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Abstract

Metabolomics-driven discoveries of biological samples remain hampered by the grand challenge of
metabolite annotation and identification. Only few metabolites have an annotated spectrum in spectral
libraries; hence, searching only for exact library matches generally returns a few hits. An attractive
alternative is searching for so-called analogues as a starting point for structural annotations; analogues
are library molecules which are not exact matches, but display a high chemical similarity. However,
current analogue search implementations are not yet very reliable and relatively slow. Here, we present
MS2Query, a machine learning-based tool that integrates mass spectral embedding-based chemical
similarity predictors (Spec2Vec and MS2Deepscore) as well as detected precursor masses to rank
potential analogues and exact matches. Benchmarking MS2Query on reference mass spectra and
experimental case studies demonstrates an improved reliability and scalability. Thereby, MS2Query offers
exciting opportunities for further increasing the annotation rate of complex metabolite mixtures and for
discovering new biology.
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Introduction

Wide-screen untargeted metabolomics applications are increasingly used to understand complex
metabolite mixtures. To boost the metabolite structure annotation rate, mass spectrometry
fragmentation approaches are a key source of information in the field of metabolomics!. Many
improvements have been made in automatically elucidating molecular structure from mass spectrometry
fragmentation spectra (also referred to as MS/MS or MS? spectra)?. However, it remains very challenging
to reliably determine structures based on MS? spectra3. Currently, three main types of approaches to
determine molecular structures from MS?2 spectra exist: matching against annotated mass spectral library
spectra*?, by using fragmentation trees!%-12, or by using in silico methods to match against structural
libraries!3-15, However, all these approaches still have important limitations.

One inherent limiting factor of mass spectral library matching is that annotated spectra for only a fraction
of the chemical space are known. For example, the GNPS'¢ public mass spectral libraries contain about
2.5% of known natural products!’. When searching for exact matches, this typically results in finding a
few exact spectral matches (with corresponding molecular masses) in a given sample!®. To overcome this
limitation several methods try to search larger structure databases like Pubchem?® for potential matches.
These methods typically rely on first predicting spectra from structures by using in silico fragmentation,
followed by comparing MS? spectra to these predicted spectra!3-1>, Even though these methods are
promising, they are still far from perfect at predicting in silico fragmentation, especially for larger
molecules such as complex secondary metabolites or lipid-like molecules. Other methods try to retrieve
information directly from the MS? spectra without relying on library databases by creating fragmentation
trees. Fragmentation trees have been used to predict molecular formulas®, used for matching against
structural databases!® 12, for predicting molecular fingerprints?® and recently for completely novel
predictions of structures from MS?2 spectrall. These methods show excellent results for smaller
metabolites of <400 Da, however for larger metabolites these approaches are still not fully reliable in
returning correct elemental formulas and candidate structures. Besides that, the computation time to
determine the fragmentation trees also increases manifold. Natural mixtures typically contain
considerable amounts of larger metabolites (>800 Da), and this thus poses challenges on the mass
spectral interpretation.

A different approach to increase the percentage of spectra for which chemical information can be
retrieved is by searching for analogues instead of exact matches. This approach also relies on annotated
mass spectral libraries, but aims at finding molecules that are chemically similar, without the need for
them to be identical. Current tools able to perform analogue searches often rely on a (modified) cosine
score to predict chemical similarity# ° 2. However, a limitation of the cosine score (and its derivatives) is
that small chemical modifications can, and multiple chemical modifications will, often result in a large
decrease in mass spectral similarity which limits its ability to serve as a proxy for chemical similarity?2-24.
Recently, two machine learning-based methods were developed that outperform cosine-based scores in
predicting chemical similarities from MS? mass spectral pairs; the unsupervised Spec2Vec?? and the
supervised MS2Deepscore?>. We hypothesised that their chemical similarity predictions offer great
potential for performing a reliable analogue search.

Here we present MS2Query, a tool for rapid large-scale MS? library matching that enables searching both
for analogues and exact matches in one run. MS2Query can reliably predict good analogues and exact
library matches. We demonstrate that MS2Query is able to find reliable analogues for 35% of the mass
spectra during benchmarking with an average Tanimoto score of 0.67 (chemical similarity). This is a
substantial improvement compared to the modified cosine score-based method (currently most widely
used* ?), which on the same test set resulted in an average Tanimoto score of 0.45 with settings that
resulted in a recall of 35% (percentage of query spectra for which a match is predicted). For this
benchmarking test set, any exact library matches were removed from the reference library to make sure
the best possible match that can be found is an analogue. MS2Query performs especially well for
molecules larger than 600 Da: for spectra in a test set in this mass range without any exact library
matches, MS2Query predicts an analogue with an average Tanimoto score of 0.85 (high chemical
similarity) and a recall of 63%. Besides thorough benchmarking on annotated library spectra, MS2Query
was also used for multiple case studies. The higher accuracy of MS2Query offers exciting opportunities
for further increasing the annotation rate of complex metabolite mixtures and for discovering new
biology. MS2Query is available as a well-tested, open source Python library which grants easy access for
researchers and developers.
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Results

MS2Query combines several machine learning approaches for a
more reliable analogue search

The workflow for running MS2Query first uses MS2Deepscore?® to calculate spectral similarity scores
between all library spectra and a query spectrum. In contrast to existing methods, no preselection on
precursor m/z is needed. By using pre-computed MS2Deepscore embeddings for library spectra, this full-
library comparison can be computed much faster than existing alternatives (see Speed Performance
section). Next, the top 2,000 spectra with the highest MS2Deepscore are selected. MS2Query optimises
re-ranking of the best analogue or exact match at the top by using a random forest that combines five
features. The random forest predicts a score between 0 and 1 between each library and query mass
spectrum. By using a minimum threshold for this score, unreliable matches can be filtered out.

