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Abstract 
Microbiome science is difficult to translate back to patients due to an inability to harmonize 16S 
rRNA gene-based microbiome data, as differences in the technique will result in different 
amplicon sequence variants (ASV) from the same microbe. Here we demonstrate that 
placement of ASV onto a common phylogenetic tree of full-length 16S rRNA alleles can 
harmonize microbiome studies. Using in silico data approximating 100 healthy human stool 
microbiomes we demonstrated that phylogenetic placement of ASV can recapitulate the true 
relationships between communities as compared closed-OTU based approaches (Spearman R 
0.8 vs 0.2). Using real data from thousands of human gut and vaginal microbiota, we 
demonstrate phylogenetic placement, but not closed OTUs, were able to group communities by 
origin (stool vs vaginal) without being confounded by technique and integrate new data into 
existing ordination/clustering models for precision medicine. This enables meta-analysis of 
microbiome studies and the microbiome as a biomarker. 
 
(149 words) 
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Main 
With the development of high-throughput sequencing, a myriad of studies have associated the 
human microbiome (the collection of microbes that live within and upon us) with health and 
disease 1–6. As of 2022, at least 2000 BioProjects in the NCBI sequence read archive (SRA) 
contain human microbiome data spanning over 150,000 individual specimens. Due to 
challenges with recruiting and retention, microbiome studies are often conducted at a single 
center and with limited numbers of participants. A complication has arisen as a result: studies of 
how the microbiome relates to the same scientific question frequently fail to reproduce 
consistent observed associations7. For example, multiple studies have associated the human 
gut microbiome with the efficacy of immune checkpoint inhibitor therapy, with each study finding 
a different set of bacterial species that associate with a response8–12. A similar challenge has 
arisen with the vaginal microbiome and preterm birth13. This has limited the translation of 
microbiome science to improved clinical care. The inconsistency of smaller single-center studies 
is not a unique problem for microbiome studies; similar challenges exist for studies associating 
with transcription, genetics, and epigenetics. With those ‘omics studies, meta-analysis by 
combining raw data at the sequence- or feature-level can overcome the challenges of small and 
single site studies14. But a fundamental technical challenge has blocked the combination of 
microbiome studies, particularly those that target the 16S rRNA gene 6.  
 
The dominant technique in microbiome science has been amplicon sequencing of a 
hypervariable region of a taxonomically informative gene such as the 16S rRNA gene. There 
are nine hypervariable regions in the 16S rRNA gene, each of a size suitable for current high-
throughput sequencing platforms. The 16S meta-analysis challenge arises when studies target 
different variable regions, or even the same variable regions but with differences in the PCR 
primers, PCR conditions, sequencing library preparation, and the sequencer itself. These 
technical differences result in the same underlying allele being detected as a different amplicon 
sequence variant (ASV), and thus not able to be directly combined and compared (Figure 1A). 
Thus, some normalization must occur to convert observations of individual sequences or 
inferred sequences (ASV) into a set of features that are comparable across studies by 
partitioning related ASVs into bins. Several approaches have emerged for binning reads, 
generally relying upon some outside reference. Common approaches include closed reference 
operational taxonomic units (cOTU) and projection to taxonomy (e.g., quantifying each family of 
microbes present). The resulting feature sets may then be used to compare sequence 
populations observed in two or more specimens using a range of methods, some non-
hierarchical (e.g, Shannon entropy), others explicitly hierarchical (e.g., UniFrac). 
 
In cOTU generation each experimentally-derived amplicon sequence is aligned against a 
reference database of full-length 16S sequences15. Amplicon sequences that align best to the 
same reference sequence are grouped together. This technique is highly dependent on how 
well matched the reference is to the microbial communities being studied. Amplicon sequences 
without a good matching reference end up lost in this approach. Likewise, some amplicon 
sequences can have multiple nearly identically scored alignments to reference sequences, 
particularly when a very broad reference set is used. Adjudicating those nearly identically 
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scoring alignments is a difficult challenge, and can lead to sequences from the same underlying 
true 16S rRNA allele being assigned ambiguously to multiple reference sequences.  
 
Annotation of 16S rRNA gene variable region sequence variants with taxonomy, and then 
grouping read-counts at a selected (often Family or higher) taxonomic level is a common tactic 
(e.g. 16,17). Taxonomic assignments to variable region amplicon sequences are limited by the 
generally poor reliability of taxonomic assignments, particularly at more granular ranks (e.g. 
species of genus). As we have previously described, many classifiers can confidently 
misidentify the true underlying genus or species18. Further, divergence between phylogeny and 
taxonomy is a fundamental limit of this approach. 
 
