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Abstract

Biobanks that collect deep phenotypic and genomic data across large numbers of individuals have emerged
as a key resource for human genetic research. However,  phenotypes acquired as part of Biobanks are often
missing across many individuals, limiting the utility of these datasets. The ability to accurately impute or
“fill-in” missing phenotypes is critical to harness the power of population-scale Biobank datasets. We
propose AutoComplete, a deep learning-based imputation method which can accurately impute missing
phenotypes in population-scale Biobank datasets. When applied to collections of phenotypes measured
across K individuals from the UK Biobank, AutoComplete improved imputation accuracy over existing≈ 300
methods (average improvement in of for all phenotypes and for binary phenotypes). We𝑟2 18% 42%
explored the utility of phenotype imputation for improving the power of genome-wide association studies
(GWAS) by applying our method to a group of five clinically relevant traits with an average missigness rate
of 83% (67% to 94%) leading to an an increase in effective sample size of 2-fold on average (0.5 to≈
3.3-fold across the phenotypes). GWAS on the resulting imputed phenotypes led to an increase in the total
number of loci significantly associated to the traits from four to 129. Our results demonstrate the utility of
deep-learning based imputation to increase power for genetic discoveries in existing biobank data sets.

Introduction

The past decade has seen the growth of datasets that collect deep phenotypic and
genomic data across large numbers of individuals. While these population-scale biobanks
aim to capture a wide range of phenotypes across the population (including demographic
information, laboratory tests, imaging, medication usage, and diagnostic codes),
phenotypes in this setting are frequently missing across many of the individuals for
reasons such as cost or difficulty of acquisition (e.g., phenotypes derived from imaging
scans and other potentially invasive procedures). As a result, our ability to study
clinically-relevant phenotypes or diseases using biobank data remains limited.

The ubiquity of missing data in the biomedical domain has motivated extensive work into
statistical methods for imputing or “filling-in” missing data [1,2,7,8,9,37,50] (see  Section
S1 for additional related work). Accurate imputation of large numbers of phenotypes and
individuals in population-scale Biobank data presents several challenges. First, accurate
imputation requires faithfully modeling the dependencies across the phenotypes. Such
dependencies can arise due to genetic or environmental effects that are shared across
phenotypes.  Accumulating evidence for the abundance of shared genetic effects
(pleiotropy) even amongst seemingly unrelated phenotypes suggests that the ability to
model dependencies across large numbers of collected phenotypes could substantially
improve imputation accuracy. Second, patterns of missingness in these datasets tend to be
complex (for example, individuals that were not administered a questionnaire will be
missing for all answers relevant to the questionnaire) so that an imputation method
would need to be able to use the relevant observed entries to impute the missing entries.
Third, the method needs to be scalable. Thus, imputation methods that can accurately
impute phenotype in the presence of complex patterns of missingness while being
scalable are needed.

Here we propose AutoComplete, a deep-learning method based on an auto-encoder
architecture designed for highly incomplete biobank-scale phenotype data. Our use of

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 15, 2022. ; https://doi.org/10.1101/2022.08.15.503991doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.15.503991
http://creativecommons.org/licenses/by-nc-nd/4.0/


deep learning for imputation is motivated by the ability of neural networks to learn
potentially complex dependencies among phenotypes (as shown in the application of
neural networks to other biological datasets [60, 61, 62, 63, 64]). Earlier works, however,
have relied on access to individuals with no missing phenotypes to learn the imputation
model [43] (such an approach would substantially reduce the data available to learn
model) or have assumed that entries in a dataset are missing completely at random[34,
41] . To be able to impute in the presence of realistic patterns of missingness, we
employed copy-masking, a procedure that propagates missingness patterns present in the
data [37]. AutoComplete can impute both binary and continuous phenotypes while
scaling with ease to datasets with half a million individuals and millions of entries.

We compared the accuracy of AutoComplete to state-of-the-art missing data imputation
methods on two collections of phenotypes derived from the UK Biobank (UKBB) [5]: a set
of cardiometabolic-related phenotypes and a set of phenotypes from an on-going230 372
study of psychiatric disorders, each measured across unrelated white British≈ 300, 000
individuals. AutoComplete improved squared Pearson correlation ( ) by on average𝑟2 18%
over the next best method (SoftImpute [9]) and 42% on average for binary phenotypes.
We then explored the utility of our method in increasing the power to detect genetic
associations for traits of interest. We demonstrated the validity of this procedure by
simulating missingness in fully observed phenotypes and showing that all significantly
associated loci identified by GWAS on imputed phenotypes were associated with the
originally observed phenotypes. We then performed genome-wide association studies
(GWAS) of five clinically relevant but highly missing phenotypes (missingness rate of 83%
on average and range 67%~94%) from the UKBB with the aid of imputed values using
AutoComplete. We observed an increase in effective sample size of 1.96-fold on average
(0.5-fold to 3.3-fold across the phenotypes).  GWAS on the resulting imputed phenotypes
yielded a total of 129 significantly associated loci (compared to four loci significantly
associated with the original phenotypes) with a mean increase of 25 loci across the tested
phenotypes. AutoComplete can scale to individuals and phenotypes≈ 300, 000 ≈ 400
from the UKBB   with empirical run times of hours. Our results illustrate the value of∼ 6
deep-learning based imputation for genomic discovery.

