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Abstract

Targeted spatial transcriptomics methods capture the topology of cell types and
states in tissues at single cell- and subcellular resolution by measuring the
expression of a predefined set of genes. The selection of an optimal set of probed
genes is crucial for capturing and interpreting the spatial signals present in a tissue.
However, current selections often rely on marker genes, precluding them from
detecting continuous spatial signals or novel states. We present Spapros, an
end-to-end probe set selection pipeline that optimizes both probe set specificity for
cell type identification and within-cell-type expression variation to resolve spatially
distinct populations while taking into account prior knowledge, as well as probe
design and expression constraints. To facilitate data analysis and interpretation,
Spapros also provides rules for cell type identification. We evaluated Spapros by
selecting probes on 6 different data sets and built an evaluation pipeline with 12
quality metrics to find that Spapros outperforms other selection approaches in both
cell type recovery and recovering expression variation beyond cell types.
Furthermore, we used Spapros to design a SCRINSHOT experiment of adult lung
tissue to demonstrate how probes selected with Spapros identify cell types of
interest and detect spatial variation even within cell types. Spapros enables optimal
probe set selection, probe set evaluation, and probe design, as a freely available
Python package.
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Introduction

Single cell transcriptomics has enabled the study of tissue heterogeneity at an
unprecedented scale and resolution1,2. Recently, spatial transcriptomics (ST) technologies
have added spatial context to these measurements to describe both tissue composition and
organization3,4,5,6. Yet, this additional information requires a compromise either in spatial
resolution or in the number of measured features. While untargeted ST methods aggregate
measurements over multiple cells and thus lack single-cell resolution7–9, targeted ST
methods measure the expression of a limited number of genes10–15. Selecting which genes to
target is crucial for successful targeted ST experiments.
Probe set selection must be guided by analysis goals and the limitations of the experimental
technique. Typical analysis goals include the identification of cell types, the description of cell
states and transitions, and the spatial characterization of cell communication patterns and
active multicellular programs. Thus, any selected gene set needs to include cell type marker
genes while also capturing general transcriptional heterogeneity beyond cell type
annotations. Simultaneously, one must account for technical limitations on the expression
levels (e.g., due to optical crowding16,17), and constraints on probe design, and allow users to
include prior knowledge such as pre-selected genes that may be relevant to disease
studies.
Selecting probe sets for targeted ST experiments is a feature selection problem. Typically,
expression profiles from dissociated cells are used as reference4,18 (Fig 1a). A central
assumption is that genes that show interesting transcriptional variation in dissociated data
will show the same in targeted ST experiments: cell type markers and highly variable genes
from single cell RNA sequencing (scRNA-seq) data should highlight cell types and genes
with interesting spatial patterns. Feature selection applications frequently used in scRNA-seq
data analysis include highly variable gene selection, marker gene detection, and module
detection19. Several of these approaches have also been applied to probe set selection3,4,6.
Dedicated probe set selection approaches that use a reference scRNA-seq dataset to
optimize for cell type classification20–30, or the capture of transcriptional variation31–34 have
also been proposed. However, few approaches account for both cell-type and gene
variation, and none of the above methods include technical constraints in their selection
procedure. Since the number of genes that can be selected is limited, probe set selection is
a combinatorial problem: an optimal probe set consists of those genes that together optimize
multiple objectives simultaneously. Separating probe selection from probe design (Fig 1b)
neglects the combinatorial nature of the problem. Additionally most available methods are
non-combinatorial, score based methods and therefore rather helper-tools for laborious
manual selections. To tackle the probe set selection problem as a whole, combinatorial
selection is required, ideally providing interpretable combinatorial rules for practical
downstream analysis.
Here we present Spapros, a combinatorial probe set selection pipeline that takes into
account prior knowledge, technical constraints, and probe design, while optimizing
simultaneously for cell type identification and transcriptional variation. To evaluate Spapros,
we developed a suite of evaluation metrics that measure transcriptional variation recovery,
cell type identification, redundancy of genes, and fulfillment of technical constraints. In our
benchmark Spapros outperforms other methods in both cell type identification and variation
recovery. Using Spapros to design a probe set for a SCRINSHOT13 experiment of human
adult lung tissue, we show that Spapros probes identify cell types of interest and detect
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spatially relevant variation also between cells of the same type. Spapros enables optimal
experimental design for targeted spatial transcriptomics and rapid comparison of proposed
probe sets through our user-friendly evaluation suite.

Results
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Fig. 1: Probe set selection problem and evaluation of selected probe sets. a, Schematic of the
probe set selection problem. A gene set is selected on scRNA-seq data and used for targeted spatial
transcriptomics. The gene set is optimized to identify cell types of interest and to capture cellular
variation beyond cell types. b, Schematic of the probe design constraint. To measure a specific gene’s
expression there must be enough unique probes that can be designed. The unique sequences only
occur in at least the expressed isoforms of the targeted gene and not in any RNA of other genes.
Sequences that do not have that property are labeled as shared. c, Schematic diagram of our test
suite to evaluate suitability of selected gene sets for targeted spatial transcriptomics experiments. The
test suite includes multiple metrics that are categorized in variation recovery, cell type classification,
gene redundancy, computation time, fulfillment of experimental constraints. d, Performance
comparison for gene sets selected with basic feature selection methods. The aggregated score is the
average between variation recovery metrics and the first two cell type classification metrics.

Quantifying optimal probe set selection
Optimal experimental design can be guided and evaluated by quantifying how suitable
candidate probe sets are for downstream analysis of the spatial data. As it is infeasible to
perform a new spatial experiment for each proposed probe set, we must find proxies for
exploratory analysis success. These proxies should include both the ability to identify known
biology (cell type identification) and represent cellular variation that may be found (variation
recovery). Following these typical analysis goals, we developed 12 metrics to measure
performance in these orthogonal categories, as well as probe redundancy, violation of
technical expression constraints, and selection run time (see Methods; Fig 1c).
Cell type identification metrics measure cell type classification accuracy and the percentage
of captured cell types (Fig. S1a), and additionally how well the marker expressions of a
literature derived list are captured via marker correlation and cell type balanced marker
correlation (Fig. S1b). Variation recovery metrics measure how well cellular variation of the
full transcriptome is recovered with only a subset of features. These comprise coarse and
fine clustering similarity, which quantify how well the gene set recovers cluster structure at
different levels of granularity, and neighborhood similarity, which measures how well the local
cell neighborhoods are preserved (Fig. S2). The amount of redundant genes in the gene set
is assessed via gene correlation and the percentage of highly correlated genes (Fig. S3).
The Low and high expression constraint violation metrics measure how strongly the gene set
violates technical expression thresholds. Finally, we measure the computation time of the
feature selection methods. The overall performance of a probe set is then computed as the
average of the variation recovery metrics and the cell type identification metrics classification
accuracy and percentage of captured cell types as these are the main objectives we want to
optimize for. We integrated these metrics into a modular, reproducible Nextflow35 pipeline for
probe set evaluation using our Spapros Python package. The Spapros evaluation pipeline is
freely available at https://github.com/theislab/spapros-pipeline. It enables large scale
evaluations by automated parallelised HPC usage, and can be used to compare probe set
selection methods as well as manually selected probe sets.

