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Abstract

Antibodies are immune system proteins that protect the host by binding to specific
antigens such as viruses and bacteria. The binding between antibodies and antigens
is mainly determined by the complementarity-determining regions (CDR) of the
antibodies. In this work, we develop a deep generative model that jointly models
sequences and structures of CDRs based on diffusion probabilistic models and
equivariant neural networks. Our method is the first deep learning-based method
that generates antibodies explicitly targeting specific antigen structures and is one
of the earliest diffusion probabilistic models for protein structures. The model is
a “Swiss Army Knife” capable of sequence-structure co-design, sequence design
for given backbone structures, and antibody optimization. We conduct extensive
experiments to evaluate the quality of both sequences and structures of designed
antibodies. We find that our model could yield competitive results in binding
affinity measured by biophysical energy functions and other protein design metrics.

1 Introduction

Antibodies are important immune proteins generated during an immune response to recognize and
neutralize the pathogen [Janeway et al., 2001]. As illustrated in Figure la, an antibody contains two
heavy chains and two light chains, and their overall structure is similar. Six variable regions determine
the specificity of an antibody to the antigens. They are called the Complementarity Determining
Regions (CDRs), denoted as H1, H2, H3, L1, L2, and L3. Therefore, the most important step for
developing effective therapeutic antibodies is to design CDRs that bind to the specific antigen [Presta,
1992, Akbar et al., 2022a].

Similar to other protein design tasks, the search space of CDRs is vast. A CDR sequence with L amino
acids has up to 20% possible protein sequences. It is not feasible to test all the possible sequences
using experimental approaches, so computational methods are needed. Traditional computational
approaches rely on sampling protein sequences and structures from complex biophysical energy
functions [Pantazes and Maranas, 2010, Lapidoth et al., 2015, Adolf-Bryfogle et al., 2018, Warszawski
et al., 2019]. They are generally time-consuming and are prone to get trapped in local optima.
Recently, various deep generative models have been developed to design antibodies [Saka et al., 2021,
Akbar et al., 2022b, Jin et al., 2022]. Compared to conventional algorithms, deep generative models
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Figure 1: (a) Antibody-antigen complex structure and CDR structure. (b) The orientations of amino
acids (represented by triangles) determine their side-chain orientations, which are key to inter-amino-
acid interactions.
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could directly capture higher-order interactions among amino acids on antibodies and antigens and
generate antibodies more efficiently [Akbar et al., 2022a]. Recently, Jin et al. proposed a generative
model for antibody structure-sequence co-design. Their model addresses two important computational
challenges: First is how to model the intrinsic relation between CDR sequences and 3D structures,
and second is how to model the distribution of CDRs conditional on the rest of the antibody sequence.
However, there is still a large gap to fill before generative models become practical for antibody
design.

Here, we identify another three challenges for antibody sequence-structure co-design. First, the model
should be explicitly conditional on the 3D structures of the antigen and generate CDRs that fit the
antigen structure in the 3D space. This is indispensable for the model to generalize to new antigens.
Second, the interactions between amino acids are mainly determined by side-chains which are groups
of atoms stretching out from the protein backbone (Figure 1b) [Liljas et al., 2016]. Therefore, the
model should be able to consider both the position and orientation of amino acids. Third, in drug
discovery, pharmacologists collect multiple initial antibodies either from humanized mice or patients
[Presta, 1992, Barlow et al., 2018, Warszawski et al., 2019]. Therefore, instead of de novo design, the
model should be applicable to another realistic scenario: optimizing a particular antibody to increase
the binding affinity to the antigen. To the best of our knowledge, no previous machine learning model
satisfies all of the above design principles.

To address these challenges, we propose a diffusion-based Antigen
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antigen and an antibody framework as input? (as illustrated
in Figure 2), we first initialize the CDR with an arbitrary Figure 2: The task in this work is to de-
sequence, positions, and orientations. The diffusion model sign CDRs for a given antigen structure
first aggregates information from the antigen and the an- and an antibody framework.

tibody framework. Then, it iteratively updates the amino

acid type, position, and orientation of each amino acid on CDRs. In the last step, we reconstruct
the CDR structure at the atom level using side-chain packing algorithms based on the predicted
orientations [Alford et al., 2017]. From the perspective of model capability, one of the most important
reasons for us to choose the diffusion-based model over other generative models such as generative
adversarial networks [Goodfellow et al., 2014] and variational auto-encoders [Kingma and Welling,
2013] is that it generates CDR candidates iteratively in the sequence-structure space so that we can
interfere and impose constraints on the sampling process to support a broader range of design tasks.

‘We summarize our contributions as follows:

* We propose the first deep learning models to perform antibody sequence-structure design by
considering the 3D structures of the antigen.

¢ In our model, we not only design protein sequences and coordinates but also side-chain
orientations (represented as SO(3) element) of each amino acid. It is the first deep learning

The structure of the antigen-antibody framework can be obtained either from existing antigen-antibody
structure or by docking an initial antibody to the target antigen.
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model that could achieve atomic-resolution antibody design and is equivariant to rotation
and translation.

* We show that our model can be applied to a wide range of antibody design tasks, including
sequence-structure co-design, fix-backbone CDR design, and antibody optimization.

2 Related Work

Computational Antibody Design Conventional computational approaches are mainly based on
sampling algorithms over hand-crafted and statistical energy functions and iteratively modify protein
sequences and structures [Adolf-Bryfogle et al., 2018, Lapidoth et al., 2015, Warszawski et al., 2019,
Pantazes and Maranas, 2010, Ruffolo et al., 2021]. These methods are inefficient and prone to getting
stuck at local optima due to the rough energy landscape. In recent years, deep learning methods
have shown potential in antibody design by using language models to generate protein sequences
[Alley et al., 2019, Shin et al., 2021, Saka et al., 2021, Akbar et al., 2022b]. Although much more
efficient, the sequence-based methods can only generate new antibodies based on previously observed
antibodies but can hardly generate antibodies for specific antigen structures.

Jin et al. proposed the first CDR sequence-structure co-design deep generative model which focuses
on designing antibodies to neutralize SARS-CoV-2. It relies on an additional antigen-specific
predictor to predict the neutralization of the designed antibodies, which is not generalizable to
arbitrary antigens. In comparison to their model, we explicitly model the 3D structure of an
antigen, opening the door to generalizing the prediction to unseen antigens with solved 3D structures.
Another advantage of our model is that we consider not only backbone atom coordinates but also
the orientation of amino acids. The orientation is critical to protein-protein interactions as most of
the atoms interacting between antibodies and antigens are in the side-chain [Liljas et al., 2016] (as
illustrated in Figure 1b). Lastly, the model proposed by Jin et al. is not equivariant by construction,
which is fundamental in molecular modeling.