Results

Methods overview

AutoComplete is based on an autoencoder (a type of neural-network) that is capable of
simultaneously imputing continuous and binary-valued features. Given a vector of
features that represent the phenotypes measured on an individual (some of which might
be missing), AutoComplete maps the features to a hidden-representation using a
non-linear transformation (encoder) which is then mapped back to the original space of
features to reconstruct the phenotypes (decoder). In this process, AutoComplete imputes
missing phenotypes (Figure 1).
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AutoComplete aims to learn the autoencoder by masking features that are originally
observed in the data and searching for the parameters of the autoencoder that can
reconstruct the masked and observed features with minimal error. To enable
AutoComplete to impute in the presence of realistic missingness patterns, we employed
copy-masking, a procedure which propagates missingness patterns already present in the
data [37].

Experiment overview

We evaluated the accuracy of phenotypes imputed by AutoComplete on two collections of
UKBB phenotypes: a set of 230 cardiometabolic phenotypes derived from patient records
and imaging data, and a larger set of phenotypes from an on-going study on Major372
Depressive Disorder (MDD). Each collection contains phenotypes measured across

unrelated individuals of white British ancestry, where phenotypic entries≈ 300, 000
were, on average, 49% and 46% missing respectively (Table S1).

We compared the accuracy of AutoComplete to a representative selection of imputation
methods that could be applied at scale. We considered K-Nearest Neighbors (KNN),
missForest [6], and MICE [7] ,among the most widely-used imputation methods routinely
available in data science packages [8]. We also considered SoftImpute [9] based on its
consistently high imputation accuracy in prior works [11,37]. Finally, we also evaluated
two generative deep-learning methods: a generative-adversarial imputation method,
GAIN, [10] and a deep generative model, HI-VAE, [11] (see Section S1 for a more detailed
description of related methods).

In determining which methods scale, we assessed empirical runtimes to fit each
imputation method for increasingly large subsets of the psychiatric disorders dataset to
determine that missForest and MICE do not efficiently scale to the UKBB datasets leading
us to exclude missForest and MICE from our large-scale comparisons (Figure S1).

To quantify the accuracy of each method on previously unseen individuals, we adopt a
train-test split ( each) of the two datasets such that all hyperparameter tuning and50%
training were performed on the training set while evaluations of all methods were
performed on the test set (see Methods Section).

To evaluate the imputation methods, we simulated missing entries by masking originally

observed phenotypes across a range of missingness levels ( ). We examined1% ∼ 50% 𝑟2

between imputed and originally observed values as the primary metric, given its
compatibility with continuous and binary phenotypes and its interpretation in terms of
the effective sample size [12]. We examined imputation accuracy on binary phenotypes

separately using both , area under the precision-recall curve (AUPR) and the area under𝑟2

receiver operating characteristic curve (AUROC). For each metric, we quantified standard
error and confidence intervals using bootstrapping of 200 replicates. To test for
significant differences in the imputation accuracy obtained by each method, we
performed a two-tailed significance test of the difference in means using the bootstrap
standard errors.
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In addition to the two larger collections of phenotypes, we evaluated our method for a
smaller subset of the cardiometabolic dataset consisting of 86 phenotypes, allowing
comparisons with MissForest [6] and MICE Forest [2] in tractable running times (Section
S2).

AutoComplete significantly improves imputation accuracy

AutoComplete obtained the most accurate imputations across all levels of missingness
(from to ) in the tested datasets (Table 1, Figure 2). Imputation accuracy was1% 50%
generally higher in the cardiometabolic dataset for all methods relative to the psychiatric
disorders dataset which we hypothesize can be attributed, in part, to the greater
proportion of missing entries in the latter (Table S1). Further, the imputation accuracy of
all methods decreased with increasing levels of missingness. While SoftImpute (based on
a linear model) was the most accurate among existing methods, AutoComplete obtained
the the highest overall accuracy (an improvement of and for cardiometabolic and7% 25%
psychiatric disorder phenotypes over SoftImpute, respectively) indicating the value of
modeling non-linear relationships among phenotypes (Figure 2).

