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Abstract

Microbiome science is difficult to translate back to patients due to an inability to harmonize 16S
rRNA gene-based microbiome data, as differences in the technique will result in different
amplicon sequence variants (ASV) from the same microbe. Here we demonstrate that
placement of ASV onto a common phylogenetic tree of full-length 16S rRNA alleles can
harmonize microbiome studies. Using in silico data approximating 100 healthy human stool
microbiomes we demonstrated that phylogenetic placement of ASV can recapitulate the true
relationships between communities as compared closed-OTU based approaches (Spearman R
0.8 vs 0.2). Using real data from thousands of human gut and vaginal microbiota, we
demonstrate phylogenetic placement, but not closed OTUs, were able to group communities by
origin (stool vs vaginal) without being confounded by technique and integrate new data into
existing ordination/clustering models for precision medicine. This enables meta-analysis of
microbiome studies and the microbiome as a biomarker.

(149 words)
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Main

With the development of high-throughput sequencing, a myriad of studies have associated the
human microbiome (the collection of microbes that live within and upon us) with health and
disease ™°. As of 2022, at least 2000 BioProjects in the NCBI sequence read archive (SRA)
contain human microbiome data spanning over 150,000 individual specimens. Due to
challenges with recruiting and retention, microbiome studies are often conducted at a single
center and with limited numbers of participants. A complication has arisen as a result: studies of
how the microbiome relates to the same scientific question frequently fail to reproduce
consistent observed associations’. For example, multiple studies have associated the human
gut microbiome with the efficacy of immune checkpoint inhibitor therapy, with each study finding
a different set of bacterial species that associate with a response®™*2. A similar challenge has
arisen with the vaginal microbiome and preterm birth*®. This has limited the translation of
microbiome science to improved clinical care. The inconsistency of smaller single-center studies
is not a unigque problem for microbiome studies; similar challenges exist for studies associating
with transcription, genetics, and epigenetics. With those ‘omics studies, meta-analysis by
combining raw data at the sequence- or feature-level can overcome the challenges of small and
single site studies’. But a fundamental technical challenge has blocked the combination of
microbiome studies, particularly those that target the 16S rRNA gene °.

The dominant technique in microbiome science has been amplicon sequencing of a
hypervariable region of a taxonomically informative gene such as the 16S rRNA gene. There
are nine hypervariable regions in the 16S rRNA gene, each of a size suitable for current high-
throughput sequencing platforms. The 16S meta-analysis challenge arises when studies target
different variable regions, or even the same variable regions but with differences in the PCR
primers, PCR conditions, sequencing library preparation, and the sequencer itself. These
technical differences result in the same underlying allele being detected as a different amplicon
sequence variant (ASV), and thus not able to be directly combined and compared (Figure 1A).
Thus, some normalization must occur to convert observations of individual sequences or
inferred sequences (ASV) into a set of features that are comparable across studies by
partitioning related ASVs into bins. Several approaches have emerged for binning reads,
generally relying upon some outside reference. Common approaches include closed reference
operational taxonomic units (cOTU) and projection to taxonomy (e.g., quantifying each family of
microbes present). The resulting feature sets may then be used to compare sequence
populations observed in two or more specimens using a range of methods, some non-
hierarchical (e.g, Shannon entropy), others explicitly hierarchical (e.g., UniFrac).

In cOTU generation each experimentally-derived amplicon sequence is aligned against a
reference database of full-length 16S sequences™. Amplicon sequences that align best to the
same reference sequence are grouped together. This technique is highly dependent on how
well matched the reference is to the microbial communities being studied. Amplicon sequences
without a good matching reference end up lost in this approach. Likewise, some amplicon
sequences can have multiple nearly identically scored alignments to reference sequences,
particularly when a very broad reference set is used. Adjudicating those nearly identically
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scoring alignments is a difficult challenge, and can lead to sequences from the same underlying
true 16S rRNA allele being assigned ambiguously to multiple reference sequences.

