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Abstract 

Cell type-specific differential gene expression analyses based on single-cell transcriptome datasets are 

sensitive to the presence of cell-free mRNA in the droplets containing single cells. This so-called ambient 

RNA contamination may differ between samples obtained from patients and healthy controls. Current 

ambient RNA correction methods were not developed specifically for single-cell differential gene 

expression (sc-DGE) analyses and might therefore not sufficiently correct for ambient RNA-derived 

signals. Here, we show that ambient RNA levels are highly sample-specific. We found that without 

ambient RNA correction, sc-DGE analyses erroneously identify transcripts originating from ambient RNA 

as cell type-specific disease-associated genes. We therefore developed a computationally lean and 

intuitive correction method, Fast Correction for Ambient RNA (FastCAR), optimized for sc-DGE analysis 

of scRNA-Seq datasets generated by droplet-based methods including the 10XGenomics Chromium 

platform. FastCAR uses the profile of transcripts observed in libraries that likely represent empty 

droplets to determine the level of ambient RNA in each individual sample, and then corrects for these 

ambient RNA gene expression values. FastCAR can be applied as part of the data pre-processing and QC 

in sc-DGE workflows comparing scRNA-Seq data in a health versus disease experimental design. We 

compared FastCAR with two methods previously developed to remove ambient RNA, SoupX and 

CellBender. All three methods identified additional genes in sc-DGE analyses that were not identified in 

the absence of ambient RNA correction. However, we show that FastCAR performs better at correcting 

gene expression values attributed to ambient RNA, resulting in a lower frequency of false-positive 

observations. Moreover, the use of FastCAR in a sc-DGE workflow increases the cell-type specificity of 

sc-DGE analyses across disease conditions. 
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Introduction 

Single cell RNA sequencing (scRNA-Seq) is revolutionizing basic and translational biomedical research. 

The ability to quantify RNA expression in individual cells with high throughput enables quantification of 

cell type composition of complex tissue samples and characterization of their transcriptional 

phenotypes, or cell states, in great detail1. The use of scRNA-Seq to compare healthy and diseased tissue 

samples can reveal differences in cell type proportions and identify unique, disease-associated cell 

types, cell states, cell-cell interactions or cell-state transitions, all of which can be used to chart the 

pathogenesis of disease at unprecedented level2. In such efforts, scRNA-seq can be applied to perform 

cell type-specific (or single-cell) differential gene expression (sc-DGE) analyses between healthy and 

diseased tissue samples.  

We previously published a comparison of the cellular landscape in airway wall samples between healthy 

controls and patients with asthma3. While comparing cell-type composition is relatively straightforward, 

we observed that sc-DGE analyses between healthy and diseased tissue samples frequently yielded 

identification of differentially expressed genes in cell types that were unlikely to express these genes, 

indicating that the observed gene expression probably originated from the ambient RNA. This despite 

having corrected for ambient RNA using SoupX4. 

Ambient RNA is cell-free mRNA that is released during preparation of single-cell suspensions for scRNA-

Seq analysis and is one of the features that limits sc-DGE analyses, next to sparsity of data and the 

presence of doublets5,6. Sc-DGE analysis methods that take into account the sparsity of data or use 

pseudo-bulk approaches per cell type are being developed7. Doublets can be transcriptionally identified 

and removed from the dataset during pre-processing of scRNA-Seq data6. The ambient RNA present in 

the cell suspension will be captured by all beads during cell partitioning in droplet-based scRNA-Seq 

methods, irrespective of the presence or absence (8empty9 droplets) of a cell. Consequently, cell-type 

specific mRNA released into the ambient RNA will also be detected at low levels in cell types that do not 

express this gene natively. 