Protein Structure Prediction Protein structure prediction algorithms take protein sequences and
Multiple Sequence Alignments (MSAs) as input and translate them to 3D structures [Jumper et al.,
2021, Baek et al., 2021, Yang et al., 2020]. Accurate protein structure prediction models predict not
only the position of amino acids but also their orientation [Jumper et al., 2021, Yang et al., 2020].
The orientation of amino acids determines the direction in which its side chain stretches, so it is
indispensable for reconstructing full-atom structures. AlphaFold2 [Jumper et al., 2021] predicts
per-amino-acid orientations in an iterative fashion, similar to our proposed model. However, it is
not generative, unable to efficiently sample diverse structures for protein design. Recently, based on
prior protein structure prediction algorithms, methods for predicting antibody CDR structures have
emerged [Ruffolo et al., 2022b,a], but they are not able to design CDR sequences.

Diffusion-Based Generative Models Diffusion probabilistic models learn to generate data via
denoising samples from a prior distribution [Sohl-Dickstein et al., 2015, Song and Ermon, 2019,
Ho et al., 2020]. Recently, progress has been made in developing equivariant diffusion models for
molecular 3D structures [Shi et al., 2021, Hoogeboom et al., 2022, Jing et al., 2022]. Atoms in a
molecule do not have natural orientations, so the generation process differs from generating protein
structures. Diffusion models have also been extended to non-Euclidean data, such as data in the
Riemannian manifolds [Leach et al., 2022, De Bortoli et al., 2022]. These models are relevant to
modeling orientations which are represented by elements in SO(3). In addition, diffusion models can
also be used to generate discrete categorical data [Hoogeboom et al., 2021, Austin et al., 2021].

3 Methods

This section is organized as follows: Section 3.1 introduces notations used throughout the paper and
formally states the problem. Section 3.2 formulates the diffusion process for modeling antibodies.
Section 3.3 introduces details about the neural network parameterization for the diffusion processes.
Section 3.4 presents sampling algorithms for various antibody design tasks.
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3.1 Definitions and Notations

An amino acid in a protein complex can be represented by its type, C, atom coordinate, and the
orientation, denoted as s; € {ACDEFGHIKLMNPQRSTVWY}, z; € R?, O; € SO(3), respectively. Here
i=1...N,and N is the number of amino acids in the protein complex>.

In this work, we assume the antigen structure and the antibody framework is given (Figure 2), and we
focus on designing CDRs on the antibody framework. Assume the CDR to be generated has m amino
acids with index from {41 to [ +m. They are denoted as R = {(s;,x;,0;) | j=1+1,...,l+m}.
Formally, our goal is to jointly model the distribution of R given the structure of the antibody-antigen
complex C = {(s;,x;,0;) | i € {1...N]\{l+1,...,l+m}}.

3.2 Diffusion Processes

A diffusion probabilistic model defines two Markov chains of diffusion processes. The forward
diffusion process gradually adds noise to the data until the data distribution approximately reaches the
prior distribution. The generative diffusion process starts from the prior distribution and iteratively
transforms it to the desired distribution. Training the model relies on the forward diffusion process to
simulate the noisy data. Let (sé-, xé-, Oé) denote the intermediate state of amino acid j at time step .

R = {s},x}, 0} }éiﬁl represents the sequence and structure sampled at step t. t = 0 represents
the state of real data (observed sequences and structures of CDRs) and ¢ = T represents samples from
the prior distribution. Forward diffusion goes from ¢ = 0 to 7', and generative diffusion proceeds in
the opposite way. The diffusion processes for amino acid types sé-, coordinates xg-, and orientations
O' are defined as follows:

Multinomial Diffusion for Amino Acid Types The forward diffusion process for amino acid types
is based on the multinomial distribution defined as follows [Hoogeboom et al., 2021]:

1

—1 . . —1

q(sé—\s; ) = Multinomial ((1 - ﬁfype) . onehot(s; )+ 5fype "3 1) , (D
where onehot represents a function that converts amino acid type to a 20-dimensional one-hot vector
and 1 is an all-one vector. ﬂfype is the probability of resampling another amino acid over 20 types

uniformly. Whent¢ — T, ﬂfype is set close to 1 and the distribution is closer to the uniform distribution.

The following probability density provides an efficient way to perturb s? for timestep ¢ during training
[Hoogeboom et al., 2021]:

1
q(sﬂs?) = Multinomial <afype . onehot(s?) +(1— @fype) 55 1) 7 2)

_ t
where &, = [1,_1 (1 = Bipe)-

The generative diffusion process is defined as:
p(s§71|72t, C) = Multinomial (F(R",C)[j]), 3)

where F'(+)[4] is a neural network model taking the structure context (antigen and antibody framework)
and the CDR state from the previous step as input and predicts the probability of the amino acid
type for the j-th amino acid on the CDR. Note that, different from the forward diffusion process, the
generative diffusion process must rely on the structure context C and the CDR state of the previous
step including positions and orientations. The main difference between these two processes is that the
forward diffusion process adds noise to data so it is irrelevant to data or contexts but the generative
diffusion process depends on the given condition and full observation of the previous step. The
generative diffusion process needs to approximate the posterior q(szfl |s§., s?) derived from Eq.1 and
Eq.2 to denoise. Therefore, the objective of training the generative diffusion process for amino acid
types is to minimize the expected KL divergence between Eq.3 and the posterior distribution:

1 _ -
Lttype = ER‘Np |:m Zj DkL <Q(S§‘ 1‘53‘5 S?) ’p(sé lRtaC)>:| : 4)

3Note that a protein complex contains more than one chain, so IV is not the length of one protein but is the
sum of the lengths of all chains in the complex.
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Figure 3: Illustration of the generative diffusion process. At each step, the network takes the
current CDR state as input and parameterizes the distribution of the CDR’s sequences, positions,
and orientations for the next step. In the end, full-atom structures are constructed by the side-chain
packing algorithm.
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Diffusion for C, Coordinates As the coordinate of an atom could be an arbitrary value, we scale
and shift the coordinates of the whole structure such that the distribution of atom coordinates roughly
match the standard normal distribution. We define the forward diffusion for the normalized C,,
coordinate x; as follows:

q(xf [ x7h) =N (x’? 1— Bl ~Xt'_1,ﬁ$051) , 5)