Annotation of 16S rRNA gene variable region sequence variants with taxonomy, and then
grouping read-counts at a selected (often Family or higher) taxonomic level is a common tactic
(e.g. **'"). Taxonomic assignments to variable region amplicon sequences are limited by the
generally poor reliability of taxonomic assignments, particularly at more granular ranks (e.g.
species of genus). As we have previously described, many classifiers can confidently
misidentify the true underlying genus or species®®. Further, divergence between phylogeny and
taxonomy is a fundamental limit of this approach.

Phylogenetic placement methods for binning sequences or ASVs “place” sequences onto an
existing phylogenetic tree *°, thereby mapping sequence observations onto tree-derived
features such as specific edges of the tree graph. These methods have a number of
advantages. Robust methods are available for accommodating and expressing uncertainty
deriving from sequence variation®’. An advantage over taxonomic methods and OTU-based
methods limited to well-characterized taxa is that granular bins may be defined even for poorly
defined taxonomic regions (e.g., environmental specimens, complex anaerobic environments
such as the gut, etc.). Features are intrinsically hierarchical, so bins of varying granularity may
be easily derived. The feature hierarchy is derived explicitly from relevant sequence data, in
contrast to a taxonomy, which may either be discordant with sequence-based relationships, or
define categories that are indistinguishable using available sequence data.

Summary metrics (e.g., Shannon alpha diversity) can address some of the current technical
limitations. A robust example of this approach is the clinically relevant association of a loss of
alpha diversity and risk for C. difficile infection. While somewhat buffered against the technical
differences (variable region, primers, polymerase, sequencer), systemic biases can be
introduced by things like differences in read depth and/or entropy in a given variable region.
While relative differences in alpha diversity measures may be reproduced across studies,
absolute values are not generally comparable across studies with different experimental
parameters. Thus, we have also come to appreciate how much subtle technical biases affect
estimates of alpha diversity 2.

Whole genome shotgun sequencing (WGS) is an alternative technique for microbiome studies,
but with its own set of analytic challenges and opportunities****. The semi- random priming of
reads eliminates some but not all of the cross study comparability problems between studies, as
it does not eliminate differences in sequencers, library preparations, and sequencing depths. It
also remains unclear how to integrate WGS and 16S rRNA data into one cohesive data set.

Here we demonstrate a technique that places 16S rRNA gene variable region amplicon
sequence variants (ASVs) onto a common phylogenetic tree of full length 16S rRNA alleles and
use tree-based methods for comparison among populations. We observe that this technique
successfully corrects for the technical differences in 16S sequencing methods across studies,
retains more true entropy, correctly combines different ASVs from the same underlying allele,
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and provides robust estimates of pairwise phylogenetic distance, alpha-diversity, and taxonomy.
We have extended this approach to successfully integrate 16S gene and WGS-based
microbiome studies, scaling up to tens of thousands of specimens on routinely available
computational resources. This technique is available as a portable and reproducible
containerized Nextflow workflow (MaLiAmPi), and immediately applicable to meta-analysis of
16S rRNA-gene based microbiome studies as well as clinical translation of extant studies.

Results

Working principles and the core approach of phylogenetic placement

The core approach implemented in MaLiAmPi is to generate a common reference phylogenetic
tree that the amplicon sequence variants (ASV) are related to via phylogenetic placement.
There are four steps: (1) generation of ASVs; (2) selection of a repository of full-length 16S
rRNA alleles; (3) generation of a reference package including a phylogenetic tree of full-length
16S rRNA alleles from the repository that match the ASVs ; and (4) placement of the ASVs onto
the reference package phylogenetic tree.

The core and motivating observation of this approach is that ASVs generated from the same
underling 16S rRNA allele but with primers targeting different variable regions of the 16S rRNA
gene will end up phylogenetically placed in the same small subclade of the reference
phylogenetic tree, when the phylogenetic tree is well matched to the ASVs and comprised of
full-length 16S rRNA alleles (Figure 1B). We then conjectured that clustering ASVs based on
phylogenetic distance of their placements on a common reference phylogenetic tree would allow
us to generate a count of reads per phylotype or groups of ASVs all of which were likely from
the same (or very similar) underlying 16S rRNA allele.