The composition of ambient RNA depends on the cell type composition and processing of the tissue, and 

is therefore highly sample-specific. When comparing gene expression profiles across cell types within a 

single sample, transcripts of ambient RNA will be shared and will not be identified as differentially 

expressed genes. In contrast, when comparing gene expression profiles in a cell-type specific fashion 

between different samples, the ambient RNA composition might be different between the samples. In 

such a case, transcripts identified as differentially expressed genes may be derived from both cellular 
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RNA and contaminating ambient RNA, leading to false-positive results. Considering our previous results 

with SoupX a new method for ambient RNA correction that allows sc-DGE studies comparing healthy to 

diseased tissue samples is urgently needed. 

Here, we characterized the contamination by ambient RNA in sc-DGE analyses, and present a novel 

method 8FastCAR9 (Fast Correction for Ambient RNA) to quickly identify and correct for ambient RNA in 

droplet-based scRNA-Seq data. We provide a rationale for selection of the genes that should be 

corrected on the basis of the data retained within the gene expression matrix, without the need for 

prior knowledge on the expected cell-type specific gene expression patterns. Furthermore we compare 

its performance to the other ambient RNA correction methods SoupX and CellBender-remove-

background which were either not thorough enough or computationally prohibitive8. The use of FastCAR 

as part of the scRNA-seq data pre-processing workflow allows for more accurate sc-DGE analyses 

between disease conditions or other experimental groups.  

  

Materials and Methods 

scRNA-seq datasets 

Bronchial biopsies from healthy controls and asthma patients 

To test FastCAR, we used our previously published3 scRNA-Seq dataset obtained from bronchial biopsies 

of six asthma patients and six healthy controls. Here, we used the same cells as in our previous study3, 

however using an updated cell-type annotation to better reflect our current understanding of the data. 

Mapping and counting was performed using 10x Genomics Cell Ranger 3.1.0 with the GRCh38 genome 

reference and gene annotation from Ensembl release 93 to generate new count matrices for these 

barcodes, and without the ambient RNA correction using SoupX that was applied in the original dataset3. 

PBMCs from healthy donors and COVID-19 patients 

As another disease/control dataset we used PBMCs from seven healthy donors and seven hospital 

admitted COVID-19 patients.9 These were processed on the SeqWell10 platform. 

Differential gene expression analyses 

To perform the differential expression analyses we used R package EdgeR11 using the likelihood ratio 

test on pseudo-bulk per cell type, using the disease condition as the contrast between groups. The 
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aggregate pseudo-bulk count matrices were generated per sample and cell type using the 

8PseudobulkExpression9 function of Seurat 4.0212.  

Ambient RNA removal by 8SoupX94  

We applied SoupX using the suggested settings by the autoest function of the original tutorial starting 

from the count matrices. The cell selection step was not applied as we used only the libraries that were 

selected as live, high-quality cells in our previous publication3. For the cluster annotations we used the 

updated cell labels reflecting our current understanding of gene expression in different cell types. 

Ambient RNA removal by 8CellBender remove background98 

To perform the ambient RNA correction using CellBender remove background we used the default 

recommended settings (fpr 0.01, epochs 150). The cell selection was not applied as we used only the 

libraries that were selected as live, high-quality cells in our previous publication3. 

 

Seurat 

Processing of the data was done using the R package Seurat version 4.0212. 

R 

Data processing was performed using R version 4.1.2 

 

Results 

In order to develop a method that can be used to correct for ambient RNA in a sc-DGE analysis, we took 

advantage of a previously reported data set in which we reported the changes in the cellular landscape 

of the airway wall in patients with asthma compared to healthy controls3. After updating the cell labels 

to better reflect current understanding (Fig 1A) we found that transcripts of several cell type-specific 

genes were present in other cell types, not known to express these genes, albeit at much lower levels 

than the actual expressing cell type (Fig 1B). These included for example, SCGB3A1, expressed in 

secretory cells13,14, IGKC from B cells15,16 and HBB, originating from erythrocytes16,17 which while not 

identified as distinct cell types in the data would have been present in the biopsy. Moreover, these 

genes were all identified as being significantly differentially expressed between asthma patients and 

healthy controls. We hypothesized that such 8ectopic9 DE gene expression patterns could be attributed 

to differences in ambient RNA that were not fully corrected for.  
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This ambient RNA is sample-specific which leads to samples where the total ambient RNA (summed UMI 

in libraries  with =< 100 UMI) of a gene is higher to also have relatively higher presence of that gene in 

non-expressing cells compared to other samples (Fig 1C).  This sample-specific profile of gene 

8expression9 is what is used to correct for this ambient RNA and make sc-DGE more accurate. 