0 (x| %0) = N (x| [ 0, (1= i) (©)

where 5505 controls the rate of diffusion and its value increases from 0 to 1 as time step goes from

0 to ¢, and apos = ]_[t ). Using the reparameterization trick proposed by Ho et al., the
generative diffusion process is dp ﬁned as:
p(xj—l‘nf,c) :N( t= 1‘% (R,C), pOSI), %)
1 t
p(R,C) = —— | x; - ——=—=G(R",O)[]] | - ®)

J
t _ At
\/ Qpos 1 Qpos

Here, G(-)[j] is a neural network that predicts the standard Gaussian noise ¢; ~ N (0, I) added

to 4 /agmx (scaled coordinate of amino acid j) based on the reparameterization of Eq.6: xj =

1/ agosx] +4/1 posej The objective function of training the generative process is the expected

MSE between G and ¢;, which is simplified from aligning distribution p to the posterior q( =1

J) [Ho et al., 2020]:

1
Li,=E [m ZjHej—G(Rt,C)HQ . 9)

SO(3) Denoising for Amino Acid Orientations We empirically formulate an iterative perturb-
denoise scheme for learning and generating amino acid orientations represented by SO(3) elements
[Leach et al., 2022]. Note that we do not use the term diffusion because the formulation does not
strictly follow the framework of diffusion probabilistic models though the overall principle is the
same. Similar to the typical diffusion process, the distribution of orientations perturbed for ¢ steps is

defined as, according to Leach et al. [2022]:
-|ScaleRot (1/ at., O?) ,1— af)ri> . (10)

TG s0(s) denotes the isotropic Gaussian distribution on SO(3) parameterized by a mean rotation and
a scalar variance [Leach et al., 2022, Matthies et al., 1970, Nikolayev and Savyolov, 1970]. ScaleRot
modifies the rotation matrix by scaling its rotation angle with the rotation axis fixed [Gallier and Xu,

(0} 09) = Z6soqs (O
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2003]. at; = Hf;:l(l — B7.), where 3. is the variance increases with the step ¢. The conditional

distribution used for the generation process of orientations is defined as:
p(0571|R" €) =TG50 (05‘1 H(R',C)[j], éﬂ> 7 (an

where H (-)[j] is a neural network that denoises the orientation and outputs the denoised orientation
matrix of amino acid j. Training the conditional distribution requires aligning the predicted orientation
from H (+) to the real orientation. Hence, we formulate the training object that minimizes the expected
discrepancy measured by the inner product between the real and the predicted orientation matrices:

va=s |3 Jonror ). a2

where (A);*1 = H(-)[4] is the predicted orientation for amino acid j.

The Overall Training Objective By summing Eq.4, 9, and 12 and taking the expectation w.r.t. t,
we obtain the final training objective function:

L = EtNUniform(l...T) [Lfype + th)()s + L(t)ri] . (13)
To train the model, we first sample a time step ¢ and then sample noisy states {sg7 xz-, O; }T:TH ~Dp
by adding noise to the training sample using the diffusion process defined by Eq.2, 6, and 10. We
compute the loss using the noisy data and backpropagate the loss to update model parameters.

3.3 Parameterization with Neural Networks

In this section, we briefly introduce the neural network architectures used in different components of
the diffusion process. The purpose of the networks is to encode the CDR state at a time step ¢ along
with the context structure: {s,x%, O% };J;ﬁl U{st, 2!, O}z, N}\{i+1..14m}» and then denoises

the CDR amino acid types (F'), positions (G), and orientations (H).

First, we adopt Multiple Layer Perceptrons (MLPs) to generate embeddings for single and pairs
of amino acids. The single amino-acid embedding MLP creates vector e; for amino acid ¢, which
encodes the information of amino acid types, torsional angles, and 3D coordinates of all the heavy
atoms. The pairwise embedding MLP encodes the Euclidean distances and dihedral angles between
amino acid % and j to feature vectors z;;. We adopt IPA [Jumper et al., 2021], an orientation-aware
roto-translation invariant network to transform e; and z;; into hidden representations h;, which
aims to represent the amino acid itself and its environment. Next, the representations are fed to
three different MLPs to denoise the amino acid types, 3D positions, and orientations of the CDR,
respectively.

In particular, the MLP for denoising amino acid types outputs a 20-dimensional vector representing
the posterior probabilities. The MLP for denoising C,, coordinates predicts the scaled change of
the coordinate in terms of the current orientation of the amino acid. As the coordinate deviation is
calculated in the local frame, we left-multiply it by the orientation matrix and transform it back to
the global frame. Formally, this can be expressed as €; = O§- MLPg¢ (h;). Predicting coordinate
deviations in the local frame and projecting it to the global frame ensures the equivariance of the
prediction, as when the entire 3D structure rotates by a particular angle, the coordinate deviations also
rotate by the same angle. The MLP for denoising orientations first predicts a so(3) vector [Gallier
and Xu, 2003]. The vector is converted to a rotation matrix M; € SO(3) right-multiplied to the

orientation to produce a new mean orientation for the next generative step: o ! « O§ M;. The
proposed networks are equivariant to the rotation and translation of the overall structure:
Proposition 1. For any proper rotation matrix R € SO(3) and any 3D vector r € R3 (rigid
transformation (R,r) € SE(3)), F, G and H satisfy the following equivariance properties:

F(RR'+r,RC+7r)=F(R' (), (14)
G(RR! + r,RC +r) = RG(R,C), (15)
H(RR' +r,RC+r)=RH(R'C), (16)
where RR'+r := {s},x\+r, RO;}?;’[EA and RC+r = {s;,x; + 7, RO };c 1 Ny (141,...14m}

denote the rotated and translated structure. Note that F, G, and H are not single MLPs. Each of
them includes the shared encoder and a specific MLP.
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3.4 Sampling Algorithms

The sampling algorithm first samples amino acid types from the uniform distribution over 20 classes:
SJT ~ Uniform(20), C, positions from the standard normal distribution: XJT ~ N(0,I3), and

orientations from the uniform distribution over SO(3): O] ~ Uniform(SO(3)). Note that we
normalize the coordinates of the structure in the same way as training such that C,, positions in the
CDR roughly follow the standard normal distribution. Next, we iteratively sample sequences and
structures from the generative diffusion kernel by denoising amino acid types, C,, coordinates, and
orientations until ¢ = 0. To build a full atom 3D structure, we construct the coordinates of N, C,,, C,
O, and side-chain Cg (except glycine that does not have Cg) according to their ideal local coordinates
relative to the C,, position and orientation of each amino acid [Engh and Huber, 2012]. Based on the
five reconstructed atoms, the rest of the side-chain atoms are constructed using the side-chain packing
function implemented in Rosetta [Alford et al., 2017]. In the end, we adopt the AMBER99 force field
[Lindorff-Larsen et al., 2010] in OpenMM [Eastman et al., 2017] to refine the full atom structure.