Successful combination of 16S rRNA amplicons in sequencing-error-free simulated data

We started with the idealized situation in which there is no sequencing error, and each
amplicon’s sequence was available error-free and full-length to compare the performance of
closed OTU generation versus phylotype-based grouping of amplicon sequence variants (ASV).
The in silico amplicons (and full-length 16S rRNA alleles for comparison) were (i) dereplicated at
100% identity; processed with (ii) QIIME in a closed-reference approach against the
GreenGenes 97% identity reference, with a goal of 80% similarity OTUs; or (iii) phylogenetically
placed on common reference tree with MaLiAmPi, with ASVs grouped into phylotypes.

Ideally, a normalization technique would retain true community-to-community differences while
eliminating false differences introduced by technical details (primers, PCR conditions,
sequencer, etc.). In Figure 2A we use ordination plots to show the true relationship between the
100 simulated communities, note that with dereplication or closed-OTUs these relationships are
lost, with the primer selected the dominant driver of clustering. Narrowing in on five randomly
selected communities (Figure 2B), we can see that only with phylotype normalization does the
representation of the same community with different primers tend to closely cluster into one
group. As these are synthetic communities, we know the ‘true’ pairwise distance between them.
Phylotype pairwise Bray Curtis distance was strongly correlated to the true pairwise distance
between the simulated communities (Spearman R of 0.8) as compared to that estimated by
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closed OTUs (Spearman R 0.2) or dereplicated ASV sequences (Spearman R of 0) (Figure
2C).

Successful correction of sequencer-introduced variation with DADA2 error deconvolution and
phylogenetic placement

To consider the effect of sequencing error we simulated sequencing with two distinct platforms
(454 pyrosequencing and lllumina MiSeq); for lllumina MiSeq, we applied three different
empirically derived error models (to simulate the effect of per-batch and per-sequencer effects
even when selecting the same primers and PCR conditions), the MsV1 model built into the ART
package, a model derived from the University of Michigan Microbiome Core, and from
PRJINA701859 sequenced at a microbiome center in Germany. While 454 pyrosequencing is no
longer commercially available, a large amount of microbiome study data available in public
repositories was generated on that platform. These simulated sequenced reads were processed
with: (I) DADA2 as error-corrected amplicon sequence variants (ASV); (II) QIIME in a closed-
reference approach against the GreenGenes 97% identity reference, with a goal of 80%
similarity OTUs; (lll) phylogenetically placed on common reference tree with MaLiAmPi, with
ASVs grouped into phylotypes. The results (Figure S1) are extremely similar to what we
observed with error-free reads: Exact sequence variants as deconvoluted from DADA2 and
closed-reference OTU generation were able to overcome sequencer-introduced variation, but
largely not the differences from different amplifying primers. In contrast, phylogenetic
placement, and then derivation of phylotype-counts was able to properly group together by
community rather than primer. This is reflected in the correlation between the true Bray Curtis
pairwise distance (as estimated using the same primers and error models) versus ‘normalized’
Bray Curtis distance for the same pairs of communities but when using different primers and
error models to generate the data, where the Spearman R was zero for dereplicated ASVs, 0.4
for closed OTUs, and 1 after phylogenetic normalization.

MaLiAmPi phylogenetic placement integrates thousands of human microbiome specimens from
multiple studies while retaining distinctions between vaginal and gut microbiota.

We next obtained publicly available raw read data from studies of the vaginal microbiome during
pregnancy and the healthy human gut (Table 1). We selected studies that would be particularly
favorable to non-phylogenetic approaches: targeting similar variable regions of the 16S rRNA
genes (when considering a specific body site) and with similar sequencing technology. Still, the
reads-per-specimen and other technical aspects varied within this curated set of studies. This
pilot involved over 5,000 specimens and over two million reads and was accomplished within
modest computational resources (32GB of RAM; 12 core CPU).

Body Number of Variable
SRA Project Site Specimens Number of Reads Region Sequencer Study Location
PRJEB14839 Gut 1,553 403,184 V3-V5 lllumina Toronto Canada
PRJEB31801  Gut 8 10,346  V3-V4 lllumina France
PRINA418115 Gut 98 24,356 V4 lllumina Michigan, USA
PRJINA607556 Gut 33 32,232 V4  lllumina Minnesota, USA

PRJINA663047 Gut 50 6,952  V3-V4 lllumina China
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PRINA701859 Gut 814 1,585,590  V3-V4 lllumina Germany

PRJEB21325  Vaginal 157 10,887  V1-V2 lllumina UK

PRJEB30642  Vaginal 253 5059  V1-VZ2 lllumina UK

PRJINA393472 Vaginal 2,175 173,624  V1-V3 lllumina California, USA
Total 5,141 2,252,230

Table 1: Sources of publicly available real-world data of human gut and vaginal
microbiota.

