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ABBREVIATIONS
BPI base peak intensity
CCS collisional cross section
DDA data-dependent acquisition
DIA data-independent acquisition
EGF epidermal growth factor
FDR false discovery rate
GOBP Gene Ontology Biological Process
GUI graphical user interface
IM ion mobility
IQR interquartile range

MS/MS or MS2

tandem MS

PASEF parallel accumulation — serial fragmentation
PEP posterior error probability

PTM post-translational modification

PyPI Python Package Index

RT retention time

TIC total ion current

TIMS trapped ion mobility spectrometry

TOF time-of-flight

XIC extracted ion chromatogram
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ABSTRACT

Although current mass spectrometry (MS)-based proteomics identifies and quantifies
thousands of proteins and (modified) peptides, only a minority of them are subjected to in-
depth downstream analysis. With the advent of automated processing workflows, biologically
or clinically important results within a study are rarely validated by visualization of the
underlying raw information. Current tools are often not integrated into the overall analysis nor
readily extendable with new approaches. To remedy this, we developed AlphaViz, an open-
source Python package to superimpose output from common analysis workflows on the raw
data for easy visualization and validation of protein and peptide identifications. AlphaViz takes
advantage of recent breakthroughs in the deep learning-assisted prediction of experimental
peptide properties to allow manual assessment of the expected versus measured peptide
result. We focused on the visualization of the 4-dimensional data cuboid provided by Bruker
TimsTOF instruments, where the ion mobility dimension, besides intensity and retention time,
can be predicted and used for verification. We illustrate how AlphaViz can quickly validate or
invalidate peptide identifications regardless of the score given to them by automated
workflows. Furthermore, we provide a ‘predict mode’ that can locate peptides present in the
raw data but not reported by the search engine. This is illustrated the recovery of missing
values from experimental replicates. Applied to phosphoproteomics, we show how key
signaling nodes can be validated to enhance confidence for downstream interpretation or
follow-up experiments. AlphaViz follows standards for open-source software development and
features an easy-to-install graphical user interface for end-users and a modular Python package
for bioinformaticians. Validation of critical proteomics results should now become a standard

feature in MS-based proteomics.
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INTRODUCTION

Mass spectrometry (MS)-based proteomics has evolved into a powerful and widely used
analytical technique for researchers in diverse biological and clinical fields (1, 2). The increased
throughput of MS instruments has led to the identification and quantification of thousands of
proteins and their (modified) peptides in many experimental settings. To ensure the quality of
such experiments, many journals now require to follow specific guidelines prior to submission
(3). However, automated analysis workflows typically present long lists of identified and
guantified peptides and proteins used for downstream analysis by the investigator. Only a small
subset, like key proteins of signaling pathways and biomarker candidates are chosen for
biological follow-up experiments or additional validation by orthogonal assays. Unfortunately,
the underlying raw data for these critical peptides or proteins are rarely assessed at all or only in
few of several possible dimensions, which could prevent investigators from following up on the

best study candidates.

Applying the famous proverb "One picture is worth ten thousand words" to proteomics,
visualization may be the most obvious solution for validating identifications at the level of raw
MS data (4, 5). Inspecting the actual spectra of particular peptides, such as those with post-
translational modifications (PTMs) or those uniquely identifying a protein of interest, can reveal
important information, in addition to that used by the search engine. Furthermore, the advent
of ultra-high sensitivity LC-MS based workflows for the analysis of minute protein amounts down
to the level of single cells is currently lacking raw data visualization tools for the inspection and
validation of proteins of interest at the limit of detection (6—9). The identification of a peptide
amino acid sequence is part and parcel of high-confidence spectral identification and traditionally
entailed visual inspection and validation by the investigator. However, the ever-increasing
acquisition speed of mass spectrometers and the complexity of state-of-the-art scan modes in
large-scale proteomics experiments rendered this approach impractical when dealing with huge

data sets.
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In part, this is due to many challenges in proteomic data visualization. The visualization step
usually ranks last in the development of scientific algorithms or the establishment of novel
workflows for analyzing proteomics data. Visualization tools tend to become publicly available
with a considerable delay after the publication of the main workflows (10, 11). Because of their
closed nature, even recently published tools may rapidly become outdated if they fail to take
advantage of current advances in visualization such as in interactive biological ‘big data’
visualization. In this regard, increasing established open source concepts can help to keep up with
the rapid pace of computational developments, building on powerful collaborative packages, for
instance those in the increasing popular Scientific Python environment (12—-14). In our group, we
have focused on the visualization of highly complex multi-dimensional data acquired on Bruker
TimsTOF instruments, which includes the additional ion mobility dimension (15). The AlphaTims
package, as well as the parallel OpenTIMS effort, allows ready access and visualization of raw
data, which has not been practical due to the long accession times and absence of convenient

data structures (16, 17).