Phylogenetic placement methods for binning sequences or ASVs “place” sequences onto an 
existing phylogenetic tree 19, thereby mapping sequence observations onto tree-derived 
features such as specific edges of the tree graph. These methods have a number of 
advantages. Robust methods are available for accommodating and expressing uncertainty 
deriving from sequence variation20. An advantage over taxonomic methods and OTU-based 
methods limited to well-characterized taxa is that granular bins may be defined even for poorly 
defined taxonomic regions (e.g., environmental specimens, complex anaerobic environments 
such as the gut, etc.). Features are intrinsically hierarchical, so bins of varying granularity may 
be easily derived. The feature hierarchy is derived explicitly from relevant sequence data, in 
contrast to a taxonomy, which may either be discordant with sequence-based relationships, or 
define categories that are indistinguishable using available sequence data. 
 
Summary metrics (e.g., Shannon alpha diversity) can address some of the current technical 
limitations. A robust example of this approach is the clinically relevant association of a loss of 
alpha diversity and risk for C. difficile infection. While somewhat buffered against the technical 
differences (variable region, primers, polymerase, sequencer), systemic biases can be 
introduced by things like differences in read depth and/or entropy in a given variable region. 
While relative differences in alpha diversity measures may be reproduced across studies, 
absolute values are not generally comparable across studies with different experimental 
parameters. Thus, we have also come to appreciate how much subtle technical biases affect 
estimates of alpha diversity 21. 
 
Whole genome shotgun sequencing (WGS) is an alternative technique for microbiome studies, 
but with its own set of analytic challenges and opportunities22,23. The semi- random priming of 
reads eliminates some but not all of the cross study comparability problems between studies, as 
it does not eliminate differences in sequencers, library preparations, and sequencing depths. It 
also remains unclear how to integrate WGS and 16S rRNA data into one cohesive data set.  
 
Here we demonstrate a technique that places 16S rRNA gene variable region amplicon 
sequence variants (ASVs) onto a common phylogenetic tree of full length 16S rRNA alleles and 
use tree-based methods for comparison among populations. We observe that this technique 
successfully corrects for the technical differences in 16S sequencing methods across studies, 
retains more true entropy, correctly combines different ASVs from the same underlying allele, 
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and provides robust estimates of pairwise phylogenetic distance, alpha-diversity, and taxonomy. 
We have extended this approach to successfully integrate 16S gene and WGS-based 
microbiome studies, scaling up to tens of thousands of specimens on routinely available 
computational resources. This technique is available as a portable and reproducible 
containerized Nextflow workflow (MaLiAmPi), and immediately applicable to meta-analysis of 
16S rRNA-gene based microbiome studies as well as clinical translation of extant studies.  
 
Results 
Working principles and the core approach of phylogenetic placement 
The core approach implemented in MaLiAmPi is to generate a common reference phylogenetic 
tree that the amplicon sequence variants (ASV) are related to via phylogenetic placement. 
There are four steps: (1) generation of ASVs; (2) selection of a repository of full-length 16S 
rRNA alleles; (3) generation of a reference package including a phylogenetic tree of full-length 
16S rRNA alleles from the repository that match the ASVs ; and (4) placement of the ASVs onto 
the reference package phylogenetic tree. 
 
The core and motivating observation of this approach is that ASVs generated from the same 
underling 16S rRNA allele but with primers targeting different variable regions of the 16S rRNA 
gene will end up phylogenetically placed in the same small subclade of the reference 
phylogenetic tree, when the phylogenetic tree is well matched to the ASVs and comprised of 
full-length 16S rRNA alleles (Figure 1B). We then conjectured that clustering ASVs based on 
phylogenetic distance of their placements on a common reference phylogenetic tree would allow 
us to generate a count of reads per phylotype or groups of ASVs all of which were likely from 
the same (or very similar) underlying 16S rRNA allele. 
 
Successful combination of 16S rRNA amplicons in sequencing-error-free simulated data 
We started with the idealized situation in which there is no sequencing error, and each 
amplicon’s sequence was available error-free and full-length to compare the performance of 
closed OTU generation versus phylotype-based grouping of amplicon sequence variants (ASV). 
The in silico amplicons (and full-length 16S rRNA alleles for comparison) were (i) dereplicated at 
100% identity; processed with (ii) QIIME in a closed-reference approach against the 
GreenGenes 97% identity reference, with a goal of 80% similarity OTUs; or (iii) phylogenetically 
placed on common reference tree with MaLiAmPi, with ASVs grouped into phylotypes.  
 