 

FastCAR algorithm 

FastCAR determines the ambient RNA profile to correct the cell expression for on a gene by gene basis. 

The user provides a threshold for the number of Unique Molecular Identifiers (UMI) per sequencing 

library (thE), every library (j) with that number of UMIs or fewer is used to generate the ambient RNA 

profile. For every gene (g), the fraction of these selected libraries containing any UMIs of that gene (frC) 

is determined, as well as the highest number of UMIs of that gene occurring in a single library (gMax). If 

frC exceeds the user provided allowable fraction of ambient affected cells (frAA), the UMI counts for 

that gene in each cell is reduced by gMax. If this results in negative counts, the number of counts of that 

gene in the cell is set to 0. 

 

DGE methods for scRNA-seq data use a cut-off for the minimum number of cells that need to be 

expressing a gene in a sample and cluster before it is considered for testing, frAA can be set based on 

this by choosing a fraction that matches this cut-off. thE can be set by default to 100 UMI but more 

informed choices lead to better results as explained in the workflow example shown in figure 2 and 

explained in the results. 

 

FastCAR: methodology and setting thresholds 

We developed a method named FastCAR for optimized correction of ambient RNA levels to allow more 

effective sc-DGE analysis in studies comparing healthy and diseased samples and similar experimental 

designs. FastCAR uses the absolute number of UMIs from the ambient-RNA containing libraries to profile 
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the gene expression pattern and levels present in ambient RNA and perform a correction for these levels 

in all libraries that are identified as live, single cells. 

As stated earlier, there are two variables to consider when running FastCAR. Firstly, the minimum 

allowable fraction of libraries that contains ambient RNA of each gene. (frAA). Secondly, the maximum 

UMI-per-library threshold at which libraries are considered to only contain ambient RNA(thE).  

The minimum allowable fraction of cells affected by the ambient RNA that needs to be corrected for 

depends on the method of sc-DGE analysis that will be performed. Most sc-DGE methods apply a 

threshold for the minimum fraction of cells per cluster that need to express a gene to accept it as a DE 

gene. Therefore, all genes that are found to be present in a lower proportion of the ambient RNA 

libraries (at the chosen empty library threshold) will not be identified in the sc-DGE method, and 

therefore do not need to be corrected for. The default setting for this contamination chance parameter 

is 0.005; any genes present in less than 5 out of each 1000 ambient RNA libraries are ignored. This limits 

the total profile of ambient RNA that needs to be corrected for quite significantly. 

The threshold for what is considered an empty library is often arbitrarily set at 100 UMIs/library8. We 

have established a workflow (Figure 2) that illustrates a method to facilitate choosing an appropriate 

threshold using known cell labels and expected cell type-specific genes. If a reference is available for the 

tissue then transfer learning with for instance scArches18 can provide these labels. Methods to assist in 

setting these thresholds without cell labels are described on the GitHub page. 