A major development in MS-based proteomics in recent years has been the success of machine
learning in predicting peptide properties including retention time, ion mobility and the intensities
of fragments in the MS2 spectra (18, 19). As a result, all these properties could be used to validate
the proposed peptide spectrum matches, and this has already been done for spectral intensities
(20). We reasoned that combining data visualization with the benefits of deep learning
predictions, such as fragment ion intensities, retention time or ion mobility predictions, could
dramatically benefit the entire visualization and validation approach. As a particular example, the
assignment of convoluted fragmentation patterns in Data Independent Acquisition (DIA) to
peptide sequences is still an active area of research with major search engines such as DIA-NN or
Spectronaut sometimes disagreeing on the identification or matching of particular peptides (21,
22). Clearly, visualization of co-eluting fragments in the context of predicted retention times and
fragment intensities (‘in silico truths’) could help in establishing confidence in critical peptide

identifications.
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Many of the currently existing visualization tools are proprietary and integrated into MS data
analysis software pipelines by the MS manufacturer, such as Compass DataAnalysis (Bruker
Daltonics), Freestyle and Xcalibur (Thermo Fisher Scientific), Sciex OS (Sciex) or by independent
providers, such as Spectronaut and Skyline (22, 23). There are also standalone tools for
visualization such as the PRIDE Inspector (24). However, in all these cases, these tools are difficult
to reuse, extend, or integrate into existing workflows for example for novel multi-dimensional

data, such as TIMS-TOF data.

Here, we developed a visualization tool with the following goals: It should allow (1) intuitive
visualization of search engine results of the underlying raw data; (2) integration of in silico
predictions by deep learning algorithms; (3) automation for end users through a graphical user
interface or Jupyter Notebooks; (4) open-source accessibility and easy extendibility by
bioinformaticians to incorporate new developments, for example interactivity, big data

visualization and graph customization.

With these goals in mind, we developed AlphaViz, an open-source Python-based visualization
tool that allows the user to explore identification and quantification confidence of peptides by
visually comparing them to the signal presented in the unprocessed MS data. AlphaViz links
identifications to the evidences of the raw data to assess their quality by using results from
currently supported software tools, such as MaxQuant, AlphaPept and DIA-NN (10, 13, 21). It
makes use of current advances in visualization, such as interactivity, “big data” visualization or
real-time graph customization. The interactive plots included in AlphaViz provide the data on-
demand in order not to overwhelm users, and include, for instance, zooming, selection and
annotation. “Big data” capabilities make it possible to visualize millions of data points in a single
graph in a browser. This enabled the visualization of MS heatmaps in AlphaViz, allowing to plot
intensity of observed precursor masses across retention time and to visually assess MS peptide
features in an enlarged view. In addition, customization of the plots, such as selection of a chart
color scale or the size and format of the exported plots, enables researchers to easily create and

extract illustrations of candidate proteins and peptides that are suitable for publication.


https://doi.org/10.1101/2022.07.12.499676
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.12.499676; this version posted July 13, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

AlphaViz follows robust software development standards (high-quality code, extensive
documentation, automated testing, and continuous integration) as a part of the AlphaPept

‘ecosystem’ (13).
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EXPERIMENTAL PROCEDURES
Publicly Available MS Datasets

To demonstrate the use of AlphaViz for DDA data, we obtained raw data files of a fractionated
Hela library (fraction 1) generated with the 120-min gradient dda-PASEF method together with
output of the MaxQuant software (v.1.6.1.13) from ProteomeXchange (data set PXD010012)
(25). For the visualization of DIA data, we used a dataset previously acquired in our group: a 21-
min gradient (60 samples per day) HeLa sample acquired on Evosep / timsTOF with the dia-PASEF
method (data set PXD017703) (26). The results of DIA-NN analysis (v.1.7.15) of these data were

taken from reference (27).

Additionally, we are presenting in-detail phosphoproteomics analyses. We used a recently
published dataset where Hela cells were stimulated with EGF or left untreated, enriched for
phosphopeptides and acquired in three replicates each on a timsTOF Pro instrument with a 21-
min gradient and an optimal phosphoproteomics dia-PASEF method (28). The copied output of
DIA-NN analysis (v.1.8) was filtered for 1 % PTM qg-value, collapsed with the Perseus plug-in and
filtered for 75 % localization probability (28).

Data Acquisition for the Predict Mode Measurements

To demonstrate the ‘predict mode’ of AlphaViz, we synthesized phosphorylation positional
isomers of the Rab10 peptide FHTITTSYYR. These isomers were dissolved in solution A* (0.1%
TFA/2% ACN), and 125, 250, 500, 1250, 2500, and 5000 fmol of them were spiked into 50 fmol of
bovine serum albumin. We measured the samples using a dia-PASEF method optimized for
phosphoproteomics and 21 minutes Evosep gradients (60 samples per day method) combined
with the timsTOF Pro (Bruker Daltonics) (28). The peptides were separated using an 8 cm x 150
um reverse-phase column packed with 1.5 um Cig-beads (Pepsep) connected to a 10 um ID nano-
electrospray emitter (Bruker Daltonics). Our dia-PASEF method covered an m/z-range from 400
to 1400 Da and an ion mobility range from 0.6 to 1.5 Vs cm™2 with 12 dia-PASEF scans (cycle time:
1.38s). The collision energy depended on the ion mobility and changed from 60 eV at 1.5 Vs cm”
2to54 eV at 1.17 Vs cm2 to 25 eV at 0.85 Vs cm, and to 20 eV at 0.6 Vs cm™.