Classical feature selection methods optimize different probe set
selection objectives
Feature selection approaches are widely used in typical scRNA-seq data analysis
pipelines19. As such, we investigated whether these approaches are also suitable for probe
set selection. We applied our evaluation suite to investigate the performance of several
general feature selection methods (based on PCA, sparse PCA (SPCA), differential
expression (DE) and highly variable genes (HVG); see Methods). Additionally, we added
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random selections and a set of highest expressed genes as baseline comparisons (Fig 1d
and S1-S3).
Overall, feature selection methods perform well at particular probe set selection objectives,
but no method outperforms others across all metrics. For example, PCA-based feature
selection (on unscaled data) clearly outperforms other methods in variation recovery
aspects. This difference is most evident when considering finer cellular substructure (fine
clustering similarity and neighborhood similarity, which measure recovery of cell state
variation), and to be expected given PCA’s aim to reconstruct maximal variation. For
recovery of coarse effects (coarse clustering similarity) we find similar performance for PCA
and DE feature selections. Interestingly, the set of highest expressed genes ranks second in
variation recovery and PCA-based selection on unscaled data, the top performer in this
category, also introduces a natural bias towards highly expressed genes. Considering the
performance of highest expressed genes and PCA-based selection on scaled vs unscaled
data, this bias appears to be beneficial for variation recovery in scRNA-seq data (Fig. S2).
For cell type identification, differentially expressed genes score highest among basic feature
selection methods. Since PCA-based selection also ranks highly on cell type identification
we observe that optimisation for variation recovery and cell type identification can go hand in
hand.
As expected, random gene selections exhibit the lowest probe redundancy. Yet, optimizing
this metric may not be desirable as few correlated genes can increase robustness to noise,
and medium levels of correlation (~0.3 - 0.6) between two genes do not preclude that
important information is gained by selecting both. In contrast, high levels of correlation (as
exhibited by the SPCA-based selection, Fig. S3) leads to lower information content in the
limited probe set. A balance appears to be struck by the best performing methods (PCA,
DE).
Finally, basic feature selection methods do not take into account technical constraints such
as gene expression limits due to image saturation or optical crowding and probe design
limitations. The expression constraint metrics show that technical constraints are violated by
simple feature selection approaches.
Overall, feature selection methods using DE genes or PCA perform well at individual aspects
of probe set selection, but no method addresses all objectives at once. Thus, these methods
are well-suited as components of a larger probe set selection pipeline, which must
additionally account for technical constraints.

End-to-end probe set selection with Spapros
Based on the results of our feature selection benchmark, we built the Spapros pipeline: an
end-to-end probe set selection pipeline using PCA-based and DE gene selection as a basis
(Fig 2a). The Spapros pipeline performs optimized gene selection and designs the probe
sequence while accounting for technology-specific technical constraints. These aspects are
considered jointly to deliver an optimal combinatorial probe set that can directly be ordered
without the need for further probe filtering.
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Fig. 2: The Spapros probe set selection pipeline. a, Schematic diagram of the probe set selection
pipeline. After pre-filtering genes on probe design constraints, Spapros selects genes that describe
the overall variation in the scRNA-seq reference using a PCA-based selection procedure. To ensure
high performance on cell type classification genes from a reference forest based selection are added.
The pipeline takes into account prior knowledge like pre-selected genes, curated marker lists, and
experimental constraints. b, Schematic of the transcriptome wide probe design pipeline. Genes for
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which not enough probes can be designed are filtered out, prior to gene set selection (first step in a).
For the selected gene set technology specific ready-to-order probes are designed (final step in a)
(created with BioRender.com). c, UMAP comparison of probe sets selected with Spapros for 50 and
150 genes and reference of 8000 highly variable genes for the Madissoon2019 human lung dataset.
d, Dotplot of probes selected on the lung data set. Genes are ordered by the Spapros ranking system
based on feature importance (see Methods). For each cell type the genes that are important for cell
type classification based on the forest classification step are highlighted (Spapros marker). A
minimum number of markers per cell type (DE or lit. gene) defined by the user is selected. For cell
types not found in the dataset genes from a curated marker list are added. e, Difference of cell type
classification confusion matrices between gene sets of Spapros and DE selections. AT1: Type I
alveolar cell; AT2: Type II alveolar cell; DC1: Type 1 dendritic cell; DC2: Type 2 dendritic cell; NK:
Natural killer cell; T CD4: CD4+ T cell; T CD8 Cyt: Cytotoxic CD8+ T cell.

