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Abstract

The Omicron BA.1 variant emerged in late 2021 and quickly spread across the world. Compared to the
ancestral Wuhan Hu-1 strain and other pre-Omicron SARS-CoV-2 variants, BA.1 has many mutations, a
number of which are known to enable antibody escape'™. Many of these antibody-escape mutations
individually decrease the spike receptor-binding domain (RBD) affinity for ACE2 in the background of
early SARS-CoV-2 variants*, but BA.1 still binds ACE2 with high affinity®>®. The fitness and evolution of
the BA.1 lineage is therefore driven by the combined effects of numerous mutations. Here, we
systematically map the epistatic interactions between the 15 mutations in the RBD of BA.1 relative to the
Wuhan Hu-1 strain. Specifically, we measure the ACE2 affinity of all possible combinations of these 15
mutations (2'° = 32,768 genotypes), spanning all possible evolutionary intermediates from the ancestral
Wuhan Hu-1 strain to BA.1. We find that immune escape mutations in BA.1 individually reduce ACE2
affinity but are compensated by epistatic interactions with other affinity-enhancing mutations, including
Q498R and N501Y. Thus, the ability of BA.1 to evade immunity while maintaining ACE2 affinity is
contingent on acquiring multiple interacting mutations. Our results implicate compensatory epistasis as a
key factor driving substantial evolutionary change for SARS-CoV-2 and are consistent with Omicron BA.1
arising from a chronic infection.
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The Omicron BA.1 variant of SARS-CoV-2 emerged in November 2021 and spread rapidly throughout
the world, driven in part by its ability to escape existing immunity in vaccinated and previously infected
individuals™®. Strikingly, Omicron did not emerge as a descendant of the then-widespread Delta lineage.
Instead, it appeared as a highly diverged strain after accumulating dozens of mutations within a lineage
that was not widely circulating at the time, including 15 mutations within the spike protein receptor-
binding domain (RBD)’.

Recent work has shown that a number of these 15 RBD mutations (some of which are seen in other
variants) disrupt binding of specific monoclonal antibodies'**""!, potentially contributing to immune
escape. However, most of these mutations have also been shown to reduce binding affinity to human
ACE2 when they arise within the Wuhan Hu-1, Delta, or several other SARS-CoV-2 lineages*'?,
potentially impairing viral entry into host cells. In contrast, the Omicron RBD tolerates these escape
mutations while retaining strong affinity to ACE2, suggesting that other mutations in this lineage may help
maintain viral entry.

Earlier work has systematically analyzed mutational effects on antibody binding and ACE2 affinity, for
example by using deep mutational scanning (DMS)'*'3. However, these approaches focus on the effects
of single mutations on specific genetic backgrounds. They are therefore useful for understanding the first
steps of evolution from existing variants but cannot explain how multiple mutations interact over longer
evolutionary trajectories. Thus, it remains unclear how combinations of mutations, such as those
observed in Omicron, interact to both evade immunity and retain strong affinity to ACE2.

To address this question, we used a combinatorial assembly approach to construct a plasmid library
containing all possible combinations of the 15 mutations in the Omicron BA.1 RBD (a total of 2'° =
32,768 variants). This library includes all possible evolutionary intermediates between the Wuhan Hu-1
and Omicron BA.1 RBD. We transformed this plasmid library into a standard yeast display strain,
creating a yeast library in which each cell displays a single monomeric RBD variant corresponding to the
plasmid in that cell. We then used Tite-Seq, a high-throughput flow cytometry and sequencing-based
method''® (see Methods; Extended Data Figure 1A), to measure the binding affinities, Kp app, Of all
32,768 RBD variants to human ACE2 in parallel. Consistent with earlier work by ourselves' and
others'>'41 we find that these Tite-Seq measurements are highly reproducible (SEM of 0.2 log Kb app
between triplicate measurements) and consistent with independent low-throughput measurements (see
Methods; Extended Data Figure 1B-F). In addition, we find minimal variation in RBD expression levels
and are thus able to infer Kp ap, for the entire combinatorial library (see Methods; Extended Data Figure
2).

We find that all 32,768 RBD intermediates between Wuhan Hu-1 and Omicron BA.1 have detectable
affinity to ACE2, with Kp app ranging between 0.1 yuM and 0.1 nM (Figure 1A and Extended Data Figure 1;
see https://desai-lab.github.io/wuhan_to_omicron/ for an interactive data browser). Consistent with
previous studies®, the BA.1 RBD exhibits a slight (3-fold) improvement in binding affinity compared to
Wuhan Hu-1. However, most (~ 60%) of the intermediate RBD sequences actually show a weaker
binding affinity to ACE2 than the ancestral Wuhan Hu-1 RBD. This is because the vast majority of BA.1
mutations have a neutral or deleterious effect on ACE2 affinity on most genetic backgrounds (Figure 1B).
This is particularly true for K417N, G446S, Q493R, G496S, and Y505H, four of which are known to be
involved in escape from various classes of monoclonal antibodies'”~"°.

Although many BA.1 mutations reduce ACE2 affinity on average, the interactions between these
mutations result in improvement in ACE2 affinity for BA.1 relative to the ancestral Wuhan Hu-1 strain.
That is, mutations tend to be more deleterious for ACE2 affinity if few other mutations are present but
tend to become neutral or even beneficial in the presence of multiple other mutations (Figure 1C;
Extended Data Figure 3). Consistent with this, we find that although most of the 15 RBD mutations
reduce ACE2 affinity in the Wuhan Hu-1 background (and in many cases across most other backgrounds
as well), they all become less deleterious or even beneficial in the Omicron background (Figure 1B). This
pattern explains why the BA.1 RBD has a stronger affinity for ACE2 despite containing so many
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mutations that individually reduce ACE2 affinity: their deleterious effects are mitigated by compensatory
epistatic interactions with other mutations.

