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Abstract

Cell type-specific differential gene expression analyses based on single-cell transcriptome datasets are
sensitive to the presence of cell-free mRNA in the droplets containing single cells. This so-called ambient
RNA contamination may differ between samples obtained from patients and healthy controls. Current
ambient RNA correction methods were not developed specifically for single-cell differential gene
expression (sc-DGE) analyses and might therefore not sufficiently correct for ambient RNA-derived
signals. Here, we show that ambient RNA levels are highly sample-specific. We found that without
ambient RNA correction, sc-DGE analyses erroneously identify transcripts originating from ambient RNA
as cell type-specific disease-associated genes. We therefore developed a computationally lean and
intuitive correction method, Fast Correction for Ambient RNA (FastCAR), optimized for sc-DGE analysis
of scRNA-Seq datasets generated by droplet-based methods including the 10XGenomics Chromium
platform. FastCAR uses the profile of transcripts observed in libraries that likely represent empty
droplets to determine the level of ambient RNA in each individual sample, and then corrects for these
ambient RNA gene expression values. FastCAR can be applied as part of the data pre-processing and QC
in sc-DGE workflows comparing scRNA-Seq data in a health versus disease experimental design. We
compared FastCAR with two methods previously developed to remove ambient RNA, SoupX and
CellBender. All three methods identified additional genes in sc-DGE analyses that were not identified in
the absence of ambient RNA correction. However, we show that FastCAR performs better at correcting
gene expression values attributed to ambient RNA, resulting in a lower frequency of false-positive
observations. Moreover, the use of FastCAR in a sc-DGE workflow increases the cell-type specificity of

sc-DGE analyses across disease conditions.
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Introduction

Single cell RNA sequencing (scRNA-Seq) is revolutionizing basic and translational biomedical research.
The ability to quantify RNA expression in individual cells with high throughput enables quantification of
cell type composition of complex tissue samples and characterization of their transcriptional
phenotypes, or cell states, in great detail®. The use of scRNA-Seq to compare healthy and diseased tissue
samples can reveal differences in cell type proportions and identify unique, disease-associated cell
types, cell states, cell-cell interactions or cell-state transitions, all of which can be used to chart the
pathogenesis of disease at unprecedented level?. In such efforts, scRNA-seq can be applied to perform
cell type-specific (or single-cell) differential gene expression (sc-DGE) analyses between healthy and

diseased tissue samples.

We previously published a comparison of the cellular landscape in airway wall samples between healthy
controls and patients with asthma3®. While comparing cell-type composition is relatively straightforward,
we observed that sc-DGE analyses between healthy and diseased tissue samples frequently yielded
identification of differentially expressed genes in cell types that were unlikely to express these genes,
indicating that the observed gene expression probably originated from the ambient RNA. This despite

having corrected for ambient RNA using SoupX*.

Ambient RNA is cell-free mRNA that is released during preparation of single-cell suspensions for scRNA-
Seq analysis and is one of the features that limits sc-DGE analyses, next to sparsity of data and the
presence of doublets>®. Sc-DGE analysis methods that take into account the sparsity of data or use
pseudo-bulk approaches per cell type are being developed’. Doublets can be transcriptionally identified
and removed from the dataset during pre-processing of scRNA-Seq data®. The ambient RNA present in
the cell suspension will be captured by all beads during cell partitioning in droplet-based scRNA-Seq
methods, irrespective of the presence or absence (‘empty’ droplets) of a cell. Consequently, cell-type
specific mMRNA released into the ambient RNA will also be detected at low levels in cell types that do not

express this gene natively.

The composition of ambient RNA depends on the cell type composition and processing of the tissue, and
is therefore highly sample-specific. When comparing gene expression profiles across cell types within a
single sample, transcripts of ambient RNA will be shared and will not be identified as differentially
expressed genes. In contrast, when comparing gene expression profiles in a cell-type specific fashion
between different samples, the ambient RNA composition might be different between the samples. In

such a case, transcripts identified as differentially expressed genes may be derived from both cellular
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RNA and contaminating ambient RNA, leading to false-positive results. Considering our previous results
with SoupX a new method for ambient RNA correction that allows sc-DGE studies comparing healthy to

diseased tissue samples is urgently needed.