As a first step, Spapros filters the full list of possible genes to exclude genes for which
probes cannot be designed due to technology-specific technical constraints (Fig 2b). These
constraints include the availability of sufficient unique possible probe sequences, as well as
sequence properties like GC-content and melting temperature requirements. Binding
locations of the final probes for a given gene cannot overlap. Thus, we generate
non-overlapping probe sets with optimal thermodynamic and sequence properties with a
graph-based search algorithm (see Methods). After ensuring that all remaining genes
represent feasible probe candidates, Spapros selects genes that describe the overall
variation in the scRNA-seq reference using a PCA-based selection procedure (see
Methods) on a pre-selection of highly variable genes. To ensure cell types can be recovered
using the probe set, Spapros uses the PCA-selected genes to predict cell type labels using a
binary classification tree for each cell type (see Methods). The genes used in these trees
represent candidate cell type marker probes, and the tree itself provides a combinatorial
rule, describing how the cell types can be identified in the generated spatial transcriptomics
data. To ensure that all cell types can be identified, Spapros compares the classification
performance for each cell type to the performance of trees trained on DE genes, which are
generated via a custom approach that optimizes for classifying similar cell identities (see
Methods). If any discrepancy in performance is found with the DE trees (that represent the
optimal performance target), Spapros iteratively adds DE genes to the list of possible probes
to improve classification performance. Finally, genes are ranked based on their feature
importance in classification trees to allow for a user-defined number of selected genes. To
account for technical constraints of expression levels a smoothed multiplicative penalty
kernel is applied to the scores of PCA and DE based selections (Fig. S4). Based on the final
gene set and the non-overlapping probe sequences, our pipeline designs the final probe and
detection sequences that need to be used for the experiment (see Methods).
While Spapros can select and design probe sets using only a reference scRNA-seq dataset
and a list of cell types as input, users can also add prior knowledge and constraints to bias
the algorithm toward user-defined probes. This allows users to add particular genes of
interest (e.g., to test particular hypotheses or capture disease effects) and account for
technological constraints (e.g., in situ sequencing has limitations on spot detection of highly
expressed genes due to optical crowding). This prior knowledge can be incorporated in two
ways: 1) as a pre-selection of probe genes, leading to other genes being combinatorially
selected around them, and 2) as a marker list from which genes are added when respective
cell types cannot adequately be classified (see Methods).
Overall, Spapros is a flexible, modular gene set selection and probe design tool that selects
genes optimized for cell type recovery and cellular variation, while enabling users to
customize the selection for any experimental design scenario.
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Spapros optimizes different probe set objectives simultaneously
We designed Spapros to optimize both cell type identification and recovery of variation
beyond cell type annotations. However, by design, Spapros' first priority is the identification
of cell types, while more fine-grained variation is only captured if cell type identification is not
affected. We therefore expect that for low numbers of genes Spapros mainly captures cell
type level variation and gets more capacity for fine-grained variation with increasing numbers
of genes.
Visually comparing the full gene set to Spapros selections on a UMAP embedding shows
that cell type variation is strongly conserved using both 50 and 150 genes (Fig 2c, and Fig
S8a). When comparing cell type classification characteristics between Spapros and DE
genes for 50 genes we observe that similar cell types like DC1 and DC2 can be better
distinguished by Spapros due to the combinatorial selection of e.g. CST3, FCER1A and IL1B
(Fig 2d,e,S5,S8a). Spapros consistently outperforms the top performing classical feature
selection methods DE and PCA on the prioritized objective of cell type identification, and
optimizes variation recovery to the level of PCA-based selections when increasing the
number of selected genes (Fig S8a). Thus, the Spapros probe set is optimized for the most
relevant signals for any given number of selected genes.

Spapros selection performs robustly across different datasets
When designing a targeted spatial experiment, data generators often have matching
scRNA-seq data available from a matching sample. Yet, when this is not the case the
question arises how similar the transcriptomic reference must be to the spatial sample.
Using our evaluation metrics, we can address this question from a computational
perspective. We assessed the cross dataset performance of probe sets selected on three
different lung data sets (Fig S6a). Selections are not robust if the cell type classification and
variation recovery performance shows high variance across data sets. To estimate if the
variance across data sets is high or low we added selections on each individual donor
sample as baseline comparisons.
We observe that the performance variance across data sets and across samples within each
dataset are similar (Fig S6b). Thus, selections on one dataset show robust performance on
other similar datasets. This is especially pronounced for cell type classification, indicating
that there is no cell type identification performance drop for selections on an external dataset
from the same tissue. As expected, the selection on the full dataset is beneficial for cell type
classification compared to selections on individual donors. We also find this trend for
variation recovery. Overall Spapros shows robust performance across different choices of
the matched scRNA-seq reference for probe set selection.
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Fig. 3: Spapros probe sets identify cell types and spatial variation within cell types. Spatial lung
data measured with the SCRINSHOT technology for a probe set selected with Spapros. a, Mean
expressions in spatial cell types of an intralobar lung sample (blue) and in cell types of the single cell
reference (red). The shown genes are identified as the most important genes for cell type
identification in the Spapros selection. b, Annotated cell types in the intralobar lung sample. c-e,
Spatial distribution of two orthogonal variation axes within tracheal basal cells. c, FOS expression in
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the UMAP of the scRNA-seq reference data set, and expressions of FOS, KRT15, and S100A2 in the
zoomed in basal and goblet subset. d, UMAP and e spatial distribution of FOS, KRT15, and S100A2
of the basal cells in a tracheal lung sample.

Spapros probe sets identify cell types and spatial variation within cell
types in the adult human lung
When evaluated on scRNA-seq data, the Spapros pipeline shows high performance in cell
type classification and reconstruction of variation beyond cell types. To show that these
capabilities translate to spatial measurements we designed and performed a targeted spatial
experiment using SCRINSHOT13 with a 64 gene probe panel generated by Spapros on
healthy human lung samples using the Meyer202236 scRNA-seq reference (see Methods).
For each cell type Spapros provides a decision tree that includes the most important genes
to robustly identify the given cell type. Leveraging these rules we detected all targeted cell
types in an intralobar section (Fig 3a,b and S7; see Methods). Overall, the expression
profiles of the cell type clusters matched the scRNA-seq reference clusters (Fig 3a) and the
spatial distribution of cell types corresponded to known cellular structures in the lower
airways and alveolar space (Fig 3b).
To capture variation beyond cell type annotations Spapros selects genes that exhibit
gradients in multiple cell types as observed e.g. for FOS in our panel (Fig. 3c). Although
FOS is typically associated with dissociation-induced cell stress37, we tested whether it also
exhibits these gradients in non-dissociated tissue. Indeed, we observed such a gradient in
airway epithelial cells. Here, FOS expression in tracheal basal cells displays intra-cell type
spatial variation. While the basal cell markers KRT15 and S100A2 mark the inner (basal)
and outer (suprabasal) epithelial layer respectively (Fig. 3c,d,e), FOS exhibits up- and
down-regulated regions along the epithelium orthogonal to the interior-to-exterior epithelial
variation of KRT15 and S100A2 (Fig 3d,e).
While further experiments are required to interpret this FOS signal, the signal itself indicates
that probes selected by Spapros detect spatial variation of gene expression also beyond
differences in cellular composition. Thus, Spapros enables identification of cell types of
interest while also detecting spatially patterned intra-cell type variation in spatial
measurements.