AutoComplete significantly improved for 6 (23) phenotypes over SoftImpute with (𝑟2 1%
) missingness in the cardiometabolic dataset (Table S2; -value correcting for20% 𝑝 < 0.05

230

the 230 phenotypes tested). Analogously, AutoComplete significantly improved for 4𝑟2

(129) phenotypes with ( ) missingness in the psychiatric disorders dataset (Table1% 20%
S2; -value correcting for the number of phenotypes tested). Among the most𝑝 < 0.05

372
significantly improved phenotypes were report of statin use ( ) and biomarker56%
measurements from full-body DXA scans [13] such as arm lean mass ( ), recurrent38%
MDD ( ) [51] and receiving medication for psychotic condition ( ).59% 107%

The improvements in imputation accuracy were particularly substantial for binary
phenotypes. Here, AutoComplete obtained a relative improvement over the next best

method (SoftImpute) of in on the cardiometabolic data and on the56% 𝑟2 34%
psychiatric disorders data across all simulations (Figure 2(c)). We found qualitatively
similar trends for other metrics such as the area under the precision-recall curve (AUPR)
and area under the ROC curve (AUROC) for the imputations obtained on the binary
phenotypes (Figure S2; Table S2). In comparison to SoftImpute, AutoComplete imputation
obtained a relative increase in AUPR of and AUROC of in the cardiometabolic11% 7%
dataset and an increase of for both metrics in the psychiatric disorders dataset (Table6%
1).

We performed a separate experiment on a small-scale subset of UKBB where we compare
AutoComplete to methods that include missForest and MICE that could not scale to the
full UKBB phenotypes and find that AutoComplete remains the most accurate method in
this setting (Section S2, Figure S5).

Finally, we also explored the importance of the copy-masking procedure. We compared
AutoComplete trained with copy-masking to training the denoising autoencoder with
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masking performed uniformly at random (Section S3). For the setting of 1% missing

values, the highest average obtained through uniformly random masking was 0.121 in𝑟2

comparison to 0.142 with AutoComplete ( ) with similar trends in tests with17%
increasing missingness (average improvement using copy-masking; Section S3,16%
Figure S6). We further assessed the importance of copy-masking in the evaluation step to
simulate missing values to measure imputation accuracy. Instead of copying existing
missing patterns, we chose values to be missing uniformly randomly among all observed
values until 1%~50% of the observed data was withheld for imputation in the psychiatric
disorders dataset (SectionS3, Figure S7). When not propagating the structured
missingness for testing, the imputation accuracy (r2) of AutoComplete was inflated to
0.213 on average (0.116 originally) while imputation accuracy of LifetimeMDD grew to
0.987 (0.468 originally). Softimpute also behaved similarly in this setting. We therefore
conclude that copy-masking is integral to evaluating imputation accuracy and that
AutoComplete benefits from mimicking realistic missingness patterns that aid the
denoising behavior of the deep learning model.

Imputed phenotypes improve the power to detect novel genetic risk factors

We explored the utility of phenotypes imputed using AutoComplete for improving power
in genome-wide association studies (GWAS). We first examined the reliability of a GWAS
performed on imputed phenotypes through a simulation in which we introduced
missingness into a phenotype that has a low level of missingness in the psychiatric
disorder dataset (alcohol consumption which is < 0.1% missing). The phenotype was
masked in 67% of the samples such that the sample size available for a GWAS was

. AutoComplete was then applied to impute the masked entries, recovering𝑁 = 114, 778​
the original sample size of with an imputation accuracy ( ) of .𝑁 = 337, 126​ 𝑟2 0. 397

We performed GWAS, in turn, on the observed phenotypes restricted to 33% of the
individuals ( ) and on the imputed phenotypes on the full sample size of𝑁 = 114, 778

(see Methods). Using the AutoComplete-impute phenotypes increases the𝑁 = 337, 126​
number of significantly associated SNPs ( ) from 14 to 87 with a𝑝 < 5 × 10−8

corresponding increase in the number of associated loci from three to six (Figure 3(a),
QQ-plot of GWAS with imputed phenotype in Figure 3(b)).

We tested the association of each of the 87 significantly associated SNPs with the
observed phenotype in the full sample and found that all 87 significantly associated SNPs

were found to be significant ( accounting for the number of hypotheses𝑝 < 5 × 10−4

tested; Figure 3 (c)). Further, we compared the marginal effects of SNPs estimated from
GWAS on each of the sub-sampled phenotypes and the imputed phenotype to the
phenotype observed in the full sample and observed that the squared Pearson correlation
between the effect sizes of SNP associations increases from (in line with expectation0. 35
that the subsampled GWAS was obtained on a subset of individuals from the full33%
sample [70]) in the subsampled GWAS to in the imputed GWAS.0. 6

We repeated the simulation and evaluation procedure for an additional phenotype with
low-levels of missingness (insomnia; Figure S3(a), QQ plot in Figure S3(b)) and found
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qualitatively similar results. The imputed phenotypes provided an effective increase in

power (imputation accuracy of ) with an increase from 10 to 28 significantly𝑟2 = 0. 183
associated SNPs corresponding to an increase in 3 to 6 significant loci. We found that 26
of the 28 associated SNPs were found to be associated in the original set of observed

phenotypes ( accounting for the number of hypotheses tested; Figure𝑝 < 5 × 10−4

S3(c)).