Disambiguating body site from experimental batch across published vaginal and gut microbiome
datasets

Our first test was to see if phylotype normalization could result in specimens from different
studies grouping by the site from which they were collected while minimizing the effect of the
study techniques. Bray-Curtis pairwise distance was calculated from dereplicated ASV and
phylotype counts. Ideally this distance would be strongly related to the site from which a
specimen was collected, but not the study protocol under which it was collected. We used the
ANOSIM statistic which takes a distance matrix as the independent data, a grouping as the
dependent variable and results in a test statistic that is bounded from -1 (perfectly
anticorrelated) to +1 (perfectly correlated) with zero being no correlation®*. Ideally the ANOSIM
statistic would be zero when grouping by project within each body site (assuming the study
populations are biologically identical) and one when grouping by site of collection (assuming
there is no true overlap between the vaginal and gut microbiome). Phylotype-counts come close
to the ideal, with an ANOSIM R of 0.97 with the body site of collection, and only 0.17 or -0.07 to
project for gut and vaginal microbiota respectively (Figure 3). This is reflected in the UMAP
ordinations, where only the phylotype counts result in grouping by body site rather than project
(Figure 3 and S2).

Assigning human gut microbiome specimens to consistent ecotypes

It has been previously noted that the healthy human gut microbiome clusters into ecotypes that
in turn can relate to health, such as the Firmicutes / Bacteroides ratio and obesity25.
Generalizing these findings has been difficult®® in part due to the technical challenges with
integrating microbiome data with established techniques and the reliability of taxonomic
assignments. Using phylotype counts from the gut microbiome studies in Table 1 we were able
to consistently group specimens into two ecotypes; these ecotypes were in a similar proportion
(1:4) across all six studies observing the healthy human gut microbiome (Figure 4A).

We then applied UMAP (ordination) and HDBSCAN (clustering) models generated from the
phylotype counts from the six surveys of healthy adults to a different study of thirty adults that
related the gut microbiome to body mass index (SRA BioProject PRIEB4203). Despite this
study using 454 Pyrosequencing rather than the lllumina sequencing for the six surveys of the
healthy human gut used to fit the models, we were able to integrate all thirty of the PRJEB4203
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specimens into the existing phylotypes and ordination, and assign 28 of the thirty to an existing
cluster. We noted that gut microbiota in cluster zero tended to have higher BMI (Figure 4B).

Discussion

Reuvisiting prior ‘omics studies has proven a fruitful way to improve patient care. For example, it
iS now common practice to use genomics data to personalize and optimize cancer treatment
regimens, significantly improving outcomes for patients?’?®. Similarly, transcriptional®® and
epigenomics studies are being combined and revisited with newer machine-learning techniques
with an eye towards drug repurposing and personalized medicine. Facilitating these efforts are a
very clear and intrinsically generalizable set of features, such as SNPs (genomics), loci
(epigenomics), and genes (transcriptomics). Microbiome studies have lacked such a clear and
generalizable underlying feature. Closed OTUs and taxons have been attempted when
integrating microbiome studies, but both have fundamental limits that we have redemonstrated
here or in previous studies®. Thus, a lack of a robust and generalizable feature has been a core
limitation of microbiome science. It has left the field unclear of how to apply the findings of a
study to other studies of the same clinical question and to an individual patient and use the
microbiome as a biomarker (as is done with genomics data in cancer treatment).