Spapros outperforms curated gene sets and state-of-the-art methods
We assessed Spapros performance against 2 popular approaches for feature selection (DE
and PCA), a curated gene list of airway cell type markers (see Methods), a published probe
list for the human heart, and 8 recently proposed probe selection methods. The approaches
were compared on two tissues: the heart and the lung, using publicly available scRNA-seq
reference atlases and an untargeted spatial transcriptomics dataset (see Methods).
Evaluation of all selected probe sets was performed on the basis of our evaluation suite.
Spapros distinctly outperformed manually selected probe sets and curated marker lists in
both heart3 and lung36 scenarios. Although manual selection of probe sets is commonly
used3–5,18, Spapros outperforms these lists in both cell type identification and variation
recovery (Fig. S8b,c). Notably, the probe set for the developmental heart was generated for
an in situ sequencing (ISS) experiment on the basis of both an scRNA-seq reference and an
untargeted spatial transcriptomics7 assay. Adapting Spapros to leverage both of these data
sources (see Methods), we find that our optimized pipeline outperforms the curated probe
sets in all evaluated metrics.
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Recently published computational methods for probe set selection were compared in a
large-scale benchmark on both heart and lung datasets, while the heart data has more
fine-grained cell type annotations compared to the lung data. All methods were run to
generate both a small (50 genes) and large (150 genes) probe set (Fig S8a). Consistent with
the method designs, the results show that methods can be grouped into categories with
differing goals: general variation recovery (selfE, scmer, PCA, triku), cell type identification or
selection of cell type specific markers (smash, nsforest, asfs, scgenefit, cosg, DE), and both
of these objectives (Spapros).
We find that across tasks Spapros performs best in cell type classification. This is especially
pronounced for low numbers of genes (50) where Spapros differentiates more strongly from
other methods. For a target probe set of 150 genes, the methods that optimize for cell type
identification improve classification performance, while only nsforest consistently performs
as well as Spapros across tasks. The variation recovery methods (selfE, scmer, PCA)
perform best at capturing the general transcriptomic variation in the data with a reduced
probe set. While Spapros scores 5% worse than the top performer for 50 probes, it performs
similarly for a target of 150 probes despite concurrently optimizing for cell type identification.
In contrast, other cell type identification methods do not optimize for variation recovery at
150 genes, and other variation recovery methods do not reach the cell type classification
performance of Spapros. Furthermore, none of the algorithms we compare with our method
is able to account for technical constraints.
Overall, we find that Spapros is the only method that performs well on both cell type
identification and variation recovery. Thus, Spapros provides a multi-purpose end-to-end
probe set selection pipeline that can use both scRNA-seq and untargeted spatial
transcriptomics data to optimize gene set selection and probe design.

Discussion

We present Spapros, a probe set selection and design pipeline for experimental
design of targeted spatial transcriptomics experiments. Spapros optimizes probe set
selection in a combinatorial fashion through optimizing both design and selection of
genes simultaneously while taking into account prior knowledge and technical
constraints. With these features our method is the first one that enables end-to-end
probe set selection. It is also the first method that optimizes simultaneously for both
identification of cell types and recovery of transcriptomic variation beyond cell types.

Due to a reduced number of measured features and processing challenges,
annotation of cell types is typically more challenging in targeted ST data compared to
scRNA-seq data. Thus, currently available ST studies generally focus on cell type
identification in space and most available probe selection methods focus on that
objective. Spapros facilitates cell type identification not only by optimizing probe sets
for this purpose, but also by providing rules for cell type annotation based on the
decision trees used for probe selection. In this study, we used these annotation rules
to identify lung cell types in a SCRINSHOT experiment. Furthermore, Spapros also
highlights which probes are candidates for spatially variable patterns across cell
identities by scoring probes on variation recovery and their importance for cell type
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separation. These hints led us to the investigation of FOS which shows spatial
intra-cell type patterns along the airway epithelium. It is valuable to capture intra-cell
type variation since meaningful spatial signals go beyond differing cell type
compositions across locations as they can indicate local tissue niches, viral spread,
inflammation, and more. However, including genes like FOS reduces the separation
of cell types when clustering cells. Thus, such genes introduce an additional
challenge for downstream analysis and should be excluded for cell type clustering.
Spapros’ rule-based annotation output and labeling of gene characteristics enable a
quick reference-based spatial mapping of cell types and identification of new spatial
patterns of cell state continuums. As spatial transcriptomics protocols and analysis
methods continue to improve, these spatial state continuums will become
increasingly important.

A central assumption in the current implementation of Spapros, and probe set
selection in general, is that the transcriptomic signal measured in scRNA-seq is
representative of the signal measured in targeted spatial transcriptomics. As shown
in our lung study we are able to find the cell types of interest based on reference
signals with high recall and we can find matching orthogonal cellular variation within
cell types. However, the equality assumption between spatial and scRNA-seq data is
currently not strictly met and we find discrepancies between the modalities. Gene
distributions are notably different and some genes are uncorrelated to the signal
expected from scRNA-seq, possibly due to non-functional probes or individual tissue
section anomalies. There are multiple reasons that lead to discrepancies between
the modalities: Different RNA measurement techniques lead to the exclusion of
reads from highly similar paralogues that are mapped to multiple regions of the
genome in droplet based scRNA-seq; Different sample processing between
scRNA-seq and targeted ST lead to the enrichment or exclusion of certain cell types
and states.; and technology-specific effects like optical crowding can result in
imprecise measurements. Quantifying these differences and constructing additional
robustness constraints are important future directions for probe set selection and
reference based down stream analysis. These robustness constraints also depend
on the processing of targeted ST data for which there are currently no best practices.
Normalization, further pre-processing, and cell segmentation including the
disentanglement of overlapping cells will affect how well these modalities match. To
design ideal robustness constraints future studies need to investigate these effects
as well as tissue parameters like organ type, cell density, and tissue quality.

Further improvements to probe set robustness can be derived from integrated
reference atlases. As more scRNA-seq datasets are becoming available, these
datasets are being integrated into comprehensive reference atlases38 that contain
consensus signatures of rare cell types and subtle state differences learned across
studies. Yet, the large cell number also poses additional methodological challenges
such as batch effects and unbalanced label distributions. Spapros tackles
unbalanced label distributions by balanced sampling strategies over cell type labels
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to robustly capture rare cells. Yet, batch effects are still a challenge for Spapros and
other probe selection methods. Especially selection methods that optimize for
variation recovery will also select genes aligned to batch effect variation. While we
showed that Spapros can select probe sets and project these across datasets, we
did find that also dataset-specific variation (potentially due to batch effects) was
captured. The optimization for biological variation disentangled from technical
variation is therefore an interesting direction for future work. Further extensions to
Spapros include experimental design for other modalities like spatial proteomic
measurements (e.g. Codex39).

With Spapros we introduced new concepts for optimally selecting probe sets in
targeted spatial transcriptomics: our approach combines gene panel selection and
probe design to enable combinatorial selection, and optimizes simultaneously for the
dual objective of cell type identification and recovery of transcriptomic variation.
Spapros will thus enable optimal experimental design while guiding downstream
analysis. Additionally our evaluation suite sets a reproducible and robust standard for
quality assessment of spatial probe sets and can be readily extended towards
additional metrics. Spapros is available as a Python package enabling easy and
flexible probe set selection, evaluation of probe sets, and probe design. With
Spapros we aim to enable users to maximize their success in future exploratory
spatial studies to find novel spatial cellular variation.