We then performed genome-wide association studies (GWAS) for five phenotypes
(LifetimeMDD [51], anxiety with drug use, using medication for MDD, number of MDD
episodes, and having ever taken cannabis) which were  clinically relevant to Major
Depressive Disorder (MDD) in the psychiatric disorder dataset after using AutoComplete
to impute all missing values. To verify that these phenotypes are accurately imputed, we
confirmed that the ratio of variance of the imputed observations to the original
observations (analogous to the metrics used to measure the quality of genotype
imputation [65, 66]) is sufficiently large (> 0.2 across these phenotypes; we had 62
phenotypes pass this threshold in the psychiatric disorders dataset).

We estimated the effective gain in sample size resulting from this procedure for each
phenotype (Table S3; see Methods). We observed an increase in the effective sample size
of 1.96-fold on average: LifetimeMDD had an effective sample size of 193,379 from 67,164
originally observed samples (a 1.88-fold increase) while the increase was lowest for
Cannabis Ever Taken (110,188 to 164,653 resulting in a 0.5-fold increase).

We performed GWAS with the imputed phenotypes and observed an increase in the total
number of significantly associated loci across all phenotypes of interest from four (when
analyzing the original phenotypes) to 129, with the mean increase being 25 loci (range 13
to 37; Table 2). The GWAS results of cannabis ever taken (from 2 loci to 28 loci) and
anxiety with drug use (from 0 to 16 loci) are shown in Figures 4(a) and 4(b) respectively
(see QQ-plots in Figure S4).

We investigated the relationship between the original and the imputed phenotypes by
estimating the genetic correlation ( ) between each of these phenotypes (both the𝑟

𝐺
original and the AutoComplete-imputed phenotypes) and phenotypes related to
psychiatric disorders obtained from cohorts outside the UK Biobank cohort: cannabis-use
disorder [14], multiple psychiatric disorders [15], MDD [16], schizophrenia [17], and
bipolar disorder [18]. Genetic correlation was estimated using LDSC for all pairs of 5
external phenotypes and 5 UK Biobank MDD phenotypes [19,20]. We compared the
results from observed UK Biobank phenotypes before imputation and those from
Autocomplete imputed phenotypes (Figure 4(c)). We observed that the genetic
correlations remained largely similar between using the observed and imputed UK
Biobank phenotypes (p-value < 0.05/25 accounting for 25 comparisons between the 5
phenotypes and 5 external studies). Thus,  the genetic component of the phenotypes
imputed by AutoComplete tend to be qualitatively similar to the original observed
phenotypes.
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Discussion

The ubiquity of missing data in population-scale biobanks necessitate effective methods
for imputation. Here, we describe AutoComplete, a deep-learning approach to imputation
which we demonstrate to be accurate and efficient for imputing phenotypes in the UK
Biobank.

AutoComplete increased imputation accuracy of highly missing phenotypes related to
cardiometabolic and psychiatric disorders in comparison to state-of-the-art linear
methods. This implies that understanding nonlinear dependencies among phenotypes in
biobank data is important.  Patterns of missingness are often structured for biobank-type
data as a consequence of the data-gathering procedures. We also observed that realistic
simulations of missing data make a substantial contribution to the accuracy of the model
learned for imputation (Section S3). Our use of copy-masking provides a straightforward
and general approach for training deep-learning methods in the presence of complex,
structured missingness thereby broadening their applicability.

We discuss limitations of our method and directions for future work. First,  the basic
autoencoder architecture underlying our method can be extended in many ways. While
we determined through cross validation that the majority of the imputation accuracy is
gained architecturally from the first three layers and the support for continuous and
binary imputations, a fuller exploration of the architecture of the neural network could
lead to further improvements to accuracy. Second, as biobanks collect diverse data
modalities, including imaging, time-series and multi-omic data, imputing missing data
that arises in the context of these diverse data types remains a challenge. The modularity
of the underlying  neural network architecture will enable our method  to deal with the
diversity of phenotypic data types that are being gathered and we leave this as a
promising direction for future work.  Third, our method does not provide estimates of
uncertainty in the imputed values. Propagating imputation uncertainty in downstream
analysis could, in principle, lead to more robust inferences. The typical approach to
estimate uncertainty uses multiple imputation in which multiple imputed datasets are
constructed by sampling from the predictive distribution (assuming a Bayesian model).
However, multiple imputation strategies tend to be challenging to apply to large-scale
datasets. While our current results suggest that our imputed phenotypes yield robust
genetic associations, reporting of uncertainty in the imputed phenotypes is an important
direction for future work. Finally, the consequence of using a deep-learning method is
that the resulting imputation phenotypes are often challenging to interpret. Such
interpretations are critical to understanding whether an imputed phenotype is enriched
for the genetic component of the original phenotype. Methods for interpreting deep
learning methods is an area of active research [54, 23] and could be extended to our
setting. Analyzing the signals driving our imputation method when applied to biological
datasets could reveal distinct subtypes of a disease and could provide insights into
disease etiology. Interpretable components could also give higher credence to the
imputed phenotypes.
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Methods

Datasets

The UK Biobank Dataset (UKBB) [5] makes available genetic data for up to half-million
individuals and thousands of traits. We gathered two collections of phenotypes in the
UKBB which were analyzed together from existing studies.