Here, we characterized the contamination by ambient RNA in sc-DGE analyses, and present a novel
method ‘FastCAR’ (Fast Correction for Ambient RNA) to quickly identify and correct for ambient RNA in
droplet-based scRNA-Seq data. We provide a rationale for selection of the genes that should be
corrected on the basis of the data retained within the gene expression matrix, without the need for
prior knowledge on the expected cell-type specific gene expression patterns. Furthermore we compare
its performance to the other ambient RNA correction methods SoupX and CellBender-remove-
background which were either not thorough enough or computationally prohibitive®. The use of FastCAR
as part of the scRNA-seq data pre-processing workflow allows for more accurate sc-DGE analyses

between disease conditions or other experimental groups.

Materials and Methods
scRNA-seq datasets
Bronchial biopsies from healthy controls and asthma patients

To test FastCAR, we used our previously published® scRNA-Seq dataset obtained from bronchial biopsies
of six asthma patients and six healthy controls. Here, we used the same cells as in our previous study?,
however using an updated cell-type annotation to better reflect our current understanding of the data.
Mapping and counting was performed using 10x Genomics Cell Ranger 3.1.0 with the GRCh38 genome
reference and gene annotation from Ensembl release 93 to generate new count matrices for these

barcodes, and without the ambient RNA correction using SoupX that was applied in the original dataset?.
PBMCs from healthy donors and COVID-19 patients

As another disease/control dataset we used PBMCs from seven healthy donors and seven hospital

admitted COVID-19 patients.® These were processed on the SeqWell*® platform.
Differential gene expression analyses

To perform the differential expression analyses we used R package EdgeR!! using the likelihood ratio

test on pseudo-bulk per cell type, using the disease condition as the contrast between groups. The
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aggregate pseudo-bulk count matrices were generated per sample and cell type using the

‘PseudobulkExpression’ function of Seurat 4.02%2.
Ambient RNA removal by ‘SoupX’*

We applied SoupX using the suggested settings by the autoest function of the original tutorial starting
from the count matrices. The cell selection step was not applied as we used only the libraries that were
selected as live, high-quality cells in our previous publication®. For the cluster annotations we used the
updated cell labels reflecting our current understanding of gene expression in different cell types.

Ambient RNA removal by ‘CellBender remove background’®

To perform the ambient RNA correction using CellBender remove background we used the default
recommended settings (fpr 0.01, epochs 150). The cell selection was not applied as we used only the

libraries that were selected as live, high-quality cells in our previous publication3.

Seurat
Processing of the data was done using the R package Seurat version 4.02%2,
R

Data processing was performed using R version 4.1.2

Results

In order to develop a method that can be used to correct for ambient RNA in a sc-DGE analysis, we took
advantage of a previously reported data set in which we reported the changes in the cellular landscape
of the airway wall in patients with asthma compared to healthy controls®. After updating the cell labels
to better reflect current understanding (Fig 1A) we found that transcripts of several cell type-specific
genes were present in other cell types, not known to express these genes, albeit at much lower levels
than the actual expressing cell type (Fig 1B). These included for example, SCGB3A1, expressed in

1617 which while not

secretory cells*!*, IGKC from B cells!>® and HBB, originating from erythrocytes
identified as distinct cell types in the data would have been present in the biopsy. Moreover, these
genes were all identified as being significantly differentially expressed between asthma patients and
healthy controls. We hypothesized that such ‘ectopic’ DE gene expression patterns could be attributed

to differences in ambient RNA that were not fully corrected for.
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This ambient RNA is sample-specific which leads to samples where the total ambient RNA (summed UMI
in libraries with =< 100 UMI) of a gene is higher to also have relatively higher presence of that gene in
non-expressing cells compared to other samples (Fig 1C). This sample-specific profile of gene

‘expression’ is what is used to correct for this ambient RNA and make sc-DGE more accurate.

FastCAR algorithm

FastCAR determines the ambient RNA profile to correct the cell expression for on a gene by gene basis.
The user provides a threshold for the number of Unique Molecular Identifiers (UMI) per sequencing
library (thE), every library (j) with that number of UMIs or fewer is used to generate the ambient RNA
profile. For every gene (g), the fraction of these selected libraries containing any UMIs of that gene (frC)
is determined, as well as the highest number of UMIs of that gene occurring in a single library (gMax). If
frC exceeds the user provided allowable fraction of ambient affected cells (frAA), the UMI counts for
that gene in each cell is reduced by gMax. If this results in negative counts, the number of counts of that

gene in the cell is set to 0.

gMax3 = max[counts[, Z j< thE]]

frC = Zcountslg > 0, Zj < thE] / 1))

DGE methods for scRNA-seq data use a cut-off for the minimum number of cells that need to be
expressing a gene in a sample and cluster before it is considered for testing, frAA can be set based on
this by choosing a fraction that matches this cut-off. thE can be set by default to 100 UMI but more
informed choices lead to better results as explained in the workflow example shown in figure 2 and

explained in the results.