Design and Implementation
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AlphaViz is written in Python, and its source code is freely available on GitHub

(https://github.com/MannlLabs/alphaviz) under the Apache license. The AlphaViz

implementation combines a comfortable, reproducible and transparent working environment
(Jupyter notebooks, GitHub, Binder, pytest) with a Python scientific stack consisting of highly
optimized packages with elaborate testing, documentation and maintenance, allowing a focus
on domain knowledge rather than implementation details (Fig. 1A). For data analysis in Python,
we use NumPy for array manipulation, Pandas to handle tabular data, and Numba to speed up
code execution with just-in-time code compilation. Furthermore, we use several open-source
Python libraries for proteomics data analysis, such as AlphaTims to access Bruker ‘.d’ files and to
convert them to Hierarchical Data Format (HDF) for fast reuse (16), and Pyteomics to handle
‘fasta’ files (29). A set of well-established plotting libraries was used to generate all plots and a
graphical user interface (GUI): (1) Bokeh, Plotly and Holoviews were used to build different types
of interactive visualizations; (2) Datashader for fast visualization of large data sets; (3) Panel to

implement a fully stand-alone GUI.

The AlphaViz implementation in the GitHub repository is organized into independent functional
modules: (1) a ‘data’ folder with some necessary tables for performing calculations; (2) an ‘io’
module providing functionality for reading output files of proteomics data analysis programs; (3)
a ‘preprocessing’ module that includes data preprocessing functionality; (4) a ‘plotting’ module
containing all functions creating plots; (5) a ‘utils’ module including common utilities; (6) and a
‘gui’ module containing the entire implementation of the AlphaViz GUI. The helper units include:
(1) a ‘style’ folder with files specifying the style of the dashboard elements; (2) an ‘img’ folder
with logos and static images included in the GUI; (3) a ‘docs’ folder including a comprehensive
GUI user guide. Besides the modular ‘alphaviz’ folder, the repository contains additional
important information such as: (1) an ‘nbs’ folder with Jupyter Notebooks as tutorials for
AlphaViz as a Python package usage; (2) the ‘test’ and ‘test_data’ folders containing functions
which test the functionality of all previously mentioned Python modules and the necessary test
data for them; (3) a general .README file with details on installation, usage of the different
AlphaViz modes (GUI or a Python package), contributions and much more; (4) a ‘requirements’

folder with specific dependencies; (5) all other folders, e.g. ‘misc’, ‘docs’, ‘.github’ and ‘release’
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that are involved in a continuous integration pipeline with automatic testing, creation of GUI
installers for all 0OSs, the release of the new versions on GitHub, PyPI

(https://pypi.org/project/alphaviz/) and ‘Read the Docs’

(https://alphaviz.readthedocs.io/en/latest/).

Modes

Depending on users’ programming skills, AlphaViz can be operated in two modes: a user-friendly

browser-based GUI and a well-documented and tested module with Python functionalities.

The AlphaViz GUI has one-click installers provided on the GitHub page for Windows, macOS and

Linux (https://github.com/MannlLabs/alphaviz#fone-click-gui). A comprehensive AlphaViz user

guide is provided on GitHub.

AlphaViz can be installed from PyPI using the standard pip module. Compared to the GUI, this
mode provides more flexibility for users with programming experience, allowing reuse of the
plotting or data importing or preprocessing functions to reproduce the same analysis and
visualization. To facilitate the use of AlphaViz as a Python package and to lower the entry barrier
for users, we created Jupyter notebook tutorials separately for the different available pipelines:
for DDA data analyzed with MaxQuant, for DIA data analyzed with DIA-NN, and for the targeted
mode without any prior identification. The tutorials offer code to reproduce the results obtained

in the GUI.
Quality metrics

We include the following statistical distributions of peptide data which should be checked in

AlphaViz to ensure good data quality:

- for DDA data analyzed by MaxQuant (sixteen parameters): m/z, Charge, Length, Mass,
1/KO0, CCS, KO length, Missed cleavages, Andromeda score (peptide score), Intensity, Mass
error [ppm], Mass error [Da], Uncalibrated mass error [ppm], Uncalibrated mass error
[Da], Score (protein score), (EXP) # peptides (the number of experimentally found

peptides);

10
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- for DDA data analyzed by AlphaPept (eighteen parameters): m/z, Charge, Mass, |M,
Length, delta_m, delta_m_ppm, fdr, prec_offset_ppm, prec_offset_raw, hits, hits_b,
hits_y, n_fragments_matched, (EXP) # peptides, g_value, score, score_precursor;

- for DIA data analyzed by DIA-NN (seventeen parameters): m/z, Charge, Length, IM,
CScore, Decoy.CScore, Decoy.Evidence, Evidence, Global.Q.Value, Q.Value,
Quantity.Quality, Spectrum.Similarity, (EXP) # peptides, Global.PG.Q.Value, PG.Q.Value,
PG.Quantity, Protein.Q.Value.
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Fig. 1. AlphaViz project dependencies and workflow. A, Python libraries and other services used in AlphaViz. The
Python libraries and services fall into three groups, those for (1) efficient working and test environment; (2) data
preprocessing and handling; and (3) visualization and the graphical user interface. B, Overview of the AlphaViz
workflow. First AlphaViz directly reads the raw data together with the results of the supported proteomics
workflows, reporting identified and quantified proteins of interests i.e. differentially regulated proteins. The overall
sample quality can then be assessed using various quality metrics as a basis for further evaluation. Next, the user
can inspect the individual quality of the critical proteins as well their identified peptides through AlphaViz. This is
done at different levels, such as LC, IM, MS1 and MS2 levels, which can also be predicted using the built-in deep
learning models for comparison. The ‘predict mode’ also allows to retrieve the signals from the raw data for peptides
of interest that were not reported by the search engine (see Results for further explanation).
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RESULTS