Here we demonstrate the ability of phylogenetic placement of amplicon sequence variants from
16S rRNA allele variable regions to overcome differences in technique (such as primer
selection, PCR conditions, and sequencing platform) and successfully combine data from
multiple studies into one cohesive dataset. The resultant phylotypes are features that are
suitable for the sort of machine learning meta-analysis and personalized medicine that has been
successfully deployed for other sorts of ‘omics data to advance mechanistic understanding and
treatment outcomes. The phylogenetic placement technique implemented in MaLiAmPi directly
facilitates meta-analysis of 16S rRNA gene based studies, overcoming limitations of studies with
limited numbers and collecting specimens from participants at a single site, or handful of sites.
Further, this is a practical way to relate a specimen from an individual patient to a larger set of
observational data that has related the microbiome to outcomes, treatment response, or risk for
disease. Thus this approach is a means to activate the microbiome data already collected as a
biomarker for precision medicine.

The phylotype-count tables generated by this approach are compatible with approaches like
percentile normalization, allowing further integration of microbiome data sets generated by
different studies. We have explored integration of 16S rRNA gene data with shotgun
metagenomic data, further bolstering the studies that can be integrated.

As we have noted, the technique cannot overcome some fundamental challenges. If the primers
selected for the study fail to amplify a critical member of the community, this technique itself
cannot infer the presence of those organisms. The lower-read depth of other pyrosequencing
based studies result in a limit of detection difference that also cannot be overcome. This limit of
detection challenge is shared by approaches like low-read-depth WGS. Further, this approach
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cannot address technical variance introduced by differences in collection and DNA extraction
protocols, with the latter a particularly potent issue when comparing across studies.

This approach also adds a hyperparameter that must be selected: a phylogenetic distance at
which to cluster ASVs. For now, we have had good results with phylogenetic distances between
0.1 and 1, but this is a parameter that must be optimized for a given set of studies to be
integrated. This can be somewhat mitigated by using phylogenetic distance between
communities, (KR-distance?®) as the feature of interest, eliminating this specific phylotype-
clustering hyperparameter.

We believe that phylogenetic normalization of 16S rRNA gene variable region amplicon
sequence variants is a promising approach for harmonizing microbiome data from different
studies, that significantly outperforms existing technigues such as closed-OTU generation. The
outputs are suitable for both meta-analysis and precision medicine. This approach is fully
implemented as a reproducible and portable Nextflow-based workflow that we hope will facilitate
future microbiome studies.

Methods

Phylogenetic placement of 16S rRNA gene ASVs via MaLiAmPi

MaLiAmPi *° (Maximum Likelihood Amplicon Pipeline) is a Nextflow-based workflow that
implements the approach described in this article. The workflow is 100% containerized and
portable, and can be run locally (via Docker), on public clouds (such as Amazon Web Services
Batch), or academic high performance computing clusters (e.g. SLURM or Sun Grid Engine-
based) via Singularity containers. There are four broad steps MaLiAmPi implements: (1)
generation of ASVs; (2) selection of a repository of full-length 16S rRNA alleles; (3) generation
of a reference package including a phylogenetic tree of full-length 16S rRNA alleles from the
repository that match the ASVs ; and (4) placement of the ASVs onto the reference package
phylogenetic tree.

1. Generation of amplicon sequence variants (ASVs) from FASTQ files

As noted in the Main section, the overall approach is relatively agnostic to the method used to
generate ASVs. MaLiAmPi uses DADAZ2 by default, based in part on prior benchmarking studies
31 For lllumina reads, if index reads are available demultimplexing is confirmed with
Barcodecop (version 0.5). Reads are then filtered, trimmed and have residual primer and linker
sequences removed with TrimGalore (version 0.6.6--0). Amplicon sequence variants are then
generated using DADA2 (version 1.18.0). Reads are grouped into Batches, ideally representing
a group of specimens processed into a library together, and typically of a size of 100.

Each specimen’s reads (or read pairs) are then filtered and trimmed (in parallel) with DADA2’s
filterAndTrim with the following parameters for lllumina reads:

maxN 0
maxEE Inf
truncQ 2
trimLeft 0
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| trunclen | (0, 0)

And with the following parameters for 454/Pyrosequencing reads:

maxN 0
maxEE Inf
truncQ 2
trimLeft 0
trunclLen 250
maxLen Inf

Filtered and trimmed reads are then dereplicated with the DADA2’s derepFastq command.
The filtered and trimmed reads are grouped into batches, and then the learnErrors command
is used to generate an error model for each batch’s forward (and when available) reverse reads
with the following parameters for lllumina data:

MAX_CONSIST 10
Randomize TRUE
nbases 1e8

And these parameters for 454/Pyrosequencing data:

MAX_CONSIST 10
Randomize TRUE
nbases 1e8
HOMOPOLYMER GAP_PENALTY -1
BAND SIZE 32

By batch, the batch’s error model is applied to the dereplicated reads using the dada command
with the pool="pseudo" option for all data, additionally HOMOPOLYMER_GAP_PENALTY=-1,
BAND_SIZE=32 for 454/pyrosequencing data.