In addition to the joint design of sequences and structures, we can constrain partial states for other
design tasks. For example, by fixing the backbone structure (positions and orientations) and sampling
only sequences, we can do fix-backbone sequence design. Another usage is to optimize an existing
antibody. Specifically, we first add noise to the existing antibody for ¢ steps and denoise the perturbed
antibody sequence starting from the ¢-th step of the generative diffusion process.

4 Experiments

We present the application of our model, named DiffAb*, in three antibody design tasks: sequence-
structure co-design (Section 4.1), antibody sequence design based on antibody backbones (Section
4.2), and antibody optimization (Section 4.3). In Section 4.4, we show how to use our model without
known antibody frameworks bound to the antigen.

4.1 Sequence-Structure Co-design

The dataset for training the model is derived from the SAbDab database[Dunbar et al., 2014]. We first
remove structures whose resolution is worse than 4A and discard antibodies targeting non-protein
antigens. We cluster antibodies in the database according to CDR-H3 sequences at 50% sequence
identity. We manually select five clusters as the test set, containing 19 antibody-antigen complexes
in total. The test set includes antigens from several well-known pathogens including SARS-CoV-2,
MERS, influenza, and so on. Structures in the remaining clusters are used for training.

To evaluate the performance, we remove the original CDR from the antibody-antigen complex in
the test set and sample both the sequence and structure of the removed region. We set the length
of the CDR to be identical to the length of the original CDR for simplicity. In practice, one can
enumerate different lengths of CDRs. We compare our model to RosettaAntibodyDesign (RAbD)
[Adolf-Bryfogle et al., 2018], an antibody design software based on Rosetta energy functions. For
each model, we draw 100 samples for each CDR. Both the original structures and designed structures
from different methods are refined by OpenMM and Rosetta.

We use the following metrics to evaluate designed antibodies: (1) IMP: is the percentage of designed
CDRs with lower (better) binding energy (AG) than the original CDR. The binding energy is
calculated by InterfaceAnalyzer in the Rosetta software package [Alford et al., 2017]. (2) RMSD:
is the C,, root-mean-square deviation (RMSD) between the generated structure and the original
structure with only antibody frameworks aligned. (3) AAR: is the amino acid recovery rate measured
by the sequence identity between the reference CDR sequences and the generated sequences [Adolf-
Bryfogle et al., 2018]. Note that different from Jin et al. [2022], we do not use neutralization
prediction models because they are sequence-based and are specified to a limited class of antigens,
which deviates from our goal of developing a general antibody design model.

Table 1 shows that our model (DiffAb) recovers CDR sequences more accurately than RAbD (higher
AAR). The RMSDs of CDRs generated by DiffAb are higher in CDR-H3, which indicates that our
generated samples are more diverse structurally. The IMP score of DiffAb is on par with RAbD in

*Code and data are available at https://github.com/luost26/diffab.
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Table 1: Evaluation of the generated antibody CDRs (sequence-structure co-design) by RAbD and
our DiffAb model.

CDR Method AAR RMSD IMP CDR Method AAR RMSD IMP
Hi1 RAbD 22.85% 2.261A 43.88% L1 RAbD 3427% 1204A  46.81%
DiffAb  65.75% 1.188A 53.63% DiffAb  56.67% 1.388A 45.58%
o RAbD 2550% 1.641A  53.50% 12 RAbD 2630% 1.767A  56.94%
DiffAb  49.31% 1.076A 29.84% DiffAb  59.32% 1.373A  49.95%
H3 RAbBD 22.14% 2.900A 23.25% L3 RAbD 20.73% 1.624A  55.63%
DiffAb  26.78% 3.597A  23.63% DiffAb  46.47% 1.627A  47.32%
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Figure 4: Examples of CDR-H3 designed by the sequence-structure co-design method and the
distribution of their interaction energy and RMSD. The antigen-antibody template is derived from
PDB:7chf, where the antigen is SARS-CoV-2 RBD. Sample 1 has better complementarity to the
antigen while Sample 3 fits the antigen worse. This could explain their difference in the binding
energy (AG).

CDR-H3, and lower in other CDRs. However, it should be noted that RAbD optimizes the Rosetta
energy function, which is also used for evaluation. Our model achieves reasonably good binding
energy without explicit supervision signal from Rosetta energy functions. Figure 4 presents three
generated examples of CDR-H3 targeting SARS-CoV-2 RBD. Sample 1 has the lowest binding
energy and it can be observed that it has better complementarity to the antigen. The binding energy
of Sample 3 is higher than the original one and visually, the shape of the CDR does not fit the antigen
well.

4.2 Fix-Backbone Sequence Design and Structure Prediction

In this setting, the backbone structure of CDRs is given and we only need to design the CDR sequence,
which transforms the task into a constrained sampling problem. Fix-backbone design is a common
setting in the area of protein design [Ingraham et al., 2019, Hsu et al., 2022, Anishchenko et al.,
2021, Strokach et al., 2020, Tischer et al., 2020]. For this task, we consider FixBB, a Rosetta-based
sequence design software given CDR backbone structure, as the baseline. We use the AAR metric
introduced in Section 4.1 to evaluate the designed CDRs.

As shown in Table 2, our model achieves better AAR in all the CDRs. This shows that our model
is also powerful in modeling the conditional probability of sequences given backbone structures.
Admittedly, the training data is clustered only by CDR-H3 sequences, so the model might have seen
other CDRs in the test set during training, leading to even higher AAR. However, we believe this is
not an issue as CDRs other than H3 are generally conserved and contribute less to the specificity Xu
and Davis [2000].

Our model can predict CDR structures by fixing the sequence. Table 3 shows that it accurately
predicts the structure of CDR H1, H2, L1, L2, and L3 (RMSD < 1.5/08). The accuracy of CDR-H3
prediction is lower due to the high variability. Figure 5a separately shows the accuracy of different
CDR-H3 lengths. The prediction is generally more accurate for shorter ones. When the CDR-H3
contains more than 10 amino acids, the prediction accuracy drops.


https://www.rcsb.org/structure/7chf
https://doi.org/10.1101/2022.07.10.499510
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.10.499510; this version posted October 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Table 2: Comparison of FixBB and DiffAb in terms of amino acid  Taple 3: The accuracy of CDR
recovery (AAR) in the fix-backbone CDR design task. DiffAb  gtructures predicted by DiffAb
achieves higher AAR. The AAR of DiffAb on CDR-H3 is lower 5 RMSD.

than other CDRs since H3 is much more versatile.

