with DBCO-bearing DNA origami to fabricate I52-1x-, 6x-, 30x-RBD (Figures 1B and 105 

S2, Note S1). The optimization of reaction conditions yielded near-quantitative conversion and 106 

coverage of more than 80% of conjugation sites on average as determined by denaturing, 107 

reversed-phase HPLC and Trp fluorescence (Figures 1C and S3). Notably, conversion was 108 

dependent on maximum DBCO concentrations and we obtained only up to 30% coverage for I52-109 

1x-RBD. The monodispersity of purified DNA-VLPs was validated by dynamic light scattering 110 

(DLS) (Figure 1D). Analysis of I52-30x-RBD via negative-strain transmission electron microscopy 111 

(TEM) validated structural integrity of the DNA origami (Figure 1E and S4). While the icosahedral 112 

geometry could not be fully resolved, presumably due to accumulation of uranyl formate in the 113 

interior of the DNA origami, antigens were clearly visible and organized symmetrically. 114 

To investigate the binding activity of RBD-Az before and after conjugation to DNA-VLPs, 115 

we conducted flow cytometry experiments with ACE2-expressing HEK293 cells (Figure 2A). 116 

Initially, monovalent binding of wild-type RBD and fluorophore-labeled RBD-Cy5, obtained by 117 

selectively labeling the azide, was compared (Figure 2B and C). The RBD constructs were 118 

incubated at 200 nM with the HEK293 cells and bound antigen was detected using the previously 119 

described anti-RBD antibody CR302256. These experiments revealed comparable binding 120 

between the two constructs, demonstrating preservation of the receptor binding motif (RBM) and 121 

the viability of the reoxidation strategy for selective labeling of the terminal Cys (Figure S2, Note 122 

S1). Next, we explored whether multivalent RBD display using DNA-VLPs would result in 123 

increased avidity. Two additional fluorophore-labeled VLPs, I52-30x-RBD-5x-Cy5 and I52-5x-124 

Cy5, were synthesized to allow for direct detection of binding (Figure 1B and S1). Indeed, binding 125 
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of the RBD-functionalized VLPs was significantly enhanced compared to monomeric RBD-Cy5, 126 

while no binding was observed for the I52-5x-Cy5 (Figure 2D and E). When correcting for Cy5 127 

brightness per RBD, I52-30x-RBD-5x-Cy5 displayed approximately one order of magnitude 128 

higher median fluorescence intensity compared with monomeric RBD-Cy5, indicative of avidity 129 

effects for VLP recognition. 130 

We then evaluated the capacity of RBD-functionalized DNA-VLPs to induce BCR signaling 131 

using a previously described Ca2+ flux assay (Figure 2A)58. Specifically, Ramos B-cell lines 132 

expressing the somatic CR3022 or B38 antibodies were established56, 59. BCR signaling was 133 

initially validated by incubation with an anti-IgM antibody. At 30 nM antigen, monomeric wild-type 134 

RBD did not elicit B-cell activation in vitro (Figure 2F and G). By contrast, incubation of the Ramos 135 

B cells with multivalent DNA-VLPs at the same antigen concentration resulted in efficient BCR 136 

signaling. We further observed valency-dependent increases in total Ca2+ flux for both cell lines 137 

with I52-30x-RBD being more potent than I52-6x-RBD. CR3022 (KD = 0.27 µM, Figure 2F) and 138 

B38 (KD = 1.00 µM, Figure 2G) bind distinct RBD epitopes with moderate monovalent affinity as 139 

reported for the corresponding Fab fragments60. Despite this 4-fold difference in affinity, we 140 

observed comparable total BCR signaling relative to the IgM control for all functionalized DNA-141 

VLPs, consistent with previously described avidity effects at the B-cell surface61. We concluded 142 

that our DNA-VLPs efficiently interacted with and induced signaling by RBD-specific BCRs, 143 

analogous to previous studies using similar assays to evaluate multivalent subunit vaccines58, 62-144 
68. The increased B-cell activation for I52-30x-RBD contrasts our previous findings for HIV 145 

antigens for which total Ca2+ flux saturated beyond a valency of 10x48. Notably, the antigen-BCR 146 

systems differ with respect to affinity and mode of antigen attachment: The affinity of the HIV 147 

antigen was substantially higher (eOD-GT8, KD = 30 pM) and the antigens were non-covalently 148 

attached to DNA origami using rigid DNA-PNA duplexes. 149 

Next, we investigated whether RBD-functionalized DNA-VLPs could activate B-cells in vivo and 150 

induce antibody responses. C57BL/6 mice were sequentially immunized with monomeric wild-151 

type RBD, I52-6x-RBD and I52-30x-RBD at doses equivalent to 7.5 µg RBD (Figure 3A and S3). 152 

