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Abstract 16 
The Omicron BA.1 variant emerged in late 2021 and quickly spread across the world. Compared to the 17 
ancestral Wuhan Hu-1 strain and other pre-Omicron SARS-CoV-2 variants, BA.1 has many mutations, a 18 
number of which are known to enable antibody escape133. Many of these antibody-escape mutations 19 
individually decrease the spike receptor-binding domain (RBD) affinity for ACE2 in the background of 20 
early SARS-CoV-2 variants4, but BA.1 still binds ACE2 with high affinity5,6. The fitness and evolution of 21 
the BA.1 lineage is therefore driven by the combined effects of numerous mutations. Here, we 22 
systematically map the epistatic interactions between the 15 mutations in the RBD of BA.1 relative to the 23 
Wuhan Hu-1 strain. Specifically, we measure the ACE2 affinity of all possible combinations of these 15 24 
mutations (215 = 32,768 genotypes), spanning all possible evolutionary intermediates from the ancestral 25 
Wuhan Hu-1 strain to BA.1. We find that immune escape mutations in BA.1 individually reduce ACE2 26 
affinity but are compensated by epistatic interactions with other affinity-enhancing mutations, including 27 
Q498R and N501Y. Thus, the ability of BA.1 to evade immunity while maintaining ACE2 affinity is 28 
contingent on acquiring multiple interacting mutations. Our results implicate compensatory epistasis as a 29 
key factor driving substantial evolutionary change for SARS-CoV-2 and are consistent with Omicron BA.1 30 
arising from a chronic infection.   31 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 19, 2022. ; https://doi.org/10.1101/2022.06.17.496635doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.17.496635
http://creativecommons.org/licenses/by-nc/4.0/


The Omicron BA.1 variant of SARS-CoV-2 emerged in November 2021 and spread rapidly throughout 32 
the world, driven in part by its ability to escape existing immunity in vaccinated and previously infected 33 
individuals7,8. Strikingly, Omicron did not emerge as a descendant of the then-widespread Delta lineage. 34 
Instead, it appeared as a highly diverged strain after accumulating dozens of mutations within a lineage 35 
that was not widely circulating at the time, including 15 mutations within the spike protein receptor-36 
binding domain (RBD)7. 37 
 38 
Recent work has shown that a number of these 15 RBD mutations (some of which are seen in other 39 
variants) disrupt binding of specific monoclonal antibodies1,3,9311, potentially contributing to immune 40 
escape. However, most of these mutations have also been shown to reduce binding affinity to human 41 
ACE2 when they arise within the Wuhan Hu-1, Delta, or several other SARS-CoV-2 lineages4,12, 42 
potentially impairing viral entry into host cells. In contrast, the Omicron RBD tolerates these escape 43 
mutations while retaining strong affinity to ACE2, suggesting that other mutations in this lineage may help 44 
maintain viral entry. 45 
 46 
Earlier work has systematically analyzed mutational effects on antibody binding and ACE2 affinity, for 47 
example by using deep mutational scanning (DMS)12,13. However, these approaches focus on the effects 48 
of single mutations on specific genetic backgrounds. They are therefore useful for understanding the first 49 
steps of evolution from existing variants but cannot explain how multiple mutations interact over longer 50 
evolutionary trajectories. Thus, it remains unclear how combinations of mutations, such as those 51 
observed in Omicron, interact to both evade immunity and retain strong affinity to ACE2. 52 
 53 
To address this question, we used a combinatorial assembly approach to construct a plasmid library 54 
containing all possible combinations of the 15 mutations in the Omicron BA.1 RBD (a total of 215 = 55 
32,768 variants). This library includes all possible evolutionary intermediates between the Wuhan Hu-1 56 
and Omicron BA.1 RBD. We transformed this plasmid library into a standard yeast display strain, 57 
creating a yeast library in which each cell displays a single monomeric RBD variant corresponding to the 58 
