bioRxiv preprint doi: https://doi.org/10.1101/2022.08.04.502811; this version posted August 30, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Uni-Fold: An Open-Source Platform for Developing
Protein Folding Models beyond AlphaFold

Ziyao Lia,b,*, Xuyang Liu®%*, Weijie Chena’b’*, Fan Shen?, Hangrui Bi?,
Guolin Ke®' and Linfeng Zhang®%f

4DP Technology
bCenter for Data Science, Peking University
“School of Mathematical Sciences, Peking University
dAT for Science Institute, Beijing

{1izy01, liuxy, chenwj, shenf, bihr, kegl, zhanglf}@dp.tech

Abstract

Recent breakthroughs on protein structure prediction, namely AlphaFold, have
led to unprecedented new possibilities in related areas. However, the lack of train-
ing utilities in its current open-source code hinders the community from further
developing or adapting the model. Here we present Uni-Fold as a thoroughly
open-source platform for developing protein folding models beyond AlphaFold.
We reimplemented AlphaFold and AlphaFold-Multimer in the PyTorch framework,
and reproduced their from-scratch training processes with equivalent or better ac-
curacy. Based on various optimizations, Uni-Fold achieves about 2.2 times training
acceleration compared with AlphaFold under similar hardware configuration. On
a benchmark of recently released multimeric protein structures, Uni-Fold outper-
forms AlphaFold-Multimer by approximately 2% on the TM-Score. Uni-Fold is
currently the only open-source repository that supports both training and inference
of multimeric protein models. The source code, model parameters, test data, and
web server of Uni-Fold are publicly availableﬂ

1 Introduction

Understanding the three-dimensional (3D) structures of proteins is the preliminary must for studying
their functionalities and accordingly the mechanisms of biological activities. Predicting how proteins
fold via computational methods has long been a fundamental yet most challenging problem in life
science. Along with the development of artificial intelligence, a recent breakthrough on in silico
protein folding, namely AlphaFold [1]], unprecedentedly achieved “near experimental accuracy” on
a majority of monomeric proteins. To briefly summarize, this method directly predicts the atomic
coordinates of a protein using a combination of its amino acid sequence, multiple sequence alignment
(MSA), and solved homologous structures. In AlphaFold, the sequence and MSA information is
encoded via Evoformer, an attention-based deep neural network. The predicted structure is decoded
via a structure module, which predicts the local frames and torsion angles of all residues.

*These authors contributed equally to this work.

fGuolin Ke and Linfeng Zhang are corresponding authors of this work.

3The source code, model parameters and test data of Uni-Fold are available at https://github. com/
dptech-corp/Uni-Fold. The web server is available at the Hermite platform https://hermite.dp.
tech. The Colab server is available at https://colab.research.google.com/github/dptech-corp/
Uni-Fold/blob/main/notebooks/unifold.ipynb.

https://github.com/dptech-corp/Uni-Fold
https://github.com/dptech-corp/Uni-Fold
https://hermite.dp.tech
https://hermite.dp.tech
https://colab.research.google.com/github/dptech-corp/Uni-Fold/blob/main/notebooks/unifold.ipynb
https://colab.research.google.com/github/dptech-corp/Uni-Fold/blob/main/notebooks/unifold.ipynb
https://doi.org/10.1101/2022.08.04.502811
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.04.502811; this version posted August 30, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Adapted from AlphaFold, AlphaFold-Multimer [2] was later developed by the same team via training
AlphaFold on multimeric protein structures. AlphaFold-Multimer supports the prediction of protein
complex structures with significantly better performances compared with traditional docking methods.

The occurrence of the AlphaFold system undoubtedly shed light on countless new possibilities
of life science exploration. Well discussed in [3], these possibilities include assistance in solving
experimental structures, structure-based drug discovery, and protein designing, etc. Meanwhile, the
system is not yet perfect. For instance, it does not work well in predicting structures of membrane
proteins, anti-bodies, and the combinations of proteins and ligands. In addition, a more discouraging
fact is that the complexity of the AlphaFold system together with some other inconveniences made
it almost impossible for smaller research groups to re-train the system. This expels them from the
power of further developing the system, or adapting it to other applications. The aforementioned
inconveniences include: 1) the current open-source code of AlphaFold does not contain any training
scripts or utilities of the model; 2) the code of AlphaFold is based on JAX framework, which is limited
to a community currently much smaller than TensorFlow and PyTorch; and 3) the original AlphaFold
was designed and trained on Google Tensor Processing Unit (TPU), which is hardly accessible to the
majority of the research community.

In order to encourage wider collaborations in the area, we present Uni-Fold as a thoroughly open-
source platform for developing protein folding models beyond AlphaFold. Uni-Fold supports the
training and inference of both monomeric and multimeric models with high accuracy and efficiency.
In particular, we reimplemented both AlphaFold and AlphaFold-Multimer in the PyTorch framework,
and reproduced their from-scratch training processes on larger training data. To summarize, Uni-Fold
made the following contributions:

* Uni-Fold is an open-source platform that welcomes community contributions. We proved
the correctness of the implementation by reproducing the from-scratch training process of
AlphaFold and AlphaFold-Multimer with equivalent or better performances.

* Uni-Fold Multimer is, to the best of our knowledge, the first and only open-source imple-
mentation of AlphaFold-Multimer which supports both training and inference.

* With various optimization techniques, Uni-Fold is one of the fastest implementations of
AlphaFold. Under similar hardware configurations, the training process enjoys about 2.2
times acceleration compared with the official implementation.

The source code, model parameters, and test data of Uni-Fold are now publicly available. Meanwhile,
Uni-Fold as a protein structure prediction service is now available at Hermite, a new-generation drug
design platform powered by Al physics, and computing.

2 Method

Besides reimplementing AlphaFold and AlphaFold-Multimer according to the official code, we made
several alterations and improvements in Uni-Fold. In the rest of this paper, we refer to the monomeric
model as Uni-Fold Monomer, and the multimeric one as Uni-Fold Multimer.

2.1 Protein Homology

In this subsection, we describe the process of searching homologous sequences and structures in
Uni-Fold. Unless otherwise specified, the same pipeline is used in both training and inference.

Genetic Search We reused the genetic search protocol in AlphaFold and AlphaFold-Multimer.
We used JackHMMER [4] with MGnify [5], JackHMMER with UniRef90 [6], and HHBIits [[7]
with Uniclust30 [8] + BFD for monomers. For multimers, we additionally used JackHMMER with
UniProt [9] to search for sequences with species annotations. We used the same hyperparameters of
the MSA search tools as AlphaFold. Identical sequences in the MSAs were deduplicated. The MSA
block deletion and MSA clustering strategies of AlphaFold were implemented as is.

Cross-Chain Genetics It was widely demonstrated that MSAs with properly paired orthologs
encode cross-chain co-evolutionary information of protein heteromers and thus serve as strong
indicators of the complex structure. In Uni-Fold Multimer, we adopted MSA pairing, a technique
proposed in [10] and later used in AlphaFold-Multimer to build cross-chain genetics. For homomeric

https://doi.org/10.1101/2022.08.04.502811
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.04.502811; this version posted August 30, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

chains in a complex, we simply concatenated the duplicated MSAs of each chain; for heteromeric
chains, we ranked the MSA rows of each chain by the species similarities to the target sequence, and
then concatenated rows of the same rank. Unpaired MSA rows, as well as those with no species
annotations, were padded with gap symbols.

Template Search The template search process of Uni-Fold was much like to that of AlphaFold.
To be more specific, we used structure templates that were released before April 29th, 2020. In
training, the templates were first filtered such that all templates were released before the target. Top
n = 20 templates (if existed) modeled by the "sum_prob" output of HHSearch were kept and further
sub-sampled to k¥ = min(Uniform([0, n]), 4) templates. In inference, the top 4 templates were used.
For multimers, templates were individually searched for each heteromeric chain and sampled together.
We did not use cross-chain templates.

2.2 Model and Loss Functions

In this subsection, we describe the model and loss functions of Uni-Fold, which were implemented
closely following AlphaFold(-Multimer). Alterations are summarized below.

Alterations in Model Architecture We globally replaced the ReLU activation in AlphaFold(-
Multimer) to Gaussian Error Linear Units (GELUs) [[11], calculated as

GELU (z) = %a: (1 + tanh <\/Z (+ 0.044715333))) _ (1)

As the OuterProductMean module in AlphaFold tended to produce large numerical values which
led to training instability, we added a postprocessing layer to its output to lower its values:

x = Linear (LayerNorm (x)) . 2)

In most auxiliary heads but the predicted-LDDT head, AlphaFold(-Multimer) used a single linear
projection (& = Linear (x)). We enhanced this with an additional activation function:

x = Linear (GELU (Linear (LayerNorm (x)))) (3)

Shuffled Multi-Chain Permutation Alignment In AlphaFold-Multimer, a greedy method was
used to disambiguate homologous chains to their respective labels. The method first chose an anchor
candidate with the least ambiguity, by which the predicted structure was superposed to the ground
truth. A candidate permutation alignment was then derived by greedily minimizing the error of aligned
chain centers. The method iterated over all anchor candidates to derive the optimal permutation
alignment. In Uni-Fold Multimer, this process was further modified. Instead of greedily minimizing
the chain center error, we minimized C',-RMSD under the superposition of the anchor candidates, so
that tangled chains could be better disambiguated. Meanwhile, we shuffled the order of chains before
applying the greedy algorithm, and output the best alignment among n shuffles.

Entity-sharing MSA Mask Naively applying random masks on the MSAs of homomeric sequences
in multimers (as AlphaFold-Multimer did) would lead to data leakage in the masked MSA prediction
task, as their MSAs were identical. In Uni-Fold Multimer, we addressed this problem with entity-
sharing MSA mask, where the same MSA masks were used for chains with identical sequences.

Violation Loss Different violation losses were used between AlphaFold and AlphaFold-Multimer.
In both Uni-Fold Monomer and Multimer, we followed the recipe of AlphaFold-Multimer, where the
loss of steric clashes of non-bonded atoms was normalized by the number of clashing atom pairs, and
the bond angle loss was scaled with weight 0.3.