We collected a group of 230 cardiometabolic phenotypes [13,24]. These consisted of
phenotypes and serum biomarkers derived from body imaging and laboratory
measurements relevant to cardiometabolic disorders, consumption of prescribed drugs
(e.g. medication for cholesterol or aspirin), measures of daily physical activity and food
consumption, as well as anthropometric and general demographic information. In
addition, we collected ICD10 and ICD9 codes relating to non-alcoholic fatty liver disease
(NAFLD) [55, 56] and ICD10, ICD9, and OPCS-4 codes relating to coronary artery disease
(CAD) following [67].

We constructed a second dataset of 372 phenotypes related to psychiatric disorders. This
included lifetime and current MDD symptom screens [68,69], psychosocial factors,
comorbidities, family history of common diseases, a broad range of demographic
information, as well as both deep and shallow definitions of MDD derived from symptom
questionnaires using clinical diagnostic criteria or self-reports [51] . Both datasets consist
of white British unrelated individuals. Each of these collections included a≈ 300, 000
mix of continuous and binary-valued phenotypes (Table S1). Missingness rates for
phenotypes across individuals varied from 0% (age, sex) and up to 99% (addiction,
self-harm).

For each dataset containing individuals and phenotypes, a data matrix of dimension𝑁 𝑃
was created including missing values. Approximately of all individuals𝑁 × 𝑃 ≈ 50%

were reserved for testing (evaluating the accuracy of the methods) while the remainder
was used for training and any hyperparameter tuning for all methods. Continuous
phenotypes were normalized to have zero mean with unit variance per phenotype.
Binary-valued phenotypes were processed specific to the capabilities of each method; for
methods which did not handle binary data, labels were converted from to0, 1 − 0. 5, 0. 5
and treated as continuous values. To prevent information leakage, statistics of the training
split were used to normalize the test split.

AutoComplete

AutoComplete is based on a type of neural-network that is capable of simultaneously
imputing continuous and binary-valued phenotypes. For each individual, AutoComplete
considers a fixed list of phenotypes including missing values and reconstructs all
phenotypes from a latent representation using an auto-encoder architecture. Of the input
phenotypes, missing entries were masked (set to zero), then all observed phenotype
values were transformed to a hidden representation in the encoding stage. The decoding
stage transforms the hidden representation back to the input space such that all
phenotypes were reconstructed. To support heterogeneous data types, imputed entries
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corresponding to binary phenotypes were obtained as the output of a sigmoid function so
that these entries lie in the range .0, 1[ ]

Let denote a phenotype matrix such that is the value of  j-th phenotype𝑋
~

𝑁 × 𝑃 𝑋
~

𝑖𝑗
measured on i-th individual, denote  a indicator matrix (termed the Mask𝑀 𝑁 × 𝑃
matrix) where if the j-th phenotype is observed for i-th individual and𝑀

𝑖𝑗
= 1 𝑀

𝑖𝑗
= 0

otherwise. For simplicity, continuous and binary phenotypes were organized in such𝑋
~

that the first phenotypes were continuous.𝐶

denotes the nonlinear function corresponding to the autoencoder. The functionℎ ℎ
imputes both missing phenotype values and reconstructs observed ones. During
imputation, only the imputed missing values are used. Using the LeakyReLU function asΦ
a nonlinearity in the hidden layer and the sigmoid function which was applied to𝑠
binary-valued imputations, we define for the case of 1-hidden layer the following
feed-forward function (additional hidden layers could be defined analogously):ℎ

ℎ 1( ) = Φ 𝑊 1( )𝑋
~

𝑖,:
+ 𝑏 1( )( )

ℎ 2( ) = 𝑊 2( )ℎ 1( ) + 𝑏 2( )

 ℎ 𝑋
~

𝑖,:( ) = {ℎ
𝑗
2( )}

𝑗=1,...,𝐶
, {𝑠 ℎ

𝑗
2( )( )}

𝑗=𝐶+1,...,𝑃( ) 

where

, andΦ 𝑥( ) = 𝑚𝑎𝑥 0, 𝑥( ) − 𝑙
Φ

𝑚𝑖𝑛 0, 𝑥( ) 

𝑠 𝑥( ) = 1

1+𝑒−𝑥  

denotes row of (equivalently the vector of phenotypes associated with individual )𝑋
~

𝑖,:
𝑖 𝑋

~
𝑖

For each layer, the learnable weight parameter is a matrix where D is the𝑊 𝐷 × 𝑃
dimension of the hidden representation while the bias vector is of length D.𝑏

Given function h, the final imputed matrix is constructed from as follows :𝑋
^

𝑋
~

 

𝑋
^

𝑖,:
= 𝑀

𝑖,:
· 𝑋

~
𝑖,:

+ (1 − 𝑀
𝑖,:

) · ℎ 𝑋
~

𝑖,:( ),    1 < 𝑖 < 𝑁

Here denotes entrywise product..