Ideally, a normalization technique would retain true community-to-community differences while 
eliminating false differences introduced by technical details (primers, PCR conditions, 
sequencer, etc.). In Figure 2A we use ordination plots to show the true relationship between the 
100 simulated communities, note that with dereplication or closed-OTUs these relationships are 
lost, with the primer selected the dominant driver of clustering. Narrowing in on five randomly 
selected communities (Figure 2B), we can see that only with phylotype normalization does the 
representation of the same community with different primers tend to closely cluster into one 
group. As these are synthetic communities, we know the ‘true’ pairwise distance between them. 
Phylotype pairwise Bray Curtis distance was strongly correlated to the true pairwise distance 
between the simulated communities (Spearman R of 0.8) as compared to that estimated by 
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closed OTUs (Spearman R 0.2) or dereplicated ASV sequences (Spearman R of 0) (Figure 
2C).  
 
Successful correction of sequencer-introduced variation with DADA2 error deconvolution and 
phylogenetic placement 
To consider the effect of sequencing error we simulated sequencing with two distinct platforms 
(454 pyrosequencing and Illumina MiSeq); for Illumina MiSeq, we applied three different 
empirically derived error models (to simulate the effect of per-batch and per-sequencer effects 
even when selecting the same primers and PCR conditions), the MsV1 model built into the ART 
package, a model derived from the University of Michigan Microbiome Core, and from 
PRJNA701859 sequenced at a microbiome center in Germany. While 454 pyrosequencing is no 
longer commercially available, a large amount of microbiome study data available in public 
repositories was generated on that platform. These simulated sequenced reads were processed 
with: (I) DADA2 as error-corrected amplicon sequence variants (ASV);  (II) QIIME in a closed-
reference approach against the GreenGenes 97% identity reference, with a goal of 80% 
similarity OTUs; (III) phylogenetically placed on common reference tree with MaLiAmPi, with 
ASVs grouped into phylotypes. The results (Figure S1) are extremely similar to what we 
observed with error-free reads: Exact sequence variants as deconvoluted from DADA2 and 
closed-reference OTU generation were able to overcome sequencer-introduced variation, but 
largely not the differences from different amplifying primers. In contrast, phylogenetic 
placement, and then derivation of phylotype-counts was able to properly group together by 
community rather than primer. This is reflected in the correlation between the true Bray Curtis 
pairwise distance (as estimated using the same primers and error models) versus ‘normalized’ 
Bray Curtis distance for the same pairs of communities but when using different primers and 
error models to generate the data, where the Spearman R was zero for dereplicated ASVs, 0.4 
for closed OTUs, and 1 after phylogenetic normalization. 
 
MaLiAmPi phylogenetic placement integrates thousands of human microbiome specimens from 
multiple studies while retaining distinctions between vaginal and gut microbiota.  
We next obtained publicly available raw read data from studies of the vaginal microbiome during 
pregnancy and the healthy human gut (Table 1). We selected studies that would be particularly 
favorable to non-phylogenetic approaches: targeting similar variable regions of the 16S rRNA 
genes (when considering a specific body site) and with similar sequencing technology. Still, the 
reads-per-specimen and other technical aspects varied within this curated set of studies. This 
pilot involved over 5,000 specimens and over two million reads and was accomplished within 
modest computational resources (32GB of RAM; 12 core CPU).  
 

SRA Project 
Body 
Site 

Number of 
Specimens Number of Reads 

Variable 
Region Sequencer Study Location 

PRJEB14839 Gut 1,553 403,184 V3-V5 Illumina Toronto Canada 

PRJEB31801 Gut 8 10,346 V3-V4 Illumina France 

PRJNA418115 Gut 98 24,356 V4 Illumina Michigan, USA 

PRJNA607556 Gut 33 32,232 V4 Illumina Minnesota, USA 

PRJNA663047 Gut 50 6,952 V3-V4 Illumina China 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2022. ; https://doi.org/10.1101/2022.07.26.501561doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.26.501561
http://creativecommons.org/licenses/by-nc-nd/4.0/


PRJNA701859 Gut 814 1,585,590 V3-V4 Illumina Germany 

PRJEB21325 Vaginal 157 10,887 V1-V2 Illumina UK 

PRJEB30642 Vaginal 253 5,059 V1-V2 Illumina UK 

PRJNA393472 Vaginal 2,175 173,624 V1-V3 Illumina California, USA 

       

 
Total 5,141 2,252,230 

    
 
Table 1: Sources of publicly available real-world data of human gut and vaginal 
microbiota. 