Representation Norm Loss In both Uni-Fold Monomer and Multimer, we added representation
norm losses to encourage numerical stability. The losses Ly, and Ly, punished the variations of the
MSA and pair representations among recycling iterations:

-7.0)),)

Linsa(m) = mean; ; (max (’Hm“” — \/E
— V| — T, 0)) , 5)

where d, and dp,; are the dimensions of MSA and pair representations and 7 = 1 is a tolerance
constant.

Lpir(z) = mean; ; (max (‘ |2 ;

https://doi.org/10.1101/2022.08.04.502811
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.04.502811; this version posted August 30, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

2.3 Implementation and Acceleration

In this subsection, we describe the implementation details of Uni-Fold. Some acceleration techniques
are specifically discussed in this subsection.

Mixed Precision Training Mixed precision training [[12] is widely used to accelerate the training
of large Transformers, where partial or whole calculations of the model is conducted in half-precision
to save time and memory. Instead of storing all activations in bfloat16 format as AlphaFold(-
Multimer) did, we used bfloat16 for most of the layers except for the input embedding layers,
geometry-related operations, softmax activations, layer normalizations, and the calculation of all
losses. In the specific implementation, parameters in both bfloat16 and float32 formats were
maintained. After the gradients were calculated, they were copied into f1oat32 format and then used
to update the float32 parameters. Then, before the next forward process, the f1oat32 parameters
were copied back into bfloat16 ones. Parameters and gradients were flattened into large tensors
during this process, which significantly reduced the time of kernel calls. When casting values from
float32to bfloat16 , we used stochastic rounding [13]] which was previously shown to encourage
numerical robustness. Notably, f1loat16 was also supported as a feature of Uni-Fold.

Operator Fusion The idea of operator fusion is to merge multiple consecutive operators into one.
This accelerates the calculation by reducing the vain cost of repeated global access of GPU memory.
Similar to previous works on Transformer acceleration [14} (15} [16], we fused the softmax and layer
normalization operators. This operator fusion was particularly important because its two components
were done in float32 format. Fusing them saved not only the memory access time, but also the
type converting cost on both time and memory. The operator fusing in Uni-Fold was based on an
open-source repositoryﬂ which was derived from the NVIDIA APEX packageﬂ We further optimized
its softmax kernel for large columns based on the softmax implementation of OneFlow [17].

Memory-Efficient Inference To reduce the peak memory cost at inference time, AlphaFold pro-
posed a “chunking” technology, which splits the input tensor into multiple small chunks (sub-batches)
along one dimension and sequentially forwards the chunks. However, the triangular multiplication
module did not use chunking in AlphaFold, as its computation cannot be split in a specific dimension.
During inference, Tri-Mul has to allocate 5 times the memory cost of pair representation O(N2,),
which becomes a memory bottleneck. In order to reduce the burden, we extend the one-dimension
"chunking" to the two-dimension "blocking" in Tri-Mul. In particular, we split the computation Tri-
Mul into multiple small blocks. For example, with block size N3, = 2562, there are [Nyes/Nolock |2
blocks. In this way, the peak memory consumption is reduced from O(5N2,) to O(2N2Z + 3N2 4)-

res

OpenFold[18] uses another solution to reduce the peak memory consumption to O(2.5N2,).

Per-Sample Gradient Clipping A notable detail in AlphaFold is that the gradient clipping was
applied to each sample instead of each batch. However, in most existing AlphaFold replicas such
as OpenFold, per-batch gradient clipping was widely used. In Uni-Fold, we implemented both and
found that per-sample gradient clipping displays a significant advantage. Detailed comparisons are
shown in Section[3.4]

Distributed Framework and Hardware We used a cluster of 128 NVIDIA A100 GPUs with 40GB
memory for the distributed training of Uni-Fold. The data parallelism strategy of AlphaFold was
used, where each GPU contained one training sample at each step. Meanwhile, as mixed-precision
and per-sample gradient clipping were used, the distributed algorithm was slightly modified from the
standard data parallel algorithm. Specifically, after backward, we copied the bfloat16 gradients to
float32 ones and then performed per-sample gradient clipping on each GPU independently. An
all-reduce operation was finally applied to the clipped gradients.

Training Data Compression In order to reduce run-time parsing costs, we preprocessed and stored
sequence features (MSA, templates, etc.) and labels (coordinates from PDB and MMCIF files) as
NumPy arrays. To reduce the storage and I/O costs, we adopted several data compression tricks. The
PDB dataset consisted of 600,000+ protein chains with only 130,000+ unique sequences. Sharing
MSAs and templates among identical sequences reduced the storage space to approximately 1/5.
We also compressed the deletion matrices of MSAs into sparse matrices. This further reduced the

*https://github.com/guolinke/fused_ops
>https://github.com/NVIDIA/apex

https://github.com/guolinke/fused_ops
https://github.com/NVIDIA/apex
https://doi.org/10.1101/2022.08.04.502811
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.04.502811; this version posted August 30, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Table 1: Training protocol and time for Uni-Fold. Alterations are italicized.

Task Monomer Multimer

Model Init. Training Finetuning | Init. Training Finetuning
Parameters initialized from Random Init. Training Random Init. Training
Sequence crop size 256 384 384 384
Number of sequences (MSA + templ.) 128 512 128 256
Number of templates 4 4 4 4
Number of extra MSAs 1024 1024 1152 1152
Batch size 128 128 128 128
Peak learning rate le-3 Se-4 le-3 Se-4
Warm-up steps 1,000 500 1,000 500
Decay steps 50,000 N/A 50,000 N/A
Decay ratio 0.95 N/A 0.95 N/A
Total training steps 80,000 5,000 80,000 10,000
Ratio of self-distillation samples 75% 50% 50% 50%
Violation loss weight 0.0 0.02 0.02 0.5

storage space to approximately 1/6. The features were then compressed to GZIP format, which
further reduced the storage space to 1/5. A combination of these tricks reduced the storage space
from more than 300TB to approximately 2TB with negligible I/O expenses.

3 Experiments

3.1 Training Uni-Fold

Training Protocol For the training of Uni-Fold Monomer, we used a much simpler two-stage
scheme compared with the official AlphaFold. In the initial training stage, we followed the same
setting as AlphaFold. In the finetuning stage, we skipped the first finetuning stage of AlphaFold
and directly finetuned the model following the configurations of model 1.1.2. Uni-Fold Multimer
adopted a similar two-stage scheme, where the initial training and the finetuning configurations of
AlphaFold-Multimer were used. Details of the training protocol are summarized in Table[I] where
we ifalicize our alterations to the configurations of AlphaFold(-Multimer).

Training Data We collected all PDB structures released before January 16th, 2022, among which
chain structures were used to train the monomer model, and assembly structures (including those with
one chain), the multimer model. Following AlphaFold, we filtered out the structures with resolutions
larger than 9 A, and those with any single amino acid accounting for more than 80% of the sequence.
For multimer training, besides the monomer filter, we further filtered out assemblies with more than
18 chains to encourage training stability.

Self-Distillation Uni-Fold adopted the self-distillation strategy of AlphaFold. Similarly, the self-
distillation dataset was constructed from Uniclust30 (version 2018_08). To balance data quality
and computational cost, we first filtered the sequence clusters in the dataset such that all center
sequences have lengths between 200 and 1,024. This left approximately 5 million clusters, which
were further used to search for MSAs against Uniclust30, the dataset itself, with HHBIlits. Default
search parameters are used except for the number of iterations n = 3. Among the output MSAs, we
first removed those with less than 200 sequences, then removed sequences that appeared in at least
two other MSAs, yielding a final dataset of about 360,000 sequences. Predicted structures by an early
version of Uni-Fold were used as labels, where structures of residues with Predicted LDDT lower
than 50% were masked. Both Uni-Fold Monomer and Multimer used this self-distillation dataset. We
did not use multimeric self-distillation samples.

3.2 Accuracy Benchmarks

Data We evaluated Uni-Fold and other baselines on recently released protein structures in the
Protein Data Bank (PDB) [[19]. We collected a total of 1,181 PDB structures released between January
17th and July 14th, 2022. For monomer evaluations, we collected the structures of all sequences and

https://doi.org/10.1101/2022.08.04.502811
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.04.502811; this version posted August 30, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Table 2: Accuracy results of Uni-Fold and baselines on recently released PDB structures. *: Note that
for multimer models on monomer tasks, the input is given as single sequences instead of assemblies.

Task | Model C,-RMSD (A) TM-Score GDT-TS GDT-HA C,-LDDT
AlphaFold 4.669 0.776 0.686 0.531 0.879
Monomer | OPenFold 4737 0.776 0.685 0.528 0.874
(301 Segs.) | Uni-Fold Monomer 4.683 0.776 0.689 0.537 0.880
AlphaFold-Multimer* 5.458 0.751 0.663 0.513 0.865
Uni-Fold Multimer* 5.142 0.756 0.658 0.496 0.864

8.263 0.763 0.607 0.458 0.883
8.115 0.764 0.605 0.456 0.882

Multimer | AlphaFold-Multimer 8.086 0.764 0.606 0.456 0.883
(162 PDBs) 8.141 0.764 0.611 0.462 0.885
8.238 0.761 0.609 0.461 0.882

Uni-Fold Multimer 7.025 0.783 0.619 0.460 0.872

kept those with less than 40% template identityﬂ The left sequences were further filtered so that all
sequences have resolutions less than 3A and lengths between 50 and 1024, yielding a total of 301
unique sequences with 876 structuresﬂ For multimer evaluations, we collected assemblies with 2
or more chains, among which all chain had less than 40% template identity. The left was further
filtered so that all assemblies have a resolution of less than 3.5 A and the total number of residues
between 50 and 1536, yielding a total of 162 assemblies. The PDB-IDs of the test dataset are publicly
availableﬂ To test the models’ power of predicting structures of entire assemblies, we did not process
the multimeric structures into contacted pairs of chains as AlphaFold-Multimer did. The homology
search process is described in Section[2.1] All baselines used the same features.