To systematically analyze mutational effects and interactions, we fit a standard biochemical model of
epistasis®® to our data. This decomposes our measured -log(Kb app) (Which is expected to be proportional
to the free energy of binding, AG)?"?? into a sum of linear effects from single mutations, pairwise
epistasis, and higher-order epistatic interactions among larger sets of mutations (truncated at fifth order;
Extended Data Figure 4, see Methods). This model yields coefficients that are comparable to alternative
models of statistical (Extended Data Figure 5) and global®® (Extended Data Figure 6) epistasis.
Generally, we find that the linear effects of individual mutations (Figure 2A) correlate with the ACE2
contact surface area of the corresponding residue (Figure 2B,C), and neighboring residues are more
likely to have strong pairwise interactions (Figure 2E), as we might expect from previous work'>?*,

Our inferred pairwise and higher-order coefficients reveal that strong compensatory interactions offset
the effects of affinity-reducing mutations (Figure 2D). The magnitude of these interactions is comparable
to that of the linear effects, and this epistasis is overwhelmingly positive, as excluding epistatic terms
leads to a consistent underestimate of the predicted affinity (Extended Data Figure 7). This strong
positive epistasis means that mutations which reduce ACE2 affinity become less deleterious in
backgrounds containing other compensatory mutations. For example, the negative linear effect of Q498R
is fully compensated by its interaction with nearby mutation N501Y; this pairwise interaction has been
highlighted in earlier work*®2*. We identify numerous additional interacting mutations, including even
stronger positive interactions (along with third and fourth-order effects) between Q498R, G496S, N501Y,
and Y505H (Figure 2D).

This high-order compensatory epistasis eliminates the strongly deleterious effects of mutations involved
in antibody escape on ACE2 affinity. Specifically, earlier work has shown that five BA.1 mutations
(K417N, G446S, E484A, Q493R, and G496S) have a particularly strong effect in promoting antibody
escape’'®', These mutations all individually reduce affinity to ACE2 both on average and in the Wuhan
Hu-1 background (except E484A,; Figure 1B, 2A, 3A), and the combination of all five is strongly
deleterious (Figure 3A,B). However, strong high-order epistasis with Q498R and N501Y mitigates this:
either N501Y or Q498R alone reduces the cost of the five escape mutations, and the combination of both
almost fully compensates for these deleterious effects (Figure 3B). While these escape mutations do also
benefit from interactions with other mutations (Extended Data Figure 8), N501Y and Q498R account for
the majority of the compensatory effect. We note that strong compensatory interactions also mitigate the
deleterious effect of Y505H (Figure 3C). This mutation has not previously been shown to be strongly
involved in antibody escape, but the pattern of compensation we observe suggests that it may be
functionally relevant in some way.

The extensive epistasis we observe means that the individual effects of each of these 15 mutations, as
well as the pairwise interactions between them, are likely different in other viral lineages. However,
earlier work has shown that the antibody escape mutations described above (K417N, G446S, E484A,
Q493R, and G496S) similarly reduce ACE2 affinity in several other variants (including Alpha, Beta, Eta,
and Delta)®®. Consistent with this result, we find that these mutations, along with others that we find have
a negative linear effect on ACE2 affinity, rarely occur across the SARS-CoV-2 phylogeny (Figure 4A).
This suggests that maintaining affinity to human ACE2 is likely an important aspect of viral fitness, so
these mutations are typically selected against. Similarly, we find that mutations with negative effects on
ACE2 affinity that are compensated by epistatic interactions with N501Y tend to be enriched across the
SARS-CoV-2 phylogeny in strains that also have N501Y, relative to strains that do not (Figure 4B; other
pairwise interactions co-occur too rarely to test). This further suggests that at least some of the pairwise
epistatic interactions we observe are also present in other backgrounds, and that viral evolution has
favored compensation for reduction in ACE2 affinity.

Together, these results suggest that the evolution of antibody escape in BA.1 was possible without
disrupting binding to ACE2 because of the compensatory interactions with numerous other mutations
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unique to this lineage. While signatures of these selection pressures and epistatic interactions are
present across the viral phylogeny?®, and antibody escape variants could have been compensated by
other combinations of mutations, it is only the BA.1 lineage which accumulated this particular
combination of interacting compensatory mutations.

Our results also provide insight into why the immune escape phenotype observed in Omicron BA.1 did
not arise as the result of mutations accumulating within the then-widely circulating Delta variant.
Specifically, the combination of multiple mutations required for both immune escape and maintaining
affinity to ACE2 (Figure 4C) is unlikely to have accumulated within the context of acute infections, which
involve few mutations between transmission bottlenecks and presumably strong selection pressures on
both functions?’. In contrast, in chronic infections (e.g. in an immunocompromised host) large population
sizes and relaxed selection pressures may allow for the accumulation of the many mutations required to
both maintain ACE2 affinity and evade neutralizing antibodies?®?°. Under such relaxed selection, the
compensatory mutations may have preceded the immune escape mutations, minimizing their otherwise
deleterious effects on ACE2 affinity. Alternatively, relaxed selection for binding ACE2 may have created
a permissive environment for the immune escape mutations, followed by compensation that then allowed
the variant to spread to other hosts. Phylogenetic analysis provides some support for the former
possibility, as two immune escape mutations (G446S and G496S) occur late in BA.1 evolution (and are
not shared with the BA.2 lineage; Extended Data Figure 9). In addition, a strong selection model based
on ACEZ2 affinity prefers the three BA.1-specific mutations to appear late in the evolution, as observed in
the phylogeny (Extended Data Figure 10). Irrespective of the exact order of mutations, the large viral
population size and relaxed selection pressure of a chronic infection may have created conditions
conducive to the fixation of the several mutations required for BA.1 to evade neutralizing antibodies while
maintaining ACE2 affinity.