plasmid in that cell. We then used Tite-Seq, a high-throughput flow cytometry and sequencing-based 59 
method14,15 (see Methods; Extended Data Figure 1A), to measure the binding affinities, KD,app, of all 60 
32,768 RBD variants to human ACE2 in parallel. Consistent with earlier work by ourselves15 and 61 
others12,14,16, we find that these Tite-Seq measurements are highly reproducible (SEM of 0.2 log KD,app 62 
between triplicate measurements) and consistent with independent low-throughput measurements (see 63 
Methods; Extended Data Figure 1B-F). In addition, we find minimal variation in RBD expression levels 64 
and are thus able to infer KD,app for the entire combinatorial library (see Methods; Extended Data Figure 65 
2). 66 
 67 
We find that all 32,768 RBD intermediates between Wuhan Hu-1 and Omicron BA.1 have detectable 68 
affinity to ACE2, with KD,app ranging between 0.1 ¿M and 0.1 nM (Figure 1A and Extended Data Figure 1; 69 
see https://desai-lab.github.io/wuhan_to_omicron/ for an interactive data browser). Consistent with 70 
previous studies5, the BA.1 RBD exhibits a slight (3-fold) improvement in binding affinity compared to 71 
Wuhan Hu-1. However, most (~ 60%) of the intermediate RBD sequences actually show a weaker 72 
binding affinity to ACE2 than the ancestral Wuhan Hu-1 RBD. This is because the vast majority of BA.1 73 
mutations have a neutral or deleterious effect on ACE2 affinity on most genetic backgrounds (Figure 1B). 74 
This is particularly true for K417N, G446S, Q493R, G496S, and Y505H, four of which are known to be 75 
involved in escape from various classes of monoclonal antibodies17319. 76 
 77 
Although many BA.1 mutations reduce ACE2 affinity on average, the interactions between these 78 
mutations result in improvement in ACE2 affinity for BA.1 relative to the ancestral Wuhan Hu-1 strain. 79 
That is, mutations tend to be more deleterious for ACE2 affinity if few other mutations are present but 80 
tend to become neutral or even beneficial in the presence of multiple other mutations (Figure 1C; 81 
Extended Data Figure 3). Consistent with this, we find that although most of the 15 RBD mutations 82 
reduce ACE2 affinity in the Wuhan Hu-1 background (and in many cases across most other backgrounds 83 
as well), they all become less deleterious or even beneficial in the Omicron background (Figure 1B). This 84 
pattern explains why the BA.1 RBD has a stronger affinity for ACE2 despite containing so many 85 
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mutations that individually reduce ACE2 affinity: their deleterious effects are mitigated by compensatory 86 
epistatic interactions with other mutations. 87 
 88 
To systematically analyze mutational effects and interactions, we fit a standard biochemical model of 89 
epistasis20 to our data. This decomposes our measured -log(KD,app) (which is expected to be proportional 90 
to the free energy of binding, �G)21,22 into a sum of linear effects from single mutations, pairwise 91 
epistasis, and higher-order epistatic interactions among larger sets of mutations (truncated at fifth order; 92 
Extended Data Figure 4, see Methods). This model yields coefficients that are comparable to alternative 93 
models of statistical (Extended Data Figure 5) and global23 (Extended Data Figure 6) epistasis. 94 
Generally, we find that the linear effects of individual mutations (Figure 2A) correlate with the ACE2 95 
contact surface area of the corresponding residue (Figure 2B,C), and neighboring residues are more 96 
likely to have strong pairwise interactions (Figure 2E), as we might expect from previous work15,24. 97 
 98 
Our inferred pairwise and higher-order coefficients reveal that strong compensatory interactions offset 99 
the effects of affinity-reducing mutations (Figure 2D). The magnitude of these interactions is comparable 100 
to that of the linear effects, and this epistasis is overwhelmingly positive, as excluding epistatic terms 101 
leads to a consistent underestimate of the predicted affinity (Extended Data Figure 7). This strong 102 
positive epistasis means that mutations which reduce ACE2 affinity become less deleterious in 103 
backgrounds containing other compensatory mutations. For example, the negative linear effect of Q498R 104 