Metrics For monomer evaluations, as multiple ground-true structures ({7;}) may exist for a
sequence, we calculated the metrics using a prediction (P) and its best-aligned structure. Taking
TM-Score as an example,

TM(P,{T;}) = max TM(P, T;). (6)

For multimer evaluations, as we evaluated protein assemblies as a whole, using docking-based
metrics such as DockQ might lead to confusion. Alternatively, we made a natural extension to adapt
single-chain metrics to assemblies by conceptually merging all chains into one. Specifically, for all
baselines and metrics on multimeric tasks, the optimal alignment between a prediction and the ground
truth was calculated on the entire assembly structure. The scores were then calculated by averaging
over all Ca atoms. For TM-Score, we used the number of all residues in the assembly to calculate dj.
This process was iterated over all possible permutation alignments and the best score was reported.

Baselines We compared Uni-Fold with AlphaFold(-Multimer) and OpenFold. For monomer
evaluations, we report the performances of AlphaFold Model 2 and OpenFold Model 2, which
displayed the best accuracy and robustness in early tests. The training of Uni-Fold Monomer also
followed the setting of Model 2. For AlphaFold-Multimer, we report all performances of its 5 public
models. We used the v2 parameters of AlphaFold-Multimer.

Results Table[2|shows the results of evaluations. In general, Uni-Fold displays equivalent or better
performances compared with AlphaFold and OpenFold on both monomer and multimer tasks. We also
evaluated how well multimer models can predict monomer structures by using AlphaFold-Multimer
and Uni-Fold Multimer directly on monomer tasks. An obvious drop in performance was observed,
which is consistent with the results in [2]]. On both monomer and multimer tasks, Uni-Fold Multimer
significantly outperformed AlphaFold-Multimer on RMSD and TM-Score. As two models shared the
same data pipeline and model implementation, we would conclude that the elevation is obtained using
the updated training datasets and the model and loss alterations discussed in Section[2.2] Nevertheless,

The template identity refers to the maximum single template coverage using pipelines in Section
" A sequence may have multiple solved structures in homomers or different assemblies.
*https://github.com/dptech-corp/Uni-Fold

https://github.com/dptech-corp/Uni-Fold
https://doi.org/10.1101/2022.08.04.502811
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.04.502811; this version posted August 30, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

PDB: 7LY6 PDB: 7VKB PDB: 7TEN6

Figure 1: Example predictions from Uni-Fold (blue) and AlphaFold-Multimer (red).

Table 3: Configurations of the total training time benchmark.

Task Init./ FT samples (x10%) Niempl Nres Nseq Nextra_seq
Monomer Initial Training 10.0 4 256 128 1024
Finetuning 1.5 4 384 512 5120
Multimer Initial Training 10.0 4 384 128 1152
Finetuning ? 4 384 256 1152

Table 4: Training times (days) of Uni-Fold and other AlphaFold implementations. *: Not rigorous
benchmark performance.

Task Model Init. Training Finetuning Total time Accel. to AF
AlphaFold 7.— 4— 11— 1.00
Monomer MEGA-Fold* 11— 3.5- 14.5— 0.76
OpenFold 8.05 2.80 10.85 1.01
HelixFold 5.29 2.26 7.55 1.46
Uni-Fold (benchmark) 3.30 1.72 5.02 2.19
Uni-Fold (real)* 3.38 0.73 4.11 2.68
Multimer AlphaFold-Multimer* 14— 2— 16.— 1.00
WU Uni-Fold Multimer* 7.45 1.09 8.54 1.87
40~ OpenFold 7 40~ OpenFold { {7
OZenFoIdWA Il /I // - U:i'FOW
30 - SR /e
'

== OOM

20 -

=
o
'

10 -

Peak GPU Memory (GB)
N
o

o
o

100 -

0.8 OpenFolduun i/ . OpenFold /
OpenfFold # / &~ Uni-Fold
~de— FastFold / 80 - —~ oom ’
0.6 - =& Uni-Fold 4

= = OOM

Forward Time (s)
o
N

o
[N]

o
<)
,

|] ! l 0-= ! [!
0 500 1000 1500 1500 3000 4500 6000
No Chunk Chunk Size 4

Figure 2: Inference speed and memory usage of Uni-Fold and other baselines with regard to different
sequence lengths, on one Evoformer layer. The left is the result without chunking, while the right is
the result with chunk size 4. Gray dash lines indicate that the next data points are infeasible due to
Out-of-Memory errors.

https://doi.org/10.1101/2022.08.04.502811
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.04.502811; this version posted August 30, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Table 5: Running time and GPU memory usage of an Evoformer layer. The number of MSA is 128
and the number of residues is 256.

Model \ Forward (ms) Backward (ms) Total (ms) Peak Mem. (GB)
OpenFoldy ya 20911 39.007 59.918 1.944
OpenFold 17.198 23.703 40.901 1.836
FastFold 9.415 20.247 29.662 1.776
Uni-Fold 8.440 18.472 26.912 1.743

according to the performances of GDT-HA and C,,-LDDT, predictions from AlphaFold-Multimer
may have more accurate localities compared with Uni-Fold.

We present several example predictions from Uni-Fold and AlphaFold-Multimer in Figure[I] Both
models have high accuracies on the three examples (TM-Score > 0.90). Predictions from Uni-Fold
Multimer have average TM-score 0.984 and C,,-LDDT 0.924, while AlphaFold-Multimer 0.969 and
0.968. The different performances on the two metrics are consistent with the results in Table 2]

3.3 Efficiency Benchmarks

In this subsection, we introduce the efficiency of Uni-Fold compared with other existing imple-
mentations of AlphaFold. On all tasks and all models, mixed precision with bfloat16 was used.
AlphaFold(-Multimer) used 128 TPU cores; MEGA-Fold [20]] used 128 Ascend 910; all other
baselines used 128 NVIDIA A100 GPUs.

Training We compared the end-to-end training time of Uni-Fold and other AlphaFold implementa-
tions. The detailed configurations are displayed in Table [3JOn monomer tasks, we followed the model
configurations in [21]] for fair comparison. On multimer tasks, we followed [2]], where Nexra msa 18
inferred from the code. As AlphaFold-Multimer introduced its training details too briefly, we did not
know the exact finetuning steps. Results of OpenFold and HelixFold are referred directly from [21],
and results of AlphaFold(-Multimer) are from [[1} 2]. We do not include the results of FastFold in
this table because it did not report training time on 128 GPUs. Table] shows the results, in which
acceleration ratios to official AlphaFold(-Multimer), "Accel. to AF", are also calculated. Under
similar hardware setting and benchmark configuration, Uni-Fold is about 2.2 times faster than the
official AlphaFold, also leading other recent baselines. Under the actual configurations of Uni-Fold
in Table [T](Uni-Fold (real)), the total training time is approximately 4.11 days. Despite that we do
not know the exact steps of AlphaFold-Multimer, we achieved better performances 1.9 time faster.

Inference Figure[2|shows the inference speed and memory usage of Uni-Fold and other baselines,
benchmarked on one Evoformer layer by an NVIDIA A100 GPU with 40GB memory. In all settings,
the number of MSAs is set as 512, and bfloat16 is used. Uni-Fold is consistently faster than all
baselines. It also enjoys less peak GPU memory usage, indicating that with the same hardware, Uni-
Fold can be used to predict longer sequences. When using the chunk size of 4, the maximum sequence
length that an Evoformer layer can accept is about 6720 in Uni-Fold, about 5888 in OpenFold.

Evoformer Benchmark To further benchmark the efficiency of Uni-Fold against more baselines
that do not include end-to-end training time, following [22]], we tested the running time and peak
GPU memory consumption of an Evoformer layer in both forward and backward propagation. We
used a configuration of 128 MSAs and 256 residues. We included OpenFold and its variant, OpenFold
with Low Memory Attention (OpenFoldyma), as well as FastFold as baselines under this settingﬂ
Results are summarized in Table[5] where Uni-Fold displays the best performances on both speed
and memory efficiency. A surprising observation is that OpenFold; ;4 is much slower and uses more
memory compared with OpenFold. We double-checked our benchmark scripts and would conclude
that the LMA optimization is possibly depreciated in the ongoing development of OpenFold.

“We used OpenFold code with commit ID a44bbebbfa4dbb8b228e0c8d77338173c£78d699, FastFold
code with commit ID 665e6c97a7d95d3db2df860d104fa3c456c71fe2.

https://doi.org/10.1101/2022.08.04.502811
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.04.502811; this version posted August 30, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

0.80 -

0.60 -

0.40 - [
| —— Per-sample (0.100) 1'0 1'2 1I4 1|6 1Ig
0.20 - / Per-batch (0.100) 3
Per-batch (0.050) #steps (x10%)

Per-batch (0.025)

Cq-LDDT

0.00 - 1 1 1 1 1 1 1
0 3 6 9 12 15 18
#steps (x103)

Figure 3: Training accuracies of Uni-Fold Monomer under different gradient clipping strategies.

3.4 Effect of Per-Sample Gradient Clipping

Figure [3] shows the training accuracies measured by C,,-LDDT with regard to different gradient
clipping strategies. By default, a per-sample gradient clipping by the global norm with value 0.1 was
used. We compared this strategy with per-batch gradient clipping with value 0.1, 0.05, and 0.025.
The intuition of reducing the value of per-batch clipping was that per-sample clipping always has
smaller gradients than per-batch clipping under the same value. Results in Figure [3]indicate that
per-sample clipping leads to consistently better model convergence.

4 Related Work

Plenty of efforts have been devoted to reimplementing or improving AlphaFold. RoseTTAFold [23],
known as the earliest re-implementation of AlphaFold (before its release of code), achieved near
performance to AlphaFold, while its developers also decided not to release the training code. Open-
Fold [18] is an open-source repository that includes the training utilities of the AlphaFold model,
yet currently, it does not support the training and prediction of multimeric protein structures. Fast-
Fold [22], on the other hand, proposed a model parallelism solution based on the implementation
of OpenFold to accelerate training. However, the authors did not provide any details or results of
from-scratch training except for efficiency. MEGA-Fold [20] is a recent implementation of AlphaFold
trained from-scratch on the MindSpore framework and Ascend 910 hardware. HelixFold [21] is
another recent implementation of AlphaFold that supports training and model parallelism under the
PaddlePaddle framework.