As input for the random forest model, MS2Query uses five different features, calculated between the
query spectrum and each of the 2,000 preselected library spectra. These features are Spec2Vec
similarity?3, query precursor m/z, precursor m/z difference, a weighted average MS2Deepscore over 10
chemically similar library molecules, and the average Tanimoto score for these 10 chemically similar
library molecules. The random forest model was trained to predict Tanimoto scores (molecular fingerprint
based chemical similarity) based on these 5 features. More details about the rationale behind these
features can be found in supplementary information S1 and the material and methods.
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Figure 1: Schematic workflow of MS2Query. MS2Query searches for both exact matches and
analogues in a reference library. First, potential candidates are selected based on MS2Deepscore,
followed by reranking the spectra by using a random forest model.

Speed performance

Running MS2Query on 5,987 test spectra took 1 hour and 14 minutes (80 spectra per minute) on a
normal laptop with an 11th generation Intel Core i5-1135G7 and 16 GB of RAM. The test spectra were
matched against a library of 302,514 spectra, without doing any preselection on the precursor m/z
difference. An analogue search on the same test set using the matchms implementation?® of the Modified
cosine score and a preselection on a maximum precursor m/z difference of 100 Da took 9 hours and 24
minutes (10,6 spectra per minute). Note that this would take much longer with a larger maximum
precursor m/z difference.
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MS2Query has a high accuracy for analogue searching and exact
matching in benchmarking

The performance on finding exact matches and finding analogues was tested separately using two
different test sets. The test set for searching for exact matches (‘exact match test set’) contains 3,000
spectra that have at least one spectrum in the library from exactly the same molecule. The test set to
test the performance for an analogue search (‘analogues test set’) contains spectra that do not have an
exact match to a library spectrum. Thus, for this test set, the best possible match has to be an analogue
of the query spectrum.

The performance of MS2Query was compared to MS2Deepscore and the (modified) cosine score for
finding analogues and exact matches. For all three methods a minimal threshold can be used to vary the
percentage of query spectra for which a match is predicted (recall). For all three methods, the accuracy
increases with more stringent thresholds, but the recall decreases. To assess performance for an
analogue search, recall is compared to accuracy on the ‘analogues test set’ (Figure 2a). As a metric for
accuracy the average Tanimoto score between the test molecules and predicted analogues is used. The
Tanimoto score?’ is a metric for chemical similarity between two molecules, based on chemical
fingerprints?®, Across all recall values, MS2Query has a higher accuracy than comparable search methods
relying solely on MS2Deepscore or on the modified cosine score. When aiming for a recall of 35%, the
MS2Query threshold for this test set is 0.633 and results in an average Tanimoto score of 0.67 (Figure
S3 shows a detailed Tanimoto score distribution).

To determine the performance for finding an exact match, the percentage of predictions that is an exact
match for the test spectra is calculated for the ‘exact match test set’ (Figure 2a). For MS2Deepscore and
cosine score the preselection on precursor m/z difference was set to 0.25 Da, while for MS2Query no
pre-filtering on mass difference was used, since MS2Query used the exact same settings and model as
for the analogue search. Figure 2b shows that MS2Query performs better at finding exact matches
compared to search methods relying on MS2Deepscore or the cosine score.
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Figure 2: MS2Query is more accurate for finding analogues and exact matches than using
MS2Deepscore or (modified) cosine score. The threshold for MS2Query, MS2Deepscore and
(modified) cosine is varied, resulting in different recalls. a: The ‘analogues test set’ is used with
spectra that have no exact match in the library, therefore the best possible match is always an
analogue. For MS2Deepscore and modified cosine score, library spectra are first filtered on a mass
difference of 100 Da. The relationship between recall and accuracy is plotted. For each threshold
the accuracy is measured by taking the average over the Tanimoto scores (chemical similarity)
between the correct molecular structure and the predicted analogues. b: The ‘exact match test set’
of 3,000 spectra is used, all these test spectra have at least 1 exact structural match in the
reference library. For MS2Deepscore and modified cosine score, library spectra are first filtered on
a mass difference of 0.25 Da, while MS2Query does not use any pre-filtering on mass difference,
and uses the exact same settings as for the analogue search. The percentage of true positives is
given, a match is marked as true positive if the first 14 characters of the InChiKeys are identical.
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Increased performance for larger metabolites

Many tools for MS? spectrum annotation do not perform equally well for low and high query masses'% 23
29, For MS2Query the performance for different masses is tested by splitting the ‘analogues test set’ with
spectra without an exact match in the library into three mass ranges; 0-300 Da, 300-600 Da and > 600
Da. Figure 3 displays the Tanimoto score distributions of the suggested analogues for these three mass
ranges. This analysis reveals that MS2Query performs best for large metabolites (>600 Da) where it
detected analogues with an average Tanimoto score of 0.85 and has a recall of 63%. A better
performance for larger metabolites can also be observed when using MS2Deepscore or modified cosine
score, see Figure S1 and S2. However, in comparison to MS2Deepscore and modified cosine score,
MS2Query was able to filter out more bad analogues for lower masses.
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Figure 3: The performance of MS2Query is substantially better for larger metabolites than smaller
metabolites. The 'analogues test set’ without exact library matches is split into 3 mass bins; 0-300
Da, 300-600 Da and 600-2,000 Da. The highest scoring library spectrum is selected and the
Tanimoto score is calculated between the predicted library molecule and the correct molecular
structure a: Performance of MS2Query without using a minimal threshold for the MS2Query score.
b: A minimal threshold for MS2Query of 0.633 was used, resulting in a total recall of 35% across
the three mass bins.