We developed AlphaViz to visually validate critical proteins and peptides at the raw data level. It
currently supports timsTOF data acquired in data-dependent acquisition (DDA) or data-
independent acquisition (DIA) mode. As detailed in the Experimental Procedures, AlphaViz is
written in Python using various open-source libraries for data accession, analysis and
visualization. To ensure that the tool can be used by a wide audience, AlphaViz is available on
Windows, macOS, and Linux, in two different modes: a convenient graphical user interface (GUI)

and as a well-documented and tested Python package.

AlphaViz works either with the output of proteomics software pipelines or only at the raw data
level. Using the output results, it first enables the overall quality of a particular sample to be
assessed, as a basis for further automated analysis. It then superimposes the identifications
provided by common proteomics workflows, such as MaxQuant, AlphaPept, or DIA-NN, on the

raw data signals.

For integrating in silico predictions of experimental peptide predictions from the (modified)
sequences, we use our AlphaPeptDeep package that itself is built on the pDeep model (30-32).
In contrast to pDeep, AlphaPeptDeep supports not only MS2 prediction but also retention time
(RT) and collisional cross section (CCS) prediction for any peptide modification (33, 34).
Furthermore, AlphaPeptDeep provides easy-to-use transfer learning functionalities that were

also used in AlphaViz to fine-tune the experiment-specific RT predictions.

These readily available in silico predictions for any peptide sequence, enables a distinct ‘predicted
mode’ whereby the calculated coordinates of a peptide sequence of interest are projected onto

the raw data. A variety of its applications are shown below.

In the following, we employ several use cases or examples to describe the entire validation
procedure for peptides of several specific proteins using DDA and DIA data, pinpointing unreliable
peptides although they were highly scored by software analysis tools. We then show applications
of peptide signals retrieved directly from the raw data based on the predicted or experimental
properties of the peptides. Finally, we illustrate the use of AlphaViz to explore critical nodes in

the phosphoproteome of the EGF signaling pathway.

12
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Visual validation of global parameters and individual peptides of critical proteins

Today, researchers typically at best inspect a few examples of all detected peptides, yet rarely
the main biological or clinical hits that are the main results of the project. Furthermore, the
overall quality of the proteomics dataset is often not examined at the level of MS results. This is
partly because it may not be easy in the available software to assess these crucial parameters
and results, especially for dda- or dia-PASEF data. Clearly, it would be desirable to be able to
confirm at a global level of each LC-MS run that the proteomics data is free of major issues or
biases so there is a solid basis for further evaluation. After that, verification should be done
individually for each protein of particular interest at the peptide level. This will help to increase
confidence in the protein identifications reported by the search engines or result in discarding

the identification during the various quality checks as illustrated below.

In Figure 2A we exemplify the entire validation process applied to the DDA data, which originates
from a Hela sample acquired on a timsTOF instrument with a 120-min gradient in dda-PASEF
mode and analyzed by MaxQuant (Fig. 2A, Experimental Procedures) (10). We first imported all
raw data and MaxQuant results. AlphaViz then displays the overall quality metrics of the raw data
to ensure the quality of the MS runs, which is shown for Fraction 1 as an example (Fig. 2B). In the
total ion chromatogram (TIC) and base peak intensity (BPI) chromatogram the typical shape and
overall high stable intensity level of the MS1 and MS2 TIC reveal no anomalies (Fig. 2B). The MS1
and MS2 BPI also indicate no major issues with saturation of the LC-MS system, such as
overloading or contamination (Supplementary Fig. S1A). To dig deeper into the raw data quality,
we suggest using AlphaTims, which quickly displays any desired slice of the billions of raw data
points (16). Next, we selected six metrics available in AlphaViz to obtain an overview of all the
peptides identified by MaxQuant, which revealed typical distributions for m/z values, peptide
lengths, ion mobility values, and number of peptides per protein (Fig. 2B, Supplementary Fig. S1B,
Experimental Procedures). However, a clear overall mass-shift is apparent. This is caused by
AlphaViz using the raw data directly instead of re-calibrated values after a first database search.
When inspecting individual peptides (see below), the re-calibrated mass measurements are used,
with a user-definable tolerance, i.e. for visualizing extracted ion chromatogram (XIC) traces.

Many peptide metrics are relative to an overall distribution and visualizing their position

13
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respective to the raw data with AlphaViz allows context-specific interpretation. For instance, the
Andromeda score (MaxQuant) at 1% FDR shows an interquartile range (IQR) between 47 and 100
with 379 outliers above 177, suggesting that values above 100 should have a very high probability

to be correct.

We next inspected peptides of interferon-related developmental regulator 1 protein (ID 000458)
to represent a protein of particular biological importance that was identified with only a few
peptides and a relatively low protein score of 35 which is in the first quartile of the distribution
(Supplementary Fig. S1B). The protein g-value (probability to be wrongly identified) is only about
104, derived from the peptide posterior error probabilities (PEPs) of its two identified peptides,
one of them also as an oxidized form. The Andromeda scores of the unmodified peptides are
130.3 and 132.4, well within the highest quartile with a PEP of less than 0.6%. Because of the
discrepancy of these high peptide scores and the low protein score, we visualized the underlying

raw peptide data in AlphaViz.