In training, we promoted imputation using such that both truly observed and maskedℎ
phenotype values were subject equally to a reconstruction loss. Observed values were
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withheld based on existing missingness patterns which were randomly drawn from the
dataset by individuals, then applied to other individuals; a process we refer to as

copy-masking. To do this, a binary mask vector is drawn from the rows of the mask𝑚
~

matrix and was applied to the input of such that for individual- , the -th phenotype𝑀 ℎ 𝑖 𝑗
would be masked when or unmodified when . We controlled the𝑚

~
𝑗

= 0 𝑚
~

𝑗
= 1

prevalence of masking in training by the parameter which was the probability oneρ
individual would receive a copy-mask. The masking process of AutoComplete is
illustrated in Figure 1.

A joint loss function was defined over observed and masked values such that Mean
Square Error and Cross Entropy loss were applied to continuous and binary phenotypes
respectively. For simplicity the two types of phenotypes were partitioned by index C. The
joint loss function was applied over all values which were originally observed:

𝑦
𝑖,:

 = ℎ 𝑚
~

· 𝑋
~

𝑖,:( ) 

𝐿
𝑖

Θ( ) =
𝑗=1

𝐶

∑ 𝑀
𝑖𝑗

𝑦
𝑖𝑗

− 𝑋
~

𝑖𝑗( )2
 −

𝑗=𝐶+1

𝑃

∑ 𝑀
𝑖𝑗

 𝑋
~

𝑖𝑗
𝑙𝑜𝑔 𝑦

𝑖𝑗( ) + 1 − 𝑋
~

𝑖𝑗( )𝑙𝑜𝑔 1 − 𝑦
𝑖𝑗( )⎡⎢⎣

⎤⎥⎦ 

𝐿 Θ( ) =
𝑖

∑ 𝐿
𝑖

Θ( ) 

The parameters of were optimized with respect to theΘ ≡ {𝑊 1( ), 𝑏 1( ), 𝑊 2( ), 𝑏 2( )} ℎ
objective . Stochastic Gradient Descent (SGD) [25] was used to fit the neural net, where𝐿
the initial learning rate, momentum, and mini-batch size were also determined using
cross-validation. The weights and biases of the network were initialized using the
Kaiming Uniform distribution, and the slope parameter of LeakyReLU was initialized as

. Training proceeded up to epochs or convergence based on the validation𝑙
Φ

= 0. 01 500
split of the training split. A single RTX8000 GPU was used for all experiments.

Copy Masking We implemented copy-masking, a simulation procedure to induce realistic
patterns of missingness on observed data. For a given individual, missingness patterns
from other random individuals were applied with probability . This approach strives toρ
maintain the realistic missingness patterns in datasets while introducing simulated
missing values. Observed values were withheld based on existing missingness patterns
which were randomly drawn from the dataset by individual, then applied to other

individuals.  Therefore, a binary vector referred to as of length P where 1s indicated𝑚
~

non-missing entries was drawn randomly uniformly from the rows of the mask matrix ,𝑀
then applied to the input of such that for individual- , the -th phenotype could beℎ 𝑖 𝑗
masked as or unmodified as . We controlled the prevalence of masking in𝑚

~
𝑗

= 0 𝑚
~

𝑗
= 1

training by the parameter which was the probability one individual would receive aρ
copy-mask.
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In contrast, uniform randomly withholding observed values could distort the distribution
of the features, e.g., when two features have correlated missingness. In training, we used
copy-masking to simulate missing values such that they were reconstructed by the
autoencoder. For testing, copy-masking was used to to introduce additional missingness
to the original data in the range of , withholding the masked observed values1% ∼ 50%
for evaluation.

Hyperparameter Tuning

Hyper-parameter search was performed for SoftImpute using cross-validation on the
training set, adjusting the nuclear norm and maximum rank until reconstruction
mean-squared error was minimized. HI-VAE requires choosing hidden units per𝑦
phenotype, the size of the latent dimension, , and the number of latent mixture𝑧
components . The settings of , , were chosen as additional mixtures𝑠 𝑦 = 10 𝑧 = 8 𝑠 = 1
did not appear to improve imputation in cross-validation. GAIN was configured with a
hint rate of and the weighting of the mask reconstruction term was chosen as the0. 9
default . The generator and discriminator architectures of GAIN each consisted ofα = 10
3 fully-connected layers and ReLU as non-linearities. Similarly to MissForest and MICE,
KNN had difficulty scaling to the biobank data, and was evaluated once with .𝐾 = 10

Several hyperparameters were tuned using cross validation for AutoComplete in
optimizing the objective function. The chosen hyperparameters were learning rate of 2. 0
and momentum of for SGD optimization, learning rate decay of 0.5 for 5 epochs of0. 9
non-improvement, batch size of 4096, and leaky ReLU parameter of 0.01. For the
cardiometabolic and psychiatric disorders datasets, the encoding dimension (no𝐷 = 𝑃
reduction), hidden layer count of 1, and masking amount were determinedρ = 30%
through cross-validation using the training set.