Case studies on experimental datasets of complex metabolite

mixtures

MS2Query was run on four case studies, to demonstrate that MS2Query also performs well on newly
generated experimental data. A urine sample, two blood plasma samples, and an anammox bacterial
sample set were analysed using MS2Query and GNPS analogue search. The results of the case studies
were manually validated and partially confirmed by in-house reference standards. Though informative,
we would like to stress that a fair comparison of the performance in these case studies is challenging,
since often no ground truth can be found for all spectra and judging whether two chemical structures are
analogues remains to some extent subjective. For all case studies, the detailed results can be found in
the supplementary information. Below we highlight some of the results of four case studies to illustrate
that MS2Query is able to predict useful exact matches and analogues for newly generated data.

Figure 4.1a shows the number of spectra for which MS2Query predicted a match (recall) for the four case
studies. The recall for the four case studies is highly variable, but on average, the case studies do not
have a clear higher or lower recall compared to the benchmarking test set used. Figure 4.1b shows that
the ratio between the number of predicted analogues (mass difference >1 Da) and predicted exact
matches (mass difference <1 Da) differs between the case studies. Manual validation shows that most
predictions by MS2Query were analogues or exact matches that matched with prior biochemical
knowledge on the sample (Figure 4.2). This confirms that MS2Query is able to generate relevant
predictions for newly generated experimental data.
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The NIST plasma sample analysed by lipid profiling assay in positive mode contained 139 spectra for
which MS2Query predicted 75 matches. Since this blood plasma sample was analysed by lipid profiling
assay it was expected to contain mainly lipids. In line with this expectation, MS2Query predicted 72
matches (out of 75) to be lipids. This shows that MS2Query is able to reliably find analogues which
consistently match the correct compound class.

Overview case studies
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Figure 4: Highlight of the results of the case studies. A minimal threshold of 0.633 for the random
forest score was used to determine if an analogue was selected. The threshold of 0.633 was
selected, since this resulted in a recall of 35% for the “"analogue test set”. 1a: The variation of
recall across case studies using the same settings. 1b: The percentage of query spectra with a
predicted analogue (precursor mz >1 Da) is compared to the percentage of spectra with an exact
match predicted (precursor mz <1 Da) 2: Results were manually validated based on the retention
time MS1 mass and MS2 spectra, by comparing to online libraries or in-house reference standards.
These reference standards were used to judge the quality of the predicted analogues. In the
supplementary information more details about the validation can be found. For the anammox
bacteria sample set, tentative validation was attempted for 50 features. 3: MS2Query can detect
analogues with large mass differences, this makes it possible to also detect analogues that have
large mass differences (such as dimers for instance). The correct annotation was PC(16:0/18:2)
and the predicted analogue was PC(16:1/18:1). *The precursor m/z of the predicted analogue was
incorrectly stored in the GNPS library, since the parent mass of 757,6 Da was stored in the library
instead of the precursor m/z of 758,6 Da.
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Discussion

Structural elucidation based on mass spectrometry fragmentation data remains hampered by a limited
number of reference mass spectra in spectral libraries. Only a fraction of the mass spectra in
experimental data can therefore be annotated. Many different approaches target this structural
annotation problem, for instance fragmentation tree based methods'%-!?, or approaches generating in
silico spectra based on structural libraries!3 4, Even though these are promising approaches, the
problem of automatically assigning structures to mass spectra remains unsolved. Searching for so-called
analogues is an attractive alternative to exact library matching. Analogues are library molecules which
are not exact matches, but are structurally very similar. Analogues can be used as a starting point for
complete annotation, to select metabolites of interest, or for direct biological interpretation. A benefit of
searching for analogues compared to compound class prediction is that analogues make interpreting
more flexible. The choice is not limited to specific compound classes, but can be extended to specific side
groups for metabolites of interest, involvement in certain pathways, or relatedness to specific drugs or
contaminants. Furthermore, searching for analogues can potentially help in efficiently increasing the
chemical diversity of public libraries. If an analogue search does not return any matches, this metabolite
is likely to be unrelated to known metabolites. Prioritizing such metabolites for structural identification by
NMR spectroscopy would be an efficient way to increase the chemical diversity of public libraries. Here
we introduce MS2Query a tool that is able to search a large mass spectral library both for exact matches
and analogues. Based on the performed benchmarking, we expect that searching for analogues in
currently publicly available mass spectral libraries, MS2Query will typically result in useful analogues for
about one third of all compounds of a complex sample. The precise fraction, however, will vary
depending on the exact composition and origin of a sample and the similarity of its molecules with those
in mass spectral libraries.

Comparison with (modified) cosine score and MS2Deepscore shows that MS2Query performs better both
at finding exact matches as well as finding analogues for positive mode MS? spectra. Using a modified
cosine score is a common approach for doing an analogue search, for instance implemented on GNPS*
and MASST?®. Even though we demonstrate that MS2Query is able to rapidly provide reliable analogues
for unknown substances, there is still room for improvement. The current version was trained using
available data from GNPS6, While a very valuable resource, we do expect that our models will notably
improve when our library is built from larger and chemically more diverse datasets. The dependency on
enough and diverse training data is clearly visible when using MS2Query on negative mode mass spectra.
For negative mode mass spectra, MS2Query performed less well (supplementary information S7), which
is probably due to the lower number of publicly available mass spectra in negative mode. Nevertheless,
MS2Query currently represents a substantial step forward in reliability, thereby creating new
opportunities to use analogues to get more reliable insights into unknown mass spectra.