We emphasize that our work is confined to 15 mutations within a specific region of one protein, and
hence neglects potential interactions with the many other mutations present in the Omicron BA.1 lineage.
In addition, we focus on ACE2 affinity and antibody escape, which represent only two aspects of viral
fitness. It is likely that other properties of BA.1 (e.g. spike protein expression and stability) also play key
roles in viral evolution. We find some hints of this in our data. For example, we identify a significant
synergistic interaction between S371L, S373P, and S375F that improves RBD expression in yeast,
consistent with earlier work showing that this set of mutations is associated with stabilization of a more
tightly packed down-conformation of the RBD*® (Extended Data Figure 3). Beyond this, numerous other
phenotypes are also likely to be relevant.

Despite these caveats, our results demonstrate that key events in viral evolution can depend on high-
order patterns of epistasis. This may be especially important for complex adaptive events involving
numerous mutations, such as immune escape and host-switching. Thus, to predict the future of viral
evolution we must move beyond high-throughput screens of single mutations, and more
comprehensively analyze combinatorial sequence space. A key challenge is the vastness of this
sequence space, which makes exhaustive exploration intractable. However, generating specific
combinatorial landscapes like those presented here may help reveal general patterns of epistasis that
shape viral evolution in complex environments.
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METHODS

Yeast display plasmid & strains

To generate clonal yeast strains for the Wuhan Hu-1 and Omicron BA.1 variants, we cloned the corre-
sponding RBD gblock (IDT, https://github.com/desai-lab/compensatory_epistasis_omi-
cron/tree/main/Supplementary_Files) into pETcon yeast surface-display vector (plasmid 2649; Addgene,
Watertown, MA, #166782; https://github.com/desai-lab/compensatory_epistasis_omicron/tree/main/Sup-
plementary_Files) via Gibson Assembly. The sequence of the gblock was codon-optimized for yeast (us-
ing the Twist Bioscience algorithm); we found that the codon optimization had a significant impact on dis-
play efficiency. Additionally, for the library construction (described below), we deleted two existing Bsa-I
sites from the plasmid by site-directed mutagenesis (Agilent, Santa Clara, CA, #200521). In the clonal
strain production, Gibson Assembly products were transformed into NEB 10-beta electrocompetent E.
coli cells (NEB, Ipswich, MA, #C3020K), following the manufacturer protocol. After overnight incubation
at 37°C, the cells were harvested, and the resulting plasmids were purified and Sanger sequenced. We
transformed plasmids containing the correct sequences into the AWY101 yeast strain (kind gift from Dr.
Eric Shusta)®! as described by Gietz and Schiestl®2. Transformants were plated on SDCAA-agar (1.71
g/L YNB without amino acids and ammonium sulfate [Sigma-Aldrich #Y1251], 5 g/L ammonium sulfate
[Sigma-Aldrich #A4418], 2% dextrose [VWR #90000-904], 5 g/L Bacto casamino acids [VWR #223050],
100 g/L ampicillin [VWR #V0339], 2% Difco Noble Agar [VWR #90000-774]) and incubated at 30°C for
48 hr. Several colonies were restreaked on SDCAA-agar and again incubated at 30°C for 48 hr. Clonal
yeast strains were picked, inoculated, grown to saturation in liquid SDCAA (6.7 g/L YNB without amino
acid VWR #90004-150), 5 g/L ammonium sulfate (Sigma-Aldrich #A4418), 2% dextrose (VWR #90000—-
904), 5 g/L Bacto casamino acids (VWR #223050), 1.065 g/L MES buffer (Cayman Chemical, Ann Arbor,
MI, #70310), 100 g/L ampicillin (VWR # V0339)) at 30°C, and mixed with 5% glycerol for storage at
-80°C.

Yeast display library production

We generated the RBD variant library with a Golden Gate combinatorial assembly strategy. First, we di-
vided the RBD sequence into five fragments of about equal length, ranging from 90 to 131 bp and each
containing between 1 and 4 mutations. We introduced Bsal sites and overhangs to both ends of each
fragment sequence. These overhangs contained Bsal cut sites that would allow the five fragments to as-
semble uniquely in their proper order within the plasmid backbone. For each fragment with n mutations,
we generated 2" fragment versions by either producing the fragments via PCR (Fragments 1-4) or pur-
chasing individual DNA duplexes (Fragment 5) from IDT. These permutations ensured the inclusion of all
possible mutation combinations in the library. In Fragment 2, we also included a synonymous substitution
on the K378 residue that corresponds to the K417N mutation. This substitution allows for the amplicon
library to be sequenced on the lllumina Novaseq SP (2x250bp). For dsDNA production by PCR, we de-
signed the fragments such that the mutations they contain are close to the 3’ or 5’ ends. This design ena-
bled the primers to simultaneously include and introduce the mutations, Bsal sites, and unique over-
hangs chosen during the PCR. We produced each version of each fragment individually (28 PCR reac-
tions in total; see https://github.com/desai-lab/compensatory_epistasis_omicron/tree/main/Supplemen-
tary_Files for primer sequences) and pooled the products of each fragment in equimolar ratios. Addition-
ally, we also pooled all 16 purchased DNA duplexes encoding the fifth fragment in equimolar ratios. We
then created a final fragment mix by pooling the five fragment pools together. In the Golden Gate reac-
tion, the versions of each fragment would be ligated together in random combinations, producing all of
the sequences present at approximately equal frequencies.