 
Disambiguating body site from experimental batch across published vaginal and gut microbiome 
datasets 
Our first test was to see if phylotype normalization could result in specimens from different 
studies grouping by the site from which they were collected while minimizing the effect of the 
study techniques. Bray-Curtis pairwise distance was calculated from dereplicated ASV and 
phylotype counts. Ideally this distance would be strongly related to the site from which a 
specimen was collected, but not the study protocol under which it was collected. We used the 
ANOSIM statistic which takes a distance matrix as the independent data, a grouping as the 
dependent variable and results in a test statistic that is bounded from -1 (perfectly 
anticorrelated) to +1 (perfectly correlated) with zero being no correlation24. Ideally the ANOSIM 
statistic would be zero when grouping by project within each body site (assuming the study 
populations are biologically identical) and one when grouping by site of collection (assuming 
there is no true overlap between the vaginal and gut microbiome). Phylotype-counts come close 
to the ideal, with an ANOSIM R of 0.97 with the body site of collection, and only 0.17 or -0.07 to 
project for gut and vaginal microbiota respectively (Figure 3). This is reflected in the UMAP 
ordinations, where only the phylotype counts result in grouping by body site rather than project 
(Figure 3 and S2). 
 
Assigning human gut microbiome specimens to consistent ecotypes  
It has been previously noted that the healthy human gut microbiome clusters into ecotypes that 
in turn can relate to health, such as the Firmicutes / Bacteroides ratio and obesity25. 
Generalizing these findings has been difficult26 in part due to the technical challenges with 
integrating microbiome data with established techniques and the reliability of taxonomic 
assignments. Using phylotype counts from the gut microbiome studies in Table 1 we were able 
to consistently group specimens into two ecotypes; these ecotypes were in a similar proportion 
(1:4) across all six studies observing the healthy human gut microbiome (Figure 4A). 
 
We then applied UMAP (ordination) and HDBSCAN (clustering) models generated from the 
phylotype counts from the six surveys of healthy adults to a different study of thirty adults that 
related the gut microbiome to body mass index (SRA BioProject PRJEB4203). Despite this 
study using 454 Pyrosequencing rather than the Illumina sequencing for the six surveys of the 
healthy human gut used to fit the models, we were able to integrate all thirty of the PRJEB4203 
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specimens into the existing phylotypes and ordination, and assign 28 of the thirty to an existing 
cluster. We noted that gut microbiota in cluster zero tended to have higher BMI (Figure 4B).  
 
Discussion 
 
Revisiting prior ‘omics studies has proven a fruitful way to improve patient care. For example, it 
is now common practice to use genomics data to personalize and optimize cancer treatment 
regimens, significantly improving outcomes for patients27,28. Similarly, transcriptional29 and 
epigenomics studies are being combined and revisited with newer machine-learning techniques 
with an eye towards drug repurposing and personalized medicine. Facilitating these efforts are a 
very clear and intrinsically generalizable set of features, such as SNPs (genomics), loci 
(epigenomics), and genes (transcriptomics). Microbiome studies have lacked such a clear and 
generalizable underlying feature. Closed OTUs and taxons have been attempted when 
integrating microbiome studies, but both have fundamental limits that we have redemonstrated 
here or in previous studies18. Thus, a lack of a robust and generalizable feature has been a core 
limitation of microbiome science. It has left the field unclear of how to apply the findings of a 
study to other studies of the same clinical question and to an individual patient and use the 
microbiome as a biomarker (as is done with genomics data in cancer treatment). 
 
Here we demonstrate the ability of phylogenetic placement of amplicon sequence variants from 
16S rRNA allele variable regions to overcome differences in technique (such as primer 
selection, PCR conditions, and sequencing platform) and successfully combine data from 
multiple studies into one cohesive dataset. The resultant phylotypes are features that are 
suitable for the sort of machine learning meta-analysis and personalized medicine that has been 
successfully deployed for other sorts of ‘omics data to advance mechanistic understanding and 
treatment outcomes. The phylogenetic placement technique implemented in MaLiAmPi directly 
facilitates meta-analysis of 16S rRNA gene based studies, overcoming limitations of studies with 
limited numbers and collecting specimens from participants at a single site, or handful of sites. 
Further, this is a practical way to relate a specimen from an individual patient to a larger set of 
observational data that has related the microbiome to outcomes, treatment response, or risk for 
disease. Thus this approach is a means to activate the microbiome data already collected as a 
biomarker for precision medicine. 
 