Methods

Probe set evaluation metrics

We assessed the selection method performance or probeset quality via multiple metrics of
the categories cell type identification, variation recovery, gene redundancy, fulfillment of the
technical constraints, and computation time. For the calculation of the metrics a reference
dataset (typically scRNA-seq) is used. The reference is reduced to a pre-selection of highly
variable genes (8000 in our use cases; scanpy’s highly_variable_genes function with
cell_ranger flavor option). In the following the metrics of each category are described.

Variation recovery
For the clustering similarity metrics Leiden clusterings for different numbers of clusters
are calculated via binary search over Leiden resolutions. This way sets of clusterings for

are produced for the 8000 reference genes and the gene set that is
evaluated. For each the similarity of the clusterings between reference and gene set are
measured via normalized mutual information:

,
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with : set of sets of cells in each cluster ; : like for the second
clustering; : mutual information which is defined as

,

with : number of cells; note that in our comparisons; : entropy of
which is given by

.

The final clustering similarity metrics are given by

,

and

,

with , and : the area under the curve of
over the interval . Due to the nature of the Leiden algorithm sometimes certain for

a given dataset can not be found. Missing values due to that are imputed by linear
interpolation between and or the closest existing values in
case of multiple missing data points.
For the neighborhood similarity metric knn graphs are obtained for the 8000 reference genes
and the gene set that is evaluated. Knn graphs are calculated for on
the PCA space of the gene expression. The neighborhood similarity is given as

,

with : number of cells, and : set of neighbors of cell in the knn graph of the
reference (ref) or gene set (set) for a given .

Cell type identification
To assess how well cell types can be recovered with a gene subset we train gradient
boosted forests40 for multi-class cell type classification and measure the test set
performance. To achieve a robust performance readout 5-fold cross validation is performed
with 5 different seeds, summing up to models per evaluated gene set. The test set
classification confusion matrix of each model is obtained and normalized by the ground truth
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cell type count. Based on the normalized confusion matrix per model the summary
metrics are given as

,

and

,

with the linearly smoothed step function from 0.75 to 0.85 (i.e. and
), and the number of cell types .

The metrics marker correlation and cell type balanced marker correlation measure how well
marker signals of a literature derived marker list are captured with the selected gene set.

Based on the maximal pearson correlation with the gene set for each marker the
summary metrics are given by:

,

and

,

with the number of markers , the number of cell types , and the set of markers for
each cell type .

Gene redundancy
Based on pearson correlations of gene pairs we asses the redundancy in a gene
set with the overall

,

and the

,
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with the number of genes in the gene set and the linearly smoothed step function (see
above).

Expression constraint violation
We penalize a gene for too low expression if it is expressed below a lower expression
threshold in at least 90% of cells where the gene is expressed > 0, i.e. the 0.9 expression
quantile. Similarly we penalize too high gene expression if the 0.99 expression quantile over
all cells is above an upper threshold. Expression thresholds were obtained from expert
experience on too lowly and too highly expressed reference genes (e.g. MALAT1). Based on
cpm log-normalized data the thresholds were set to 2.3 and 5. Since our data was scran
normalized thresholds were transferred by mapping mean expressions to 1.78 and 4.5.
These values are technology specific and can only be roughly estimated. To not set strict
thresholds, smoothed penalty functions over the gene’s quantile with a Gaussian
decay below (low expression) and above (high expression) the thresholds were introduced.
To assess how strongly a gene set violates the expression constraints we compute the

means over and as the low and high expression constraint violation
metrics respectively.

Classical feature selection methods
The evaluated classical feature selection methods include differentially expressed (DE)
genes selection, a PCA-based selection, highly variable genes (HVG) selection, a
sparse-PCA (SPCA) based selection and selection of highly expressed genes.
DE genes were scored with t-tests using scanpy’s 41 rank_genes_groups function. The
highest scored genes per cell type were selected till the set encompassed n genes. For the
PCA-based selection genes were scored according the sum over the loadings of the first 20
PCs, and the top n genes were selected. HVG selection was performed with scanpy’s
highly_variable_genes function and the cell_ranger flavor option. For the SPCA-based
selection scikit-learn’s sparsePCA class was used. With the 𝛼 argument of sparsePCA the
sparsity of the loadings matrix can be controlled. To select as set of n genes a binary search
over 𝛼’s was conducted to find a setting where only n genes have loadings > 0. For the
selection of highly expressed genes we scored genes based on the mean expression.

Spapros selection pipeline
Spapros enables an end-to-end probe set selection which include probe design constraint
based gene filtering, gene panel selection, and the probe design for the selected gene panel.
Therefore Spapros encompasses a probe design pipeline and a gene set selection pipeline.
We discuss them separately in the following.

Gene panel selection
Spapros uses a log-normalized count matrix of all genes or a pre-selection of highly variable
genes and cell type annotations as input. The first step consists of a PCA-based (see
classical feature selection methods) prior selection (100 genes per default). This prior
selection biases the next steps to use genes that capture a high degree of variation in the
dataset. Next we train decision trees on the prior selected genes for binary cell type
classification for each cell type (i.e. cell type of interest vs all other cell types). These trees
are highly regularized by setting the max_depth to 3. Thus, robust and interpretable rules are
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learned for the classification of each cell type. For each tree optimization a training set of
1000 cells per cell type are sampled (oversampling if cell count is too low), and performance
is assessed on a test set sample of 3000 cells per cell type. The uniform sampling ensures
cell type balanced training. Additionally we use class proportion weights for the binary
classification of the two classes “cell type of interest” vs “other”. Per default we train 50 trees
per cell type each with a different training set and choose the best tree based on the
F1-score. To increase classification performance on cell types that are hard to distinguish
from the target cell type we train additional secondary trees on a subset of cell types. This
subset is identified based on the specificities of the primary tree of each
cell type in class “other”, with : number of true negative cells of cell type , and :
number of cells from cell type in test set. Cell types are considered for the secondary tree
training if their specificity is either below 0.9 or one standard deviation below the mean of all
specificities, but at least 0.02 below the mean. Spapros has a hyperparameter to set the
number of further secondary trees that are trained based on previous secondary trees in the
same manner. The default is 3, i.e. 1 primary and 2 secondary trees. The trees trained on
PCA selected genes often can be improved since important genes in the pool are missing.
Therefore we also train trees on DE genes. Trees are trained in the same manner except
that additionally an iterative adding of genes from specific DE tests is performed: After tree
training cell types that are hard to distinguish are identified via specificities (best over
primary and secondary trees) the same way as cell types were selected for secondary trees.
Then a DE test is performed between the cell type of interest and the identified cell types.
The top 2 of those DE genes per cell type that needs optimisation is added to the DE pool
and tree training is repeated till an early stopping criterion is reached or up to 12 times. By
comparing the performance of trees on PCA genes and trees on DE genes we identify those
cell types that are better distinguished with DE genes and iteratively add missing genes from
DE trees with highest feature importance to the PCA pool and retrain trees till the same
performance is reached. The genes that occur in the final trees are ranked by feature
importance and build the gene panel.
Spapros incorporates prior knowledge as a pre selection of genes that is added to PCA and
DE pools, so genes are selected around them. Further a list of marker genes can be
provided. After tree based selection the pipeline checks if at least a user defined number of
markers per cell type are captured (correlation > 0.5; see marker correlation metrics).
Experimental expression constraints are incorporated by multiplying PCA and DE scores
(see classical feature selection methods) with a penalty kernel (see expression constraint
violation metrics).