In addition to the fragment mix, we prepared four versions of the plasmid backbone for the Golden Gate
reaction. Each version contains a combination of the mutations N501Y and Y505H. Prior to the assem-
bly, we introduced the counter-selection marker ccdB, in place of the fragment insert region, with flanking
Bsal sites (https://github.com/desai-lab/compensatory_epistasis_omicron/tree/main/Supplemen-
tary_Files). We performed Golden Gate cloning using Golden Gate Assembly Mix (NEB, Ipswich, MA,
#E1601L), following the manufacturer recommended protocol, with a 7:1 molar ratio of the fragment in-
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sert pool to plasmid backbone. We transformed the assembly products into NEB 10-beta electrocompe-
tent E. coli cells in 6 x 25 pL cell aliquots. We then transferred each of the recovered cell culture to 100
mL of molten LB (1% tryptone, 0.5% yeast extract, 1% NaCl) containing 0.3% SeaPrep agarose (VWR,
Radnor, PA #12001- 922) spread into a thin layer in a 1L baffled flask (about 1 cm deep). The mixture
was placed at 4°C for three hours, after which it was incubated for 18 hr at 37°C. We observed a total of
3 million transformants across aliquots. To isolate the plasmid library, we mixed the flasks by shaking for
1 hr and pelleted the cells for standard plasmid maxiprep (Zymo Research, Irvine, CA, D4201), from
which we obtained > 90 ug of purified plasmid.

We then transformed the purified plasmid library into AWY101 cells as described above. We recovered
transformants in a molten SDCAA agarose gel (1.71 g/L YNB without amino acids and ammonium sul-
fate (Sigma-Aldrich #Y1251), 5 g/L ammonium sulfate (Sigma-Aldrich, St. Louis, MO, #A4418), 2% dex-
trose (VWR #90000-904), 5 g/L Bacto casamino acids (VWR #223050), 100 g/L ampicillin (VWR #
V0339)) containing 0.35% SeaPrep agarose (VWR #12001-922) spread into a thin layer (about 1 cm
deep). The mixture was placed at 4°C for three hours, after which it was incubated at 30°C for 48 hours.
From five aliquots, we obtained ~1.2 million colonies. After mixing the flasks by shaking for 1 hr, we grew
cells in 5 mL tubes of liquid SDCAA for five generations and stored the saturated culture in 1 mL aliquots
supplemented with 5% glycerol at -80°C.

High-throughput binding affinity assay (Tite-Seq)

Tite-Seq was performed as previously described'®'*1°. We performed three replicates of the assay on
different days. In the first two replicates, a small portion of the library variants contained an off-target mu-
tation (E484W) instead of the intended mutation (E484A). These variants were removed from the data
analysis, and in the third replicate the library was supplemented with variants containing the intended
mutation (E484A).

Preparation: First, we thawed yeast RBD libraries, as well as Wuhan Hu-1 and Omicron BA.1 clonal
strains, by inoculating 150 uL of corresponding glycerol stock (saturated culture with 5% glycerol stored
at -80°C) in 5 mL SDCAA at 30°C for 20 hr. On the next day, yeast cultures were diluted to OD600=0.67
in 5 mL SGDCAA (6.7 g/L YNB without amino acid VWR #90004-150), 5 g/L ammonium sulfate (Sigma-
Aldrich #A4418), 2% galactose (Sigma-Aldrich #G0625), 0.1% dextrose (VWR #90000-904), 5 g/L Bacto
casamino acids (VWR #223050), 1.065 g/L MES buffer (Cayman Chemical, Ann Arbor, MI, #70310), 100
g/L ampicillin (VWR # V0339)), and rotated at room temperature for 16—20 hr.

Labeling: After overnight induction, yeast cultures were pelleted, washed twice with 0.01% PBSA (VWR
#45001-130; GoldBio, St. Louis, MO, #A-420-50), and resuspended to an OD600 of 1. A total of 500-
700 pL of OD1 yeast cells were labeled with biotinylated human ACE2 (Acrobiosystems #AC2-
H2H82E6) at each of the twelve ACE2 concentrations (half-log increments spanning 107'2° — 107 M),
with volumes adjusted to limit ligand depletion effects to be less than 10% (assuming 50,000 surface
RBD/cell*®). Yeast-ACE2 mixtures were incubated and rotated at room temperature for 20 hr. Following
the incubation, yeast-ACE2 complexes were pelleted by spinning at 3000 x g for 10 minutes at 4°C,
washed twice with 0.5% PBSA + 2mM EDTA, and subsequently labeled with Streptavidin-RPE (1:100,
Thermo Fisher #S866) and anti-cMyc-FITC (1:50, Miltenyi Biotec, Somerville, MA, #130-116-485) at 4°C
for 45 min. After this secondary labeling, yeast were washed twice with 0.5% PBSA + 2mM EDTA and
left on ice in the dark until sorting.

Sorting and recovery: We sorted the yeast library complex on a BD FACS Aria lllu, equipped with 405
nm, 440 nm, 488 nm, 561 nm, and 635 nm lasers, and an 85 micron fixed nozzle. To minimize the spec-
tral overlap effects, we determined compensation between FITC and PE using single-fluorophore con-
trols. Single cells were first gated by FSC vs SSC and then sorted by either expression (FITC) or binding
(PE) fluorescence. At least one million cells were sorted for each sample. In the expression sorts, sin-
glets (based on FSC vs SSC) were sorted into eight equivalent log-spaced FITC bins. For the binding
sorts, FITC+ cells were sorted into 4 PE bins (the PE- population comprised bin 1, and the PE+ popula-
tion was split into three equivalent log-spaced bins 2—4 as described in Phillips and Lawrence et al.
2021). Sorted cells were collected in polypropylene tubes coated and filled with 1 mL YPD supplemented
with 1% BSA. Upon recovery, cells were pelleted by spinning at 3000 x g for 10 min and resuspended in
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4 mL SDCAA. The cultures were rotated at 30°C until late-log phase (OD600 = 0.9-1.4).