Details of GWAS analysis

We used imputed genotypes available from the UKBB for the individuals that were
included in the phenotype imputation. We performed stringent filtering on the imputed
variants, removing all insertions and deletions (INDELs) and multi-allelic SNPs: we
hard-called genotypes from imputed dosages at 9,720,420 biallelic SNPs with imputation
INFO score greater than 0.9, MAF greater than 0.1%, and p-value for violation of

Hardy-Weinberg equilibrium , in individuals with a genotype probability threshold> 10−6

of 0.9 (individuals with genotype probabilities below 0.9 would be assigned a missing
genotype). Of these, 5,776,313 SNPs are common (MAF ). We consistently use these> 5%
SNPs for all analyses in this study.

We used 20 PCs computed with FlashPCA [52] on 337,126 White-British individuals in
UKBB and genotyping arrays as covariates for all GWAS. We performed principal
component analysis (PCA) on directly genotyped SNPs from samples in UKBB and used
PCs as covariates in all our analyses to control for population structure. From the array
genotype data, we first removed all samples who did not pass QC, leaving 337,126
White-British, unrelated samples. We then removed SNPs not included in the phasing and
imputation and retained those with minor allele frequencies (MAF) 0.1%, and P value≥
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for violation of Hardy-Weinberg equilibrium , leaving 593,300 SNPs. We then> 10−6

removed 20,567 SNPs that are in known structural variants (SVs) and the major
histocompatibility complex (MHC) as recommended by UKBB [5], leaving 572,733 SNPs.
Of these, 334,702 are common (MAF 5%), and from these common SNPs we further>
filtered based on missingness and pairwise LD with SNPs in a sliding< 0. 02 𝑟2 < 0. 1
window of SNPs to obtain 68,619 LD-pruned SNPs for computing PCs using1, 000
FlashPCA. We obtained 20 PCs, their eigenvalues, loadings and variance explained, and
consistently use these PCs as covariates for all our genetic analyses.

The number of loci were counted from the GWAS results through a chromosome-wide
clumping procedure. The top significantly detected SNP from one chromosome was
tallied as a hit, then all significant hits within 1 MB from the SNP were ignored. The
procedure was repeated for any remaining significant detection in the chromosome, then
repeated within all chromosomes.

GWAS on AutoComplete-imputed phenotypes

For the imputation of phenotypes for which we performed GWAS, AutoComplete was
allowed to fit all available individuals in order to impute missing entries. For binary
phenotypes, phenotypes were imputed in a continuous range of reflective of0 ∼ 1
confidence in the prediction.

GWAS on directly-phenotyped and imputed phenotypes in UKBB was performed using
imputed genotype data at the 5,776,313 SNPs (minor allele frequency , INFO score> 5%

) using logistic regression and linear regression implemented in PLINK v2 [53] for> 0. 9
binary and quantitative phenotypes respectively. For imputed phenotypes, linear
regression was performed.

Additional analysis of imputed phenotypes

The effective sample size was calculated as a function of imputation accuracy for a given
phenotype from simulations (1% missingness) and the number of missing values

imputed, such that for a given phenotype.𝑁
𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒

= 𝑁
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑

+ 𝑟
𝐴𝑢𝑡𝑜𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒
2 × 𝑁

𝐼𝑚𝑝𝑢𝑡𝑒𝑑

We examined genetic correlations ( ) between a subset of phenotypes within the𝑟
𝐺

psychiatric disorder dataset collected within the UK Biobank, and related phenotypes
collected from cohorts outside the UK Biobank. The five phenotypes examined within the
UK Biobank were: LifetimeMDD [51], anxiety with drug use, using medication for MDD,
number of MDD episodes, and having ever taken cannabis. In the context of these
phenotypes, we gathered GWAS summary statistics from external studies which examined
cannabis-use disorder [14], multiple psychiatric disorders [15], MDD [16], schizophrenia
[17], and bipolar disorder [18]. We used LD Score regression (LDSC) [19] to estimate 𝑟

𝐺
between each pairing of phenotypes using LD Scores estimated from the 1000 Genomes
white European population [26,27].
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Data Availability
The genotype and phenotype data are available by application from the UKBB
https://www.ukbiobank.ac.uk. The LD Scores from the 1000 Genomes project are
available from https://alkesgroup.broadinstitute.org/LDSCORE/.