is fully compensated by its interaction with nearby mutation N501Y; this pairwise interaction has been 105 
highlighted in earlier work4,6,25. We identify numerous additional interacting mutations, including even 106 
stronger positive interactions (along with third and fourth-order effects) between Q498R, G496S, N501Y, 107 
and Y505H (Figure 2D). 108 
 109 
This high-order compensatory epistasis eliminates the strongly deleterious effects of mutations involved 110 
in antibody escape on ACE2 affinity. Specifically, earlier work has shown that five BA.1 mutations 111 
(K417N, G446S, E484A, Q493R, and G496S) have a particularly strong effect in promoting antibody 112 
escape1,18,19. These mutations all individually reduce affinity to ACE2 both on average and in the Wuhan 113 
Hu-1 background (except E484A; Figure 1B, 2A, 3A), and the combination of all five is strongly 114 
deleterious (Figure 3A,B). However, strong high-order epistasis with Q498R and N501Y mitigates this: 115 
either N501Y or Q498R alone reduces the cost of the five escape mutations, and the combination of both 116 
almost fully compensates for these deleterious effects (Figure 3B). While these escape mutations do also 117 
benefit from interactions with other mutations (Extended Data Figure 8), N501Y and Q498R account for 118 
the majority of the compensatory effect. We note that strong compensatory interactions also mitigate the 119 
deleterious effect of Y505H (Figure 3C). This mutation has not previously been shown to be strongly 120 
involved in antibody escape, but the pattern of compensation we observe suggests that it may be 121 
functionally relevant in some way. 122 
 123 
The extensive epistasis we observe means that the individual effects of each of these 15 mutations, as 124 
well as the pairwise interactions between them, are likely different in other viral lineages. However, 125 
earlier work has shown that the antibody escape mutations described above (K417N, G446S, E484A, 126 
Q493R, and G496S) similarly reduce ACE2 affinity in several other variants (including Alpha, Beta, Eta, 127 
and Delta)25. Consistent with this result, we find that these mutations, along with others that we find have 128 
a negative linear effect on ACE2 affinity, rarely occur across the SARS-CoV-2 phylogeny (Figure 4A). 129 
This suggests that maintaining affinity to human ACE2 is likely an important aspect of viral fitness, so 130 
these mutations are typically selected against. Similarly, we find that mutations with negative effects on 131 
ACE2 affinity that are compensated by epistatic interactions with N501Y tend to be enriched across the 132 
SARS-CoV-2 phylogeny in strains that also have N501Y, relative to strains that do not (Figure 4B; other 133 
pairwise interactions co-occur too rarely to test). This further suggests that at least some of the pairwise 134 
epistatic interactions we observe are also present in other backgrounds, and that viral evolution has 135 
favored compensation for reduction in ACE2 affinity. 136 
 137 
Together, these results suggest that the evolution of antibody escape in BA.1 was possible without 138 
disrupting binding to ACE2 because of the compensatory interactions with numerous other mutations 139 
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unique to this lineage. While signatures of these selection pressures and epistatic interactions are 140 
present across the viral phylogeny26, and antibody escape variants could have been compensated by 141 
other combinations of mutations, it is only the BA.1 lineage which accumulated this particular 142 
combination of interacting compensatory mutations. 143 
 144 
Our results also provide insight into why the immune escape phenotype observed in Omicron BA.1 did 145 
not arise as the result of mutations accumulating within the then-widely circulating Delta variant. 146 
Specifically, the combination of multiple mutations required for both immune escape and maintaining 147 
affinity to ACE2 (Figure 4C) is unlikely to have accumulated within the context of acute infections, which 148 
involve few mutations between transmission bottlenecks and presumably strong selection pressures on 149 