The phylotype-count tables generated by this approach are compatible with approaches like 
percentile normalization, allowing further integration of microbiome data sets generated by 
different studies. We have explored integration of 16S rRNA gene data with shotgun 
metagenomic data, further bolstering the studies that can be integrated. 
 
As we have noted, the technique cannot overcome some fundamental challenges. If the primers 
selected for the study fail to amplify a critical member of the community, this technique itself 
cannot infer the presence of those organisms. The lower-read depth of other pyrosequencing 
based studies result in a limit of detection difference that also cannot be overcome. This limit of 
detection challenge is shared by approaches like low-read-depth WGS. Further, this approach 
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cannot address technical variance introduced by differences in collection and DNA extraction 
protocols, with the latter a particularly potent issue when comparing across studies. 
 
This approach also adds a hyperparameter that must be selected: a phylogenetic distance at 
which to cluster ASVs. For now, we have had good results with phylogenetic distances between 
0.1 and 1, but this is a parameter that must be optimized for a given set of studies to be 
integrated. This can be somewhat mitigated by using phylogenetic distance between 
communities, (KR-distance20) as the feature of interest, eliminating this specific phylotype-
clustering hyperparameter. 
 
We believe that phylogenetic normalization of 16S rRNA gene variable region amplicon 
sequence variants is a promising approach for harmonizing microbiome data from different 
studies, that significantly outperforms existing techniques such as closed-OTU generation. The 
outputs are suitable for both meta-analysis and precision medicine. This approach is fully 
implemented as a reproducible and portable Nextflow-based workflow that we hope will facilitate 
future microbiome studies. 
 
Methods 
Phylogenetic placement of 16S rRNA gene ASVs via MaLiAmPi 
MaLiAmPi 30 (Maximum Likelihood Amplicon Pipeline) is a Nextflow-based workflow that 
implements the approach described in this article. The workflow is 100% containerized and 
portable, and can be run locally (via Docker), on public clouds (such as Amazon Web Services 
Batch), or academic high performance computing clusters (e.g. SLURM or Sun Grid Engine-
based) via Singularity containers. There are four broad steps MaLiAmPi implements: (1) 
generation of ASVs; (2) selection of a repository of full-length 16S rRNA alleles; (3) generation 
of a reference package including a phylogenetic tree of full-length 16S rRNA alleles from the 
repository that match the ASVs ; and (4) placement of the ASVs onto the reference package 
phylogenetic tree. 
 
1. Generation of amplicon sequence variants (ASVs) from FASTQ files 
As noted in the Main section, the overall approach is relatively agnostic to the method used to 
generate ASVs. MaLiAmPi uses DADA2 by default, based in part on prior benchmarking studies 
31. For Illumina reads, if index reads are available demultimplexing is confirmed with 
Barcodecop (version 0.5). Reads are then filtered, trimmed and have residual primer and linker 
sequences removed with TrimGalore (version 0.6.6--0). Amplicon sequence variants are then 
generated using DADA2 (version 1.18.0). Reads are grouped into Batches, ideally representing 
a group of specimens processed into a library together, and typically of a size of 100.  
 
Each specimen’s reads (or read pairs) are then filtered and trimmed (in parallel) with DADA2’s 
filterAndTrim with the following parameters for Illumina reads: 
maxN 0 

maxEE Inf 

truncQ 2 

trimLeft 0 
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truncLen (0, 0) 

 
And with the following parameters for 454/Pyrosequencing reads: 
 
maxN 0 

maxEE Inf 

truncQ 2 

trimLeft 0 

truncLen 250 

maxLen Inf 

 
Filtered and trimmed reads are then dereplicated with the DADA2’s derepFastq command.  
The filtered and trimmed reads are grouped into batches, and then the learnErrors command 
is used to generate an error model for each batch’s forward (and when available) reverse reads 
with the following parameters for Illumina data: 
 
MAX_CONSIST 10 

Randomize TRUE 

nbases 1e8 

 
And these parameters for 454/Pyrosequencing data: 
MAX_CONSIST 10 

Randomize TRUE 

nbases 1e8 

HOMOPOLYMER_GAP_PENALTY -1 

BAND_SIZE 32 

 
By batch, the batch’s error model is applied to the dereplicated reads using the dada command 
with the pool="pseudo" option for all data, additionally HOMOPOLYMER_GAP_PENALTY=-1, 
BAND_SIZE=32 for 454/pyrosequencing data. 
 