The next step is to profile the level of RNA that will be removed if the threshold for an empty library is 

increased. The higher the threshold, the higher the number of counts that are removed of each gene as 

can be seen in the heatmap. Whether the correction level of genes is adequate can be gauged by 

comparing the number of counts that will be removed at a threshold, to the level of expression in cells 

that are expected to express them, and the levels at which it is present in non-expressing cells as shown 

in the violin plot. A proper threshold will help to mostly remove transcripts of genes likely to affect DGE 

analysis while otherwise removing as little transcripts/signals as possible. As such the recommended 

threshold is one where the number of removed counts per cell is around the actual level observed in 

non-expressing cells. In the figure IGKC is used as an example to choose a threshold. At an empty library 

threshold of 125 UMIs, the counts in the non-expressing libraries will be mostly corrected for while 

minimally affected the expressing cells. 
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In general, a higher threshold will result in more genes being selected for correction and a more 

extensive removal of ambient RNA-derived transcripts. However such a threshold  will also lower the 

expression values of commonly expressed genes including the mitochondrial genes and could 

overcorrect genes that are highly expressed in some cell types but lowly expressed in others, completely 

removing the measured expression in the latter. If the threshold is set to levels over about 500, lowly 

expressing but live cells such as T cells may be included in the <ambient= profile, this could raise gMax 

for those genes and overcorrect the expression such that none will remain in these cell types.  

After the threshold has been set FastCAR can be applied to all samples and the resulting count matrices 

can be used in downstream analyses. 

 

Effect of FastCAR correction on sc-DGE results: 

We profiled the ambient RNA of our bronchial biopsy dataset using a threshold of 150 UMIs/library for 

ambient RNA and minimal allowable affected fraction of 0.005. Many of the genes identified to be part 

of the ambient RNA using these settings were found to be differentially expressed in more than two cell 

types between asthma and control. After applying FastCAR and correcting the expression of these 

genes, we found that many of the previously significant DGE results were no longer observed (Fig 3A).  

In total, across all cell types, 372 out of 5067 identified DGE lost significance in the sc-DGE analysis in 

one or more cell types after FastCAR correction (Table 2). Next to that, 214 genes were identified as 

differentially expressed only after correction. 
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Comparison of FastCAR to other methods: 

Next, we compared FastCAR to other available ambient RNA correction methods, CellBender8 and 

SoupX4 (Fig 3B). 

When comparing the total number of significant DGE results across all cell types of genes that were 

corrected for by FastCAR in at least one of the samples we observe that these are most reduced by 

FastCAR (table 1). 

 
uncorrected FastCAR CellBender SoupX 

Secretory 49 47 47 49 

Submucosal 20 14 45 18 

Ciliated 40 46 39 34 

Basal 36 38 42 39 

Mucous Ciliated 161 154 167 161 

T cells 21 13 7 18 

Endothelium 29 21 22 20 

Fibroblasts 13 6 10 12 

DCs 16 11 15 12 

Ionocytes 12 21 28 13 

B cells 19 9 27 15 

Neutrophils 15 17 11 13 

Macrophages 20 23 13 24 

Cycling 23 15 13 22 

Smooth muscle 5 4 4 4 

Mast Cells 19 13 9 19 

Total 498 452 499 473 
Table 1: Number of times that genes corrected for by FastCAR in at least one sample were significantly differentially 
expressed in cell types before correction and after applying different ambient RNA corrections. 

 

There are also differences that FastCAR may not correct for, therefore we compared the total number of 

significant sc-DE genes and the effects on the different ambient RNA correction methods (table 2). We 

found large differences between the results before and after the various corrections. CellBender showed 

the least overlap between the corrected and uncorrected datasets but also large number of new DEGs 

and one DEG which effect is inverted after correction.  
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Uncorrected FastCAR CellBender SoupX 

Total significant 5067 4909 5355 5040 

Overlap uncorrected 5067 4695 2762 4787 

n removed after correction 
 

372 2305 280 

New after correction 
 

214 2593 253 

Direction switch after correction 
 

0 1 0 

Table 2: total number of sc-DGE results with different corrections and the comparison to the uncorrected results 

To determine the difference in correction between methods for individual genes we plotted the 

expression of IGKC and SCGB1A1 without correction and after applying the different corrections. 

method (supplementary figure 2 A/B) For both of these genes the ambient RNA  is more completely 

removed by FastCAR than the other methods. 