both functions27. In contrast, in chronic infections (e.g. in an immunocompromised host) large population 150 
sizes and relaxed selection pressures may allow for the accumulation of the many mutations required to 151 
both maintain ACE2 affinity and evade neutralizing antibodies28,29. Under such relaxed selection, the 152 
compensatory mutations may have preceded the immune escape mutations, minimizing their otherwise 153 
deleterious effects on ACE2 affinity. Alternatively, relaxed selection for binding ACE2 may have created 154 
a permissive environment for the immune escape mutations, followed by compensation that then allowed 155 
the variant to spread to other hosts. Phylogenetic analysis provides some support for the former 156 
possibility, as two immune escape mutations (G446S and G496S) occur late in BA.1 evolution (and are 157 
not shared with the BA.2 lineage; Extended Data Figure 9). In addition, a strong selection model based 158 
on ACE2 affinity prefers the three BA.1-specific mutations to appear late in the evolution, as observed in 159 
the phylogeny (Extended Data Figure 10). Irrespective of the exact order of mutations, the large viral 160 
population size and relaxed selection pressure of a chronic infection may have created conditions 161 
conducive to the fixation of the several mutations required for BA.1 to evade neutralizing antibodies while 162 
maintaining ACE2 affinity. 163 
 164 
We emphasize that our work is confined to 15 mutations within a specific region of one protein, and 165 
hence neglects potential interactions with the many other mutations present in the Omicron BA.1 lineage. 166 
In addition, we focus on ACE2 affinity and antibody escape, which represent only two aspects of viral 167 
fitness. It is likely that other properties of BA.1 (e.g. spike protein expression and stability) also play key 168 
roles in viral evolution. We find some hints of this in our data. For example, we identify a significant 169 
synergistic interaction between S371L, S373P, and S375F that improves RBD expression in yeast, 170 
consistent with earlier work showing that this set of mutations is associated with stabilization of a more 171 
tightly packed down-conformation of the RBD30 (Extended Data Figure 3). Beyond this, numerous other 172 
phenotypes are also likely to be relevant. 173 
 174 
Despite these caveats, our results demonstrate that key events in viral evolution can depend on high-175 
order patterns of epistasis. This may be especially important for complex adaptive events involving 176 
numerous mutations, such as immune escape and host-switching. Thus, to predict the future of viral 177 
evolution we must move beyond high-throughput screens of single mutations, and more 178 
comprehensively analyze combinatorial sequence space. A key challenge is the vastness of this 179 
sequence space, which makes exhaustive exploration intractable. However, generating specific 180 
combinatorial landscapes like those presented here may help reveal general patterns of epistasis that 181 
shape viral evolution in complex environments.  182 
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METHODS 183 
 184 
Yeast display plasmid & strains 185 
To generate clonal yeast strains for the Wuhan Hu-1 and Omicron BA.1 variants, we cloned the corre-186 
sponding RBD gblock (IDT, https://github.com/desai-lab/compensatory_epistasis_omi-187 
cron/tree/main/Supplementary_Files) into pETcon yeast surface-display vector (plasmid 2649; Addgene, 188 
Watertown, MA, #166782; https://github.com/desai-lab/compensatory_epistasis_omicron/tree/main/Sup-189 
plementary_Files) via Gibson Assembly. The sequence of the gblock was codon-optimized for yeast (us-190 
ing the Twist Bioscience algorithm); we found that the codon optimization had a significant impact on dis-191 
play efficiency. Additionally, for the library construction (described below), we deleted two existing Bsa-I 192 
sites from the plasmid by site-directed mutagenesis (Agilent, Santa Clara, CA, #200521). In the clonal 193 
strain production, Gibson Assembly products were transformed into NEB 10-beta electrocompetent E. 194 