5 The Chronicle of Uni-Fold Development

Released on December 8th, 2021, Uni-Fold vl.O.(fE] (Uni-Fold-JAX) was the first open-source repos-
itory (with training scripts) that reproduced the from-scratch training of AlphaFold with approaching
accuracy. Currently, Uni-Fold-JAX is still the only open-source repository that supports the training of
official AlphaFold implementation. On April 24th, 2022, we released Uni-Fold v1.1.0 as a service on
Hermite. Compared with AlphaFold, Uni-Fold v1.1.0 enjoyed faster training and inference speed as
well as better accuracy on newly (at then) released PDB structures. On May 26th, 2022, we released
Uni-Fold v2.0.0 on Hermite. Uni-Fold v2.0.0 contained the first reproduction of from-scratch training
of AlphaFold-Multimer, with slightly better accuracy on newly (at then) released PDB multimeric
structures. On August 1st, 2022, we made Uni-Fold v2.0.0 publicly available on GitHub. The released
code supported both training and inference of AlphaFold(-Multimer). Currently, this is the only
open-source repository that supports the training of AlphaFold-Multimer.

""https://github.com/dptech-corp/Uni-Fold- jax

https://github.com/dptech-corp/Uni-Fold-jax
https://doi.org/10.1101/2022.08.04.502811
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.04.502811; this version posted August 30, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

References

[1] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Zidek, Anna Potapenko, Alex
Bridgland, Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino
Romera-Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen,
David Reiman, Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas
Berghammer, Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray
Kavukcuoglu, Pushmeet Kohli, and Demis Hassabis. Highly accurate protein structure predic-
tion with alphafold. Nature, 596:583-589, 2021.

[2] Richard Evans, Michael O’Neill, Alexander Pritzel, Natasha Antropova, Andrew Senior, Tim
Green, Augustin Zl’dek, Russ Bates, Sam Blackwell, Jason Yim, Olaf Ronneberger, Sebastian
Bodenstein, Michal Zielinski, Alex Bridgland, Anna Potapenko, Andrew Cowie, Kathryn Tun-
yasuvunakool, Rishub Jain, Ellen Clancy, Pushmeet Kohli, John Jumper, and Demis Hassabis.
Protein complex prediction with alphafold-multimer. bioRxiv, 2022.

[3] Ewen Callaway. What’s next for AlphaFold and the AI protein-folding revolution. Nature,
604:234-238, 2022.

[4] L. Steven Johnson, Sean R. Eddy, and Elon Portugaly. Hidden markov model speed heuristic
and iterative HMM search procedure. BMC Informatics, 11:1-8, 2010.

[5] Alex L. Mitchell, Alexandre Almeida, Martin Beracochea, Miguel Boland, Josephine Burgin,
Guy Cochrane, Michael R. Crusoe, Varsha Kale, Simon C. Potter, Lorna J. Richardson, Ekaterina
Sakharova, Maxim Scheremetjew, Anton Korobeynikov, Alex Shlemov, Olga Kunyavskaya,
Alla Lapidus, and Robert D. Finn. MGnify: the microbiome analysis resource in 2020. Nucleic
Acids Research, 48(D1):D570-D578, 2020.

[6] Baris E. Suzek, Yuqi Wang, Hongzhan Huang, Peter B. McGarvey, Cathy H. Wu, and UniProt
Consortium. UniRef clusters: a comprehensive and scalable alternative for improving sequence
similarity searches. Bioinformatics, 31(6):926-932, 2015.

[7] Michael Remmert, Andreas Biegert, Andreas Hauser, and Johannes S6ding. HHblits: lightning-
fast iterative protein sequence searching by HMM-HMM alignment. Nature Methods, 9:173—
175, 2012.

[8] Milot Mirdita, Lars von den Driesch, Clovis Galiez, Maria J. Martin, Johannes Soding, and
Martin Steinegger. Uniclust databases of clustered and deeply annotated protein sequences and
alignments. Nucleic Acids Research, 45(D1):D170-D176, 2017.

[9] UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids
Research, 49(D1):D480-D489, 2021.

[10] Tian-ming Zhou, Sheng Wang, and Jinbo Xu. Deep learning reveals many more inter-protein
residue-residue contacts than direct coupling analysis. bioRxiv, 2018.

[11] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv, 1606.08415,
2016.

[12] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Frederick Diamos, Erich Elsen,
David Garcia, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao
Wu. Mixed precision training. arXiv, 1710.03740, 2017.

[13] Pedram Zamirai, Jian Zhang, Christopher R. Aberger, and Christopher De Sa. Revisiting
bfloat6 training. arXiv, 2010.06192, 2020.

[14] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using model
parallelism. arXiv, 1909.08053, 2019.

[15] Payal Bajaj, Chenyan Xiong, Guolin Ke, Xiaodong Liu, Di He, Saurabh Tiwary, Tie-Yan Liu,
Paul Bennett, Xia Song, and Jianfeng Gao. Metro: Efficient denoising pretraining of large scale
autoencoding language models with model generated signals. arXiv preprint arXiv:2204.06644,
2022.

10

https://doi.org/10.1101/2022.08.04.502811
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.04.502811; this version posted August 30, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

[16] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System
optimizations enable training deep learning models with over 100 billion parameters. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pages 3505-3506, 2020.

[17] Jinhui Yuan, Xinqi Li, Cheng Cheng, Juncheng Liu, Ran Guo, Shenghang Cai, Chi Yao, Fei
Yang, Xiaodong Yi, Chuan Wu, Haoran Zhang, and Jie Zhao. Oneflow: Redesign the distributed
deep learning framework from scratch, 2021.

[18] Gustaf Ahdritz, Nazim Bouatta, Sachin Kadyan, Qinghui Xia, William Gerecke, and Mohammed
AlQuraishi. OpenFold, 11 2021.

[19] Stephen K Burley, Helen M. Berman, Gerard J. Kleywegt, John L. Markley, Haruki Nakamura,
and Sameer Velankar. Protein Data Bank (PDB): The single global macromolecular structure
archive. Methods of Molecular Biology, 1607:627-641, 2017.

[20] Sirui Liu, Jun Zhang, Haotian Chu, Min Wang, Boxin Xue, Ningxi Ni, Jialiang Yu, Yuhao
Xie, Zhenyu Chen, Mengyun Chen, Yuan Liu, Piya Patra, Fan Xu, Jie Chen, Zidong Wang,
Lijiang Yang, Fan Yu, Lei Chen, and Yi Qin Gao. PSP: million-level protein sequence dataset
for protein structure prediction. arXiv, 2206.12240, 2022.

[21] Guoxia Wang, Xiaomin Fang, Zhihua Wu, Yiqun Liu, Yang Xue, Yingfei Xiang, Dianhai
Yu, Fan Wang, and Yanjun Ma. Helixfold: An efficient implementation of alphafold2 using
paddlepaddle. arXiv, 2207.05477, 2022.

[22] Shenggan Cheng, Rui Min Wu, Zhongming Yu, Bin-Rui Li, Xiwen Zhang, Jian Peng, and Yang
You. Fastfold: Reducing alphafold training time from 11 days to 67 hours. arXiv, 2203.00854,
2022.

[23] Minkyung Baek, Frank DiMaio, Ivan Anishchenko, Justas Dauparas, Sergey Ovchinnikov,
Gyu Rie Lee, Jue Wang, Qian Cong, Lisa N. Kinch, R. Dustin Schaeffer, Claudia Millén,
Hahnbeom Park, Carson Adams, Caleb R. Glassman, Andy DeGiovanni, Jose H. Pereira,
Andria V. Rodrigues, Alberdina A. van Dijk, Ana C. Ebrecht, Diederik J. Opperman, Theo
Sagmeister, Christoph Buhlheller, Tea Pavkov-Keller, Manoj K. Rathinaswamy, Udit Dalwadi,
Calvin K. Yip, John E. Burke, K. Christopher Garcia, Nick V. Grishin, Paul D. Adams, Randy J.
Read, and David Baker. Accurate prediction of protein structures and interactions using a
three-track neural network. Science, 373(6557):871-876, 2021.

11

https://doi.org/10.1101/2022.08.04.502811
http://creativecommons.org/licenses/by/4.0/