Our four case studies show how the number of spectra for which MS2Query predicts a match (recall)
varies from 15 to 75% with the same settings (Figure 4). The observed variation can be due to
differences in the quality of the acquired spectra, the masses of the metabolites, or the differing
similarity between the metabolites in the sample and the metabolites in the reference libraries. This, in
combination with the challenges of manually validating results, makes it hard to objectively judge if
MS2Query performs similarly on newly generated data, compared to the benchmarking test set.
Nonetheless, the case studies show that MS2Query is able to generate useful results for newly generated
experimental data and that it can contribute to new biochemical insights based on previously
unconnected analogues.

MS2Query performs particularly well at predicting analogues for molecules larger than 600 Da (Figure 3).
A likely explanation why analogue searching is more accurate for larger metabolites, is that larger
metabolites will often produce a higher number of characteristic fragments. In addition, small chemical
changes will have a more severe impact on fingerprint based chemical similarity for smaller molecules,
since those changes can quickly alter a large fraction of a fingerprint. In practice, the observed high
analogue similarity for larger molecules is very promising, since it is complementary to currently existing
methods relying on fragmentation tree-based approaches. Fragmentation tree-based methods perform
well for smaller metabolites <500 Da, but perform less well for larger metabolites, both in terms of
computational time and reliability!® 2% 30, This shows the potential for combining the two approaches and
using the best of both for optimal performance.
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Since a preselection on MS2Deepscore is the start of our method, the improved performance of
MS2Query compared to MS2Deepscore shows the added value of using the five features and the random
forest for re-ranking the library spectra. Additional analysis of the feature importance indicates that each
of the five features used contain relevant information for correctly ranking candidate structures
(supplementary Table 1 and 2). Besides the five used features, multiple other features were tested as
well, for instance the cosine and modified cosine score. These other features were not selected, since
they did not improve the performance of the model. Details about the other features that were tested
can be found in the supplementary information S2.

MS2Query is available as an easily installable python package, which is stable and well-tested. The model
as well as the library mass spectra used are available on Zenodo. MS2Query is fully automatic and was
designed with the end-user in mind. For example, it outputs a CSV file with all relevant information about
the found matches for the query spectra. For each found analogue it also returns the chemical compound
classes based on ClassyFire3! annotations, to make it easier to interpret the results. MS2Query is
optimized for speed and working memory usage, which makes it possible to run MS2Query on a normal
laptop on 1,000 spectra within 13 minutes against a reference library of 302 514 spectra, without doing
any preselection on precursor m/z difference. The scalability of MS2Query is an encouraging step toward
higher-throughput large-scale untargeted metabolomics workflows, thereby creating the opportunity to
develop entirely novel large-scale full sample comparisons.

MS2Query is a tool able to search for both analogues and exact matches in large spectral libraries. The
tool is scalable and has an improved accuracy compared to conventional methods, this makes MS2Query
very suitable for high throughput analysis. The good performance of MS2Query for larger metabolites
offers a lot of new opportunities for further increasing the metabolite annotation rate of complex
metabolite mixtures, in particular for natural product relevant mass ranges.
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Online Methods
Workflow MS2Query

MS2Query builds on the improvements of two machine learning-based methods, developed to predict
chemical similarity from MS? mass spectral pairs; Spec2Vec?® and MS2Deepscore?®. These methods
perform especially well at predicting chemical similarity for molecules that are similar, but are chemically
not exact matches. This makes these scores very suitable for an analogue search.

The workflow for running MS2Query first uses MS2Deepscore to calculate spectral similarity scores
between all library spectra and a query spectrum. The top 2,000 spectra with the highest MS2Deepscore
are selected. To optimally rank these 2,000 spectra, MS2Query calculates 5 features which are combined
by a random forest model. The prediction of the random forest model is used to rank the 2,000
preselected library spectra (See Figure 1). As input for the random forest model, MS2Query uses 5
different features, calculated between the query spectrum and each of the 2,000 preselected library
spectra. The features are 1. Spec2Vec similarity, 2. query precursor m/z, 3. precursor m/z difference, 4.
an average MS2Deepscore over 10 chemically similar library molecules, and 5. the average Tanimoto
score for these 10 chemically most similar library molecules.

The Average MS2Deepscore of multiple library molecules (feature 4), builds on the following principle.
For two library molecules that are chemically very similar, it is expected that if one of these library
molecules is a good analogue to your query spectra, the other is a good analogue as well. For this reason
it is expected that for a good analogue the MS2Deepscore between such a chemically similar library
molecule and your query spectrum is also high. This is captured in this feature by calculating the average
MS2Deepscore between a query spectrum and all spectra of 10 chemical similar library molecules (Figure
5). These 10 library molecules are selected based on the known chemical structures of the spectra in the
library, by selecting the library structures with the highest Tanimoto score. For each of the 10 library
molecules all corresponding library spectra are selected. The MS2Deepscore between these library
spectra and the query spectrum is calculated and the average per library structure is taken. As an input
feature for the random forest model, the average over the MS2Deepscore for the 10 library structures is
used (Feature 4). In addition, the average of the Tanimoto score between the starting library structure
and the 10 library structures is used as an additional input feature (Feature 5).