coli cells (NEB, Ipswich, MA, #C3020K), following the manufacturer protocol. After overnight incubation 195 
at 37°C, the cells were harvested, and the resulting plasmids were purified and Sanger sequenced. We 196 
transformed plasmids containing the correct sequences into the AWY101 yeast strain (kind gift from Dr. 197 
Eric Shusta)31 as described by Gietz and Schiestl32. Transformants were plated on SDCAA-agar (1.71 198 
g/L YNB without amino acids and ammonium sulfate [Sigma-Aldrich #Y1251], 5 g/L ammonium sulfate 199 
[Sigma-Aldrich #A4418], 2% dextrose [VWR #900003904], 5 g/L Bacto casamino acids [VWR #223050], 200 
100 g/L ampicillin [VWR #V0339], 2% Difco Noble Agar [VWR #900003774]) and incubated at 30°C for 201 
48 hr. Several colonies were restreaked on SDCAA-agar and again incubated at 30°C for 48 hr. Clonal 202 
yeast strains were picked, inoculated, grown to saturation in liquid SDCAA (6.7  g/L YNB without amino 203 
acid VWR  #90004-150), 5 g/L ammonium sulfate (Sigma-Aldrich #A4418), 2% dextrose (VWR #900003204 
904), 5 g/L Bacto casamino acids (VWR #223050), 1.065 g/L MES buffer (Cayman Chemical, Ann Arbor, 205 
MI, #70310), 100 g/L ampicillin (VWR # V0339)) at 30°C, and mixed with 5% glycerol for storage at 206 
280°C.  207 
 208 
Yeast display library production 209 
We generated the RBD variant library with a Golden Gate combinatorial assembly strategy. First, we di-210 
vided the RBD sequence into five fragments of about equal length, ranging from 90 to 131 bp and each 211 
containing between 1 and 4 mutations. We introduced BsaI sites and overhangs to both ends of each 212 
fragment sequence. These overhangs contained BsaI cut sites that would allow the five fragments to as-213 
semble uniquely in their proper order within the plasmid backbone. For each fragment with n mutations, 214 
we generated 2n fragment versions by either producing the fragments via PCR (Fragments 1-4) or pur-215 
chasing individual DNA duplexes (Fragment 5) from IDT. These permutations ensured the inclusion of all 216 
possible mutation combinations in the library. In Fragment 2, we also included a synonymous substitution 217 
on the K378 residue that corresponds to the K417N mutation. This substitution allows for the amplicon 218 
library to be sequenced on the Illumina Novaseq SP (2x250bp). For dsDNA production by PCR, we de-219 
signed the fragments such that the mutations they contain are close to the 39 or 59 ends. This design ena-220 
bled the primers to simultaneously include and introduce the mutations, BsaI sites, and unique over-221 
hangs chosen during the PCR. We produced each version of each fragment individually (28 PCR reac-222 
tions in total; see https://github.com/desai-lab/compensatory_epistasis_omicron/tree/main/Supplemen-223 
tary_Files for primer sequences) and pooled the products of each fragment in equimolar ratios. Addition-224 
ally, we also pooled all 16 purchased DNA duplexes encoding the fifth fragment in equimolar ratios. We 225 
then created a final fragment mix by pooling the five fragment pools together. In the Golden Gate reac-226 
tion, the versions of each fragment would be ligated together in random combinations, producing all of 227 
the sequences present at approximately equal frequencies. 228 
 229 
In addition to the fragment mix, we prepared four versions of the plasmid backbone for the Golden Gate 230 
reaction. Each version contains a combination of the mutations N501Y and Y505H. Prior to the assem-231 
bly, we introduced the counter-selection marker ccdB, in place of the fragment insert region, with flanking 232 
BsaI sites (https://github.com/desai-lab/compensatory_epistasis_omicron/tree/main/Supplemen-233 
tary_Files). We performed Golden Gate cloning using Golden Gate Assembly Mix (NEB, Ipswich, MA, 234 
#E1601L), following the manufacturer recommended protocol, with a 7:1 molar ratio of the fragment in-235 
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sert pool to plasmid backbone. We transformed the assembly products into NEB 10-beta electrocompe-236 
tent E. coli cells in 6 x 25 ¿L cell aliquots. We then transferred each of the recovered cell culture to 100 237 