	ㄴ㔠〠潢樊㰼 呩瑬攨﻿ㄴ㘠〠潢樊㰼 呩瑬攨﻿ㄴ㜠〠潢樊㰼 呩瑬攨﻿ㄴ㠠〠潢樊㰼 呩瑬攨﻿ㄴ㤠〠潢樊㰼 呩瑬攨﻿ㄵ〠〠潢樊㰼 呩瑬攨﻿ㄵㄠ〠潢樊㰼 呩瑬攨﻿ㄵ㈠〠潢樊㰼 呩瑬攨﻿ㄵ㌠〠潢樊㰼 呩瑬攨﻿ㄵ㐠〠潢樊㰼 呩瑬攨﻿ㄵ㔠〠潢樊㰼 呩瑬攨﻿ㄵ㘠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬳㈳⸲㘱″ㄱ⸴㤹″㈹⸲㌹″㈳⸹㤲崊⽄敳琠嬲㜴‰⁒ 塙娠ㄲ㐮ㄴ〰‱ㄶ⸰㤱〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄵ㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㔲⸲㌳′〵⸵ㄳ′㔹⸲〶′ㄴ⸲㘱崊⽄敳琠嬷‰⁒ 塙娠ㄱ㈮㤸㄰‷〳⸸㐸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄵ㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬴ㄴ⸵㈷‱〳⸱㐠㔰㐮㤹㘠ㄱ㐮㤸㙝ਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨桴瑰猺⼯杩瑨畢⹣潭⽤灴散栭捯牰⽕湩ⵆ潬搩㸾ਯ卵扴祰支䱩湫㸾敮摯扪਱㔹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛㄰㜮〰㐠㤳⸱㜷′〴⸱ㄶ‱〳⸳㠷崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽧楴桵戮捯洯摰瑥捨ⵣ潲瀯啮椭䙯汤⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊ㄶ〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬴ㄶ⸸㠠㤳⸱㜷‵〴⸹㤶‱〳⸳㠷崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽨敲浩瑥⹤瀮瑥捨⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊ㄶㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬱〷⸰〴‸㌮㈱㐠ㄲ㜮㠲ㄠ㤳⸴㈴崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽨敲浩瑥⹤瀮瑥捨⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊ㄶ㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬲㔴⸰ㄸ‸㌮㈱㐠㔰㐮㤹㘠㤳⸴㈴崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽣潬慢⹲敳敡牣栮杯潧汥⹣潭⽧楴桵戯摰瑥捨ⵣ潲瀯啮椭䙯汤⽢汯戯浡楮⽮潴敢潯歳⽵湩景汤⹩灹湢⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊ㄶ㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬱〷⸰〴‷㈮㈵㔠㌰㜮ㄵ㔠㠳⸴㘲崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽣潬慢⹲敳敡牣栮杯潧汥⹣潭⽧楴桵戯摰瑥捨ⵣ潲瀯啮椭䙯汤⽢汯戯浡楮⽮潴敢潯歳⽵湩景汤⹩灹湢⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊ㄶ㐠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈲⸰㠮〴⸵〲㠱ㄩ㸾敮摯扪਱㘵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄳㄮ㜸‷㜸′㠴⸵㔶‷㠸崊⽁†ㄶ㐠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਱㘶‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礯㐮〯⤾㹥湤潢樊ㄶ㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㜶⸵㐸‷㘲″㤰⸱㐸‷㜲崊⽁†ㄶ㘠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਱㘸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈹㜮㔵㤠㜰㤮〴ㄠ㌰㐮㔳㌠㜱㜮㜸㡝ਯ䑥獴⁛㜠〠删⽘奚‱ㄲ⸹㠱〠㘰㠮㘰㄰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㘹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈹㜮㐸ㄠ㘵㤮㠲㘠㌰㐮㐵㔠㘶㠮㘷㉝ਯ䑥獴⁛㜠〠删⽘奚‱ㄲ⸹㠱〠㔴㘮〸㄰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㜰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈰㜮㤲㐠ㄶ㔮㘷㘠㈱㐮㠹㠠ㄷ㐮㐲㍝ਯ䑥獴⁛㜠〠删⽘奚‱ㄲ⸹㠱〠㔱㜮㐸㌰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㜱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈸〮㄰㐠ㄶ㔮㔷㜠㈸㜮〷㠠ㄷ㐮㐲㍝ਯ䑥獴⁛㜠〠删⽘奚‱ㄲ⸹㠱〠㐸㠮㠸㔰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㜲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐲ㄮ㤹㔠ㄶ㔮㔷㜠㐲㠮㤶㤠ㄷ㐮㐲㍝ਯ䑥獴⁛㜠〠删⽘奚‱ㄲ⸹㠱〠㐲㜮㔶〰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㜳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐹㐮㘳㤠ㄶ㔮㔷㜠㔰ㄮ㘱㈠ㄷ㐮ㄵ㑝ਯ䑥獴⁛㜠〠删⽘奚‱ㄲ⸹㠱〠㌸㠮〵㐰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㜴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄷ㘮㜵㔠ㄵ㐮㘶㠠ㄸ㌮㜲㤠ㄶ㌮㔱㑝ਯ䑥獴⁛㜠〠删⽘奚‱ㄲ⸹㠱〠㌴㠮㔴㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㜵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄴ㐮㈳‱㐳⸶㌹‱㔱⸲〴‱㔲⸶〵崊⽄敳琠嬷‰⁒ 塙娠ㄱ㈮㤸㄰″〹⸰㐰〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄷ㘠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㔸⸶㔠㜰⸹〴‱㜰⸶〵‷㤮㜵ㅝਯ䑥獴⁛㜠〠删⽘奚‱〸′㠰⸴㐳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄷ㜠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈲⸰㠮〴⸵〲㠱ㄩ㸾敮摯扪਱㜸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄳㄮ㜸‷㜸′㠴⸵㔶‷㠸崊⽁†ㄷ㜠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਱㜹‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礯㐮〯⤾㹥湤潢樊ㄸ〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㜶⸵㐸‷㘲″㤰⸱㐸‷㜲崊⽁†ㄷ㤠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਱㠱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌱㠮㘶㠠㔰㠮㜱㤠㌳〮㘲㌠㔱㜮㐶㙝ਯ䑥獴⁛㜠〠删⽘奚‱〸′㔱⸸㐵〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄸ㈠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈲⸰㠮〴⸵〲㠱ㄩ㸾敮摯扪਱㠳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄳㄮ㜸‷㜸′㠴⸵㔶‷㠸崊⽁†ㄸ㈠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਱㠴‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礯㐮〯⤾㹥湤潢樊ㄸ㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㜶⸵㐸‷㘲″㤰⸱㐸‷㜲崊⽁†ㄸ㐠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਱㠶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌲㤮㐲㘠㘵㠮㈶㠠㌴ㄮ㌸ㄠ㘶㜮〱㕝ਯ䑥獴⁛㜠〠删⽘奚‱〸′㈳⸲㐷〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄸ㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㈱⸸ㄴ‵㐹⸰㜷″㌳⸷㘹‵㔷⸹㈴崊⽄敳琠嬷‰⁒ 