Select one library Calculate fingerprint Select the top 10 Select all library Calculate Average
molecule. based chemical most chemically spectra belonging to MS2Deepscore MS2Deepscore per
similarity with all similar library the 10 library between Query library molecule.
library structures. molecules. molecules. spectrum and all
selected library
spectra.
Average Tanimoto score Average MS2Deepscore
for similar library over 10 chemically similar
molecules . library molecules .

Figure 5: Workflow for calculating two input features of the random forest model. Feature 5 is the
Average Tanimoto score for similar library molecules and feature 4 is the average MS2Deepscore
over 10 chemically similar library molecules.
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Tanimoto scores as structural similarity label

First, an rdkit?® daylight fingerprint (2,048 bits) is generated from the InChlI for each unique 14-character
InChIKey in the library. If multiple spectra with the same InChIKey exist in the dataset, the most
frequently occurring InChl was selected and used for all spectra with the corresponding InChIKey. A
Tanimoto score?” was calculated between the molecular fingerprints for each pair of InChIKeys. The
Tanimoto score is used as an indication for structural similarity of that pair. These Tanimoto scores are
used as labels for training MS2Deepscore and MS2Query and for selecting chemically similar library
molecules to calculate an average of the MS2Deepscore of multiple chemically similar library spectra.

Data cleaning

For training and testing of MS2Query, we used data from GNPS. The GNPS dataset used was downloaded
from GNPS (https://gnps-external.ucsd.edu/gnpslibrary/ALL GNPS) on the 15% of November 2021,
20:00 CET. The dataset was first cleaned using matchms?6. The metadata was cleaned to get a uniform
format and to remove or correct misplaced metadata. The intensities of the mass fragmentation peaks
are normalised. Peaks above 1,000 Da were removed and peaks with an intensity of less than 0,1 % of
the highest peak were removed. For spectra with more than 500 peaks, the peaks with the lowest
intensities were removed. Spectra with less than 3 peaks were completely removed from the library.
Some spectra in the GNPS library do not have an InChIKey stored. A method from matchms extras was
used to add missing InChIKeys by searching the compound name and molecular formula on PubChem.
The number of spectra at each step can be found in Figure 6.

2400 spectra with exact
match in library + all
spectra of 200 unique

InChlKeys
4676 spectra
| 2600 unigue InChiKeys |

Y Training spectral
Raw GNP S spectra pairs M52Query
Training spectra SpecZVec

480947 spectra
316422 spectra

—

Remove spectra with
number of peaks <3
403427 spectra

Training spectra
MS2Deepscore
302514 spectra
20389 unique InChiKeys

Validation spectra

MS2Deepscore
5817 spectra

3250 unigue InChiKeys

(Top 100 MS2Deepscorg)

'600 spectra with exact
match in library + all
spectra of 50 unique

Validation spectral

pairs MS2Query
Incompletely annotated

InChlKeys
350880 InChlKeys spectra 1141 specira
22363 unique InChlKeys 13908 spectra

\ 550 unigue InChlKeys
. ; ~ & )
T 600D spectra with an

Add InChIKeys from exact match in the library

PubChem Positive mode spectra Fully annotated spectra
403427 spectra 4>{ 328226 speclp:: H y31431a spect?ae AT AL EEEE T
3834805 InChiKeys 20889 unigue InChiKeys 20889 unigue InChiKeys “”ﬁgg J’lg'gl't(r:“
23122 unique InChlKeys 6500 unique InChiKeys |
[ Negative mode spectra |
75175 spectra
| 9941 unigue InChiKeys | ‘Analogue test set' ‘Exact match test set'
- MS2Query MS2Query
(All spectra from 250 (3000 spectra with exact
unigue InChiKeys) match in library)
2087 spectra 3000 spectra
250 unigue InChlKeys 3000 unigue InChiKeys

Figure 6: Workflow for creating datasets used for training, validation and testing of MS2Deepscore,
Spec2Vec and MS2Query for spectra in positive ionization mode.

The spectra are split in two separate datasets for spectra obtained in positive and negative ionization
mode. The processing and benchmarking of the negative mode spectra can be found in supplementary
information S7. For all other benchmarking only the positive mode spectra are used. These spectra are
split into a training set and two different test and validation sets that address different goals of
MS2Query. For both the test and validation set, 250 random InChIKeys were selected, for which all
spectra were removed from the library. In addition, 3,000 random spectra were selected that belong to
an InChIKey that has more than one spectrum in the library. The two validation data sets are added
together during training of MS2Deepscore and Spec2Vec.

Training MS2Deepscore and Spec2Vec

MS2Deepscore was trained on all fully annotated spectra from the GNPS library, using the same settings
as used for the MS2Deepscore publication?®.

A spec2vec model is trained using all spectra from the GNPS library, both annotated and unannotated
spectra. The model is trained in 30 epochs using binning on 2 decimals?3.
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Training random forest model

The random forest model used by MS2Query was trained on pairs of annotated spectra using 5 different
features. The model was trained to predict the Tanimoto score between the two structures of each pair.
In total 467 000 spectral pairs are used as input for training the random forest model. To generate the
training spectrum pairs 2,400 spectra with at least 1 library match + all library spectra of 200 InChIKeys
(2,276 spectra) where removed from the library spectra. The spectrum pairs were generated by starting
with one spectrum from this set and creating spectrum pairs with the 100 library spectra that have the
highest scoring MS2Deepscore for this spectrum. As starting point to generate the validation spectrum
pairs 600 spectra with at least 1 match + all spectra of 50 InChIKeys (541 spectra) were removed from
the library. More details about the motivation for selecting the top 100 highest scoring spectra for
training can be found in supplementary information S5.