CDR Method AAR CDR Method AAR CDR RMSD
Hi1 FixBB  37.14% L1 FixBB  33.80% H1  0901A
DiffAb  87.83% DiffAb  86.63% 2 10444

i, [FixBB  4308% ., FixBB  2854% H3  3.246A
DiffAb  79.70% DiffAb  88.91% L1 1.365A

g3 FixBB 3074% . FixBB  17.92% L2 1.321A
DiffAb  59.48% DiffAb  78.69% L3 1492A

(a) (b)
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Figure 5: (a) RMSD of predicted CDR-H3 structures grouped by lengths. (b) The antibody optimiza-
tion algorithm first perturbs the initial CDR for ¢ steps using the forward diffusion process and then
denoises it by the backward diffusion process into the optimized CDR. (¢) IMP, RMSD, and SeqID
of the CDRs optimized with different numbers of steps. Dashed lines represent the results of de novo
design. When ¢t = 4, the optimized CDRs reach an IMP score close to de novo CDRs but remain
structurally similar to the original one.

4.3 Antibody Optimization

We use our model to optimize existing antibodies Tuple 4: Evaluation of optimized CDR-H3s
which is another common pharmaceutical applica- it different numbers of optimization steps.
tion. To optimize an antibody, we first pertqrb the  In contrast to redesigning the CDR, the opti-
CDR sequence and structure for t steps using the i, -40n method can improve binding energy
forward diffusion process. Then, we denoise the se- yhile keeping the optimized CDR similar to
quences starting from the (7" — t)-th step (¢ steps original one. Figure 5c shows the line
remaining) of the generative diffusion process and plot of the results.

obtain a set of optimized antibodies. This process

is illustrated in Figure 5b. We optimize CDR-H3 t | IMP RMSD  SeqID
of the antibodies in the test set with various ¢ val- .

ues. For each antibody and ¢, we perturb the CDR 1 | 1852% 1.194A 92.42%
independently 100 times and collect 100 optimized 2 | 16.67% 1252A 91.61%
CDREs different from the original CDR. We report the 4 | 2329% 1.290A 91.16%
percentage of optimized antibodies with improved 8 | 2201% 1.447A 88.78%

bmdmg energy (IMP), RMSD, and Sequenpe ldentlty 6 18.02% 1759A 78.43%
(SeqID) of the optimized CDR in comparison to the 2

Cx . . 32 | 1643% 2.623A  40.58%
original antibody. We also compare the optimized 64 | 1547% 33%0A 27309
antibodies with the de novo (t = T = 100) designed AT% 3. 7.30%
antibodies introduced in Section 4.1. As shown in T | 23.63% 3.597A 26.78%
Table 4 and Figure Sc, the optimization method could
produce antibodies with improved binding energy measured by the Rosetta energy function. In
contrast to redesigning CDRs, optimization improves binding energy while keeping the optimized
CDR similar to the original one, which is desired in many practical applications.
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Figure 6: A human antibody framework docked to SARS-CoV-2 Omicron RBD using HDOCK.
CDR-H3s are designed based on the docking structure.

4.4 Design Without Bound Antibody Frameworks

In the last experiment, we consider designing antibodies without a known binding pose against the
antigen, a more general and challenging setting. We show that this challenging task could be achieved
with docking software. Specifically, we create an antibody template from an existing antibody
structure by removing its CDR-H3. This is because CDR-H3 is the most variable one and accounts
for most of the specificity, while other CDRs are much more conserved [Xu and Davis, 2000]. Next,
we use HDOCK [Yan et al., 2017] to dock the antibody template to the target antigen to produce the
antibody-antigen complex. In this way, the problem reduces to the original problem so we can adapt
our model to design the CDR-H3 sequence and structure and re-design other CDRs. We demonstrate
using this method to design antibodies for the SARS-CoV-2 Omicron RDB structure (PDB: 7wvn,
residue A322-A590, the structure is not bound to any antibodies). The antibody template is derived
from a human antibody against influenza (PDB: 3ghf). Figure 6 shows the docking structure, five
designed CDR-H3s, and the binding energy distribution. It is hard to confidently conclude that the
generated antibodies are effective without a reference antibody. However, according to the binding
energy distribution, we can still say the generated antibodies are at least reasonable.

5 Conclusions and Limitations

In this work, we propose a diffusion-based generative model for antibody design. Our model is
capable of a wide range of antibody design tasks and can achieve competitive performance. One
main limitation of this work is that it relies on an antibody framework bound to the target antigen.
Therefore, we leave it for future work to design an effective model for generating antibodies without
bound structures. Another limitation is that it remains unclear whether the generated antibodies can
be produced in the wet lab and actually binds to the target. More efforts are needed to design a
biologically effective antibody.
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Appendix

A Diffusion Processes

A.1 Posteriors
Posterior of Amino Acid Types The generative diffusion kernel for amino acid types p(sjf1 IR, C)

. . t—1 0
(Eq.3) should align to the posterior ¢(s; Isf, 9

%,87). It can be derived from Eq.1 and Eq.2 [Hoogeboom
etal., 2021]:

1
Q(s§*1|s§-, Sg-)) = Multinomial ([afype . onehot(sﬁ-) +(1— afype) 55 1} o)

i e 1
{afypg . onehot(sg) +(1- afypg) '35 1}) V)
The vector inside Multinomial(-) might not sum to one. In this case, the probability of a class is the
ratio of the value in the sum of the vector.
Posterior of C, Coordinates The generative diffusion kernel p (X?‘l ‘Rt, C ) (Eq.7) should align
to the posterior obtained from Eq.5 and Eq.6 [Ho et al., 2020]:

J 1_@1&

t—1 | ot 0 t—1
q(xj | Xj,Xj) =N <Xj
pos

—t—1 ot t _ At—1
Olpos s \/ Oépos(l Qpos )
where  p(---) = P x0 4 ;. (19)

—t—1 J _ At
1-—- Qpos 1 Apos

1— dt_l t
g (X§,XQ)7(I"E)MI> , (18)

A.2 Amino Acid C, Position Normalization

As amino acid C,, positions could be arbitrary in the 3D space. We need to normalize them to use
the standard normal distribution with zero mean and unit variance as the prior distribution. First, we
need to derive the statistics of CDR positions. For each CDR in the SAbDab dataset, we shift the
overall structure such that the center point of the two CDR anchors is located in origin. Then, we
aggregate C,, positions in the shifted CDRs. Finally, we calculate the mean and standard deviation of
them. Before training and inference, we shift the whole structure according to their CDR anchors and
further shift and scale the structure according to the pre-calculated mean and standard deviation to
obtain the normalized coordinates.