Probe design pipeline
To generate a genome wide probe design filter and to design probes for a set of given
genes, we developed a custom probe design pipeline. Currently the pipeline supports
padlock probe design for SCRINSHOT, however many steps are shared between different
technologies. The pipeline has four major steps: 1) Create probe and background
databases, 2) Filter probes by sequence property and binding specificity, 3) Rank sets of
non-overlapping probes for each gene and 4) Generate ready-to-order padlock probe
sequence.
To create the probe and background databases, the user has to define the species, genome
assembly, annotation source and annotation release for the reference genome. As
annotation source, the user can choose between NCBI and Ensembl annotation. The
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genome sequence (fasta format) and gene annotation (gtf format) files are automatically
downloaded via the respective FTP server. If the annotation source is NCBI, the
chromosome names are automatically mapped from GenBank to RefSeq annotation in order
to be used by bedTools. Alternatively, the user can provide a custom genome sequence
(fasta format) and custom gene annotation (gtf format). To create the probe database, the
user has to define the probe length, which can be given as a range, and provide a list of
genes for which probes should be created. The gene list should be a text file where each line
corresponds to a gene identifier and the identifier has to follow the annotation source
standards. If the user does not provide a list of genes, the pipeline will create probes for all
genes in the gene annotation file. The probe database contains all possible probe target
sequences for each gene in the gene list. The target sequences are created from a sliding
window over the DNA sequence of the genes coding strand. Probe target sequences are
created from the transcript sequences of all existing isoforms for a gene. The background
database contains the full transcriptome of the provided annotation, i.e. all transcript
isoforms for all annotated genes, including protein-coding and non-coding RNAs. To
speed-up downstream processing steps (e.g. BlastN search), redundancies within the
transcriptome, e.g. isoforms using several common exons, are minimized. The minimization
of redundancies is commonly achieved through multiple sequence alignment. To avoid the
time-consuming step of a multiple sequence alignment over all transcripts, a reduced
transcriptome is created from the gene annotation itself. The reduced transcriptome consists
of all annotated exons and all possible exon junctions defined by the different transcript
isoforms. An exon junction region is defined as the region probe length + 5 bp upstream of
the first exon and probe length + 5 bp downstream of the second exon. The exon junction
region is larger than the probe length (+ 5 bp) to allow bulges in alignment calculations (e.g.
BlastN). The resulting transcriptome annotation contains each exon and all possible exon
junctions only once per gene, i.e. when multiple transcripts use the same exon, the region is
only reported once. The transcriptome annotation is saved in bed12 format that allows split
annotations, which are needed to get sequences for exon junctions, i.e. the intron sequence
has to be skipped. The fasta transcriptome sequence is retrieved from the bed12 file using
bedTools getfasta.
After creating both databases, each target sequence in the probe database is filtered by
certain sequence properties, i.e. by undefined nucleotides in their sequence (masked with
'N') as well as GC content and melting temperature for user-defined ranges. Specifically for
padlock probes a ligation site needs to be set that generates two probe arms. The pipeline
searches for a ligation site that generates two arms with a maximal melting temperature
difference of 2°C and filters probes if such ligation is not found. The probes passing all
sequence property filters are aggregated over each gene, i.e. all probes of one gene having
the exact same sequence are merged into one entry, saving the information of exon and
transcript-of-origin as well as start and end position of the respective probes. After applying
the sequence property filter, a specificity filter is applied, which removes probes that
potentially bind to other similar transcripts, so called off-targets, excluding matches to the
probes gene. Off-targets are identified through an alignment search with BlastN. BlastN
alignment finds regions of local similarity between query and target sequences, where the
query sequence are sequences of the probe database and the target sequence are
sequences of the background database. Before running BlastN, a pre-filtering is applied to
remove all duplicated sequences (exact matches) within the probe database. The user
should define the word size for the BlastN search, which defines the length of the BlastN
seed region. BlastN returns query-target pairs, where both sequences match with a certain
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coverage and similarity, for which the user has to define thresholds. Probes are then filtered
based on the percent identity, the alignment length (coverage) and optionally the coverage of
the region around the ligation site of the probe by the target sequence, where the user has to
define the ligation region.
Next, the pipeline searches for the best set of a user-defined number of non-overlapping
probes. Sets are scored by the highest distance to optimal GC and melting temperature of
the probes in the set. Based on genomic locations an overlap graph for the probes of a given
gene is generated. The pipeline iterates through non-overlapping sets that are given by the
cliques of the complement graph, measures their score, and ranks sets. If there are many
probe candidates this search can take long. Therefore the search is sped up via a candidate
filter. For that filter the best probe is selected, then the next best that doesn't overlap with the
first, and so on, till the number of non-overlapping probes is reached. This is repeated 10000
times starting with the 2., 3.,... best probe. For the clique based search all probes that score
worse than the worst probe of the best set of the heuristic search are filtered out.
Finally padlock probes and detection oligos are designed for the best non-overlapping sets
of each gene. For this adding the backbone, pruning the oligo sequence for optimal melting
temperature, exchanging Thymines to Uracils in the detection oligo, and placing the
fluorescent dye at the side with the closest Uracil as described in13 was automated.

Datasets for probe set selection and evaluation

Our experiments and analyses comprise three human lung scRNA-seq datasets
Madissoon202042, Krasnow202143, Meyer202236, a scRNA-seq dataset and an untargeted
spatial transcriptomics dataset of the developing human heart Asp2019 (sc/ST)3, and a
sc/snRNAseq adult human heart dataset Litvinukova202044. The datasets are all publicly
available. Cell type annotations were obtained from the original publications. For fair
comparisons the annotations were filtered or pooled to coarse annotations in those analyses
where necessary (Table A1). All single cell and single nucleus datasets were preprocessed
in the same way: raw counts were normalized with scran45 using Leiden clusterings46 with
resolution 0.5 on a temporary log normalization to 106 counts per cell. The logarithm of the
scran normalized data plus one pseudocount was taken. Features were reduced to the top
8000 highly variable genes selected with scanpy’s highly_variable_genes function (flavor:
cell_ranger). A detailed summary which dataset and annotation was used in each analysis is
given in Table A1. For some datasets we only used a subset of cells due to different
reasons: For Meyer2022 we only used the single cells and not nuclei since we used it for our
SCRINSHOT experiment and assume that single cell expressions are closer to the
observation in a targeted ST experiment compared to single nuclei. Only the developmental
stage at 6 weeks from Asp2019 ST was used since the selected ISS panel in their study was
also selected on that subset. The heart atlas Litvinukova2020 was reduced to the single
nucleus observations and maximal 2k cells per cell type to reduce computation time of our
evaluations (56 cell types, including 58966 cells).