Features

4676 query spectra T ) . 1. Spec2vec

| 1. Calculate ' '
467 600 spectrum 2. Query spectrum precursor
pairs miz

M52ZDeepscore
3. Precursor m/z difference

. 2. Select top 100 highest
J "_ scoring library spectra |

302 514 library

spectra 4. Average MS2Despscore over
/ 10 chemically similar library
Label malecules

5. Average Tanimoto score for
similar library molecules of
feature 4

Tanimoto score between selected
library structure and query structure

Figure 7: Workflow for training random forest model of MS2Query.

The implementation of scikit-learn3? was used for the random forest model. The mean squared error was
used as a loss function. The number of estimators was set to 250 and the max depth to 5. The
implementation of scikit-learn was used to calculate the feature importance of the 5 scores used. This
method is based on an impurity-based feature importance, also known as the Gini importance33.

Beside these 5 features, multiple other features were tested as well, for instance the cosine and modified
cosine score. These other features were not selected, since these did not improve the performance of the
model. Details about the other features tested and the distributions of Tanimoto scores in the training
data can be found in the supplementary information S2.

Benchmarking

MS2Query was designed to search for analogues and exact matches in one run. Since these goals are
slightly different, they were both benchmarked separately. The performance for an analogue search was
benchmarked by using a test set that does not have any exact match in the library, therefore the best
possible match will always be an analogue. To benchmark the search for exact matches a dataset was
used that always has an exact match in the library. See Figure 6 and the section Data cleaning for the
exact method for creating these datasets.

Analogue search

MS2Query, MS2Deepscore, or the modified cosine score were used to rank the reference library spectra.
For MS2Deepscore and modified cosine score, library spectra were first filtered on a maximum precursor
m/z difference of 100 Da. For MS2Query, spectra were not filtered on precursor m/z difference. The
Tanimoto score between the predicted library molecule and the correct test molecule was calculated and
used as a performance metric of each method. All three methods use a minimal threshold for the spectral
similarity score to determine if a library spectrum is a good analogue. The threshold for each method was
varied between 0 and 1, followed by calculating the accuracy and recall.

Exact matches

MS2Query, MS2Deepscore, or the cosine score were used to rank the reference library spectra. For
MS2Deepscore and cosine score only library spectra were considered within a mass tolerance of 0.25 Da.
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For MS2Query no minimum threshold for mass tolerance was used. The cosine greedy implementation of
matchms?® was used to calculate the cosine score, a fragment mass tolerance of 0.05 Da was used. The
InChIKey of the predicted molecule was compared to the InChIKey of the correct molecule. If the first 14
letters of both InChIKeys were the same, a found match was marked as correct, if the first 14 letters
differ it was marked as wrong.

Separation of mass

The test dataset for the analogue search was split into 3 mass categories. Spectra with a precursor m/z
of 0-300 Da, of 300-600 Da and all spectra larger than 600 Da. The size of these 3 seperate test sets
were 819, 1,684 and 481 spectra respectively. The performance of these 3 test sets was determined
separately.

Speed and memory optimization

MS2Query was optimised for speed and working memory efficiency. To make this possible, MS2Query
aims to avoid repetitive, computational expensive operations. The biggest speed improvement was
achieved by pre-calculating mass spectral embeddings for Spec2Vec and MS2Deepscore. MS2Deepscore
and Spec2Vec both predict a chemical similarity score between two library spectra, by first calculating a
multidimensional embedding followed by calculating the (mathematical) cosine similarity between these
two embeddings. The library spectra are already known, therefore the embeddings for all library spectra
are pre-calculated and stored. Therefore only for the query spectra the embeddings have to be
computed, instead of all the library spectra.

In the first step the top 2,000 library spectra are selected that have the highest MS2Deepscore between
the query spectrum and a library spectrum. To do this selection, the MS2Deepscores between a query
spectrum and all MS2Deepscores are calculated. To avoid repetitive calculation of these scores, the
calculated MS2Deepscores are reused to calculate the average of the MS2Deepscore of multiple
chemically similar library molecules.

The precursor m/z is the only metadata entry that is required for MS2Query and which serves to
calculate the mass differences. Other spectra metadata such as retention time, SMILES or compound
names can be returned for results found by MS2Query. To reduce the toll on working memory, this
information is stored in a SQLite library. The precursor m/z is stored in a separate SQLite library column
for efficient look-up speeds. To calculate the average MS2Deepscore of multiple chemically similar library
molecules, the 10 most chemically similar library molecules based on the Tanimoto score are needed.
This top 10 list of most related InChlIKeys is pre-calculated for every unique InChIKey in the library and
stored in the SQLite library.

MS2Query contains a workflow to automatically generate all needed files, making it straightforward to
recreate these files for new or different spectral libraries.

Speed performance

The speed was tested on the 5,987 test spectra in positive mode and compared to the positive mode
GNPS library containing 302.514 spectra. The test was run on a laptop; the Lenovo Thinkbook 15-IIL.
This laptop has an 11th generation Intel Core i5-1135G7 and 16GB installed RAM.

Case studies

Four case studies were performed to confirm that MS2Query performs well on newly generated
experimental data. Two blood plasma samples, a urine sample and a bacterial sample set were analysed.
The raw data, intermediate files and raw results can be found on
https://zenodo.org/record/6811540#.YshH5GBBxPY. Here below, the analytical methods used, and the
data preprocessing and processing steps are described for all case studies.