FastCAR: methodology and setting thresholds

We developed a method named FastCAR for optimized correction of ambient RNA levels to allow more
effective sc-DGE analysis in studies comparing healthy and diseased samples and similar experimental

designs. FastCAR uses the absolute number of UMIs from the ambient-RNA containing libraries to profile
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the gene expression pattern and levels present in ambient RNA and perform a correction for these levels

in all libraries that are identified as live, single cells.

As stated earlier, there are two variables to consider when running FastCAR. Firstly, the minimum
allowable fraction of libraries that contains ambient RNA of each gene. (frAA). Secondly, the maximum

UMlI-per-library threshold at which libraries are considered to only contain ambient RNA(thE).

The minimum allowable fraction of cells affected by the ambient RNA that needs to be corrected for
depends on the method of sc-DGE analysis that will be performed. Most sc-DGE methods apply a
threshold for the minimum fraction of cells per cluster that need to express a gene to accept it as a DE
gene. Therefore, all genes that are found to be present in a lower proportion of the ambient RNA
libraries (at the chosen empty library threshold) will not be identified in the sc-DGE method, and
therefore do not need to be corrected for. The default setting for this contamination chance parameter
is 0.005; any genes present in less than 5 out of each 1000 ambient RNA libraries are ignored. This limits

the total profile of ambient RNA that needs to be corrected for quite significantly.

The threshold for what is considered an empty library is often arbitrarily set at 100 UMIs/library®. We
have established a workflow (Figure 2) that illustrates a method to facilitate choosing an appropriate
threshold using known cell labels and expected cell type-specific genes. If a reference is available for the
tissue then transfer learning with for instance scArches®® can provide these labels. Methods to assist in

setting these thresholds without cell labels are described on the GitHub page.

The next step is to profile the level of RNA that will be removed if the threshold for an empty library is
increased. The higher the threshold, the higher the number of counts that are removed of each gene as
can be seen in the heatmap. Whether the correction level of genes is adequate can be gauged by
comparing the number of counts that will be removed at a threshold, to the level of expression in cells
that are expected to express them, and the levels at which it is present in non-expressing cells as shown
in the violin plot. A proper threshold will help to mostly remove transcripts of genes likely to affect DGE
analysis while otherwise removing as little transcripts/signals as possible. As such the recommended
threshold is one where the number of removed counts per cell is around the actual level observed in
non-expressing cells. In the figure IGKC is used as an example to choose a threshold. At an empty library
threshold of 125 UMIs, the counts in the non-expressing libraries will be mostly corrected for while

minimally affected the expressing cells.
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In general, a higher threshold will result in more genes being selected for correction and a more
extensive removal of ambient RNA-derived transcripts. However such a threshold will also lower the
expression values of commonly expressed genes including the mitochondrial genes and could
overcorrect genes that are highly expressed in some cell types but lowly expressed in others, completely
removing the measured expression in the latter. If the threshold is set to levels over about 500, lowly
expressing but live cells such as T cells may be included in the “ambient” profile, this could raise gMax

for those genes and overcorrect the expression such that none will remain in these cell types.

After the threshold has been set FastCAR can be applied to all samples and the resulting count matrices

can be used in downstream analyses.

Effect of FastCAR correction on sc-DGE results:

We profiled the ambient RNA of our bronchial biopsy dataset using a threshold of 150 UMIs/library for
ambient RNA and minimal allowable affected fraction of 0.005. Many of the genes identified to be part
of the ambient RNA using these settings were found to be differentially expressed in more than two cell
types between asthma and control. After applying FastCAR and correcting the expression of these

genes, we found that many of the previously significant DGE results were no longer observed (Fig 3A).