Sequencing library preparation: 1.5 mL of late-log yeast cultures was pelleted and stored at -20C for at
least six hours prior to extraction. Yeast display plasmids were extracted using Zymo Yeast Plasmid Min-
iprep Il (Zymo Research # D2004), following the manufacturer’s instructions, and eluted in a 17 pL elu-
tion buffer. RBD amplicon sequencing libraries were prepared by a two-step PCR as previously de-
scribed'*. In the first PCR, unique molecular identifiers (UMI), inline indices, and partial lllumina adapt-
ers were appended to the sequence library through 7 amplification cycles to minimize PCR amplification
bias. We used 5 pL plasmid DNA as template in a 25 pL reaction volume with Q5 polymerase according
to the manufacturer’s protocol (NEB # M0491L). Reaction was incubated in a thermocycler with the fol-
lowing program: 1. 60 s at 98°C, 2. 10 s at 98°C, 3. 30 s at 66°C, 4. 30 s at 72°C, 5. GOTO 2, 6%, 6.60 s
at 72°C. Shortly after the reaction completed, we added 25 pL water into reactions and performed a 1.2X
magnetic bead cleanup (Aline Biosciences #C-1003-5). The purified products were then eluted in 35 pL
elution buffer. In the second PCR, the remainder of the lllumina adapter and sample-specific lllumina i5
and i7 indices were appended through 35 amplification cycles (see https://github.com/desai-lab/compen-
satory_epistasis_omicron/tree/main/Supplementary_Files for primer sequences). We used 33 pL of the
purified PCR1 product as template, in a total volume of 50 pL using Kapa polymerase (Kapa Biosystems
#KK2502) according to the manufacturer’s instructions. We incubated this second reaction in a thermo-
cycler with the following program: 1. 30 s at 98°C, 2. 20 s at 98°C, 3. 30 s at 62°C, 4. 30 s at 72°C, 5.
GOTO 2, 34x, 6. 300 s at 72°C. The resulting sequencing libraries were purified using 0.85X Aline
beads, amplicon size was verified to be ~500 bp by running on a 1% agarose gel, and amplicon concen-
tration was quantified by fluorescent DNA-binding dye (Biotium, Fremont, CA, #31068, per manufac-
turer’s instructions) on Spectramax i3. We then pooled the amplicon libraries according to the number of
cells sorted and further size-selected this pool by a two-sided Aline bead purification (0.5-0.9X). The final
pool size was verified by Tapestation 5000 HS and 1000 HS. Final sequencing library was quantitated by
Qubit fluorometer and sequenced on an lllumina NovaSeq SP with 10% PhiX.

Sequence data processing

We processed our raw demultiplexed sequencing reads to identify and extract the indexes and muta-
tional sites. To do so, we developed a snakemake pipeline (https://github.com/desai-lab/compensa-
tory_epistasis_omicron/tree/main/Titeseq) that first parsed through all fastq files and separated the reads
according to inline indices, UMIs, and sequence reads using Python library regex®®. We accepted se-
quences that match the entire read (with no restrictions on bases at mutational sites) within 10% bp mis-
match tolerance. Next, we discarded incorrect inline indices (according to the corresponding i5/i7 indices)
and parsed read sequences into binary genotypes (‘0’ for Wuhan Hu-1 allele or ‘1’ for Omicon BA.1 allele
at each mutation position). Reads with errors at mutation sites (i.e. not matching either Wuhan Hu-1 al-
lele or Omicron BA.1 allele) were discarded. Finally, we counted the number of distinct UMIs for each
genotype, and collated genotype counts from all samples into a single table. The mean coverage across
all replicates was ~150x.

To fit the binding dissociation constants Ko app for each genotype, we followed the same procedure as
previously described?'?2. In brief, we used sequencing and flow cytometry data to calculate the mean
log-fluorescence of each genotype s at each concentration c, following:

Fs,c = Zb Fb,c pb,s|c’
where F, .is the mean log-fluorescence of bin b at concentration ¢, and py s is the inferred proportion of
cells from genotype s that are sorted into bin b at concentration c. The p, 5 is in turn estimated from the

read counts as
Rbs;
ZSRbsﬁ

Rp.s.c ’
19 C
Zb(zs Rb,S,C b,C)

where Ry, ; . is the number of reads from genotype s that are found in bin b at concentration c, whereas
Cyp . refers to the number of cells sorted into bin b at concentration c.

Chc

pb,s|c -

To propagate the uncertainty in the mean bin estimate, we used the formula
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8Fs,c = JZb( 6F129,c p129,5|c + F%,capz'sw)
where 6F, . is the spread of log fluorescence of cells sorted into bin b at concentration c. As previously
investigated, we found that estimating §F, . = oF,, . is sufficient to capture the variation we observed in
log-fluorescence within each bin. In contrast, the error in p, ;. emerges from the sampling error, which

can be approximated as a Poisson process when read counts are high enough.

Thus we have:
_ pb,s|c

8pb,s|c - Rosc

Finally, we inferred the binding dissociation constant (Ko s) for each variant by fitting the logarithm of Hill
function to the mean log-fluorescence F; ., as a function of ACE2 concentrations c:

F:S,C :loglo ( . AS + BS) I

c+Kps
where A; is the increase in fluorescence at ACE2 saturation, and B, is the background fluorescence
level. The fit was performed using the curve_fit function in the Python package scipy.optimize. Across all
genotypes, we gave reasonable bounds on the values of A; to be 10108, B, to be 1-10°, and Kp, to be
107'4-107%. We then averaged the inferred Kp s values across the three replicates after removing values
with poor fit (r? < 0.8).

Isogenic measurements for validation

We validated our high-throughput binding affinity method by selecting 10 specific RBD clones for lower-
throughput validation: Wuhan Hu-1, Omicron, 5 single-mutants (K417N, S477N, T478K, Q498R, N501),
two double mutants (Q498R/N501Y and E484A/Q498R), and one genotype with four mutations
(K417N/E484A/Q498R/N501Y). For each isogenic titration curve, we followed the same labeling strat-
egy, titrating ACE2 at concentrations ranging from 10-'2-10~" M for isogenic yeast strains that display
only the sequence of interest. The mean log fluorescence was measured using a BD LSR Fortessa cell
analyzer. We directly computed the mean and variances of these distributions for each concentration and
used them to infer the value of -log,o(Kp) using formula (shown above) (see Extended Data Figure 1).