Comparison to other methods  

We next asked whether correcting for ambient RNA by FastCAR could negatively affect downstream 

processing of the data, such as clustering. To this end, we compared the clusters identified in our 

bronchial biopsy dataset by Seurat both before and after ambient RNA correction. Identical settings and 

cells were used in both clustering efforts, normalization and scaling was performed using SCTransform 

while regressing out the percentage mitochondrial RNA, and the first ten principal components were 

used for the clustering at resolution 0.1. The libraries with fewer than 150 UMIs were used to profile the 

ambient RNA. Gene expression levels were corrected for maximal expression in the empty droplets if 

they had a minimal allowable fraction size higher than 0.005. We used the Jaccard index to compare 

whether the cells cluster similarly before and after ambient RNA correction and found that clustering 

and cell type identification is not strongly affected by the presence of ambient RNA as shown in 

supplementary figure 1. The main changes that occur after ambient RNA correction are observed in 

clusters identified along a differentiation trajectory lacking discrete cell type transitions, such as the 

basal and secretory cells of the airway epithelium where the cells are relatively arbitrarily split into 

separate clusters.  

To validate whether FastCAR also works on other datasets and platforms we used the CoVID-19/healthy 

control PBMC dataset from Wilk et al9(Fig 3C), here too we observed differentially expressed genes that 

might result from ambient RNA have smaller effect sizes and are often no longer significant after 

correction with FastCAR.  
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FastCAR is an effective method to correct for ambient RNA that is most likely to affect DGE analyses 

between groups within cell types in scRNA-seq studies, applicable to multiple droplet-based methods 

and compatible with downstream analyses. 

 

Discussion 

We have developed FastCAR (Fast Correction for Ambient RNA), a computational method that provides 

an unbiased way to identify and correct for the ambient RNA likely to affect DGE analyses on a per-

sample basis that is intuitive and easy-to-use. FastCAR identifies the genes in the ambient RNA and 

applies a threshold for filtering that can be adapted to the settings of the DGE analyses, effectively 

removing the ambient RNA from the DE gene results. We show that this method effectively removes 

ambient RNA, but still retains a large proportion (~92%)  of the DE genes observed prior to ambient RNA 

removal. 

When comparing the results of DGE analysis before and after ambient RNA correction using FastCAR to 

the other methods we tested, there is a striking difference in the number of genes affected by 

correction procedures. Because FastCAR is made to only adjust for the expression genes likely to affect 

DGE analyses, it corrects only a small subset of genes and most results are identical to the uncorrected 

results. Both SoupX and CellBender adjust for the expression of many genes which results in large 

differences in the number and identity of the differentially expressed genes before and after ambient 

RNA correction. While both CellBender and FastCAR apply linear transformation of the data during 

correction, SoupX also applies a normalization that might interfere with certain downstream analyses. In 

the absence of a gold standard to compare the results of the DGE analyses and the low sample numbers 

in the dataset we used for testing, it is not possible now to determine with certainty which of these 

methods is optimal for the identification of DE genes that reflect the biological truth. However, using 

well-established cell type-specific genes like IGKC and SCGB1A1, we could show that the performance 

for ambient RNA removal of these genes with FastCAR is superior compared to CellBender and SoupX. 

Other genes that FastCAR identifies and corrects for are also more thoroughly corrected for meaning 

that applying the other methods would still result on falsely identifying genes as differentially expressed 

that result from ambient RNA. 
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Impact and possible uses 

DGE analyses between healthy and control or other experimental groups in specific sub-populations of 

cells is a promising use of single cell data that may have large impact on our understanding of how the in 

situ behaviour of cells of the same type differs between groups. Correcting for the presence of ambient 

RNA will be vital to finding meaningful results in these analyses and FastCAR is an effective method to 

do so. 