In total, across all cell types, 372 out of 5067 identified DGE lost significance in the sc-DGE analysis in
one or more cell types after FastCAR correction (Table 2). Next to that, 214 genes were identified as

differentially expressed only after correction.
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Comparison of FastCAR to other methods:

Next, we compared FastCAR to other available ambient RNA correction methods, CellBender® and

SoupX* (Fig 3B).

When comparing the total number of significant DGE results across all cell types of genes that were

corrected for by FastCAR in at least one of the samples we observe that these are most reduced by
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Table 1: Number of times that genes corrected for by FastCAR in at least one sample were significantly differentially
expressed in cell types before correction and after applying different ambient RNA corrections.

There are also differences that FastCAR may not correct for, therefore we compared the total number of
significant sc-DE genes and the effects on the different ambient RNA correction methods (table 2). We
found large differences between the results before and after the various corrections. CellBender showed
the least overlap between the corrected and uncorrected datasets but also large number of new DEGs

and one DEG which effect is inverted after correction.
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Uncorrected FastCAR CellBender SoupX

Total significant 5067 4909 5355 5040

Overlap uncorrected 5067 4695 2762 4787

n removed after correction 372 2305 280

New after correction 214 2593 253

Direction switch after correction 0 1 0

Table 2: total number of sc-DGE results with different corrections and the comparison to the uncorrected results

To determine the difference in correction between methods for individual genes we plotted the
expression of IGKC and SCGB1A1 without correction and after applying the different corrections.
method (supplementary figure 2 A/B) For both of these genes the ambient RNA is more completely

removed by FastCAR than the other methods.

Comparison to other methods

We next asked whether correcting for ambient RNA by FastCAR could negatively affect downstream
processing of the data, such as clustering. To this end, we compared the clusters identified in our
bronchial biopsy dataset by Seurat both before and after ambient RNA correction. Identical settings and
cells were used in both clustering efforts, normalization and scaling was performed using SCTransform
while regressing out the percentage mitochondrial RNA, and the first ten principal components were
used for the clustering at resolution 0.1. The libraries with fewer than 150 UMIs were used to profile the
ambient RNA. Gene expression levels were corrected for maximal expression in the empty droplets if
they had a minimal allowable fraction size higher than 0.005. We used the Jaccard index to compare
whether the cells cluster similarly before and after ambient RNA correction and found that clustering
and cell type identification is not strongly affected by the presence of ambient RNA as shown in
supplementary figure 1. The main changes that occur after ambient RNA correction are observed in
clusters identified along a differentiation trajectory lacking discrete cell type transitions, such as the
basal and secretory cells of the airway epithelium where the cells are relatively arbitrarily split into

separate clusters.

To validate whether FastCAR also works on other datasets and platforms we used the CoVID-19/healthy
control PBMC dataset from Wilk et al°(Fig 3C), here too we observed differentially expressed genes that
might result from ambient RNA have smaller effect sizes and are often no longer significant after

correction with FastCAR.
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FastCAR is an effective method to correct for ambient RNA that is most likely to affect DGE analyses
between groups within cell types in scRNA-seq studies, applicable to multiple droplet-based methods

and compatible with downstream analyses.

Discussion

We have developed FastCAR (Fast Correction for Ambient RNA), a computational method that provides
an unbiased way to identify and correct for the ambient RNA likely to affect DGE analyses on a per-
sample basis that is intuitive and easy-to-use. FastCAR identifies the genes in the ambient RNA and
applies a threshold for filtering that can be adapted to the settings of the DGE analyses, effectively
removing the ambient RNA from the DE gene results. We show that this method effectively removes
ambient RNA, but still retains a large proportion (~¥92%) of the DE genes observed prior to ambient RNA

removal.

When comparing the results of DGE analysis before and after ambient RNA correction using FastCAR to
the other methods we tested, there is a striking difference in the number of genes affected by
correction procedures. Because FastCAR is made to only adjust for the expression genes likely to affect
DGE analyses, it corrects only a small subset of genes and most results are identical to the uncorrected
results. Both SoupX and CellBender adjust for the expression of many genes which results in large
differences in the number and identity of the differentially expressed genes before and after ambient
RNA correction. While both CellBender and FastCAR apply linear transformation of the data during
correction, SoupX also applies a normalization that might interfere with certain downstream analyses. In
the absence of a gold standard to compare the results of the DGE analyses and the low sample numbers
in the dataset we used for testing, it is not possible now to determine with certainty which of these
methods is optimal for the identification of DE genes that reflect the biological truth. However, using
well-established cell type-specific genes like IGKC and SCGB1A1, we could show that the performance
for ambient RNA removal of these genes with FastCAR is superior compared to CellBender and SoupX.
Other genes that FastCAR identifies and corrects for are also more thoroughly corrected for meaning
that applying the other methods would still result on falsely identifying genes as differentially expressed

that result from ambient RNA.
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Impact and possible uses