B Distributions on SO(3)

B.1 Preliminary: Axis-Angle Representation of Rotations

Conventionally, a rotation is usually represented by 3 Euler angles («, £, ), which can be interpreted
as the composition of counter-clockwise rotations by «, 5,7 about x,y, z axes. However, the
Euler representation is unsuitable for defining useful operations and distributions w.r.t. rotations
considered in this work. Alternatively, we introduce another rotation representation called axis-angle
representations. This representation parameterized a rotation with an rotational axis u (||u|2 = 1)
and an angle 6 (0 € R).

B.2 Logarithm of Rotation Matrices and Exponential of Skew-Symmetric Matrices
Logarithm of Rotation Matrices Derived from the definition of matrix logarithm, the logarithm of
a rotation matrix R is a skew-symmetric matrix [Gallier and Xu, 2003], which can be represented
as:

0 —U; Uy ] 00,

S:=logR= [ (2 0 —Vg
—Uy Vg 0
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It can be proven that v = [v,, vy, v,] is the rotational axis of R, and ||v|| is the rotational angle. For
brevity, we can use the vector notation v to represent a rotation in the logarithm space. The space is
also known as so(3) (different from the rotation group SO(3), the symbol is in lowercase).

To efficiently compute the logarithm of a rotation matrix without computing matrix logarithm or
solving rotational axis-angle, we can use the following formula [Gallier and Xu, 2003]:

0
1 =——(R-RT 21
og R ZSinG(R R7), @D
where § can be obtained from 6 = cos~! (Z-H=1) by the fact that Tr(R) = 1 + 2 cos 6. Specially,
when § = 0 (or R = I), log R = [0, 0,0].
Exponential of Skew-Symmetric Matrices The inversion of the rotation matrix logarithm is the

exponential of skew-symmetric matrices. Derived from the definition of matrix exponential, the
conversion formula is [Gallier and Xu, 2003]:

sin ||v]|2 1 —cos||v]|2

S+

S2, (22)
[v]l2 v]|3

expS =1+

where S is a skew-symmetric matrix parameterized by three values v = [v,, vy, v,], identical to the
definition in Eq.20.

Remarks The logarithm and exponential defined above provide an easy way to create and ma-
nipulate rotations in the axis-angle parameterization space. For example, when we would like to
create a rotation matrix with an axis and an angle, we can first create a vector v whose direction is
the same as the given axis and whose length equals the angle. Then, we rewrite the vector v into a
skew-symmetric matrix S, and finally convert it to a rotation matrix by Eq.22. We can also manipulate
a rotation matrix, for example, changing its rotational angle, by mapping it to the logarithm space,
modifying the skew-symmetric matrix, and finally converting it back to a rotation matrix using the
exponential formula.

B.3 ScaleRot: Rotation Scaling Function

When we parameterize a rotation matrix with an axis and an angle, it is natural to define the rotation
scaling function ScaleRot as scaling the rotational angle. Formally, the definition is:

ScaleRot(k, R) := exp (klog R) , (23)

where k is the scaling factor and R is a rotation matrix. Specially, ScaleRot(0, R) = I for all
rotation matrix R. Intuitively, scaling a rotation matrix by O cancels its effect, leading to identity
transformation.

B4  7Gso(s): Isotropic Gaussian Distribution on SO(3)

The isotropic Gaussian distribution on SO(3), denoted as ZGgo 3. is defined on the axis-angle space
of rotation: S? x [0, 7], where S* = {||z||; = 1|& € R3} is the unit sphere in R?. ZGgos) is
parameterized by a mean rotation M and a scalar variance o2. Let u € S? and 6 denote the rotational
axis and angle random variables respectively. We first consider ZGgo 3 with the identity matrix as

its mean: ZGgo(s)(u, 0|1, 02). Its p.d.f. is defined by the product of the uniform distribution on S*
and a special angular distribution [Matthies et al., 1970, Nikolayev and Savyolov, 1970, Leach et al.,

2022]:
pIQSO(3) (u7 9|I, 02) = Puniform(S2) (u)pangular(0|02)7 (24)
1
where  Puniform(s?) (1) = Eé (Jla]l2 = 1), (ues? (25

1-— 0 2 S e
and pangular(0|o'2) = % Z(Ql + 1)6*1(1+1)U Sln(s(ln(i)) (9 S [O,WD (26)
=0

When the mean is other than I, to sample from the distribution, we can first sample an rotation E
from ZGgo 3 (u, 0|1, o2). Then, we left-multiply R to E to obtain the desired random value RE.
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Sampling The algorithm for drawing samples from ZGgo3) (1, o2) (here, the mean rotation is
identity) can be broken down into two steps.

The first step is to draw a unit vector u from the uniform distribution on S?, Duniform(S2) (u). This can
be done efficiently by sampling from the 3D standard Gaussian distribution and then normalizing the
sampled vector to unit length.

The second part is drawing samples from pangular (6]0%), which could be more tricky. We empirically
use two different proximate sampling strategies depending on the variance o2. When ¢ is larger
than 0.1, the series (Eq.26) converges fast. In such cases, we use histograms to approximate the
distribution. In specific, we evenly partition [0, 7] into 8192 bins, and use the probability density
pangular(9|02) at the center of each bin as the bin weight. We randomly select a bin according to
the weights to draw samples from the discretized distribution. Then, we sample from the uniform
distribution spanning from the lower bound to the upper bound of the bin. The discretization process
is time-consuming. However, since the variances in the diffusion processes are predetermined, we
pre-compute and cache the bins and weights to draw samples efficiently. When ¢ is smaller than
0.1, we approximate the distribution using the truncated Gaussian distribution whose mean is 20
and the standard deviation is o. Empirically, we find that the above proximate sampling algorithm is
sufficient for training and sampling from our diffusion model.

To sample from ZGgo(3)y with an arbitrary mean rotation R, we first draw a rotation from
TGsos) (I, c?), denoted as E. Finally, we left-multiply R to E to get the desired sample.

B.5 Uniform Distribution on SO(3)

The uniform distribution on SO(3) is equivalent to the uniform distribution of normalized quaternions
on S? [Shoemake, 1992]. To sample a random rotation uniformly, we first sample a random vector
from the 4D standard normal distribution. Next, we normalize the vector and treat it as a quaternion.
Finally, we convert the quaternion to a rotation matrix which can be regarded as a sample from the
uniform distribution on SO(3).