IgG responses against the RBD were monitored throughout this regimen using ELISA and 153 

correlated with our in vitro BCR signaling findings (Figure 3B and S5). Post-boost 1, we observed 154 

an approximately 130-fold increase in endpoint dilutions for the 30-valent DNA-VLP over 155 

monomeric RBD. I52-6x-RBD did not enhance the B-cell response and elicited comparable 156 

antibody titers to monomeric RBD, both post-boost 1 and 2. Overall, endpoint dilutions were 157 

further increased post-boost 2 but converged between the groups. Earlier and stronger boosting 158 

of IgG titers and efficient B-cell memory recall is a hallmark of multivalent versus monomeric 159 

subunit vaccines22-23. Our findings are further consistent with enhanced IgG titers elicited by P-160 

VLPs of increasing the valency7-9. Notably, we did not observe boosting of DNA-specific IgG titers 161 

against the scaffold, indicating an absence of B-cell memory for the DNA-VLP (Figure 3C and 162 

S6). While this finding was expected for TI antigens such as DNA, it was also established that TD 163 

antibody responses can be generated against TI antigens by covalent attachment to protein 164 

antigens69-70. The inverse case does not appear to be the default�scaffolding protein antigens 165 

with TI antigens does not direct the B-cell response to the extrafollicular pathway. By contrast, we 166 

observed valency-dependent TD antibody responses to the RBD, akin to virosomal and ISCOM-167 

based vaccine design principles in which protein antigens are multivalently displayed by TI 168 

antigen-composed matrices71-74. The valency-dependent enhancement of RBD-specific antibody 169 

responses was further reflected in the efficient neutralization of the wild-type, Wuhan strain of 170 
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SARS-CoV-2 (Figure 3D)75-76. These findings suggest that immunization with I52-30x-RBD not 171 

only resulted in increased IgG titers but also induced functionally improved humoral immunity.  172 

Conclusions 173 

Here, we report on the use of wireframe DNA origami to program the display of SARS-CoV-2 174 

antigens. RBD-functionalized DNA-VLPs efficiently bound to the ACE2 receptor and activated B 175 

cells in vitro. BCR signaling increased with DNA-VLP valency and no saturation effects were 176 

observed for up to 30x RBD antigens. We further demonstrate the utility of DNA-VLPs as an in 177 

vivo platform for rational vaccine design. In particular, we provide proof-of-concept that multivalent 178 

DNA-VLPs can enhance TD antigen-specific humoral immunity in mice, but, as TI scaffolds, do 179 

not generate boostable B-cell memory against the vaccine platform itself. Because DNA origami 180 

also offers independent control over VLP size and geometry versus multivalent antigen display, 181 

DNA-based scaffolds may prove particularly useful if epitope focusing and nanoscale control are 182 

desired. By contrast, several P-VLPs explored as multivalent subunit vaccines against SARS-183 

CoV-2 and other viruses elicit scaffold-directed humoral immunity30-31, 36-37�and the defocusing 184 

of RBD-specific antibody responses has been shown to reduce cross-neutralization of SARS-185 

CoV-2 variants37.  186 

Maintaining antigen display in B-cell follicles over time has been shown to promote GC reactions 187 

and humoral immunity77-78. While our findings suggest that non-protected, covalently 188 

functionalized DNA-VLPs are sufficiently stable to enhance antibody responses, it will thus be 189 

important to investigate to what extent multivalent antigen display is maintained in secondary 190 

lymphoid organs in the presence of nuclease degradation79-80. Trafficking to secondary lymphoid 191 

organs and B-cell activation might also be enhanced by varying DNA-VLP size and valency, for 192 

example to mimic SARS-CoV-2 virions57. Beyond vaccine design, our findings are of potential 193 

importance to gene therapy by addressing antibody-dependent clearance40-41�with DNA origami 194 

emerging as an alternative delivery platform81. 195 

Methods 196 

Methods are described in the Supporting Information. 197 
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Figures 208 