Epistasis analysis

We first used a simple linear model where the effects of combinations of mutations sum to the phenotype
of a sequence. The logarithm of the binding affinity log10(Kp,s) is proportional to free energy changes,
hence in a model without interaction, they would combine additively**. The full K-order model can be writ-
ten:

K
loglo(KD,s) - BO + Z Z /chc,s
i=1 ceC;

L

where C; contains all (Z > combinations of size i of the mutations and *c.s is equal to 1 if the sequence s
contains all the mutations in ¢ and to 0 otherwise. This choice is called ‘biochemical’ or ‘local’ epistasis®
and is the one used in the main text. Another option, called ‘statistical’ or ‘ensemble’ consists in replacing
the coefficients s by ¥s = 22s — 1 € {—1,1} we present the result of this analysis, and the differences
with the biochemical model, in Extended Data Figure 5.

To choose the optimal value of K, we follow the method detailed in Phillips and Lawrence et al., 20213,
Briefly, we use 10-fold cross-validation to test all values of K < 6. For each value of K, the data is split
into ten and each of the ten sub-dataset is used as a test set for a model trained on the rest of the data.
We chose the value of K that maximizes the prediction performance (R?) averaged over all ten testing
datasets. For this dataset we found an optimal value of K=5 (Extended Data Figure 4). Finally, we trained
a K=5 model over the complete dataset to get the final coefficients. The number of parameters of the fi-
nal model (~5000) is much lower than the number of observed data points (2'° = 32768).
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As mentioned above, the logarithm of binding affinity is proportional to a free energy change, an exten-
sive quantity. This theoretically justifies the use of a linear model. Nonetheless, in some scenarios, the
interactions between mutations can be better explained by a nonlinear function with few parameters act-
ing on the full phenotype (“global epistasis”) rather than a large number of small-effects interactions at
high order (“idiosyncratic epistasis”). Our implementation is similar to that described by Sailer and
Harms, 2017 and follows closely Phillips and Lawrence et al., 2021'%?*, In short, we use a logistic func-
tion @, with four parameters, to fit the ex}eression:

A
1Og10(KD,s) = (I)(/BQ + Zl ZC BCLE'QS) with (I)(y) = W + B
1=1 ce(;
The choice of a logistic function is justified by the general form of Kp app distribution, which slightly “plat-
eaued” at strong Kb app. This effect is not caused by experimental artifacts (Extended Data Figure 2) but
instead by a form of “diminishing returns” epistasis®’. Practically, the parameters are inferred by fitting
successively the additive $i and the nonlinear function parameters. Although the global epistasis trans-
formation does improve the fit, the additive coefficients observed at low order do not change significantly
(Extended Data Figure 6).

Structural analysis

We used the reference structure of a 2.79 A cryo-EM structure of Omicron BA.1 complexed with ACE2
(PDB ID: 7WPB). In Figure 2C, the contact surface area is determined by using ChimeraX® to measure
the buried surface area between ACE2 and each mutated residue in the RBD (measure buriedarea func-
tion, d%‘ault probeRadius of 1.4A). In Figure 2E, the distance between a-carbons is measured using
PyMol*.

Order of mutations

ACE2 binding affinity impacts the fithess of SARS-CoV-2 variants and can thus be leveraged to partially
infer its past trajectory. This piece of information is particularly important for Omicron BA.1, where phylo-
genetic information is limited. Because our dataset contains the ACE2 affinity of all possible evolutionary
intermediates, we can infer the likelihoods of all pathways between the ancestral Wuhan Hu-1 sequence
and Omicron BA.1. To do this we need to choose a selection model. The circumstances in which the
Omicron variant evolved are unknown, and the evolutionary fitness of the virus is more complex than its
capacity to bind ACE2 — immune pressure, structural stability, and expression level also play a role,
among many other factors®. In addition, back-mutations are common in viral evolution and selection
pressure can change depending on whether the strain is switching hosts rapidly or part of a long-term
infection. Here, we have chosen to adopt an extremely simple weak-mutation/strong-selection regime of
viral evolution.

In that model, selection proceeds as a Markov process, where the population is characterized by a single
sequence that acquires a single mutation at each discrete step?**'. We assume that back mutations (i.e.
a residue changing from the Wuhan Hu-1 amino-acid to the BA.1 one) are not possible. Once such a se-
quence is generated, it will either fix in the full population or die out. The important parameter is then the
fixation probability, which depends on the binding affinity of both the original and mutated sequences.
We choose to use the commonly used classical fixation probability*?, for a mutation with selection coeffi-
cient o in a population of size N:

1—e°
pﬁx(aa N) 1— e_Na.
Here, the selection coefficient is proportional to the difference in log binding affinities between the two
sequences. We use this model in the “strong selection” limit (N — « and o —«), where a mutation fixes if
it is advantageous or if it is the less deleterious choice among all the leftover mutations. Weaker selec-
tion models give qualitatively similar results. In terms of implementation, we use a transition matrix ap-
proach that allows us to quickly compute the probability that each residue appears at a specific position.
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Force directed layout

The high-dimensional binding affinity landscape can be projected in two dimensions with a force-directed
graph layout approach (see https://desai-lab.github.io/wuhan_to_omicron/). Each sequence in the anti-
body library is a node, connected by edges to its single-mutation neighbors. An edge between two se-

quences s and t is given the weight: .

Wy y =
7 0.01 + [logyo(Kp.s) — logio(Kp,)|

In a force-directed representation, nodes repel each other, while the edges pull together the nodes they

are attached to. In our scenario, this means that nodes with a similar genotype (a few mutations apart)

and a similar phenotype (binding affinity) will be close to each other in two dimensions.