C Neural Network Parameterization

C.1 Computing Residue Orientations

The orientation of a residue is determined by the coordinate of its three backbone atoms: C,, C, and
N. Let z¢, ¢, and Y denote the 3D coordinates of the three backbone atoms of the i-th residue
respectively. The orientation of the residue, denoted by O, can be constructed using the following
Gram-Schmidt-based algorithm:

v — x¥ —x, (27)

e — 2 (28)
||

Vg ar:i\I —xd, (29)

U V2 — (e1,v2)eq, (30)

ey — 2 G1)
[zl

e3 < e X eg, (32)

Oi < [61, €9, 63] . (33)

C.2 Architectures
Amino Acid Embedding Layer The embedding layer for each amino acid takes into account the
following information:

* Amino acid type: Each of the 20 amino acid types is represented by an embedding vector
denoted by e*™

;-
* Heavy atom local coordinates: The coordinate of each heavy atom in an amino acid
is projected to the local coordinate frame using the rule z!°¥ = O] (z2°™ — x¢). All

[ 7
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of the local coordinates are concatenated into a single vector denoted by €. If some
heavy atoms are missing, their local coordinates are filled with zeros. Note that the local
coordinates are invariant to global rotation and translation thanks to the projection rule.

* Backbone dihedral angles: The backbone dihedrals of amino acid, including ¢, 1, and w
[Liljas et al., 2016, Ingraham et al., 2019], are transformed using a series of sine and cosine
functions with different frequencws which are then concatenated into a single vector eJi®®d.

* CDR flags and anchor flags: Amino acids on the CDR or by the two ends of the CDR
(anchors) are differentiated from other amino acids by special 0-1 flags denoted as e?ag.

All of the vectors above are concatenated and fed to an MLP to produce the final embedding vector
for each residue.

Pairwise Embedding Layer Pairwise embeddings include information about the relationship
between two residues. The pairwise embedding for residue ¢ and j involves the following information:

* Amino acid types of both amino acids: There are 20 x 20 = 400 combinations of two

amino acid types. We represent each of them using an embedding vector denoted by ztype.

* Sequential relative position: If two residues are on the same chain and their distance on
the sequence is less than or equal to 32 (clbeq € {—32...32}), the distance is represented by

an embedding vector z; ]q. Otherwise, the distance embedding is filled with zeros.

 Pairwise distances: The distances between all pairs of atoms are flattened into a vector and
transformed by e~ °% (c is a learnable coefficient) into the spatial distance embedding zd‘“.

Missing pairs are filled with zeros.

 Pairwise backbone dihedrals: The backbone dihedrals between any two amino acids ¢ and
j are defined as ¢;; = Dihedral(z$, :c TG, T €) and ;; = Dlhedral(m z¢, my)
These two dihedrals are transformed by a senes 0f sine and cosine functions 1nt0 pairwise
dihedral embeddings z{;".

We concatenate the above vectors and feed them into an MLP to get the final pairwise embeddings
for each pair of amino acids z;;.

Encoder The encoder for encoding the current diffusion state consists of a stack of orientation-
aware invariant 3D attention layers. Its aim is to capture relationships between amino acids and
provide high-level representations for each residue to denoise.

Let h{ denote the hidden representation output from the last layer (when ¢ = 0, the representation is
the initial residue embedding). The formulas for computing the logit of attention weight between
residue ¢ (query) and j (key) is:

ai;; = {q (hy),k(hY))+ f(zi;) +g ({OJ(:E?“”“ - w?)}amm) , (34)

where q(-), k(-), f(-), and g(-) are MLP subnetworks. The attention weights can be obtained by
taking softmax: w;; = softmaxé-vzl(aij). Note that, for simplicity, we do not consider attention
heads in the formula, but in practice we use multiple attention heads and different heads can be
combined easily via concatenation.

The formula for computing the value passed from residue j to 7 is:
vij =P (hf, Zij, {OiT(xz;tom — m?)}amm> s (35)

where v(-) is a network consisting of MLPs. Finally, the values along with attention weights are used
to update the amino acid representations with residual connection and layer normalization, same as
the standard transformer [Vaswani et al., 2017].

C.3 Notes on the Notations of the Denoising Networks F', G, and H

The notations F', G, and H do not only denote the MLPs following the encoder that outputs denoising
results. It refers to the embedding layers, the encoder, and the specific output MLP (for example,
F includes the MLP for denoising amino acid types). Therefore, the input to F', G, and H is the
diffusion state (sequence and structure) rather than hidden representations. Treating the three sections
as a whole allows us to neatly express the equivariance property of the model.
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C.4 Proof of Equivariance

Lemma 1. The Euclidean distance function between two points is invariant to rotations and transla-
tions, i.e. d(Rx1 + v, Rxo + 1) = d(x1,%2), VR € SO(3),r € R3.

Proof.
d(Rxy +r,Rxs+7)=|(Rx1+7)— (Rxs+7)2
= | R(z1 — x2)||2
= (331 — J:Q)TM(:Bl — iL‘Q)
= |21 — x22
= d(x1, x2). O

Lemma 2. The dihedral function for four points is invariant to rotations and translations, i.e.
Dihedral(Rxy + 7, Rxy + 7, Rz + 7, Ry + 1) = Dihedral(z1, 22, x3,x4), VR € SO(3), 7 €
R3. Here, Dihedral(- - - ) is defined as:

Dihedral(z; ... x4) = atan2(vs - ((v1 X v2) X (V2 X v3)), ||v2||(v1 X v2) - (V2 X v3)), (36)

where Vi = Tj41 — &4 (Z = 1,2,3)

Proof. First, we note that:
(Rxiy1+7r)— (Rx; +7) = R(xit1 — ;) = Ru;.
By the equivariance of cross product (Ra x Rb = R(a X b)) and the invariance of inner product
(Ra - Rb = a - b), we have:
Dihedral(Rx; + r|i = 1...4) = atan2(Rwvs - (R(v1 X v3) X R(vs X v3)),
|Rvz||R(v1 X v2) - R(va X v3))
= atan2(Rvsy - R((v1 X v3) X (vg X v3)),
[va|(v1 X 2) - (v2 x v3))
= atan2(vy - ((v1 X v2) X (V2 X v3)),
[va|(v1 X 2) - (v2 X v3))
= Dihedral(z;|i =1...4) O

Lemma 3. The per-amino-acid orientation O; is equivariant to rotations and translations, i.e.,
O(Rx$ +r, Rz +r, Rzl + r) = RO(z¢, z¥, zY)