On a per-specimen basis, paired-end reads are merged with the mergePairs command with the 
following parameters: 
trimOverhang TRUE 

maxMismatch 0 

minOverlap 12 

The minOverlap parameter occasionally needs to be relaxed down to a lower number 
depending on the PCR primer design and specific Illumina chemistry used, specifically when 
most or all read pairs fail to merge. For very-low quality read data (e.g. when read pairs fail to 
merge even with a min overlap of 4), we will only use the forward read data (as we believe 
those reads cannot be accurately paired).  
 
Finally the merged read pairs or dada models for unpaired reads are converted to sequence 
tables with the makeSequenceTable command. From these sequence tables are the ASV 
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sequences and specimen-ASV counts extracted into FASTA and CSV formats respectively for 
subsequent analysis.  
 
2. Repository sequence selection 
We started with the deduplicated -> 1200bp -> filtered -> named subset of 16S rRNA alleles 
from NCBI via the YA16SDB pipeline as our repository of sequences. As noted in the Main 
section, other repositories of 16S rRNA alleles can also be employed (e.g. SILVA, RDP, 
greengenes, etc). This entire set of YA16SDB reads are available for download (as below in the 
Data Availability section) on Zenodo (doi: 10.5281/zenodo.6876634).  
 
A subset of repository candidate full-length 16S rRNA alleles are identified by searching the 
repository sequences for matches with at least 80% identity to at least one ASV sequence using 
vsearch (version 2.17.0) in usearch_global mode, and max_accepts=10. To ensure the 
resultant tree will not result in overfitting or over diffusion of ASV placement later, full-length 16S 
rRNA alleles are recruited from the repository with the objective of having roughly the same 
number of recruited reference sequences per each amplicon sequence variant. Specifically, we 
establish the best possible percent identity between each ASV and the repository alleles, and 
discard any alleles that are below this best possible percent identity (e.g. retain the bounded-
best-hits). We then determine how many ASVs each reference is a best hit for and discard 
those that are not a best hit for at least two ASVs. Finally we backfill references for ASVs that 
no longer have a reference sequence as good as their best it, focusing on the longest alleles 
with no ambiguous bases and with a precise taxonomic annotation. Even for very broad sets of 
ASVs, this typically results in less than 30,000 reference alleles. 
 
3. Reference package recreation 
These filtered reference alleles are now aligned with cmalign from the Infernal package using 
the SSU_rRNA_bacteria covariance matrix from the rfam database and a mxsize 4096. The 
recruited full-length 16S rRNA alleles alignment is then assembled into a phylogeny. The 
generation of the phylogenetic tree is the most computationally intensive step in the entire 
approach. The current implementation default to RAxML (version 8.2.4), but also allows 
RAxML-ng (1.0.3) to be used if desired for a deeper exploration of possible starting random 
trees. 
 
For RAxML, the following settings are used: 
-m GTRGAMMA 

-p 12345 

 
And for RAxML-ng: 
model GTR+G 

seed 12345 

tree  pars{1},rand{1} 

bs-cutoff 0.3 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2022. ; https://doi.org/10.1101/2022.07.26.501561doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.26.501561
http://creativecommons.org/licenses/by-nc-nd/4.0/


This de novo phylogenetic tree is combined with the metadata for each allele within the tree 
(e.g. species-level taxonomy, source accession, etc) into a standardized reference package 
format using the taxtastic package.  
 
4. Placement of ASVs onto a reference package phylogenetic tree 
ASVs are next placed onto this reference tree. First the ASV sequences are aligned, using 
cmalign from the Infernal package, and the same covariance matrix as was used to make 
the alignment of reference sequences (retained in the reference package). The ASV alignment 
is combined with reference alignment (contained within the reference package) using esl-
alimerge utility from easel. 
 