On a per-specimen basis, paired-end reads are merged with the mergePairs command with the
following parameters:

trimOverhang TRUE
maxMismatch 0
minOverlap 12

The minOverlap parameter occasionally needs to be relaxed down to a lower number
depending on the PCR primer design and specific lllumina chemistry used, specifically when
most or all read pairs fail to merge. For very-low quality read data (e.g. when read pairs fail to
merge even with a min overlap of 4), we will only use the forward read data (as we believe
those reads cannot be accurately paired).

Finally the merged read pairs or dada models for unpaired reads are converted to sequence
tables with the makeSequenceTable command. From these sequence tables are the ASV
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sequences and specimen-ASV counts extracted into FASTA and CSV formats respectively for
subsequent analysis.

2. Repository sequence selection

We started with the deduplicated -> 1200bp -> filtered -> named subset of 16S rRNA alleles
from NCBI via the YA16SDB pipeline as our repository of sequences. As noted in the Main
section, other repositories of 16S rRNA alleles can also be employed (e.g. SILVA, RDP,
greengenes, etc). This entire set of YA16SDB reads are available for download (as below in the
Data Availability section) on Zenodo (doi: 10.5281/zenodo.6876634).

A subset of repository candidate full-length 16S rRNA alleles are identified by searching the
repository sequences for matches with at least 80% identity to at least one ASV sequence using
vsearch (version 2.17.0) in usearch_global mode, and max_accepts=10. To ensure the
resultant tree will not result in overfitting or over diffusion of ASV placement later, full-length 16S
rRNA alleles are recruited from the repository with the objective of having roughly the same
number of recruited reference sequences per each amplicon sequence variant. Specifically, we
establish the best possible percent identity between each ASV and the repository alleles, and
discard any alleles that are below this best possible percent identity (e.g. retain the bounded-
best-hits). We then determine how many ASVs each reference is a best hit for and discard
those that are not a best hit for at least two ASVs. Finally we backfill references for ASVs that
no longer have a reference sequence as good as their best it, focusing on the longest alleles
with no ambiguous bases and with a precise taxonomic annotation. Even for very broad sets of
ASVs, this typically results in less than 30,000 reference alleles.

3. Reference package recreation

These filtered reference alleles are now aligned with cmalign from the Infernal package using
the SSU_rRNA bacteria covariance matrix from the rfam database and a mxsize 4096. The
recruited full-length 16S rRNA alleles alignment is then assembled into a phylogeny. The
generation of the phylogenetic tree is the most computationally intensive step in the entire
approach. The current implementation default to RAXML (version 8.2.4), but also allows
RAXML-ng (1.0.3) to be used if desired for a deeper exploration of possible starting random
trees.

For RAXML, the following settings are used:

-m GTRGAMMA
-p 12345

And for RAXML -ng:

model GTR+G

seed 12345

tree pars{1},rand{1}
bs-cutoff 0.3
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This de novo phylogenetic tree is combined with the metadata for each allele within the tree
(e.g. species-level taxonomy, source accession, etc) into a standardized reference package
format using the taxtastic package.

4. Placement of ASVs onto a reference package phylogenetic tree

ASVs are next placed onto this reference tree. First the ASV sequences are aligned, using
cmalign from the Infernal package, and the same covariance matrix as was used to make
the alignment of reference sequences (retained in the reference package). The ASV alignment
is combined with reference alignment (contained within the reference package) using esl-
alimerge utility from easel.