Importantly this is not a “landscape” representation: the distance between two points is unrelated to how
easy it is to reach one genotype from another in a particular selection model. Practically, after assigning

all edge weights, we use the layout function layout_drl from the Python package iGraph, with default set-
tings, to obtain the layout coordinates for each variant.

Genomic data

To analyze SARS-CoV-2 phylogeny (Figure 4A and 4B), we used all complete RBD sequences from all
SARS-CoV-2 genomes deposited in the Global Initiative on Sharing All Influenza Data (GISAID) reposi-
tory**=*5 with the GISAID Audacity global phylogeny (EPI_SET ID: EPI_SET_20220615uq, available on
GISAID up to June 15, 2022, and accessible at https://doi.org/10.55876/gis8.220615uq) . We pruned the
tree to remove all sequences with RBD not matching any of the possible intermediates between Wuhan
Hu-1 and Omicron BA.1 and analyzed this tree using the python toolkit ete3*°. We measured the fre-
quency of each mutation (Figure 4A) by counting how many times it occurs independently in the tree
(i.e., how often the mutation appears on a node whose parent node does not have that mutation). For
Figure 4B, we counted two mutations as co-appearing if both mutations are absent in the parent node
and contained in at least one of the descendant nodes. This strategy of studying the relative frequency of
co-appearing mutations is a specific case to the method developed in Kryazhimskiy et al*!, which infers
epistasis between mutations from phylogenetic data (the general method was not applicable in this spe-
cific dataset due to its size).

Statistical analyses and visualization
All data processing and statistical analyses were performed using R v4.1.0*” and python 3.10.0*. All fig-
ures were generated using ggplot2*° and matplotlib®.
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Figure 1. Binding affinity landscape. (A) Distribution of binding affinities to ACE2 across all N=32,768
RBD genotypes tested. Binding affinities are shown as -logKp app; vertical blue and red lines indicate the -
logKp,app for Wuhan Hu-1 and Omicron BA.1, respectively. (B) Distributions of the effect of each mutation
on ACE2 affinity (defined as the change in -logKbp,app resulting from mutation) across all possible genetic
backgrounds at the other 14 loci. Black line segments indicate 25th and 75th percentiles of the effect
distributions and points represent distribution means. Blue and red points specify effects on Wuhan Hu-1
and Omicron BA.1 backgrounds, respectively. (C) Distribution of binding affinities grouped by number of
Omicron BA.1 mutations. Binding affinity of the Wuhan Hu-1 variant is indicated by horizontal dashed
line.


https://doi.org/10.1101/2022.06.17.496635
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.17.496635; this version posted June 19, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

>

L
H
ik
B
-
G
tH

Linear Effect
S
(@)}
HE
HEl
HE
caoes| + EN
]

QJdoLZXNDZXIXDX > .
B EmIIIISIIIILE N501Y
ODAHOHOXZOHDFLIOTZ @
Mutation - s
B oo
D v505H- 2 ® Q498R
L

N501Y - - G4465 Q493R

Q498R 1 oy

G4968S 5 -0.5{ K417N

Q493R 1

E484A - G496S

N T478K 1 D @vY505H

S S477NH 2 0 50 100

“— | 2 o
53 s ? Contact Surface Area (A?)
2 N440K

K417N - E o075/ @496501

S375F1 @501,505

S373P 1 - 498,505

s371L{ B o 0507 .296498

= i

G330 K 498,50

— 1
I ()] ] ’

Higher | W] 805
Sliizvozvigogsri &
SERREESIIRRIIEE S8 & 6.001
BORBIZIHNEPLIOS Z > :

Mutation 1
-0.25{ 446,498 1446,417
Higher Second ' ¥ y y y
Orderl‘ Order . 10 .20 50 20 =0
-1.0-0.5 0.0 0.5 1.0 08 04 00 04 08 Distance (A)

616 Figure 2. Linear and epistatic effects of mutations. (A) First-order effects in best-fitting epistatic

617 interaction model (up to fifth order). Error bars represent standard errors from the model fit. (B) Co-

618 crystal structure of Omicron BA.1 RBD and ACEZ2 receptor (PDB ID 7WPB). Mutated residues shown as
619 spheres colored as in (A). (C) First-order effects for each mutation plotted against contact surface area
620 between corresponding BA.1 RBD residue and ACE2. Mutations colored as in (A). (D) Second-order
621 epistatic interaction coefficients and higher order interaction coefficients. For each mutation, higher order
622 interaction coefficient (shown at bottom of heat map plot) is calculated by summing over all third- and
623 fourth-order interaction coefficients involving the mutation. (E) Pairwise interaction coefficients plotted
624 against the distances between the respective alpha-carbons. Mutations are colored by pairwise

625 coefficient as in (D).
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626 Figure 3. Epistasis compensates for reductions in ACE2 affinity. (A) ACE2 binding affinities for

627 variants containing mutations that have a strong effect on antibody escape: K417N, G446S, E484A,