 209 

Figure 1. Design and synthesis of DNA-VLPs covalently displaying the SARS-CoV-2 RBD. 210 
(A) Recombinant RBD bearing an additional Cys residue at the C-terminus was expressed. The C-terminal Cys was 211 
selectively labeled with and SMCC-TEG-azide linker and subsequently conjugated to DBCO-bearing DNA-VLPs. The 212 
icosahedral DNA origami objects of approximately 50 nm diameter displaying 1, 6 and 30 copies of the RBD were 213 
fabricated. (B) Agarose gel electrophoresis (AGE) shows the gel shift due to increasing RBD copy number as well as 214 
low polydispersity of the VLPs samples after purification. An additional VLP bearing 5 copies of Cy5 was produced for 215 
ACE2-binding flow cytometry experiments. (C) The coverage of the DNA-VLPs with RBD was quantified via Trp 216 
fluorescence. (D) Dynamic light scattering (DLS) was used to assess the dispersity of functionalized VLP samples. 217 
Representative histograms are shown. (E) Transmission electron micrographs (TEM) of I52-30x-RBD were obtained 218 
by negative staining using 2% uranyl formate and validate the symmetric nanoscale organization of antigens. Coverage 219 
values were determined from n = 3 biological replicates for I52-1x-RBD and from n = 6 biological replicates for I52-6x 220 
and 30x-RBD. Diameters were determined from 3 technical replicates.  221 
 222 
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 223 

Figure 2. In vitro activity of RBD-functionalized DNA-VLPs. 224 
(A) An overview of the in vitro activity assays and corresponding DNA-VLPs is shown. (B and C) ACE2-expressing 225 
HEK293 cells were incubated with 200 nM RBD. Binding was detected in flow cytometry experiments using PE-labeled 226 
CR3022 and a PE-labeled secondary antibody, demonstrating preserved binding activity for chemically modified RBD-227 
Cy5 compared to wild-type RBD. (D and E) Incubation with Cy5-labeled I52-30x-RBD at 100 nM RBD revealed 228 
enhanced binding compared to RBD-Cy5 due to multivalency effects. No unspecific binding for non-functionalized I52 229 
was observed. The brightness of Cy5-labeled I52-30x-RBD (5 Cy5 per 30 RBDs) and RBD-Cy5 (1 Cy5 per 1 RBD) 230 
was quantified experimentally (Figure S4) and MFI values were corrected accordingly. (F and G) Ramos B cells 231 
expressing the BCRs C3022 and B38 were incubated with α-IgM, wild-type RBD or RBD-functionalized DNA-VLPs at 232 
30 nM RBD. Ca2+ flux in response to RBD incubation was assayed using Fura Red. Representative fluorescence 233 
intensity curves are shown (top). Total Ca2+ flux was quantified via the normalized AUC, revealing robust activation of 234 
BCR-expressing Ramos B cells by functionalized DNA-VLPs (bottom). No stimulation was observed for wild-type RBD 235 
or for non-functionalized I52. Representative histograms are shown for ACE2 binding assays and MFI values were 236 
determined from n = 3 biological replicates. Normalized AUC values were determined from n = 3 biological replicates. 237 
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 238 
Figure 3. Antibody responses to RBD-functionalized DNA-VLPs. 239 
(A) Mice were immunized intraperitoneally with monomeric RBD and RBD-functionalized DNA-VLPs of varying copy number following 240 
a prime-boost-boost regimen. (B) RBD-specific IgG endpoint dilutions were determined via ELISA, revealing enhanced antibody 241 
responses for I52-30x-RBD compared to both monomeric RBD and I52-6x-RBD. (C) DNA-VLPs did not elicit enhanced DNA-specific 242 
IgG titers compared to monomeric RBD as measured by ELISA. Importantly, DNA-specific IgG were not increased after boost 243 
immunizations with DNA-VLPs. DNA-specific IgG was diluted from 10 µg/ml. (D) Serum neutralization titers expressed as NT50 values 244 
against pseudoviruses modeling the wild-type, Wuhan strain were determined. We observed enhanced, valency-dependent 245 
neutralization efficiency for I52-30x-RBD. Mice were immunized with 7.5 ug RBD. IgG titers, RBD-specific IgG B cell fractions and 246 
NT50 values were determined from n = 5 biological replicates. One-way ANOVA was performed followed by Dunnett�s T3 multiple 247 
comparison test at α = 0.05. 248 

  249 
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