This combined alignment is then used to phylogenetically place the ASVs onto the reference
package tree using either pplacer (the current default) or epa-ng. Both have comparable
performance and outputs. For pplacer, the following parameters are used:

-pP

--inform-prior

--prior-lower 0.01

--map-identity

For epa-ng:

--baseball-heur | |

The output of the placement step is in JPLACE format, dedup.jplace. For each ASV, the
likelihood, distal-length, and pendant-length is reported for each edge in the tree (omitting edges
for which there is no meaningful likelihood). These likelihood-weighted trees are the basis for
subsequent analysis. Combined with ASV-counts-per-specimen, the weighted tree can be used
to estimate pairwise phylogenetic distance (KRD-distance, akin to weighted UniFrac) between
specimens, the alpha diversity of a specimen, and to group ASVs into phylotypes. Phylotypes
are groups of ASVs clustered at a specific phylogenetic distance, and are created using a
Python package (https://github.com/jgolob/phylogroups) installable via pypi
(https://pypi.org/project/phylotypes/). A distance of 1 roughly corresponds to a species of
bacteria, but with significant variation depending on the degree of taxonomic - phylogenetic
concordance.

In silico human gut microbiota for validation

As in our prior work'®, we used 100 microbial communities similar in structure and composition
to those found in the healthy human gut microbiome, but generated in silico and thus with a
known allele of origin for each and all amplicons generated. These communities are available
via Zenodo (10.5281/zenodo.1120359). For each community, we have selected specific full-
length unambiguous 16S rRNA gene alleles to represent each microbe within the community.
From these alleles we can generate amplicons targeting specific hypervariable regions via in
silico PCR.
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We selected primers targeting the most common variable domains and sequencing platforms
represented in the large volume of legacy 16S rRNA gene data available in public repositories.
Specifically, the V4 region (or V3-V6), V1-V2, and V5-V9 domains (Figure 1) and the
sequencing platforms lllumina MiSeq or Roche 454 (a legacy technology for which SRA
contains 139,965 records with the label ‘16S’). For MiSeq we set a goal of 50,000 simulated
amplicons per community and for 454 we targeted 5,000 amplicons per community, reflecting
the typical read-depths from the respective platforms (Table 2). As depicted in Figure 1, there is
effectively no overlap between the amplicons targeting distinct regions (i.e., no overlap in
sequence between the primers targeting V1-V2 and V5, nor with V6-V9).

Primer Set Variable Region | Intended Platform | Simulated
amplicons per
community

27fmod / 338r V1-V2 lllumina MiSeq 50,000

U515f / 806r V4 lllumina MiSeq 50,000

27f 1 357r V1-V2 454 5,000

357f / 926r V3-V5 454 5,000

968f / 149r V6 - V9 454 5,000

Table 2: Primers for amplification of 16S rRNA gene variable regions and subsequent
sequencing that were evaluated in this study. For MiSeq primers, we simulated 50,000
amplicons per community; for 454, we simulated 5,000 amplicons per community.

Dereplication of ASVs
ASVs with the exact same sequence (length and each base pair) were combined together and
assigned an ID.

Generation of closed OTUs
Here we used the QIIME1 package, and the GreenGenes 97% OTU repository. We generated a
docker container containing QIIME 1 version 1.9.1A, and ran the following commands to

generate blast-picked closed OTUs with a similarity of at least 80%:
pick_otus.py -i <raw_fastg> -o blast_picked_otus/ -m blast -r 97_otus.fasta -s 0.8

Where the 97_otus.fasta were the 97_otus from the GreenGenes repository, as recommended
by the QIIME1 documentation.

Calculation of Bray-Curtis distance

Count tables were first assembled with one row per specimen and one column per feature
(dereplicated ASV, closed-OTU, or phylotype) and each cell the number of reads assinged to
that feature and specimen. These raw-count tables were then normalized to a read depth of
10,000 reads per specimen. The normalized count tables were then used to calculate pairwise
Bray-Curtis distance using the scipy (verison 1.6.3) pairwise distance calculator.
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UMAP ordination

The Python umap-learn package (version 0.5.1) was used with the following hyperparameters:
min_distance =0

n_components = 2

n_neighbors = 45

Random state was fixed at 42. The pre-computed Bray-Curtis distance (as above) was used.