We first assessed the XIC of the unmodified peptide HLYNSAAFK (+ 15 ppm, £ 0.05 1/KO, Fig. 2C).
This revealed a pronounced peak at the reported retention time of 32.96 min, close to the value
of 34.82 min predicted by AlphaPeptDeep. Moreover, the peak shape was Gaussian with limited
tailing. Similarly, the extracted ion mobilogram (ppm and retention time window of + 15 ppm
and + 30 seconds) shows a narrow peak at the reported 1/KO0 of 0.874, almost identical to 0.892
predicted by AlphaPeptDeep. This also illustrates the advantage of the additional ion mobility

dimension to evaluate the quality of peptide identifications.

AlphaViz can also visualize the MS1 context from which the precursor was picked for sequencing,
in this case revealing a well-defined feature in the m/z and ion mobility dimensions (the entire
heatmap with the zoomed view in Fig. 2C). All fragment ions for this particular peptide are
present in the MS2 spectrum with an average absolute mass error of 3.1 ppm. The spectrum
predicted by deep learning in the mirrored spectrum has a similar intensity pattern as the
measured one (Pearson correlation coefficient of 0.841, Fig. 2C, bottom panel). Although some

peaks remain unidentified, most of the larger peaks are correctly annotated.
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We then examined the second unmodified peptide LPSLLSCDDVNMR. Despite its similarly high
score, and PEP of 104, its XIC was two orders of magnitude less intense and without a well-
defined peak shape at the claimed retention time (82.45 min; predicted 83.28 min). Similarly, the
extracted ion mobilogram also lacks the expected clear peak shape at 1.064 1/KO (predicted
1.038 1/KO0, Fig. 2D). In comparison to the previously analyzed peptide, it is apparent in the
heatmap for the MS1 frame that the peptide of interest was picked in a crowded region, which
could potentially lead to a chimeric MS2 spectrum. This goes along with its fuzzy MS1 feature in
the m/z and ion mobility dimensions and a relatively large mass deviation of around 50 ppm (Fig.
1D). In addition, the MS1 spectrum reveals an isotope pattern with some interference from
another precursor. However, when inspecting the MS2 spectrum, many ions from the b- and y-
series were identified by MaxQuant with a mean mass error of 0.3 ppm and demonstrated a
similar intensity pattern with the predicted mirrored spectrum (Pearson correlation coefficient
of 0.780, Fig. 2D, bottom panel). This turned out to be the reason for the high Andromeda score
of the peptide, which is based on the number of detected fragment ions. Nevertheless, both the
low values of the overall absolute peak intensities in the MS2 spectrum (below 300) and the poor
data quality in other above-mentioned dimensions suggest that this peptide is a false positive hit
despite the high peptide score. Thus, we illustrate the use of AlphaViz to evaluate two identified
peptides of the same protein reported by MaxQuant with similar scores, only one of whom

should be considered as a reliable hit according to our analysis.
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Fig. 2. Validation pipeline in AlphaViz of two unmodified peptides of the same protein using timsTOF DDA data
analyzed by MaxQuant. A, Workflow. A fractionated 120-min Hela sample, acquired with dda-PASEF and analyzed
by MaxQuant (PXD010012) (25), was imported in AlphaViz. B, Overall sample quality. Chromatograms and additional
quality metrics of fraction 1. Interferon-related developmental regulator 1 protein (ID 000458) was selected for
further detailed exploration. The “Protein coverage” bottom panel shows the identified peptides in the sequence
context of the protein (similar to, but less detailed than AlphaMap (35)). C and D, The visualization of XIC,
mobilogram, MS1 spectrum with overall and zoomed MS1 heatmaps together with the experimental and predicted
MS2 spectrum. C, Peptide view. Inspection of the unmodified peptide HLYNSAAFK reveals it to be a high confidence
identification. D, Peptide view. The unmodified peptide LPSLLSCDDVNMR has low confidence.
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Visual validation of peptidoforms of the proteins of interest

In recent decades, MS has become the tool of choice for large-scale identification and
guantitation of proteins and their post-translational modifications (PTMs) and the computational
workflows for the analysis of DDA have matured. DIA analysis is comparatively newer and less
established, especially when PTMs are being analyzed (28, 36—39). Although modern proteomics
workflows report the localization of the identified PTMs and the associated probabilities, in our
experience it is still necessary to manually validate the results for individual proteins and PTMs
of critical importance. Compared to DDA data, validation of peptides at the raw level in the DIA
pipeline should additionally include detailed inspection at the precursor retention time and, if
applicable, ion mobility values. The values extracted from the library should then match the
values in the raw data within the experimental error, especially the coelution of matched

fragments and precursors.