塙娠㄰㠠ㄸ㌮㜴㄰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㠸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌳〮㜴㈠㐹㘮㤲″㐲⸶㤷‵〵⸶㘷崊⽄敳琠嬷‰⁒ 塙娠㄰㠠ㄵ㔮ㄴ㌰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㠹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌴㔮㘹㌠㐹㘮㠲″㔷⸶㐸‵〵⸶㘷崊⽄敳琠嬷‰⁒ 塙娠㄰㠠ㄱ㔮㘳㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㤰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌶〮㘴㐠㐹㘮㠲″㜲⸵㤹‵〵⸶㘷崊⽄敳琠嬳〠〠删⽘奚‱〸‷㈰⸹㐶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄹㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬱㤶⸶㘷‴㔱⸱㈷′〲⸶㐴‴㘳⸶㉝ਯ䑥獴⁛㌠〠删⽘奚‱㈴⸱㐰〠㤲⸸ㄳ〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄹ㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬴㄰⸴㐠㐵ㄮㄲ㜠㐱㘮㐱㠠㐶㌮㘲崊⽄敳琠嬳‰⁒ 塙娠ㄲ㐮ㄴ〰‸ㄮ㤶㌰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㤳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐵㠮㜲ㄠ㐴㈮㈷㔠㐷〮㘷㘠㐵ㄮㄲ㉝ਯ䑥獴⁛㌰‰⁒ 塙娠㄰㠠㘶㤮㌴〰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㤴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄵ〮〲㈠㌲㐮㔶㐠ㄶㄮ㤷㜠㌳㌮㐱崊⽄敳琠嬳〠〠删⽘奚‱〸‶㈸⸶㐳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄹ㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬱㜷⸸㜷′㘱⸳㤸‱㤲⸳㈳′㜰⸲㐴崊⽄敳琠嬶‰⁒ 塙娠㄰㠠㔲ㄮ㐹㈰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㤶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛ㄲ㌮ㄴ㌠㜸⸸㘵′㤹⸲㘵‹ㄮ㜰㥝ਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨桴瑰猺⼯杩瑨畢⹣潭⽧畯汩湫支晵獥摟潰猩㸾ਯ卵扴祰支䱩湫㸾敮摯扪਱㤷‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛ㄲ㌮ㄴ㌠㘸⸰ㄵ′㘶⸳㈲‸〮㠵㡝ਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨桴瑰猺⼯杩瑨畢⹣潭⽎噉䑉䄯慰數⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊ㄹ㠠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈲⸰㠮〴⸵〲㠱ㄩ㸾敮摯扪਱㤹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄳㄮ㜸‷㜸′㠴⸵㔶‷㠸崊⽁†ㄹ㠠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ〰‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礯㐮〯⤾㹥湤潢樊㈰ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㜶⸵㐸‷㘲″㤰⸱㐸‷㜲崊⽁†㈰〠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ〲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㐶㠮㈹ㄠ㌵㔮㈲㠠㐷㔮㌳″㘶⸱㌲崊⽄敳琠嬴‰⁒ 塙娠ㄹ〮㜳㤰‷㈴⸱㔵〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈰㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲ㄱ⸵㤸‸ㄮ㘹㐠㈲㌮㔵㌠㤰⸶㙝ਯ䑥獴⁛㌰‰⁒ 塙娠㄰㠠㔹㠮㠵㐰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ〴‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㈮〸⸰㐮㔰㈸ㄱ⤾㹥湤潢樊㈰㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌱⸷㠠㜷㠠㈸㐮㔵㘠㜸㡝ਯ䄠′〴‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㈰㘠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⼴⸰⼩㸾敮摯扪ਲ〷‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈷㘮㔴㠠㜶㈠㌹〮ㄴ㠠㜷㉝ਯ䄠′〶‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㈰㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬲㤵⸶㈷‵〹⸵㠵″〱⸶〴‵㈲⸰㜸崊⽄敳琠嬳㔠〠删⽘奚‱㈴⸱㐰〠㄰㌮㔰㈰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ〹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㈵㤮㈱㘠㐸㘮㔷ㄠ㈶㔮ㄹ㌠㐹㠮㠷㙝ਯ䑥獴⁛㌵‰⁒ 塙娠ㄲ㐮ㄴ〰‹㈮㠱㌰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㄰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛ㄴㄮ㠰ㄠ㐴ㄮ㜳㤠ㄴ㜮㜷㠠㐵㐮㈳㉝ਯ䑥獴⁛㌵‰⁒ 塙娠ㄲ㐮ㄴ〰‸ㄮ㤶㌰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲㄱ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㈵㤮㜲㤠㐱㤮㤲ㄠ㈷㐮ㄷ㔠㐳〮㠲㕝ਯ䑥獴⁛ㄠ〠删⽘奚‱〸′㐱⸷㈴〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈱㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬱㜱⸶㤶‱㠷⸰㌠ㄷ㠮㘱‱㤸⸰㐴崊⽄敳琠嬳㔠〠删⽘奚‱㐲⸰㘴〠㜲㐮ㄵ㔰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲㄳ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈵㤮㜸㠠ㄴ㔮㔵ㄠ㈶㘮㜶㈠ㄵ㐮㈹㡝ਯ䑥獴⁛㜠〠删⽘奚‱ㄲ⸹㠱〠㘰㠮㘰㄰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲㄴ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㐳㐮ㄵ‱㄰⸶㘷‴㐸⸳㐷‱㈱⸵㝝ਯ䑥獴⁛㈠〠删⽘奚‱〸‵㠳⸹ㄳ〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈱㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬴㜱⸵㈸‸㤮㔵㔠㐸㐮㜲㠠㄰㈮㌹㡝ਯ䑥獴⁛ㄠ〠删⽘奚‱〸′㐱⸷㈴〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈱㘠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬱㈳⸱㐳‶㠮〱㔠㌰㤮㘷㐠㠰⸸㔸崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽧楴桵戮捯洯摰瑥捨ⵣ潲瀯啮椭䙯汤⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊㈱㜠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈲⸰㠮〴⸵〲㠱ㄩ㸾敮摯扪ਲㄸ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄳㄮ㜸‷㜸′㠴⸵㔶‷㠸崊⽁†㈱㜠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲㄹ‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礯㐮〯⤾㹥湤潢樊㈲〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㜶⸵㐸‷㘲″㤰⸱㐸‷㜲崊⽁†㈱㤠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㈱‰⁯扪਼㰯呹灥⽇牯異ਯ匯呲慮獰慲敮捹ਯ䤠瑲略ਯ䍓⽄敶楣敒䝂㸾敮摯扪ਲ㈲‰⁯扪਼㰯呹灥⽇牯異ਯ匯呲慮獰慲敮捹㸾敮摯扪ਲ㈳‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㈮〸⸰㐮㔰㈸ㄱ⤾㹥湤潢樊㈲㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌱⸷㠠㜷㠠㈸㐮㔵㘠㜸㡝ਯ䄠′㈳‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㈲㔠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⼴⸰⼩㸾敮摯扪ਲ㈶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈷㘮㔴㠠㜶㈠㌹〮ㄴ㠠㜷㉝ਯ䄠′㈵‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㈲㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬴㜲⸷㐵‵㘲⸵㌲‴㜹⸷㜹‵㜳⸴㌶崊⽄敳琠嬴ㄠ〠删⽘奚‱㜷⸵〸〠㔸㜮㜱㤰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㈸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㐷㜮㐹‵㈹⸸〵‴㠴⸴㘴‵㐰⸷〹崊⽄敳琠嬳㔠〠删⽘奚‱㐲⸰㘴〠㜲㐮ㄵ㔰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㈹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌵㌮㘹ㄠ㐵㜮ㄹ㐠㌶㔮㘴㘠㐶㘮〴崊⽄敳琠嬳〠〠删⽘奚‱〸‵㔸⸱㔷〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈳〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬳㈸⸱㐱‴〸⸶㜶″㌵⸰ㄵ‴ㄹ⸵㡝ਯ䑥獴⁛㐱‰⁒ 塙娠㈱㤮㜰〰‵㘸⸰ㄷ〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈳ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㠱⸱㌸″㤹⸹㈴‱㤳⸰㤴‴〸⸶㜱崊⽄敳琠嬳〠〠删⽘奚‱〸‵〶⸵㔰〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈳㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴ㄶ⸱㈴″㤹⸹㈴‴㈳⸰㤷‴〸⸶㜱崊⽄敳琠嬷‰⁒ 塙娠ㄱ㈮㤸㄰‶〸⸶〱〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈳㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㠸⸴㤠㌷㠮㄰㘠㔰〮㐴㔠㌸㘮㠵㍝ਯ䑥獴⁛㌰‰⁒ 塙娠㄰㠠㔰㘮㔵〰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㌴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌰〮〵㐠㌶㜮ㄹ㘠㌰㜮〲㜠㌷㔮㤴㑝ਯ䑥獴⁛㜠〠删⽘奚‱ㄲ⸹㠱〠㜰㌮㠴㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㌵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌱〮㈳㜠㌶㜮ㄹ㘠㌱㜮㈱ㄠ㌷㔮㤴㑝ਯ䑥獴⁛㜠〠删⽘奚‱ㄲ⸹㠱〠㘰㠮㘰㄰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㌶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㌸㘮㈷㈠㌵㐮ㄳㄠ㌹㌮㌳㘠㌶㔮〳㑝ਯ䑥獴⁛㐱‰⁒ 塙娠ㄴ㌮㌴㘰‴㘸⸶ㄴ〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈳㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬱㐲⸰㘵″㄰⸴㤴‱㐹⸱ㄳ″㈱⸳㤸崊⽄敳琠嬴‰⁒ 塙娠ㄹ〮㜳㤰‷㈴⸱㔵〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈳㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬱㠵⸳㔲′㜴⸹㐳‱㤲⸳〱′㠵⸹㔶崊⽄敳琠嬴ㄠ〠删⽘奚‱㐶⸶㠳〠ㄱ㤮㈰㌰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㌹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌳㘮㐱㌠ㄸ㜮〰㌠㌴㠮㌶㠠ㄹ㔮㜵崊⽄敳琠嬳〠〠删⽘奚‱〸‴㘵⸸㔳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈴〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬴㤸⸲㈲‱㔲⸱ㄹ‵〴⸱㤹‱㘴⸶ㄲ崊⽄敳琠嬵‰⁒ 塙娠ㄲ㐮ㄴ〰‹ㄮ㤲㔰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㐱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㈴ㄮ㤰㈠ㄴㄮ㈱′㐸⸹㜶‱㔲⸱ㄴ崊⽄敳琠嬵‰⁒ 塙娠ㄴ㈮㤹㈰‷㈴⸱㔵〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈴㈠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈲⸰㠮〴⸵〲㠱ㄩ㸾敮摯扪ਲ㐳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄳㄮ㜸‷㜸′㠴⸵㔶‷㠸崊⽁†㈴㈠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㐴‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礯㐮〯⤾㹥湤潢樊㈴㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㜶⸵㐸‷㘲″㤰⸱㐸‷㜲崊⽁†㈴㐠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㐶‰⁯扪਼㰯呹灥⽇牯異ਯ匯呲慮獰慲敮捹ਯ䤠瑲略㸾敮摯扪ਲ㐷‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛ㄳ㘮㘷ㄠ㐸㘮㔵㔠ㄴ㌮㜴㐠㐹㜮㔱㉝ਯ䑥獴⁛㘠〠删⽘奚‱㔲⸲〳〠㔵㠮㔸㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㐸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㐴㐮㘷㤠㐴㈮㤱㠠㐵ㄮ㜵㈠㐵㌮㠲㉝ਯ䑥獴⁛㘠〠删⽘奚‱㔲⸲〳〠㔵㠮㔸㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㐹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐸㠮㔱㌠㌷㔮ㄷ㌠㔰〮㐶㠠㌸㐮〱㥝ਯ䑥獴⁛㌰‰⁒ 塙娠㄰㠠㐲㔮ㄵ㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㔰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄳㄮ㘶ㄠ㌴㈮㐴㔠ㄴ㌮㘱㘠㌵ㄮ㈹㉝ਯ䑥獴⁛㌰‰⁒ 塙娠㄰㠠㘲㠮㘴㌰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㔱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄳㄮ㔷㐠㌲〮㜲㜠ㄴ㌮㔲㤠㌲㤮㐷㑝ਯ䑥獴⁛㌰‰⁒ 塙娠㄰㠠㐶㔮㠵㌰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㔲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌳〮㠵㘠㈹㠮㠰㤠㌴㈮㠱ㄠ㌰㜮㘵㙝ਯ䑥獴⁛㌰‰⁒ 塙娠㄰㠠㔵㠮ㄵ㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㔳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐷㤮㠴㐠㈸㜮㤹㤠㐹ㄮ㜹㤠㈹㘮㜴㝝ਯ䑥獴⁛㌰‰⁒ 