Proof. First, we show that the first two basis vectors e; and es are equivariant:
(Raf +7) — (Raf + 1)
I(Rzf +7) — (Rzg + )

xC

;=

ei(Rxl + 7, Rzl +7) =

oz — 2|
C).

i

= Re;(x{', x
N

Letvy = ¥ — x&. We have (RzY +7) — (Rz® +r) = Ruv,. Then, we can prove the equivariance

of es:
ex(Rx$ + 7, Rxd +r, Rx) +r) = Rvy — (Re;, Rvy)Re;
= Rvy — (e1,v2)Re;y
= R(vy — (e1,va)eq)
= Reg(IB?, :ElC,wi\I)
By the equivariance of cross product, it is straightforward to show that ej is also equivariant. Finally,
combining the equivariance of e, e, and es, we prove the equivariance of the orientation matrix:
O(Rz$ + 7, Rzl +r, Rz 4+ r) = [Re;, Rey, Res]
= RO(z%, ¥, z). O

i
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Lemma 4. The per-amino-acid and pairwise embedding layers are invariant to rotations and
translations of the input structure. i.e.

6(51‘, {m?mm}ammv ¢i7 1/%', Wi, e};lag) = e(sia {ngmm + r}amma ¢i7 'l/)i; Wi, e/;lag), and

2@ 28 i, aomz ) = Z({d(R2E™ 47, RIS 4 1) yatomt, aomz- ).

Proof. Before embedding atom positions for an amino acid, the network first projects the positions
using the orientation by the rule:

local __ T ( p.atom el
z " = O] (" — =)

The projection operation is invariant to rotations and translations, using Lemma 3:
! (Rx{™" +r, Ref + 1) = (RO;)T((Rai™" + 7) — (Rx{ + 1))
= O] RF R (2™ — zf)

3 K3

local
i

The formulas for computing dihedral angles (¢;, 1;, w;) are also invariant by Lemma 2 Other variables
(amino acid types and CDR flags) are independent of the 3D structure and hence they are invariant.

= qtom (e} )

(xl ) Ly

So far, we have shown that all the components of embedding layers are invariant to rotations and
translations of the overall 3D structure. Therefore, the embedding layer is invariant.

Pairwise embedding layers involve distances between residues, which are invariant by Lemma 2.
Other variables are irrelevant to 3D structures. Hence, the pairwise embedding layer is invariant. [

Lemma 5. The orientation-aware attention layer is invariant to rotations and translations if the
input hidden representations h;, z;;(i,j = 1... N) come from invariant functions.

Proof. First, we show that projecting atoms on the j-th amino acid to the orientation of the ¢-th amino
acid is invariant to rotations and translations by Lemma 3:

(RO;)T((Rz{°™ + 1) — (Rx] + 1)) = O] RFR (2§ — x).

7 7

As other inputs to the attention layer (h;, z;; (¢, 7 = 1... N)) are invariant to rigid transforms on the
structure, the networks for computing attention weights and values are invariant. Hence, the attention
layer is invariant.

In the case where we stack multiple attention layers, each layer outputs invariant representations for
its next layer. Therefore, the network consisting of multiple attention layers is invariant. O

Proposition 2. For any proper rotation matrix R € SO(3) and any 3D vector r € R3 (rigid
transformation (R,r) € SE(3)), F, G and H satisfy the following equivariance properties:

F(RR' +r,RC +r)=F(R'C), (37)
G(RR'+r,RC +r) = RG(R',C), (38)
H(RR!+7,RC+7)=RH(R',C), (39)

where RR'4-r := {sh, x}+r, R0§}§1ﬁ1 and RC+r := {8, i + 7, RO} ic (1 N\ (141,...14m)
denote the transformed structure.

Proof. By Lemma 5, we know that the encoder network produces invariant representations. Therefore,
the MLP for predicting amino acid types that transforms the invariant representations into a probability
over 20 categories is invariant, so F’ is invariant.

The MLP for predicting local coordinate changes MLP (h;) is invariant. The local coordinate
change is converted to the global coordinate change using the following rule:

€ = O; MLPg (h;) .
By Lemma 3, the above rule is equivariant to rotations, and hence G is equivariant to rotations.

Similarly, the MLP for predicting changes in orientation MLP ; (h;) is invariant. The changes is
applied to the original orientation by:

ANt—1 _ Nt
O/~' = 0} M,

which is equivariant to rotations according to Lemma 3. Therefore, H is equivariant to rotations. [J
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D Sampling Algorithms

D.1 Backbone Atoms and Sidechain Cs Construction

The coordinates of backbone atoms (N, C,, C, O) and sidechain Cg can be determined by the
orientation and the C,, position of an amino acid because the geometry of these atoms is inflexible
[Liljas et al., 2016]. To construct the position of N, C,, C, and Cg for the i-th amino acid, we use
the following formula:

" = 0,¢"™ + x;, (atom € {N, C,, C, Cs}) (40)

2

where O; and x; is the model-predicted amino acid orientation and C,, position. ¢*°™ is the local
coordinate derived from experimental data relative to the orientation and the C,, position, as shown
in the following table.

Atom Cx Cy C,
N -0.526  1.361  0.000
Ca 0.000  0.000  0.000
C 1.525 0.000 0.000

Cgs -0.500 -0.733  -1.154

The position of O depends on the 1 angle of the amino acid, which relies on the next amino acid in
the sequence. Therefore, after constructing backbone atoms, we calculate the 1) angle for each amino
acid (¢; = Dihedral(N?, C¢,, C?, N“*+1)) and use the following rule to construct O coordinates:

xP = 0,c° (1) + m;, (41)
where
1 0 0 2.151
W)= 0 costpy; —singy; 1 [ —1.062 ] ) (42)
0 sinvy; cosv; 0.000

D.2 Sidechain Packing and Full Atom Refinement

We use PackRotamersMover in PyRosetta [Chaudhury et al., 2010] to pack sidechains only for
amino acids on the generated CDR. The packing program is based on the Dunbrack 2010 rotamer
library [Shapovalov and Dunbrack Jr, 2011] and the REF2015 energy function [Alford et al., 2017].

After packing sidechains, we refine the structure with OpenMM [Eastman et al., 2017]. Specifically,
we first use PDBFixer to prepare the structure for refinement. We minimize the potential energy of
the structure. The potential energy is AMBER99SB force field plus quadratic constraint terms that
restrain the position of atoms outside the generated CDR.

E Source Code

Code and data are available at https://github.com/luost26/diffab
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