Case study 1: NIST Human blood plasma

For this case study, the NIST 1950 Frozen Human Plasma standard reference material (SRM). The
sample was subjected to reversed-phase chromotographic (RPC) assay tailored for complex lipid
separation as described in Lewis, et al.3.
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Case study 2: Blood plasma Long-Term Reference

For this case study, a plasma Long-Term Reference (LTR) sample was used. This LTR is routinely
integrated in profiling studies at the National Phenome Centre for study-independent monitoring of
precision. To create the plasma LTR, 10 L of bulk plasma were purchased from Seralab, homogenized,
and aliquoted for long term storage at -80°C. Hydrophilic interaction liquid chromatography (HILIC) was
used in this case study for the analysis of polar metabolites in a sample of plasma LTR34,

Case study 3: Urine long-Term Reference

For this case study, a pooled Long-Term Reference (LTR) urine sample, maintained by the National
Phenome Centre and utilized as an independent sample reference throughout all molecular profiling
studies, was used. The protocol followed to generate urine LTR sample is described in detail by Lewis et
al.?s. Briefly, this material was created by pooling together 78 urine voids collected from healthy
volunteers in one day. All samples were combined in a 20 L vessel, homogenized and aliquoted into 15
mL polypropylene conical centrifuge tubes (Corning) for long term storage at —80°C. Samples were
analyzed by reversed-phase chromatographic (RPC) assay tailored for small molecule metabolites3-.

Preprocessing Case study 1

NIST 1950 human plasma sample was thawed at 4°C for 2h. Subsequently, a 50 pL aliquot was taken
and prepared for lipid analysis by dilution with LC-MS grade water (1:1 v/v) and addition of four parts of
isopropanol (IPA) containing a mixture of lipid reference standards3* to one part of diluted sample for
protein precipitation. Vial with the sample was mixed at 1,400 rpm for 2h at 4°C and subsequently
centrifuged for 10 mins at 3,486 xg at 4°C to separate the homogenous supernatant from the
precipitated protein. The clear supernatant was aspirated and dispensed into LC-MS vial, then
additionally centrifuged for 5 mins at 3,486xg and 4°C prior analysis. Prepared sample was injected
(1uL) in the chromatographic system using full loop mode (5x overfill).

Preprocessing Case study 2

For the case study 2, plasma LTR sample was prepared for the analysis by HILIC method in positive
ionization mode. The sample was thawed at 4°C for 2h. Subsequently, a 50 pL aliquot of plasma LTR
sample was diluted 1:1 with LC-MS grade water and HILIC internal standards (IS)34. Three parts of
acetonitrile were then added to one part of diluted sample for protein precipitation. Vial with the sample
was mixed at 1,400 rpm for 2h at 4°C and subsequently centrifuged for 10 mins at 3,486xg at 4°C to
separate the homogenous supernatant from the precipitated protein. The clear supernatant was
aspirated and dispensed into LC-MS vial, then additionally centrifuged for 5 mins at 3,486xg and 4°C
prior analysis. Prepared sample was injected (2uL) in the chromatographic system using full loop mode
(5% overfill).

Preprocessing Case study 3

Preparation and analysis of urine samples are described in detail by Lewis et al.3>. In brief, an aliquot of
150 pL of urine sample was diluted with 75 pL of ultrapure water and 75 pL of RPC-specific internal
standards (IS) solution34. The sample was mixed at 850 rpm for one minute at 4°C and centrifuged for 10
mins at 3,486xg at 4°C. The supernatant was aspirated and dispensed into LC-MS vials for the analysis.
Urine sample was injected (2uL) in the chromatographic system using full loop mode (5x overfill).

UPLC-MS profiling analysis for case studies 1-3
All UPLC-MS analyses were performed on Acquity UPLC instruments, coupled to Xevo G2-S TOF mass
spectrometers (Waters Corp., Manchester, UK) via a Z-spray electrospray ionization (ESI) source.

For lipid profiling, all solvents — water, acetonitrile (ACN), and IPA and mobile phase additives
ammonium acetate and acetic acid were of LC-MS grade. Lipidomic profiling was conducted using a
2.1x100 mm BEH C8 column, thermostatted at 55°C. Mobile phase A consisted of a 2:1:1 mixture of
water:ACN:IPA with 5mm ammonium acetate, 0.05% acetic acid, and 20 uM phosphoric acid. Mobile
phase B consisted of 1:1 ACN:IPA with 5 mM ammonium acetate, 0.05% acetic acid. The initial
conditions were 99:1 A:B at a flow rate of 0.6 mL/min. The details of gradient elution program are shown
in the protocols associated with Lewis et al.3*.

The HILIC chromatographic retention and separation of polar molecules was conducted using a 2.1 x 150
mm Acquity BEH HILIC column thermostatted at 40 °C. 20 mM ammonium formate in water with 0.1%
formic acid was used as mobile phase A and ACN with 0.1% formic acid as mobile phase B. The initial
conditions were 5:95 A:B at a flow rate of 0.6 mL/min. The details of gradient elution program are shown
in the protocols associated with Lewis et al.3*.