DGE analyses between healthy and control or other experimental groups in specific sub-populations of
cells is a promising use of single cell data that may have large impact on our understanding of how the in
situ behaviour of cells of the same type differs between groups. Correcting for the presence of ambient
RNA will be vital to finding meaningful results in these analyses and FastCAR is an effective method to

do so.
Limitations

Because of the large variability in cells and processing there is no perfect threshold to use to profile the
ambient RNA, or a method to determine with certainty what this threshold should be for a specific
sample. This necessitates the use of arbitrary thresholds or user-defined thresholds. The FastCAR R
package includes functions that help the user set these thresholds and allows for profiling the ambient

RNA without performing the correction to facilitate choosing these thresholds.

A reasonable concern is whether removing the highest expression found in the ambient RNA is not too
strict. We analysed the cell-type specific gene expression compared to the ambient expression levels
and found these to be an order of magnitude higher. Consequently, the cell-type specific expression
levels are well retained even for the genes that are highly expressed in the ambient RNA. Moreover, the
FastCAR correction does not strongly affect clustering of the cells. This is not unexpected as the ambient

RNA is a low and ubiquitous signal that has an equal chance of affecting each cell in a sample.

The correction method works under the assumption that cell containing libraries are equally likely to
contain ambient RNA and that mRNA from lysed cells is the only meaningful source of transcripts that
are not expressed in the measured cell. Other possible sources of such transcripts are barcode
switching, where spontaneous errors in the cell barcodes cause transcripts to be assigned to the wrong
cell. This may also be partially responsible for some of the signal®. FastCAR does not take such
possibilities into account as it aims to remove just the genes most likely to affect DGE analyses, which is

unlikely to occur as barcode switching is equally likely to affect each barcode.

In conclusion, to perform cell type-specific DGE analyses between groups there needs to be some
correction to account for the sample-specific ambient RNA. FastCAR is a resource efficient method of
thoroughly correcting the expression of genes most likely to be affected by ambient RNA. While other
tools are available for general ambient RNA correction, FastCAR is more thorough in its correction than

the other tested methods for genes it identifies as likely to affect sc-DGE.
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Code Availability

Instructions for installation and use of the FastCAR package as well as the source code are available

online at https://github.com/Nawijn-Group-Bioinformatics/FastCAR
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Figure 1: Ambient RNA is sample specific: A) UMAP of the associated data B) Violin plots of the mRNA levels of
selected cell type markers found in the ambient RNA in selected cell types. C) Heatmaps of the scaled log10
aggregate pseudo bulk expression of selected genes in samples from the bronchial biopsy dataset in selected cell

types and the ambient [nUMI <=100] libraries.
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Figure 2: Workflow to select appropriate settings and apply FastCAR to a scRNA-seq dataset
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Figure 3: Effect of applying FastCAR and comparison to other methods. A) Log2 fold change of selected significant
DE genes between asthma and control in bronchial biopsies before and after being corrected for by FastCAR. B)
Log2 fold change of selected significant DE genes between asthma and control in bronchial biopsies before and after
being corrected for by FastCAR, SoupX and Cellbender. C) Log2 fold change of selected significant DE before and
after being corrected for by FastCAR for genes that were corrected for in at least one sample and found to be
differentially expressed in PBMCs between COVID-19 patients and healthy controls.
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Supplementary Figure 1: FastCAR correction does not strongly affect clustering. A) Effect of FastCAR on the UMAP
and clustering in the same cells from bronchial biopsies. B) Jaccard index of the overlap of the cell contained in the
clusters between corrected and non-corrected bronchial biopsies. The same cells cluster together even if the clusters
get split differently along a gradient.
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Supplementary Figure 2: Comparison of applying different ambient RNA correction methods between asthma and
control in selected cell types in bronchial biopsies. A) IGKC levels in selected expressing and non-expressing cell
types without correction and after applying other correction methods. B) SCGB3A1 levels in selected expressing and

non-expressing cell types without correction and after applying other correction methods.
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