628 Q493R, and G496S grouped by the presence of compensatory mutations (Q498R and N501Y). Dashed
629 blue (resp. red) line indicates Wuhan Hu-1 (resp. Omicron BA.1) ACE2 binding affinity. (B) The changes
630 in ACEZ2 binding affinities for variants containing any one (or all) of select escape mutations grouped by
631 the presence of compensatory mutations (Q498R and N501Y). Dashed line indicates no affinity change.
632 (C) ACE2 binding affinities for variants containing Y505H and antibody escape mutations presented as in
633 (A).
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Figure 4. Trajectory of Omicron BA.1 evolution (A) Frequency of occurrences for each mutation
across SARS-CoV-2 sequences available on GISAID (see Methods) as a function of their average effect
on ACEZ2 affinity in our data. Error bars indicate standard deviation of effect sizes. (B) Normalized
frequency of mutations co-occurring with N501Y across SARS-CoV-2 sequences available on GISAID
(calculated based on the frequency at which each mutation occurs on the same branch as N501Y,
normalized by their overall frequency; see Methods) as a function of the difference in their effect on
ACE2 affinity in the presence of N501Y. Error bars indicate standard deviation of effects. (C) ACE2
affinity trajectories for 100 randomly selected pathways (involving all 15 mutations), shown as a function
of the number of mutations with strong effect on antibody escape (K417N, G446S, E484A, Q493R, and
G496S) and the presence or absence of compensatory mutations Q498R and N501Y (shown with
colors). Each trajectory represents a possible mutation order, starting at the Wuhan Hu-1 genotype and
ending at Omicron BA.1.
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646 Extended Data Figure 1: Schematic overview of the experimental method and reproducibility of
647 dissociation constants determined via Tite-seq. (A) The plasmid library of RBD variants is first

648 transformed into a standard yeast display strain. The library is incubated with soluble, fluorescent ACE2
649 and sorted by flow cytometry into bins based on ACE2 fluorescence. Deep sequencing of each bin yields
650 an estimate for the mean bin (Bayg) of each RBD variant. This is repeated for varying ACE2 concentration
651 to produce a titration curve. Since the fluorescence is linearly related to the RBD occupancy on the yeast
652 cell surface, apparent equilibrium dissociation constants can be inferred by fitting Bayg to the ACE2

653 concentration. (B) Correlation of -log(Kb,app) between the first and second biological replicates. (C)

654 Correlation of -log(Kb,app) between the first and third biological replicates. (D) Distribution of the standard
655 error of -log(Kp,app) between biological replicates. (E) Isogenic measurements (see Methods) versus Tite-
656 Seq measurement with a 1:1 dotted line. (F) Comparison of Tite-Seq Ko measurements with independent
657 Kp measurements reported in Starr et al'? with a 1:1 dotted line.
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Extended Data Figure 2: Expression level of RBD in the yeast display system. (A) Correlation of
normalized expression levels between the first and second biological replicates. (B) Distribution of the
normalized expression levels between biological replicates. (C) Distribution of the normalized yeast-
display expression of each RBD variant in the library. Vertical red and green lines represent the
expression for Wuhan Hu-1 and Omicron BA.1, respectively. (D) Effect of the S371L mutation on
expression levels depending on the S373P and S375F background. (E) Mutational effects (defined as
the difference in normalized expression after adding one mutation) for each Omicron BA.1 RBD
mutation. Violin plots show full distribution of effects, where black lines indicate 25th and 75th percentiles
and the black point denotes mean. Blue and red points specify effects on Wuhan Hu-1 and into Omicron
BA.1 variants, respectively.
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668 Extended Data Figure 3: Change in ACE2 affinity across number of mutations. The mean effect of
669 each mutation is plotted against the number of BA.1 mutations in the genotypic background. Dashed line
670 indicates no change in affinity.
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Extended Data Figure 4: Truncation of biochemical epistasis model. Correlation coefficients
between the measured values of -log(Kb,app) and the model estimate for various orders of epistatic
model. Correlations are computed on the subset of the dataset on which the model was trained (orange)

and on the hold-out subset (green), averaged over the 10 folds of cross-validation. The inset is a
zoomed-in version for orders 3 to 6.
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676 Extended Data Figure 5: Alternative model of statistical epistasis. (A) Linear effect of each mutation
677 in the statistical epistasis model that is truncated at the fourth order. (B) Second-order epistatic
678 interaction coefficients and higher order interaction in the statistical epistasis model.
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679 Extended Data Figure 6: Global epistasis (A) Relationship between the binding affinity and the mean
680 effect of an additional mutation on this background. (B) Relationship between the observed binding

681 affinity and the affinity predicted with a linear additive model without epistasis. The red line represents
682 the global epistasis function. (C) Linear effect of each mutation in the global epistasis model that is

683 truncated at the fourth order. (D) Second-order and higher-order epistatic interaction coefficients in the
684 global epistatic model. (E) Correlation between the epistatic interaction coefficients of the models with
685 and without global epistasis. The black line represents the best fit.
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686 Extended Data Figure 7: Comparison between the linear model estimate of the binding affinity
687 and the measured binding affinity. The x-axis is the predicted binding affinity, using only the linear
688 coefficients of the full 5th-order model; the y-axis is the measured binding affinity.
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Extended Data Figure 8: Binding affinity of escape genotypes with additional compensatory
mutations. The ACE2 binding affinities of variants with all seven mutations discussed in the main text
(the five escape mutations K417N, G446S, E484A, Q493R, and G496S, plus Q498R and N501Y) with all
possible combinations of three other mutations (S375F, N440K, and S477N). Blue and red dashed lines
represent Wuhan Hu-1 and Omicron BA.1 affinity, respectively.


https://doi.org/10.1101/2022.06.17.496635
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.17.496635; this version posted June 19, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

S371L  G496S

G446S

Z <
N X
N 0
<t 3
o Ww
S %
3 5
Z

O Lw
D O
DN
M ™
o o»
o =2
™~
T
M <
»w X

%
g ¢
|l
0@
x>
8 5
5 2

S371F T376A
U
J O

R408S D405N

694 Extended Data Figure 9: Phylogeny of BA.1 and BA.2 showing mutations in spike protein RBD.

695 Mutations are colored as in Figure 2A. Dashed boxes indicate mutations with ambiguous positions on the
696 tree.
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697 Extended Data Figure 10: Inferred order of mutations. Conditional probability of mutation order from

698 Wuhan-Hu-1 to Omicron BA.1 variant, assuming a classical population dynamics model (see Methods).
699 Mutations with asterisks are known to happen last (see Extended Data Figure 9).
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