URLs

AutoComplete software: https://github.com/sriramlab/AutoComplete

Plink 2.0: https://www.cog-genomics.org/plink/2.0/

LDSC: https://github.com/bulik/ldsc

HI-VAE: https://github.com/probabilistic-learning/HI-VAE

GAIN: https://github.com/jsyoon0823/GAIN

kNN:
https://scikit-learn.org/stable/modules/generated/sklearn.impute.KNNImputer.html

MissForeset: https://cran.r-project.org/web/packages/missForest/index.html

MICE: https://cran.r-project.org/web/packages/mice/index.html
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Figure and table legends

Figure 1: AutoComplete architecture. AutoComplete defines a feed-forward
encoder-decoder architecture h trained using copy masking -- a procedure that simulates
realistic missingness patterns that the model uses to impute missing values.
AutoComplete minimizes the loss function L that is defined over the observed and
masked values. AutoComplete supports the imputation of continuous and binary features.
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Figure 2: AutoComplete provides accurate imputations across a range of simulation
settings. (a) Overall imputation accuracy across a range (1%~50%) of simulated
missingness. We report the average r2 across phenotypes in each dataset (bars denote
average of 95% CIs). Only AutoComplete and SoftImpute could be reliably fit for all levels
of simulated missingness (HI-VAE and GAIN could not be evaluated for higher levels of
simulated missingness due to instabilities in training). (b) Imputation accuracy (Pearson's
r2) for individual phenotypes were compared between AutoComplete and SoftImpute
(next-best). Accuracy was measured under simulated levels of missing data, highlighted

for settings of 1%~20%. Bold dots indicate a significant difference in accuracy (𝑝 < 0.05
230

and respectively for cardiometabolic and psychiatric disorder phenotypes). (c)𝑝 < 0.05
372

Relative improvements in r2 imputation accuracy for binary-valued phenotypes.
Comparisons were aggregated over phenotypes between AutoComplete and each existing
method.
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Figure 3: AutoComplete imputation leads to replicable associations. We simulated
missing values (67% missingness) in a phenotype (Alcohol consumption) that had low
missingness and imputed missing values using AutoComplete. (a) GWAS for imputed
alcohol consumption (top, N=337,126) compared to GWAS on the observed phenotype
(bottom, N=112,297).  Triangle markers indicate significantly associated loci

(significantly associated SNPs in red, threshold indicated by red horizontal𝑝 < 5 × 10−8

lines). The number of significant loci increased from three to six corresponding to an
increase in the number of significantly associated SNPs from 14 to 87. (b) The
corresponding QQ-plot of the GWAS augmented with imputed measurements is shown.
(c) We attempted to test whether the significant associations obtained from the imputed
phenotypes ("Imputed") were truly associated with the original phenotype (100%
observed in data, "Original"). Z-scores of effect sizes for each experiment were plotted

against one another. Significant associations in the imputed phenotype ( )𝑝 < 5 × 10−8

were determined as having a verifiable effect in the fully observed phenotype GWAS for

(accounting for the number of SNPs tested). All 87 SNPs that were𝑝 < 5 × 10−4

significantly associated in the imputed test could be verified as being strongly associated
in the original test.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 15, 2022. ; https://doi.org/10.1101/2022.08.15.503991doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.15.503991
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4: GWAS on AutoComplete imputation phenotypes lead to additional
significant  genetic associations. For a select group of highly missing phenotypes which
are clinically relevant to psychiatric disorders, the results of Genome-Wide Association
Study (GWAS) were compared between limiting the analysis to only the observed
phenotypes and including measurements imputed using AutoComplete for all individuals.
An increase in the number of significant associations were observed for (a) cannabis ever
taken, (b) anxiety with drug use, and several more phenotypes (significant associations in

red, threshold indicated by the red horizontal line). (c) The genetic𝑝 < 5 × 10−8

correlation (rG) was assessed between the GWAS of highly missing phenotypes originating
from the UK Biobank and out-of-sample GWAS of similar traits (left). Colors indicate rG

closer to 1 (blue) or -1 (red). The genetic correlation was computed again after imputing
all missing phenotypes with AutoComplete (right). We tested for a significant change in
genetic correlations from using imputed phenotypes and non-imputed phenotypes. Stars
indicate nominally significant change ( ). None of the genetic correlations𝑝 < 0. 05
significantly changed between the two settings after correcting for multiple hypothesis

testing (Bonferroni correction, ).𝑝 < 0.05
5×5
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Table 1: Summary of imputation accuracy. Average accuracy in Pearson's r2 (for all
phenotypes and for binary phenotypes), area under the precision-recall curve (AUPR),
and area under the receiver operating characteristic curve (AUROC) across all simulations
of 1%~50% missing data.

Table 2: Comparison of GWAS performed on five phenotypes of interest with high
levels of missingness before and after imputation. We report the number of
significantly associated loci when performing GWAS on the original phenotype in
comparison to the number of significant loci obtained when performing GWAS after
imputing the missing phenotypes using AutoComplete. The number of additionally
discovered loci (More Loci) in applying AutoComplete were tallied in comparison to
original phenotype without imputation.
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