Figure 3A presents the entire validation process of peptidoforms applied to a Hela sample
acquired on a timsTOF Pro instrument with a 21-min gradient in dia-PASEF mode and analyzed
by DIA-NN (Experimental Procedures). We first imported the raw data file of the selected sample
along with the DIA-NN output result into AlphaViz. The overall sample quality panel in AlphaViz
was used to evaluate the overall quality of the selected sample (A5_1 2451) (Fig. 3B). The TICs
and BPIs for MS1 and MS2 levels demonstrate typical shapes and overall high level of intensity
without any visible anomalies (Fig. 3B, Supplementary Fig. S2A). As before, for further quality
checks, such as verification of mass calibration or ion mobility stability, we suggest using
AlphaTims (16). By selecting six out of seventeen available quality metrics, we observed typical
distributions of important parameters, such as peptide m/z, ion mobility values and a
preponderance of double- and triple-charged ions (Fig. 3B, Supplementary Fig. S2B, Experimental
Procedures). Furthermore, a high number of peptides identifying each protein also serves as an
important quality assurance. For our example, the peptide score distribution (Quantity.Quality
score) in DIA-NN for each individual peptide at 1% FDR shows an IQR between 0.67 and 0.91,
suggesting that scores above 0.91 (top 25% of the significant scores) should be correct with a

high probability.
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Satisfied with the overall sample quality check, we chose eukaryotic initiation factor 4A-Ill protein
(ID P38919, g-values < 10%) for further investigation because of its high sequence and PTM
coverage including a total of 20 peptide variants that mapped to thirteen peptides with g-values
< 5*1073. Two of these peptidoforms were the unoxidized and oxidized forms of the N-terminally
acetylated peptide ATTATMATSGSAR, which were reported with similar scores by DIA-NN of 0.98

and 0.91 respectively.

To investigate if both forms were actually present, we first assessed the MS1 heatmap of the
unoxidized peptide ATTATMATSGSAR (Fig. 3C). The extracted position of the peptide on the m/z
versus ion mobility MS1 heatmap revealed a well resolved feature (Fig. 3C). The elution profiles
of its precursor with all fragment ions (+ 30 ppm, + 0.05 1/K0, + 30 sec) likewise demonstrated a
sharp high-intensity precursor peak at 6.13 min (predicted 6.29 min), which coelutes with almost
all of the main fragment ions. Taking advantage of ion mobility to ensure the presence of the MS
signals, we also visualized the heatmaps for the precursor and each individual fragment in
retention time and ion mobility dimensions colored by intensity. These heatmaps confirm the

presence of the analyzed peptide.

Investigation of the MS1 heatmap of the oxidized form of the same peptide revealed a
comparably well-defined MS1 feature (Fig. 3D). However, analysis of the elution profiles in the
retention time dimension only showed a low-intensity precursor peak at 4.56 min (predicted 4.07
min) with only few and unaligned peaks. Conversely, the heatmaps for the precursor ion and its
fragment ions confirm the absence of fragment ions signals within the expected retention time
and ion mobility ranges. Correct identification of modified peptides in DIA data is a known
challenge and is thought to be impeded by the presence of shared unmodified fragments of the

base peptide in the DIA matching library (38).
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Fig. 3. Validation pipeline in AlphaViz of two peptide variants using timsTOF DIA data analyzed by DIA-NN. A,
Workflow. A 21-min HelLa sample, acquired with dia-PASEF and analyzed by DIA-NN (PXD017703), was imported into
AlphaViz (26, 27). B, Overall sample quality. Chromatograms and additional quality metrics of fraction 1. Eukaryotic
initiation factor 4A-1ll protein (ID P38919) was selected for further detailed exploration. The “Protein coverage”
bottom panel shows the identified peptides in the sequence context of the protein. C and D, Visualization of overall
and zoomed-in MS1 heatmaps, precursor and fragments elution profiles in both retention time (line plots) and
retention time and ion mobility (heatmaps) dimensions. C, Peptide view. The unoxidized N-terminal acetylated
peptide ATTATMATSGSAR shows high confidence. D, Peptide view. The oxidized peptidoform of the same peptide
demonstrates low confidence.
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Validation of peptides directly in DIA raw data with the ‘predict mode’ in AlphaViz

The processing of DIA data is computationally challenging due to the high complexity of MS2
spectra containing fragments of multiple precursors from each single isolation window. Peptides
with low signal intensities can be difficult to detect and easy to misinterpret. Conversely, quality
measures of such peptides, provided as g-values, often fall below preset thresholds, resulting in
“missing values”, even though the peptide is actually present. We hypothesized that by manually
visualizing their signals in AlphaViz, they could still be extractable from the raw data. This is
enabled by the integration of deep learning assisted prediction of retention time and ion mobility
of AlphaPeptDeep in AlphaViz. We tested our hypothesis with two use cases: one regarding the
detection of positional isoforms of a synthetic phosphopeptide and one regarding the retrieval

of missing values.