Limitations 

Because of the large variability in cells and processing there is no perfect threshold to use to profile the 

ambient RNA, or a method to determine with certainty what this threshold should be for a specific 

sample. This necessitates the use of arbitrary thresholds or user-defined thresholds. The FastCAR R 

package includes functions that help the user set these thresholds and allows for profiling the ambient 

RNA without performing the correction to facilitate choosing these thresholds. 

A reasonable concern is whether removing the highest expression found in the ambient RNA is not too 

strict. We analysed the cell-type specific gene expression compared to the ambient expression levels 

and found these to be an order of magnitude higher. Consequently, the cell-type specific expression 

levels are well retained even for the genes that are highly expressed in the ambient RNA. Moreover, the 

FastCAR correction does not strongly affect clustering of the cells. This is not unexpected as the ambient 

RNA is a low and ubiquitous signal that has an equal chance of affecting each cell in a sample.  

The correction method works under the assumption that cell containing libraries are equally likely to 

contain ambient RNA and that mRNA from lysed cells is the only meaningful source of transcripts that 

are not expressed in the measured cell. Other possible sources of such transcripts are barcode 

switching, where spontaneous errors in the cell barcodes cause transcripts to be assigned to the wrong 

cell. This may also be partially responsible for some of the signal8. FastCAR does not take such 

possibilities into account as it aims to remove just the genes most likely to affect DGE analyses, which is 

unlikely to occur as barcode switching is equally likely to affect each barcode.  

In conclusion, to perform cell type-specific DGE analyses between groups there needs to be some 

correction to account for the sample-specific ambient RNA. FastCAR is a resource efficient method of 

thoroughly correcting the expression of genes most likely to be affected by ambient RNA. While other 

tools are available for general ambient RNA correction, FastCAR is more thorough in its correction than 

the other tested methods for genes it identifies as likely to affect sc-DGE. 
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Code Availability 

Instructions for installation and use of the FastCAR package as well as the source code are available 

online at https://github.com/Nawijn-Group-Bioinformatics/FastCAR 
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Figure 1: Ambient RNA is sample specific: A) UMAP of the associated data B) Violin plots of the mRNA levels of 
selected cell type markers found in the ambient RNA in selected cell types. C) Heatmaps of the scaled log10 
aggregate pseudo bulk expression of selected genes in samples from the bronchial biopsy dataset in selected cell 
types and the ambient [nUMI <=100] libraries. 
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Figure 2: Workflow to select appropriate settings and apply FastCAR to a scRNA-seq dataset 
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Figure 3: Effect of applying FastCAR and comparison to other methods. A) Log2 fold change of selected significant 
DE genes between asthma and control in bronchial biopsies before and after being corrected for by FastCAR. B) 
Log2 fold change of selected significant DE genes between asthma and control in bronchial biopsies before and after 
being corrected for by FastCAR, SoupX and Cellbender. C) Log2 fold change of selected significant DE before and 
after being corrected for by FastCAR for genes that were corrected for in at least one sample and found to be 
differentially expressed in PBMCs between COVID-19 patients and healthy controls. 
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Supplementary Figure 1: FastCAR correction does not strongly affect clustering. A) Effect of FastCAR on the UMAP 
and clustering in the same cells from bronchial biopsies. B) Jaccard index of the overlap of the cell contained in the 
clusters between corrected and non-corrected bronchial biopsies. The same cells cluster together even if the clusters 
get split differently along a gradient. 

 

 

Supplementary Figure 2: Comparison of applying different ambient RNA correction methods between asthma and 
control in selected cell types in bronchial biopsies. A) IGKC levels in selected expressing and non-expressing cell 
types without correction and after applying other correction methods. B) SCGB3A1 levels in selected expressing and 
non-expressing cell types without correction and after applying other correction methods. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 20, 2022. ; https://doi.org/10.1101/2022.07.19.500594doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.19.500594
http://creativecommons.org/licenses/by-nc-nd/4.0/