For urine profiling, water and ACN supplemented with 0.1% formic acid of LC-MS grade were used as
mobile phases A and B. A 2.1 x 150 mm HSS T3 column thermostatted at 45 °C was used with a mobile
phase flow rate of 0.6 mL/min. The details of gradient elution program are shown in the protocols
associated with Lewis et al.4.
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The analysis of blood plasma and urine reference samples in presented case studies were performed in
positive ionization mode. The mass spectrometry parameters were set as follows: capillary voltage 2 kV
for lipid profiling and 1.5 kV for urine profiling, sample cone voltage 25 V for lipid profiling and 20 V for
urine profiling, source temperature 120°C, desolvation temperature 600°C, desolvation gas flow 1,000
L/h, and cone gas flow 150 L/h. Data were collected in centroid mode with a scan range of 50-2,000 m/z
and 50-1,200 m/z for lipid and urine profiling, respectively, and a scan time of 0.1 s. For mass accuracy,
LockSpray mass correction was performed using a 600 pg/uL leucine enkephalin solution (m/z 556.2771
in ESI+) in 1:1 water:ACN solution at a flow rate of 15uL/min. Lockmass scans were collected every 60 s
and averaged over 4 scans. The mass spectrometer was operating in Fast DDA mode. The intensity
threshold of precursor ion was set to 100 K to trigger MS? fragmentation that was performed in centroid
mode with a scan range of 50-2,000 m/z and a scan time of 0.25 s. MS? was switched back to MS survey
function after 2 s acquisition. Deisotoped peak selection option was enabled. The collision energy was set
to the ramp of 15-30 eV and 30-60 eV for MS? acquisition of low and high mass ions, respectively. Ten
iterative DDA acquisitions were performed using DDA auto exclude program, which allows ions selected
as precursors in previous injections are removed from the list in the following injections.

Case study 4: Anammox bacteria

For the fourth case study extracts of three strains of anammox bacteria were used. Kuenenia
stuttgartiensis MBR1 was cultivated in a 12 liter single cell membrane bioreactor (MBR) as previously
described by Kartal et al.3%. Brocadia fulgida was cultivated as previously described by Kartal et al.?” with
some adjustments: the working volume was 6 liter and the bacteria were kept in a single cell membrane
bioreactor. Scalindua was cultivated in a 5.5 liter sequencing batch reactor at room temperature as
described earlier by van der Vossenberg et al.3®. Samples (30 mL) were taken from each reactor in
triplicate and kept on ice. After centrifugation at 3,000 x g, at 4 °C for 5 minutes, the cell pellets were
lysed in ice-cold acetonitrile:methanol:water (2:2:1; v:v:v). The samples were snap frozen in liquid
nitrogen and stored at -70°C until further use. To remove precipitated proteins and extracellular matrix,
samples were centrifuged again at 20,238 x g, at room temperature for 5 minutes. Subsequently,
samples were subjected to LC-MS analysis as described previously by Jansen et al.?? with several
adaptations. The samples were injected onto a Diamond Hydride Type C column and separated using a
gradient of acetonitrile and water (both with 0.2% formic acid) on an Agilent 1290 II LC system coupled
to an Agilent Accurate Mass 6546 Quadrupole Time of Flight (Q-TOF) instrument operated in the positive
ionization mode and a scan range of 50-1,200 m/z. For data dependent acquisition of MS2 spectra,
automated selection of maximum 4 precursor ions (> m/z 100) per cycle with an exclusion window of 2
minutes after a single spectrum, and an absolute threshold of 1,000 counts with a mass error tolerance
of 20 ppm was used. The scan speed was varied based on precursor abundance with a target of 50,000
counts. Common background ions were excluded, the isolation width was set to narrow (~1.3 m/z), and
the collision energy was set to 20 V. Data collection was performed using Agilent Masshunter software
10.0 (Agilent Technologies).

Data processing

In the case of case studies 1-3 the spectra were uploaded on GNPS to run MSCluster* to create
consensus spectra. These consensus spectra were taken as input for MS2Query. The data files for case
study 4 were first converted to mzML format using Proteowizard (Chambers et al., 2012). Next, LC-MS
features were picked using XCMS3#! (https://github.com/sneumann/xcms), using the findChromPeaks
function. The resulting MS2 spectral MGF file was used to run MS2Query.

Analogues and exact matches with a MS2Query score above 0.633 (corresponding to 35% recall for the
“analogues test set” during benchmarking) were considered for all case studies. In addition, an analogue
search on the GNPS platform?® for case studies 1-3 was performed and FBMN for case study 4 was
performed. More information about this can be found in the supplementary information S6.

Manual validation

To validate the MS2Query matches for case study 1-3, metabolites with MS2 were manually annotated to
confidence level 1-3 according to the Metabolomics Standards Initiative*? by matching fragmentation
spectra to reference data from an in-house standards database and online databases LIPID MAPS%3,
HMDB“4, and GNPS', In the case of case study 4, annotations were checked based on a combination of
biological knowledge and matching of MS1 mass and retention time to reference standards. Judgement
of the analogue quality was done manually. Lipids where the lipid type (e.g. PC or SM) was correctly
predicted and the chain lengths were similar, were marked as a good analogue. Correctly predicted
lipids, but wrong lipid types were marked as analogue. The detailed manual annotations and judgements
for all spectra can be found as an excel file in the supplementary information for all case studies.
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Code and data availability

MS2Query is available as an easily installable Python library running on Python 3.7 and 3.8. Source code
and installation instructions can be found on Github (https://github.com/iomega/ms2query). The
presented results were obtained using version 0.3.2. The models and spectra files used can be
downloaded from https://zenodo.org/record/6124553+#.YrIpREZBXPY. A detailed overview of the code
used for all methods can be found in the notebooks and scripts in the Github folder
https://github.com/iomega/ms2query/tree/main/notebooks/GNPS 15 12 2021.

The mass spectrometry data for case study 4 were deposited in the MassIVE repository (accession
number MSV000089648).
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