SCRINSHOT experiment

Samples and histology
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Samples were obtained from deceased transplant organ donors by the Cambridge
Biorepository for Translational Medicine (CBTM) with informed consent from the donor
families and approval from the NRES Committee of East of England – Cambridge South
(15/EE/0152). Lung biopsies (~2cm3) were fresh-frozen in OCT (Leica Surgipath, FSC22),
and shipped to Stockholm University on dry ice. Quality control was carried out by evaluating
histopathological condition (sections stained with hematoxylin and eosin were analyzed by
the pathologist) and RIN value analysis. Healthy samples with RIN values above 4 were
selected for SCRINSHOT. Sections of lung tissues were cut at 10 μm thickness and placed
on poly-lysine slides (Thermo, J2800AMNZ), then stored frozen at −80˚C for further use.

Probe design

At the time when the probe set for the SCRINSHOT experiment was selected with the
Spapros gene panel selection the probe design pipeline was not finished, therefore probes
were designed manually. A detailed description of the padlock probe design is provided in
previous publications 13,47. The sequences for probes (38-45 nt length) were selected using
PrimerQuest online tool (Integrated DNA Technologies: IDT) for the targeted mRNA of 64
genes in the gene selection list. These sequences were then interrogated against
targeted-organism genome and transcriptome, with Blastn tool (NLM) to guarantee their
specificity. Two to four specific sequences per gene were selected for further padlock
design. An extra sequence was selected to create a unique barcode for the detection probe,
which was re-used for each padlock of the same gene with several T nucleotides replaced
with U, as described previously 13,47. All detection probes were then interrogated against all
padlock probes using Blastn tool in order to ensure no overlapping sequences and avoid
unspecific detection probe binding. An overlap of nine or more nucleotides was avoided by
modification of the detection barcode by replacing 1-2 nt. One RCA primer sequence was
used for all padlock probes taking into account the preceding gene expression level
pre-selection. Sequences for padlock and fluorophore-labeled detection probes are provided
in Table A2. Both types of probes (248 padlock and 64 detection probes) were ordered from
IDT.

SCRINSHOT procedure

SCRINSHOT procedure was followed exactly as described previously 13,47 with extra
stringent detection probe incubation (30 oC) in 30% formamide, and increased (20%)
concentration of formamide of washing buffer in the following step in order to avoid
unspecific binding of detection probes. After a trial experiment, SCGB1A1 and SCGB3A1
probe concentration was reduced to one padlock per gene to avoid dot crowding. Probes
were applied in sets of five per hybridization cycle, a total of 13 cycles to detect all 64 genes
in each sample (Table A3). After each cycle the whole slide was imaged as a Z-stack with 11
steps of 0.8 µm (to cover the whole 10 µm thickness) using a widefield microscope (Zeiss
Axio Observer Z.2, Carl Zeiss Microscopy GmbH, with a Colibri led light source, equipped
with a Zeiss AxioCam 506 Mono digital camera and an automated stage) at 20x
magnification. Maximum intensity orthogonal projection was then used for further analysis as
described previously 13,47. One sample from an area corresponding to alveolar parenchyma
collected from the upper part of the left lobe (Location 5, Luecken et al, 202248) with a
substantial amount of signal from most of the probes was selected for gene pre-selection
evaluation.
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SCRINSHOT image analysis

Image alignment using DAPI channel, followed by manual nuclei segmentation for intralobar
region, and automated nuclei segmentation for tracheal region. For the automated
segmentation a MaskRCNN convolutional deep neural network model was used as part of
the NucleAIzer pipeline. The final model is trained so that the annotated image set was
augmented with artificially created ones 49. The training set contained 50.000 single nuclei
manually annotated by experts, on 40x magnification microscopy images. The trained
network was integrated into the BIAS (Biological Image Analysis Software) 49,50 and is
available in: http://single-cell-technologies.com/download/ . Automated dot detection using
CellProfiler was performed as described previously 13,47. All detected dots were assigned to
each cell ROI in Fiji
(https://github.com/AlexSount/SCRINSHOT/blob/master/automated_stitching_dot_counting_
v1_19genes.ijm). The resulting dataset containing dots per ROI was used for further
analysis.

SCRINSHOT analysis

Cells with less than 10 counts were filtered out. Counts were normalized by segmentation
area and then logarithmized. The cells were clustered with the Leiden algorithm and cell
types were annotated by comparing expression profiles of Spapros markers for each cell
type with the Meyer2022 scRNA-seq reference. Inclusion of some genes affected the
clustering in a worse separation of cell types. Those genes were therefore left out for the
clustering (Table A4). These genes include broadly expressed genes with intra-cell type
variation like FOS. They were identified based on the PCA-scores in the Spapros selection
and manual inspection of mean expressions over cell type clusters.
For the trachea sample, only genes that were relevant for identification of basal cells were
included in the clustering (Table A4). We searched for genes with orthogonal intra-cell type
variation to KRT15 and S100A2 based on low prediction scores of a linear regression on
KRT15 and S100A2 and high abundance in basal cells. FOS turned out as a strong
candidate in comparison of all genes. For the smoothed spatial expression profile of KRT15,
S100A2 and FOS along the epithelium scikit-learn’s B-spline fit with 10 knots, degree 10 and
l2 regularization with 𝛼 = 10-3 was used.

Selection method benchmark

Curated marker list and ISS panel
The curated lung marker list (Table A5) was provided by lung experts (see
acknowledgements) and is a collection of airway wall markers from various publications. We
reduced the number of genes in the marker list to 155 by only allowing up to 10 genes per
cell type and from those the ones that occur in the 8000 highly variable genes of the
Meyer2022 dataset (see Datasets for probe set selection and evaluation).
For our comparison with an ISS panel we took the original gene set from Asp20193 which
contains 69 genes that were selected based on an scRNA-seq and an untargeted spatial
transcriptomics data set. To generate a comparable selection with Spapros we selected 34
genes on the untargeted dataset and used these as prior knowledge selection (see Spapros
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selection pipeline, gene panel selection) for a selection of 69 genes on the scRNA-seq data
set.