This combined alignment is then used to phylogenetically place the ASVs onto the reference 
package tree using either pplacer (the current default) or epa-ng. Both have comparable 
performance and outputs. For pplacer, the following parameters are used: 
-p  

--inform-prior  

--prior-lower 0.01 

--map-identity  

 
For epa-ng: 
--baseball-heur  

 
The output of the placement step is in JPLACE format, dedup.jplace. For each ASV, the 
likelihood, distal-length, and pendant-length is reported for each edge in the tree (omitting edges 
for which there is no meaningful likelihood). These likelihood-weighted trees are the basis for 
subsequent analysis. Combined with ASV-counts-per-specimen, the weighted tree can be used 
to estimate pairwise phylogenetic distance (KRD-distance, akin to weighted UniFrac) between 
specimens, the alpha diversity of a specimen, and to group ASVs into phylotypes. Phylotypes 
are groups of ASVs clustered at a specific phylogenetic distance, and are created using a 
Python package (https://github.com/jgolob/phylogroups) installable via pypi 
(https://pypi.org/project/phylotypes/). A distance of 1 roughly corresponds to a species of 
bacteria, but with significant variation depending on the degree of taxonomic - phylogenetic 
concordance.  
 
In silico human gut microbiota for validation 
As in our prior work18, we used 100 microbial communities similar in structure and composition 
to those found in the healthy human gut microbiome, but generated in silico and thus with a 
known allele of origin for each and all amplicons generated. These communities are available 
via Zenodo (10.5281/zenodo.1120359). For each community, we have selected specific full-
length unambiguous 16S rRNA gene alleles to represent each microbe within the community. 
From these alleles we can generate amplicons targeting specific hypervariable regions via in 
silico PCR. 
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We selected primers targeting the most common variable domains and sequencing platforms 
represented in the large volume of legacy 16S rRNA gene data available in public repositories. 
Specifically, the V4 region (or V3-V6), V1-V2, and V5-V9 domains (Figure 1) and the 
sequencing platforms Illumina MiSeq or Roche 454 (a legacy technology for which SRA 
contains 139,965 records with the label ‘16S’). For MiSeq we set a goal of 50,000 simulated 
amplicons per community and for 454 we targeted 5,000 amplicons per community, reflecting 
the typical read-depths from the respective platforms (Table 2). As depicted in Figure 1, there is 
effectively no overlap between the amplicons targeting distinct regions (i.e., no overlap in 
sequence between the primers targeting V1-V2 and V5, nor with V6-V9).  

Primer Set Variable Region Intended Platform Simulated 
amplicons per 
community 

27fmod / 338r V1 - V2 Illumina MiSeq 50,000 

U515f / 806r V4 Illumina MiSeq 50,000 

27f / 357r V1 - V2 454 5,000 

357f / 926r V3 - V5 454 5,000 

968f / 149r V6 - V9 454 5,000 

Table 2: Primers for amplification of 16S rRNA gene variable regions and subsequent 
sequencing that were evaluated in this study. For MiSeq primers, we simulated 50,000 
amplicons per community; for 454, we simulated 5,000 amplicons per community. 

 
Dereplication of ASVs 
ASVs with the exact same sequence (length and each base pair) were combined together and 
assigned an ID.  
 
Generation of closed OTUs 
Here we used the QIIME1 package, and the GreenGenes 97% OTU repository. We generated a 
docker container containing QIIME 1 version 1.9.1A, and ran the following commands to 
generate blast-picked closed OTUs with a similarity of at least 80%:  
pick_otus.py -i <raw_fastq> -o blast_picked_otus/ -m blast -r 97_otus.fasta -s 0.8  
 

Where the 97_otus.fasta were the 97_otus from the GreenGenes repository, as recommended 
by the QIIME1 documentation.  
 
Calculation of Bray-Curtis distance 
Count tables were first assembled with one row per specimen and one column per feature 
(dereplicated ASV, closed-OTU, or phylotype) and each cell the number of reads assinged to 
that feature and specimen. These raw-count tables were then normalized to a read depth of 
10,000 reads per specimen. The normalized count tables were then used to calculate pairwise 
Bray-Curtis distance using the scipy (verison 1.6.3) pairwise distance calculator. 
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UMAP ordination 
The Python umap-learn package (version 0.5.1) was used with the following hyperparameters: 
min_distance = 0 
n_components = 2 
n_neighbors = 45 
 
Random state was fixed at 42. The pre-computed Bray-Curtis distance (as above) was used.  
 
Correlation between ‘real’ and ‘estimated’ pairwise Bray-Curtis distance 
For the real pairwise distance between communities, the distances between communities 
determined using the same primers were used. For estimated, the distance between the same 
community, but with each community amplified with a different primer was used.  
 