We had previously identified the Rab10 protein as a clinically important substrate in Parkinson’s
disease (40, 41). In the course of developing an assay to measure the phosphorylation site
occupancy, we had synthesized positional phosphoisomers of the Rab10 peptide FHTITTSYYR
(Fig. 4, left panel) (42). When analyzing these peptides by DIA software, they were not reported
to be present (Experimental procedure). By predicting the retention time and ion mobility values
for the different charges of two known phosphoisomers, their elution profiles were easily
detected in the raw data of the two highest concentrations (Fig. 4, right panel, Supplementary
Fig. S3). The XICs (+- 30 ppm, +- 0.05 1/KO, +- 30 sec) demonstrate clearly defined high-intense
precursor peaks with coeluting b3-b6 and y3-y6 fragment ions. The presence of these fragment
ion signals is further confirmed by heatmaps that take advantage of the additional ion mobility
dimension. Note that there is a slight difference between the predicted and actually observed
retention time, which is not unexpected given the estimated accuracy of the prediction (32).
Given the co-elution behavior of the expected fragments in the AlphaViz, we confirmed the
presence of the intended phosphoisomers and concluded that they were not detected in all

samples because of low MS signals.
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Fig. 4. Validation of the presence of synthetic phosphoisomers of Rab10 peptide in DIA raw data. Left panel,
Synthetic positional phospho-isomers of the Rab10 peptides. Right panel, Extracted peptide signals for the sequences
with a green box in the left panels. Heat map of transitions from the raw data for the unmodified peptide and its two
phosphoisomers.

To test if AlphaViz could retrieve seemingly missing values, we used the same Hela DIA dataset
as for the visual validation of peptide-forms above (Experimental Procedures). For illustration,
we selected the cysteine-carboxylated peptide LCYVALDFEQEMATVASSSSLEK, which was the only
one identifying the POTE ankyrin domain family member F protein (ID A5A3EOQ). It was only
reported by DIA-NN in one of three technical replicate analyses (Sample A6_1 2452) but with a
high peptide g-value of 7*103. To assure that the protein is really present, we investigated the
raw data signal of this peptide in AlphaViz (Fig. 5). For the replicate in which the peptide was
identified, the position of the peptide on the MS1 heatmap is in a crowded part of the ion cloud,
but the zoomed-in view revealed no interfering peptides (Fig. 5). The XICs and heatmaps for the
peptide and fragments (b3-b8 and y3-y8 fragment ion series) confirm the presence of the

peptide. Taking into account the information about the detected peptide, such as its retention
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time, charge, and ion mobility, we were able to retrieve this peptide signal in the other two
replicates where this peptide had not been reported. Interestingly, we found high quality signals
for this peptide comparable to the first sample in both remaining copies, suggesting that

improvements to the software could in the future lead to even higher data completeness.

( 4 Retention time: 18.86; m/z: 860.073, charge: 3, 1/K0: 1.095, Quantity.Quality score: 0.99.
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Fig. 5. Validation of peptide signal presence in all replicates of an experiment. Left part, Experimental details. Three
replicates of a Hela analysis on a timsTOF pro instrument analyzed by DIA-NN (PXD017703) (26, 27). The POTE
ankyrin domain family member F protein (ID AS5A3EO0) with only a single cystein-carboxylated peptide
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Data quality assessment and discovery of EGF signaling events using AlphaViz

Studies on post-translational modifications (PTMs) by their nature rely on the identification and
guantification of single peptides and are especially affected by poor peak qualities and missing
values, the two major challenges AlphaViz tries to overcome. We investigated signalling events
activated along the well-studied epidermal growth factor (EGF) signaling pathway. Binding of EGF
to its receptor EGFR induces a signalling cascade mediated by phosphorylation leading to cellular
proliferation, differentiation and survival (43). We used a recently published dataset where Hela
cells were stimulated with EGF or left untreated, acquired in three replicates each on a timsTOF
pro instrument with a 21-min gradient in dia-PASEF mode and analyzed with DIA-NN
(Experimental Procedures) (28). When filtered for 100% valid values in each condition, DIA-NN
detected 1,403 phosphosites as significantly upregulated, of which 56 were localized on proteins
known to be part of the EGFR signaling pathway (according to Gene Ontology Biological Process
(GOBP) (44). To evaluate the data quality of regulated phosphosites, we picked significantly
upregulated phosphosites with DIA-NN scores > 0.7 (FDR < 0.05). The majority of regulated
phosphosites with higher DIA-NN scores showed well correlating elution profiles of precursor and
fragment ions, for example the peptide carrying the phosphorylation on S642 of RAF1 (Fig. 6A,
green in Fig. 6B). However, others demonstrated poor data quality (red in Fig. 6A). This also
affected phosphorylation on proteins known to be associated with the EGFR signaling pathway
that are presumably correct. For example, the CBL (Casitas B-lineage Lymphoma) protein, an E3
ligase known to ubiquitylate EGFR showed poor quality elution profiles for its peptides
phosphorylated on S619 and S667 despite a maximum DIA-NN score between replicates of 0.92
and 0.94 respectively (red in Fig. 6B) (45). Specifically, AlphaViz only retrieved an elution peak for
the precursor but none of the expected fragments co-eluted. This was the case for a number of
peptides in the EGFR pathway (red in Fig. 6A). We assume that the neural network in DIA-NN
scored the presence of the peptide in these cases mainly based on the precursor. While this may
be justified in these cases, it would be problematic without supporting biological a priori
information. We hope that this observation will initiate improvement to software tools — for
instance it could be reported that matching was only based on MS1 level. In any case, we

recommend to employ AlphaViz for data quality checks before extensive follow-up experiments.
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A second challenge are missing values, especially in PTM studies. Although this problem is much
reduced in DIA compared to DDA data, it still occurs frequently especially as sample size grows
(39, 46—-48). This is due to the complexity of spectra, the low abundance of modified peptides
and the technical variability. Unfortunately, it has been impossible or extremely laborious to
manually check raw data for specific spectra or elution groups of modified peptides that were
not reported by the proteomics workflows. The predict mode in AlphaViz addresses this issue. It
only requires the peptide sequence, peptide charge and type and localization of its modification

to predict its retention time, ion mobility and fragment intensities.