塙娠㄰㠠㔰㘮㔵〰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㔴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㌰㐮㘲㤠㈰㔮ㄳㄠ㌱㐮〹㐠㈱㜮㘲㑝ਯ䑥獴⁛㘠〠删⽘奚‱㈴⸱㐰〠㠱⸹㘳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈵㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬱㈳⸱㐳‶㠮〱㔠㌲㠮㤹㜠㠰⸸㔸崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽧楴桵戮捯洯摰瑥捨ⵣ潲瀯啮椭䙯汤⵪慸⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊㈵㘠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈲⸰㠮〴⸵〲㠱ㄩ㸾敮摯扪ਲ㔷‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄳㄮ㜸‷㜸′㠴⸵㔶‷㠸崊⽁†㈵㘠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㔸‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礯㐮〯⤾㹥湤潢樊㈵㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㜶⸵㐸‷㘲″㤰⸱㐸‷㜲崊⽁†㈵㠠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㘰‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㈮〸⸰㐮㔰㈸ㄱ⤾㹥湤潢樊㈶ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌱⸷㠠㜷㠠㈸㐮㔵㘠㜸㡝ਯ䄠′㘰‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㈶㈠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⼴⸰⼩㸾敮摯扪ਲ㘳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈷㘮㔴㠠㜶㈠㌹〮ㄴ㠠㜷㉝ਯ䄠′㘲‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㈶㐠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈲⸰㠮〴⸵〲㠱ㄩ㸾敮摯扪ਲ㘵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄳㄮ㜸‷㜸′㠴⸵㔶‷㠸崊⽁†㈶㐠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㘶‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礯㐮〯⤾㹥湤潢樊㈶㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㜶⸵㐸‷㘲″㤰⸱㐸‷㜲崊⽁†㈶㘠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㜱‰⁯扪਼㰯呹灥⽍整慤慴愊⽓畢瑹灥⽘䵌⽌敮杴栠ㄴ㘶㸾獴牥慭਼㽸灡捫整⁢敧楮㴧뼧⁩搽❗㕍き灃敨楈穲敓穎呣穫挹搧㼾਼㽡摯扥⵸慰ⵦ楬瑥牳⁥獣㴢䍒䱆∿㸊㱸㩸浰浥瑡⁸浬湳㩸㴧慤潢攺湳㩭整愯✠砺硭灴欽❘䵐⁴潯汫楴′⸹⸱ⴱ㌬⁦牡浥睯牫‱⸶✾਼牤昺剄䘠硭汮猺牤昽❨瑴瀺⼯睷眮眳⹯牧⼱㤹㤯〲⼲㈭牤昭獹湴慸⵮猣✠硭汮猺楘㴧桴瑰㨯⽮献慤潢攮捯洯楘⼱⸰⼧㸊㱲摦㩄敳捲楰瑩潮⁲摦㩡扯畴㴢∠硭汮猺灤昽❨瑴瀺⼯湳⹡摯扥⹣潭⽰摦⼱⸳⼧㸼灤昺偲潤畣敲㹇偌⁇桯獴獣物灴‱〮〰⸰㰯灤昺偲潤畣敲㸊㱰摦㩋敹睯牤猾㰯灤昺䭥祷潲摳㸊㰯牤昺䑥獣物灴楯渾਼牤昺䑥獣物灴楯渠牤昺慢潵琽∢⁸浬湳㩸浰㴧桴瑰㨯⽮献慤潢攮捯洯硡瀯ㄮ〯✾㱸浰㩍潤楦祄慴放㈰㈳ⴱ〭㈵吱㈺〴㨳ㅚ㰯硭瀺䵯摩晹䑡瑥㸊㱸浰㩃牥慴敄慴放㈰㈳ⴱ〭㈵吱㈺〴㨳ㅚ㰯硭瀺䍲敡瑥䑡瑥㸊㱸浰㩃牥慴潲呯潬㹌慔敘⁷楴栠桹灥牲敦㰯硭瀺䍲敡瑯牔潯氾㰯牤昺䑥獣物灴楯渾਼牤昺䑥獣物灴楯渠牤昺慢潵琽∢⁸浬湳㩸慰䵍㴧桴瑰㨯⽮献慤潢攮捯洯硡瀯ㄮ〯浭⼧⁸慰䵍㩄潣畭敮瑉䐽❵畩携㌴㐹ㄲ搲ⵡ戴戭ㄱ昹ⴰ〰〭愲ㄳ㙦㘲㈱㤱✯㸊㱲摦㩄敳捲楰瑩潮⁲摦㩡扯畴㴢∠硭汮猺摣㴧桴瑰㨯⽰畲氮潲术摣⽥汥浥湴猯ㄮㄯ✠摣㩦潲浡琽❡灰汩捡瑩潮⽰摦✾㱤挺瑩瑬放㱲摦㩁汴㸼牤昺汩⁸浬㩬慮朽❸ⵤ敦慵汴✾啮椭䙯汤㨠䅮⁏灥渭卯畲捥⁐污瑦潲洠景爠䑥癥汯灩湧⁐牯瑥楮⁆潬摩湧⁍潤敬猠扥祯湤⁁汰桡䙯汤㰯牤昺汩㸼⽲摦㩁汴㸼⽤挺瑩瑬放㱤挺捲敡瑯爾㱲摦㩓敱㸼牤昺汩㸼⽲摦㩬椾㰯牤昺卥焾㰯摣㩣牥慴潲㸼摣㩤敳捲楰瑩潮㸼牤昺䅬琾㱲摦㩬椠硭氺污湧㴧砭摥晡畬琧㸼⽲摦㩬椾㰯牤昺䅬琾㰯摣㩤敳捲楰瑩潮㸼⽲摦㩄敳捲楰瑩潮㸊㰯牤昺剄䘾਼⽸㩸浰浥瑡㸊††††††††††††††††††††††††††††††††††††ਠ††††††††††††††††††††††††††††††††††† 㰿硰慣步琠敮搽❷✿㸊敮摳瑲敡洊敮摯扪੸牥昊〠㈷㈊〰〰〰〰〰‶㔵㌵⁦ 〰〰〴㔳㜶‰〰〰⁮ 〰〰〵㄰㐱‰〰〰⁮ 〰〰〶〶㔰‰〰〰⁮ 〰〰〶㜶㈴‰〰〰⁮ 〰〰㔶〱㌶‰〰〰⁮ 〰〰㔶㘲㈵‰〰〰⁮ 〰〰㘱㠸㌶‰〰〰⁮ 〰〰〴㔶ㄶ‰〰〰⁮ 〰〰〵〹㘴‰〰〰⁮ 〰〰〵〹㠴‰〰〰⁮ 〰〰〵ㄲㄸ‰〰〰⁮ 〰〰〵㜲㔷‰〰〰⁮ 〰〰㘲㠵㜹‰〰〰⁮ 〰〰㘲㠹㐵‰〰〰⁮ 〰〰㘲㤱㤸‰〰〰⁮ 〰〰㘲㤵㐹‰〰〰⁮ 〰〰〵㜲㜸‰〰〰⁮ 〰〰〵㜴㘷‰〰〰⁮ 〰〰〵㜶㤹‰〰〰⁮ 〰〰〵㠰㤲‰〰〰⁮ 〰〰㘲㤸㠳‰〰〰⁮ 〰〰㘳〰㔴‰〰〰⁮ 〰〰㘳〲㠳‰〰〰⁮ 〰〰㘳〶㌲‰〰〰⁮ 〰〰㘳〸㘰‰〰〰⁮ 〰〰㘳ㄲ㔹‰〰〰⁮ 〰〰〵㠴㈳‰〰〰⁮ 〰〰〶〹ㄵ‰〰〰⁮ 〰〰〶㜴㜸‰〰〰⁮ 〰〰㘲㐶㈰‰〰〰⁮ 〰〰〶㜴㤹‰〰〰⁮ 〰〰〶㜸〹‰〰〰⁮ 〰〰〷㈸㤹‰〰〰⁮ 〰〰〷㈹㈰‰〰〰⁮ 〰〰〷㌰㈳‰〰〰⁮ 〰〰〷㌲㘵‰〰〰⁮ 〰〰〷㠹㤳‰〰〰⁮ 〰〰〷㤰ㄴ‰〰〰⁮ 〰〰〷㤱㜹‰〰〰⁮ 〰〰〷㤳㤲‰〰〰⁮ 〰〰〸〱㘳‰〰〰⁮ 〰〰〸〳㤰‰〰〰⁮ 〰〰〸㈶㘷‰〰〰⁮ 〰〰〸㈶㠸‰〰〰⁮ 〰〰㔳㜵ㄸ‰〰〰⁮ 〰〰㔳㜵㜶‰〰〰⁮ 〰〰㔳㜸㠶‰〰〰⁮ 〰〰㔳㠸〳‰〰〰⁮ 〰〰㔳㠹㘶‰〰〰⁮ 〰〰㔳㤳㈲‰〰〰⁮ 〰〰㔳㤷㜹‰〰〰⁮ 〰〰㔳㤹㔶‰〰〰⁮ 〰〰㔴〲ㄶ‰〰〰⁮ 〰〰㔴〵㘸‰〰〰⁮ 〰〰㔴〹㠱‰〰〰⁮ 〰〰㔴ㄱ㐹‰〰〰⁮ 〰〰㔴ㄲ㐴‰〰〰⁮ 〰〰㔴ㄵ㤳‰〰〰⁮ 〰〰㔴ㄸ㐲‰〰〰⁮ 〰〰㔴㈰ㄶ‰〰〰⁮ 〰〰㔴㈳㜴‰〰〰⁮ 〰〰㔴㈶㤰‰〰〰⁮ 〰〰㔴㈹㐲‰〰〰⁮ 〰〰㔴㌱㘹‰〰〰⁮ 〰〰㔴㌴ㄳ‰〰〰⁮ 〰〰㔴㌷㜷‰〰〰⁮ 〰〰㔴㐰ㄷ‰〰〰⁮ 〰〰㘳ㄵ㐶‰〰〰⁮ 〰〰㔴㐰㜹‰〰〰⁮ 〰〰㔴㐳㤲‰〰〰⁮ 〰〰㔴㐷㌶‰〰〰⁮ 〰〰㔴㐹㤲‰〰〰⁮ 〰〰㔴㔱㐹‰〰〰⁮ 〰〰㔴㔲㜳‰〰〰⁮ 〰〰㔴㔶〷‰〰〰⁮ 〰〰㔴㔷㔷‰〰〰⁮ 〰〰㔴㔹㌹‰〰〰⁮ 〰〰㔴㘱ㄵ‰〰〰⁮ 〰〰㔴㘳㔳‰〰〰⁮ 〰〰㔴㘸〱‰〰〰⁮ 〰〰㔴㜰㈲‰〰〰⁮ 〰〰㔴㜱㜵‰〰〰⁮ 〰〰㔴㜳〳‰〰〰⁮ 〰〰㔴㜶㔸‰〰〰⁮ 〰〰㔴㜸ㄷ‰〰〰⁮ 〰〰㔴㠱㔸‰〰〰⁮ 〰〰㔴㠴ㄵ‰〰〰⁮ 〰〰㔴㠶㠵‰〰〰⁮ 〰〰㔴㠸〹‰〰〰⁮ 〰〰㔴㤲㐱‰〰〰⁮ 〰〰㔴㤷㐴‰〰〰⁮ 〰〰㔴㤹㈲‰〰〰⁮ 〰〰㔵〰㜱‰〰〰⁮ 〰〰㔵〵㈴‰〰〰⁮ 〰〰㔵〶㠳‰〰〰⁮ 〰〰㔵㤵㌵‰〰〰⁮ 〰〰㔵㤵㤲‰〰〰⁮ 〰〰㔵㤶㌷‰〰〰⁮ 〰〰㔶〴㈶‰〰〰⁮ 〰〰㔶㘰㠷‰〰〰⁮ 〰〰㔶㘱〹‰〰〰⁮ 〰〰㔶㘵ㄹ‰〰〰⁮ 〰〰㔷〵㜰‰〰〰⁮ 〰〰㔷〵㤲‰〰〰⁮ 〰〰㔷ㄱ㘷‰〰〰⁮ 〰〰㔷ㄳ㜱‰〰〰⁮ 〰〰㔷㤸㈳‰〰〰⁮ 〰〰㔸㜶㘲‰〰〰⁮ 〰〰㔸㜷㐲‰〰〰⁮ 〰〰㔸㜹〳‰〰〰⁮ 〰〰㔸㠱ㄶ‰〰〰⁮ 〰〰㘰㐳㜶‰〰〰⁮ 〰〰㘰㐴ㄹ‰〰〰⁮ 〰〰㘰㐴㘲‰〰〰⁮ 〰〰㘰㐵㌵‰〰〰⁮ 〰〰㘰㐵㤶‰〰〰⁮ 〰〰㘱㤰〷‰〰〰⁮ 〰〰㘲㐵㈸‰〰〰⁮ 〰〰㘲㐵㔰‰〰〰⁮ 〰〰㘲㐷㤲‰〰〰⁮ 〰〰㘲㠴㤹‰〰〰⁮ 〰〰㘲㠵㈱‰〰〰⁮ 〰〰〵㠵㘹‰〰〰⁮ 〰〰㘳ㄶ〴‰〰〰⁮ 〰〰㘳㈲㤷‰〰〰⁮ 〰〰㘳㌰㠶‰〰〰⁮ 〰〰㘰㐷ㄴ‰〰〰⁮ 〰〰㘳㐴㌸‰〰〰⁮ 〰〰㘳㔹㔹‰〰〰⁮ 〰〰〵㤶㘲‰〰〰⁮ 〰〰㘰㠲㈹‰〰〰⁮ 〰〰〷㤵㐰‰〰〰⁮ 〰〰〶〴㌲‰〰〰⁮ 〰〰㘳㠰㈰‰〰〰⁮ 〰〰㘳㠱ㄷ‰〰〰⁮ 〰〰㘳㠴ㄳ‰〰〰⁮ 〰〰㔵㤷㜴‰〰〰⁮ 〰〰㘱㠱㠰‰〰〰⁮ 〰〰㘳㠵㜲‰〰〰⁮ 〰〰㔵㤸㘵‰〰〰⁮ 〰〰㘱㠴ㄱ‰〰〰⁮ 〰〰〷㤸㐳‰〰〰⁮ 〰〰〸〰㜳‰〰〰⁮ 〰〰㘳㤱㤰‰〰〰⁮ 〰〰㘳㤲ㄲ‰〰〰⁮ 〰〰㘳㤲㌴‰〰〰⁮ 〰〰㘳㤲㔶‰〰〰⁮ 〰〰㘳㤲㜸‰〰〰⁮ 〰〰㘳㤳〰‰〰〰⁮ 〰〰㘳㤳㈲‰〰〰⁮ 〰〰㘳㤳㐴‰〰〰⁮ 〰〰㘳㤳㘶‰〰〰⁮ 〰〰㘳㤳㠸‰〰〰⁮ 〰〰㘳㤴㄰‰〰〰⁮ 〰〰㘳㤴㌲‰〰〰⁮ 〰〰㘳㤴㔴‰〰〰⁮ 〰〰㘳㤶ㄶ‰〰〰⁮ 〰〰㘳㤷㜶‰〰〰⁮ 〰〰㘳㤹㘵‰〰〰⁮ 〰〰㘴〱㔴‰〰〰⁮ 〰〰㘴〳㈶‰〰〰⁮ 〰〰㘴〴㤸‰〰〰⁮ 〰〰㘴〷㐲‰〰〰⁮ 〰〰㘴〹㠶‰〰〰⁮ 〰〰㘴㄰㘱‰〰〰⁮ 〰〰㘴ㄱ㘷‰〰〰⁮ 〰〰㘴ㄲ㐴‰〰〰⁮ 〰〰㘴ㄳ㔱‰〰〰⁮ 〰〰㘴ㄵㄱ‰〰〰⁮ 〰〰㘴ㄶ㜱‰〰〰⁮ 〰〰㘴ㄸ㌱‰〰〰⁮ 〰〰㘴ㄹ㤱‰〰〰⁮ 〰〰㘴㈱㔱‰〰〰⁮ 〰〰㘴㈳ㄱ‰〰〰⁮ 〰〰㘴㈴㜱‰〰〰⁮ 〰〰㘴㈶㌰‰〰〰⁮ 〰〰㘴㈷㠲‰〰〰⁮ 〰〰㘴㈸㔷‰〰〰⁮ 〰〰㘴㈹㘳‰〰〰⁮ 〰〰㘴㌰㐰‰〰〰⁮ 〰〰㘴㌱㐷‰〰〰⁮ 〰〰㘴㌳〲‰〰〰⁮ 〰〰㘴㌳㜷‰〰〰⁮ 〰〰㘴㌴㠳‰〰〰⁮ 〰〰㘴㌵㘰‰〰〰⁮ 〰〰㘴㌶㘷‰〰〰⁮ 〰〰㘴㌸㈲‰〰〰⁮ 〰〰㘴㌹㜷‰〰〰⁮ 〰〰㘴㐱㌱‰〰〰⁮ 〰〰㘴㐲㠵‰〰〰⁮ 〰〰㘴㐴㐰‰〰〰⁮ 〰〰㘴㐵㤸‰〰〰⁮ 〰〰㘴㐷㔵‰〰〰⁮ 〰〰㘴㐹ㄱ‰〰〰⁮ 〰〰㘴㔰㘶‰〰〰⁮ 〰〰㘴㔲㈱‰〰〰⁮ 〰〰㘴㔴〷‰〰〰⁮ 〰〰㘴㔵㠶‰〰〰⁮ 〰〰㘴㔶㘱‰〰〰⁮ 〰〰㘴㔷㘷‰〰〰⁮ 〰〰㘴㔸㐴‰〰〰⁮ 〰〰㘴㔹㔱‰〰〰⁮ 〰〰㘴㘱㄰‰〰〰⁮ 〰〰㘴㘲㘳‰〰〰⁮ 〰〰㘴㘳㌸‰〰〰⁮ 〰〰㘴㘴㐴‰〰〰⁮ 〰〰㘴㘵㈱‰〰〰⁮ 〰〰㘴㘶㈸‰〰〰⁮ 〰〰㘴㘷㠹‰〰〰⁮ 〰〰㘴㘹㐹‰〰〰⁮ 〰〰㘴㜱〹‰〰〰⁮ 〰〰㘴㜲㘴‰〰〰⁮ 〰〰㘴㜴㈳‰〰〰⁮ 〰〰㘴㜵㠳‰〰〰⁮ 〰〰㘴㜷㌶‰〰〰⁮ 〰〰㘴㜸㤰‰〰〰⁮ 〰〰㘴㠰㜸‰〰〰⁮ 〰〰㘴㠱㔳‰〰〰⁮ 〰〰㘴㠲㔹‰〰〰⁮ 〰〰㘴㠳㌶‰〰〰⁮ 〰〰㘴㠴㐳‰〰〰⁮ 〰〰㘴㠵ㄳ‰〰〰⁮ 〰〰㘴㠵㘱‰〰〰⁮ 〰〰㘴㠶㌶‰〰〰⁮ 〰〰㘴㠷㐲‰〰〰⁮ 〰〰㘴㠸ㄹ‰〰〰⁮ 〰〰㘴㠹㈶‰〰〰⁮ 〰〰㘴㤰㠷‰〰〰⁮ 〰〰㘴㤲㐷‰〰〰⁮ 〰〰㘴㤴〲‰〰〰⁮ 〰〰㘴㤵㘲‰〰〰⁮ 〰〰㘴㤷ㄸ‰〰〰⁮ 〰〰㘴㤸㜸‰〰〰⁮ 〰〰㘵〰㌳‰〰〰⁮ 〰〰㘵〱㤳‰〰〰⁮ 〰〰㘵〳㔳‰〰〰⁮ 〰〰㘵〵ㄴ‰〰〰⁮ 〰〰㘵〶㜴‰〰〰⁮ 〰〰㘵〸㌵‰〰〰⁮ 〰〰㘵〹㤰‰〰〰⁮ 〰〰㘵ㄱ㐹‰〰〰⁮ 〰〰㘵ㄳ〸‰〰〰⁮ 〰〰㘵ㄳ㠳‰〰〰⁮ 〰〰㘵ㄴ㠹‰〰〰⁮ 〰〰㘵ㄵ㘶‰〰〰⁮ 〰〰㘵ㄶ㜳‰〰〰⁮ 〰〰㘵ㄷ㈹‰〰〰⁮ 〰〰㘵ㄸ㠹‰〰〰⁮ 〰〰㘵㈰㐹‰〰〰⁮ 〰〰㘵㈲〵‰〰〰⁮ 〰〰㘵㈳㘱‰〰〰⁮ 〰〰㘵㈵ㄷ‰〰〰⁮ 〰〰㘵㈶㜳‰〰〰⁮ 〰〰㘵㈸㈹‰〰〰⁮ 〰〰㘵㈹㠸‰〰〰⁮ 〰〰㘵㌱㠰‰〰〰⁮ 〰〰㘵㌲㔵‰〰〰⁮ 〰〰㘵㌳㘱‰〰〰⁮ 〰〰㘵㌴㌸‰〰〰⁮ 〰〰㘵㌵㐵‰〰〰⁮ 〰〰㘵㌶㈰‰〰〰⁮ 〰〰㘵㌷㈶‰〰〰⁮ 〰〰㘵㌸〳‰〰〰⁮ 〰〰㘵㌹㄰‰〰〰⁮ 〰〰㘵㌹㠵‰〰〰⁮ 〰〰㘵㐰㤱‰〰〰⁮ 〰〰㘵㐱㘸‰〰〰⁮ 〰〰㘳㠶㤸‰〰〰⁮ 〰〰㘳㠹㠶‰〰〰⁮ 〰〰㘳㤱ㄳ‰〰〰⁮ 〰〰㘵㐲㜵‰〰〰⁮ 瑲慩汥爊㰼⽓楺攠㈷㈾㸊獴慲瑸牥昊㈲ㄊ┥䕏䘊