Clustering via HDBSCAN 
Pairwise Bray-Curtis distance was calculated from normalized phylotype-counts as described 
above. This pairwise distance matrix was used for ordination with umap, with the following 
hyperparamters: 
min_distance = 0 
n_neighbors = 100 
n_components = 2 
 
The python hdbscan package was used, using the ordinated points per specimen as the input 
matrix and the following hyperparameters: 
min_cluster_size = 25 
min_samples = 2 
 
 
Data Availability 
The in silico data sets used are available via Zenodo, at 10.5281/zenodo.1120360 
 
The set of full-length reference 16s rRNA alleles can be found on Zenodo at 
10.5281/zenodo.6876633. 
 
Real-world human microbiome data is available on the NCBI Sequence Read Archive (SRA) 
under the BioProjects in Table 1.  
 
Code Availability 
 
MaLiAmPi is available via a git repository (https://github.com/jgolob/maliampi). 
ARF is a workflow used to create the repository of full-length 16s rRNA alleles. It is available as 
a git repository (https://github.com/jgolob/arf). 
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Figures & Legends 
 
FIGURE 1 

 
Figure 1: Non-overlapping sequences generated by 16S Variable Region Primers are 
placed on the same subclade of a full-length phylogenetic tree. (A) Primers targeting four 
different regions of the 16S rRNA gene: V1-V2, V4, V3-V5, and V6-V9 have largely non-
overlapping positions within the full 16S rRNA gene. (B) A subclade of the reference tree is 
shown, with nodes of this subclade colored based upon the likelihood ratio of the given ASV 
placing at that node, with grey no likelihood. Despite each ASV having a different sequence they 
all phylogenetically place to the same small subclade of the phylogenetic tree which contains 
the true source allele, with the V6-V9 ASV containing sufficient entropy to entirely be placed on 
the true allele. 
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FIGURE 2 
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Figure 2: UMAP Ordination based on pairwise Bray-Curtis distance between 100 
simulated microbial communities without sequencing error simulation. A) Each circle is a 
microbial community. The left most block is the true relationship between communities. 
Relationships based on Bray-Curtis distance of strictly dereplicated ASV (second to the left), 
closed OTUs (third from the left) and phylotypes (right), with grey representing full-length alleles 
and each color representing as amplified by a specific primer pair. Only phylotypes correctly 
estimate the true relationships between communities. B) UMAP ordination of five randomly 
selected communities based upon Bray Curtis distance of feature-counts, with each color and 
symbol representing a primer set used for amplification, where ideally these will all overlap for 
the a given community. Only phylotypes (and not closed OTUs or dereplicated ASVs) group by 
the source community rather than primer.  C) A correlation between the ‘true’ Bray-Curtis 
distance between communities (x-axis) versus as estimated (y-axis) after dereplication, closed-
OUT generation, or grouping into phylotypes. Ideally these would be perfectly correlated. R 
values reported are Spearman correlation coefficients. 
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FIGURE 3 
A) 

 
B) 

 
Figure 3: A) UMAP ordination based on Bray-Curtis pairwise distance between six gut (purples) 
and three vaginal (oranges) human microbial communities as estimated by dereplicated ASV 
counts (left) or phylotype counts (right). B) Correlation between the Bray-Curtis pairwise 
distance between microbiome specimens as estimated by phylotype (navy) or dereplication 
(orange) counts to the body site (top) from which the specimen was collected or the project that 
collected the gut (middle) or vaginal (bottom) microbiome specimen. Dashed vertical lines are 
the ideal outcome. Error bars are the 95% confidence interval by bootstrapping of the ANOSIM 
R statistic. 
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FIGURE 4 
A) 

 
B) 

 
Figure 4: Assignment of gut microbiome specimens to two ecotypes that are consistent 
across studies. (A) Human gut microbiota specimens from six distinct studies were assigned to 
two clusters (purple or yellow) based on phylotype count Bray-Curtis distance after UMAP 
ordination and clustering by HDBSCAN. The proportion of healthy human gut specimens 
assigned to a cluster was consistent across studies. (B) We applied the ordination and 
clustering models to a different dataset relating the gut microbiome to body mass index. On the 
left, purple are specimens assigned to cluster 0, orange are assigned to cluster 1 and grey 
could not be assigned to a cluster. On the right are the body mass index values recorded 
stratified by the assigned cluster.  
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