We first investigated functional phosphorylation events on proteins involved in EGF signalling
that showed increased intensities upon EGF treatment, but were lost due to filtering the dataset
for 100 % valid values in at least one condition. In most of these cases, the data quality of
phosphopeptides in replicates where the DIA software did not report intensities was comparable
to the respective replicates with reported intensities. This affected phosphorylation events on
proteins along the whole EGF signalling pathway starting with the EGFR receptor itself (Y1197),
kinases regulating downstream signalling like GSK3B (T390) and phosphorylation events
activating transcription factors like MEF2D (S251) and ATF2 (S90) (Fig. 6C, Supplementary Fig.
S4). These examples are clearly false negatives of the computational pipeline and they prove the
potential of our tool to recover biologically correct regulatory sites. In the case of novel sites,

AlphaViz could have prevented them from being discarded because of data incompleteness.

Besides these reported regulatory phosphosites, the predict mode also provides the possibility
to look for phosphorylation events in the raw data that have not been identified by the
proteomics software at all. In these cases, AlphaViz uses the peptide sequence, PTM localization
and charge state of modified peptides of interest to retrieve the corresponding locations in the
raw data. To illustrate, in the EGF dataset, we would have expected increased phosphorylation
of the nuclear pore complex protein 50 (NUP50) on position S221, which is mediated by the
extracellular signal-regulated kinases (ERK) downstream of the EGF receptor (49), but no such
peptide was reported. Remarkably, elution group profiles at the predicted retention time and ion
mobility were of good quality and confirmed the presence of this phoshopeptide in the sample

(Fig. 6D). This was also the case in a second example, relating to EGF-induced activation of the
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protein kinase C delta (PRKCD), a kinase regulating cell-adhesion upon EGF stimulation, which
leads to its autophosphorylation at S304 (50, 51). Hence, the predict mode allows us to efficiently
investigate specific signalling events of interest that were missed by MS software tools through

direct inspection of the raw data.
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Fig. 6. Investigation of EGF-induced phosphorylation events in AlphaViz. A, Scheme of significantly upregulated
phosphosites investigated in AlphaViz. Based on visual inspection, we divided the reported phosphosites into four
main groups: high confidence (green), low confidence (red), recovered after filtering (yellow), and predicted and
confirmed (white). B, Elution profiles of two phosphorylation sites with high (S642 of RAF1) and low (S619 of CBL)
confidence. C, Elution profiles of two phosphorylation sites (Y1197 of EGFR and S90 of ATF2) recovered after filtering
out. D, Elution profiles of two phosphorylation sites (5221 of NUP50 and S304 of PRKCD) not reported by DIA-NN
but found in the data using predict mode.
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DISCUSSION

Increasingly automated and capable proteomics processing workflows provide researchers with
an easy way to summarize the results of proteomics experiments with statistical confidence
measures. However, expert evaluation of individual peptides and proteins is lost along the way.
To remedy this, we have developed AlphaViz, a Python-based software package for easy visual
validation of critical identifications. Like other members of the AlphaPept ecosystem, it adheres
to modern and robust software development principles and it is available to community as a

Python module and the GUI for end users.

Future implementations of AlphaViz will include the support for more MS platforms, especially
Orbitrap instruments, as well as the integration of results from other used proteomics software
packages. Furthermore, due to the well-documented and tested open-source code, AlphaViz is
easily extendable by bioinformaticians who want to integrate the latest cutting-edge ideas, as
already demonstrated by AlphaPept and AlphaTims (13, 16). Additionally, directly linking protein
candidates from fully automated downstream analysis packages like the clinical knowledge graph
will further strengthen the link between raw data and biological insight (14). Since the
visualization capabilities of AlphaViz are only limited by data structure, it can also be used for the

in-depth inspection of lipidomics and metabolomics data.

Here we have demonstrated how AlphaViz can quickly give the researcher confidence in
identified, critical peptides by inspection of the search results with the raw chromatographic, ion
mobility, MS1 and MS2 levels. Conversely, visualization strongly suggests that some peptides are
likely false positives despite of their high search engine scores. Furthermore, AlphaViz makes use
of the revolution in deep learning enabled prediction of experimental peptide properties from
the identified amino acid sequence. This feature is the basis for the ‘predict mode’, in which we
retrieve the raw data for peptides that were not reported by the automated workflow, but were
potentially present in the data. This may allow the rescue of low-level signals that are biologically
expected to be present or are present in some but not all replicates. In phosphoproteomics of

the EGF signaling pathway, we showed how this can help to validate the presence of reported
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signal nodes, and to avoid extensive follow-up experiments for novel phosphorylation sites

whose raw data make them unlikely to be true.

In conclusion, we believe researchers will profit from the minimal time investment to visually
check their critical peptides and proteins, potentially saving the community and themselves from
futile follow up work. This is particularly true of very surprising and biologically unexpected
results that then fail to be reproduced by the wider community. In this context, journals could
encourage or mandate the inclusion of such extra data and visualizations for the critical peptides
or peptidoforms that form the basis of the new hypotheses, helping to address the ‘crisis of

reproducibility’ (52, 53).
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