Method benchmark
Methods were benchmarked on the data sets Madissoon2019 and Litvinukova2020 (see
datasets for selection and evaluation and Table A1)
As recommended for the method scmer, subsampling the dataset is necessary to run the
method in a reasonable time. We followed their recommendations of sub sampling to 10000
cells. The method selfE takes even longer, therefore we applied the same sub sampling
scheme as for scmer. If a selection took longer than two days it was interrupted and not
added (selfE and asfs for 150 genes).

External selection methods
We compared Spapros with 8 other methods dedicated to gene selection. These methods
are described in the following.
NS-Forest23 is a marker gene selection algorithm based on random forest importance scores
combined with a binary expression scoring approach to select markers that are specifically
up-regulated in the cell type of interest but not in other cell types. NS-Forest is available as a
repository of python functions.
SMaSH21 is a general computational framework for extracting marker genes. Different base
classification models can be used: three different forest based ensemble learners and a
neural network. Gini importance and Shapley values are used for scoring genes for the
forest models and the neural network respectively. As the authors describe that the XGBoost
base model performs consistently excellent in terms of yielding low marker gene
classification rates we chose this configuration for our comparisons. SMaSH is available as a
python package on PyPI.
scGeneFit20 selects gene markers that jointly optimize cell label recovery using label-aware
compressive classification methods. The method finds a projection to the lowest-dimensional
subspace for which samples with different labels remain farther apart than samples with the
same label, while the subspace dimensions are individual genes. The optimization is
formulated as a linear program. The method not only finds marker genes that are specifically
expressed in single cell types but also genes that reflect the hierarchical structure of cell
types. scGeneFit is available as a python package.
The ASFS (or ActiveSVM)30 selection procedure generates minimal gene sets from
single-cell data by employing a support vector machine classifier. The method iteratively
adds more genes by identifying cells that were misclassified. ASFS is available as a python
package on PyPI.
COSG25 is a cosine-similarity based method for marker gene selection. It is fast and scalable
and particularly designed for selection of marker genes on large datasets. COSG is available
as python and R packages.
SelfE31 aims to select a subset of genes that is optimized for prediction of all remaining
genes as linear combinations. The gene subset is constructed iteratively and each step the
gene that minimizes the l2 error over genes is added. SelfE is available as an R package.
SCMER32 selects a set of genes that reconstructs a pairwise similarity matrix between cells
and therefore preserves the manifold of the scRNA-seq data. To find that sparse set of
features a binary search on the l1 regularization parameter is performed. Similar to SelfE this
method optimizes for general variation opposed to the previously described marker gene-
and cell type classification-focused methods. The method is available as a python package.
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Triku34 selects genes that are locally overexpressed in groups of neighboring cells which
aims to recover cell populations and general variation in the scRNA-seq data. The method is
available as a python package.
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Fig. S1: Spapros evaluations show cell type specific classification performance. Evaluations on
the Madissoon2019 dataset. a, Normalized cell type classification confusion matrices (red color scale)
for gene sets of 150 genes selected with DE, PCA, HVG, and random selection, and linearly
smoothed step function of the diagonal elements at 0.8 (blue color scale). The summary metrics cell
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type classification accuracy and percentage of captured cell types are the means of the diagonal and
the thresholded values respectively. b, Maximal Pearson correlation of marker genes from a curated
marker list and gene sets selected with DE, HVG, PCA, SPCA, as well as highest expressed and
randomly selected genes. In the bottom heatmap values below the maximum correlation of each cell
type are masked (gray). The summary metrics marker correlation and cell type balanced marker
correlation are the row means of all genes (top heatmap) and per cell type (bottom heatmap)
respectively.

Fig. S2: Assess variation recovery of different granularity levels via multiple metrics and
parameter intervals. Clustering similarity and neighborhood overlap metrics evaluated on the
Madissoon2019 dataset of gene sets with 150 genes selected with PCA, DE, SPCA, HVG, as well as
highest expressed genes and random selection. The summary metrics coarse and fine clustering
similarity are the AUCs of the normalized mutual information in the intervals [6,20] and [21,60]
respectively, and neighborhood overlap is the AUC of knn overlaps over multiple k’s.
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Fig. S3: Assess gene redundancy and modular diversity via correlation evaluations. Gene
correlation on the Madissoon2019 dataset of gene sets with 150 genes selected with DE, PCA,
SPCA, HVG, as well as highest expressed genes and random selection. The redundancy score is a
linearly smoothed step function at 0.8 of the maximal correlation of each gene. The summary metrics
gene correlation and percentage of highly expressed genes are the AUCs of the normalized mutual
information in the intervals [6,20] and [21,60] respectively, and neighborhood overlap is the AUC of
knn overlaps over multiple k’s.

Fig. S4: Expression constraint penalties filter out genes beyond expression thresholds.
Spapros selections of 150 genes with and without expression constraint penalties. Genes are
penalized and not selected as the penalties go to zero.
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Fig. S5: Compare cell type specific classification performance between Spapros and DE.
Difference of normalized cell type classification confusion matrices between Spapros and DE
selections of gene sets with 50 genes for all cell types in the Madissoon2019 dataset.
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Fig. S6: Spapros selections show robust cross dataset performance. a, UMAPs of the three lung
datasets with unified cell type annotations for cross dataset evaluation. b, Cross dataset evaluations
of selections on the lung data sets and on the donor samples within each data set. Cell type clfs.
perform. is the average of the metrics cell type classification accuracy and percentage of captured cell
types. Variability recovery is the average of the metrics coarse and fine clustering similarity, and
neighborhood overlap.
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Fig. S7: Spatial and scRNA-seq cell type clusters show similar expression profiles. Mean
expressions in all spatial cell types of an intralobar lung sample (blue) and in all cell types of the single
cell reference (red). The shown genes are identified as the most important genes for cell type
identification in the Spapros selection.
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Fig. S8: Spapros outperforms classical selection strategies and state-of-the-art methods. a,
Heatmap of our evaluation metrics comparing Spapros with recently published methods as well as
DE, and PCA-based selections. We compared selections of 50 and 150 genes for lung and heart data
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sets. Methods are sorted and ranked by the aggregated score of variation recovery and cell type
classification. Methods that use cell type information are annotated with a red star. b, c Performance
comparison of probe sets selected with Spapros and (a) a curated marker list for lung cell types and
(b) a gene set used in ISS experiments of Asp 2020 on heart tissue which was based on selections of
a single cell dataset and an untargeted spatial transcriptomics data set. Note that the cell type
classification metrics on the ST dataset refer to spot based clusters instead of cell type clusters.
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