Correlation between ‘real’ and ‘estimated’ pairwise Bray-Curtis distance

For the real pairwise distance between communities, the distances between communities
determined using the same primers were used. For estimated, the distance between the same
community, but with each community amplified with a different primer was used.

Clustering via HDBSCAN

Pairwise Bray-Curtis distance was calculated from normalized phylotype-counts as described
above. This pairwise distance matrix was used for ordination with umap, with the following
hyperparamters:

min_distance =0

n_neighbors = 100

n_components = 2

The python hdbscan package was used, using the ordinated points per specimen as the input
matrix and the following hyperparameters:

min_cluster_size = 25

min_samples = 2

Data Availability
The in silico data sets used are available via Zenodo, at 10.5281/zenodo0.1120360

The set of full-length reference 16s rRNA alleles can be found on Zenodo at
10.5281/zenodo.6876633.

Real-world human microbiome data is available on the NCBI Sequence Read Archive (SRA)
under the BioProjects in Table 1.

Code Availability
MaLiAmPi is available via a git repository (https://github.com/jgolob/maliampi).
ARF is a workflow used to create the repository of full-length 16s rRNA alleles. It is available as

a git repository (https://github.com/jgolob/arf).
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Figures & Legends
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Figure 1: Non-overlapping sequences generated by 16S Variable Region Primers are
placed on the same subclade of a full-length phylogenetic tree. (A) Primers targeting four
different regions of the 16S rRNA gene: V1-V2, V4, V3-V5, and V6-V9 have largely non-
overlapping positions within the full 16S rRNA gene. (B) A subclade of the reference tree is
shown, with nodes of this subclade colored based upon the likelihood ratio of the given ASV
placing at that node, with grey no likelihood. Despite each ASV having a different sequence they
all phylogenetically place to the same small subclade of the phylogenetic tree which contains
the true source allele, with the V6-V9 ASV containing sufficient entropy to entirely be placed on
the true allele.
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Figure 2: UMAP Ordination based on pairwise Bray-Curtis distance between 100
simulated microbial communities without sequencing error simulation. A) Each circle is a
microbial community. The left most block is the true relationship between communities.
Relationships based on Bray-Curtis distance of strictly dereplicated ASV (second to the left),
closed OTUs (third from the left) and phylotypes (right), with grey representing full-length alleles
and each color representing as amplified by a specific primer pair. Only phylotypes correctly
estimate the true relationships between communities. B) UMAP ordination of five randomly
selected communities based upon Bray Curtis distance of feature-counts, with each color and
symbol representing a primer set used for amplification, where ideally these will all overlap for
the a given community. Only phylotypes (and not closed OTUs or dereplicated ASVs) group by
the source community rather than primer. C) A correlation between the ‘true’ Bray-Curtis
distance between communities (x-axis) versus as estimated (y-axis) after dereplication, closed-
OUT generation, or grouping into phylotypes. Ideally these would be perfectly correlated. R
values reported are Spearman correlation coefficients.
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Figure 3: A) UMAP ordination based on Bray-Curtis pairwise distance between six gut (purples)
and three vaginal (oranges) human microbial communities as estimated by dereplicated ASV
counts (left) or phylotype counts (right). B) Correlation between the Bray-Curtis pairwise
distance between microbiome specimens as estimated by phylotype (navy) or dereplication
(orange) counts to the body site (top) from which the specimen was collected or the project that
collected the gut (middle) or vaginal (bottom) microbiome specimen. Dashed vertical lines are
the ideal outcome. Error bars are the 95% confidence interval by bootstrapping of the ANOSIM
R statistic.
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Figure 4: Assignment of gut microbiome specimens to two ecotypes that are consistent
across studies. (A) Human gut microbiota specimens from six distinct studies were assigned to
two clusters (purple or yellow) based on phylotype count Bray-Curtis distance after UMAP
ordination and clustering by HDBSCAN. The proportion of healthy human gut specimens
assigned to a cluster was consistent across studies. (B) We applied the ordination and
clustering models to a different dataset relating the gut microbiome to body mass index. On the
left, purple are specimens assigned to cluster 0, orange are assigned to cluster 1 and grey
could not be assigned to a cluster. On the right are the body mass index values recorded
stratified by the assigned cluster.
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