mL of molten LB (1% tryptone, 0.5% yeast extract, 1% NaCl) containing 0.3% SeaPrep agarose (VWR, 238 
Radnor, PA #120013 922) spread into a thin layer in a 1L baffled flask (about 1 cm deep). The mixture 239 
was placed at 4°C for three hours, after which it was incubated for 18 hr at 37°C. We observed a total of 240 
3 million transformants across aliquots. To isolate the plasmid library, we mixed the flasks by shaking for 241 
1 hr and pelleted the cells for standard plasmid maxiprep (Zymo Research, Irvine, CA, D4201), from 242 
which we obtained > 90 ¿g of purified plasmid. 243 
 244 
We then transformed the purified plasmid library into AWY101 cells as described above. We recovered 245 
transformants in a molten SDCAA agarose gel (1.71 g/L YNB without amino acids and ammonium sul-246 
fate (Sigma-Aldrich #Y1251), 5 g/L ammonium sulfate (Sigma-Aldrich, St. Louis, MO, #A4418), 2% dex-247 
trose (VWR #900003904), 5 g/L Bacto casamino acids (VWR #223050), 100 g/L ampicillin (VWR # 248 
V0339)) containing 0.35% SeaPrep agarose (VWR #120013922) spread into a thin layer (about 1 cm 249 
deep). The mixture was placed at 4°C for three hours, after which it was incubated at 30°C for 48 hours. 250 
From five aliquots, we obtained >1.2 million colonies. After mixing the flasks by shaking for 1 hr, we grew 251 
cells in 5 mL tubes of liquid SDCAA for five generations and stored the saturated culture in 1 mL aliquots 252 
supplemented with 5% glycerol at -80°C. 253 
 254 
High-throughput binding affinity assay (Tite-Seq) 255 
Tite-Seq was performed as previously described12,14,15. We performed three replicates of the assay on 256 
different days. In the first two replicates, a small portion of the library variants contained an off-target mu-257 
tation (E484W) instead of the intended mutation (E484A). These variants were removed from the data 258 
analysis, and in the third replicate the library was supplemented with variants containing the intended 259 
mutation (E484A).  260 
 261 
Preparation: First, we thawed yeast RBD libraries, as well as Wuhan Hu-1 and Omicron BA.1 clonal 262 
strains, by inoculating 150 ¿L of corresponding glycerol stock (saturated culture with 5% glycerol stored 263 
at -80°C)  in 5 mL SDCAA at 30°C for 20 hr. On the next day, yeast cultures were diluted to OD600=0.67 264 
in 5 mL SGDCAA (6.7  g/L YNB without amino acid VWR  #90004-150), 5 g/L ammonium sulfate (Sigma-265 
Aldrich #A4418), 2% galactose (Sigma-Aldrich #G0625), 0.1% dextrose (VWR #900003904), 5 g/L Bacto 266 
casamino acids (VWR #223050), 1.065 g/L MES buffer (Cayman Chemical, Ann Arbor, MI, #70310), 100 267 
g/L ampicillin (VWR # V0339)), and rotated at room temperature for 16320 hr. 268 
 269 
Labeling: After overnight induction, yeast cultures were pelleted, washed twice with 0.01% PBSA (VWR 270 
#450013130; GoldBio, St. Louis, MO, #A-420350), and resuspended to an OD600 of 1. A total of 500-271 
700 ¿L of OD1 yeast cells were labeled with biotinylated human ACE2 (Acrobiosystems #AC2-272 
H2H82E6) at each of the twelve ACE2 concentrations (half-log increments spanning 10-12.5 3 10-7 M), 273 
with volumes adjusted to limit ligand depletion effects to be less than 10% (assuming 50,000 surface 274 
RBD/cell33). Yeast-ACE2 mixtures were incubated and rotated at room temperature for 20 hr. Following 275 
the incubation, yeast-ACE2 complexes were pelleted by spinning at 3000 x g for 10 minutes at 4°C, 276 
washed twice with 0.5% PBSA + 2mM EDTA, and subsequently labeled with Streptavidin-RPE (1:100, 277 
Thermo Fisher #S866) and anti-cMyc-FITC (1:50, Miltenyi Biotec, Somerville, MA, #130-116-485) at 4°C 278 
for 45 min. After this secondary labeling, yeast were washed twice with 0.5% PBSA + 2mM EDTA and 279 
left on ice in the dark until sorting. 280 
 281 
Sorting and recovery: We sorted the yeast library complex on a BD FACS Aria Illu, equipped with 405 282 
nm, 440 nm, 488 nm, 561 nm, and 635 nm lasers, and an 85 micron fixed nozzle. To minimize the spec-283 
tral overlap effects, we determined compensation between FITC and PE using single-fluorophore con-284 
trols. Single cells were first gated by FSC vs SSC and then sorted by either expression (FITC) or binding 285 
(PE) fluorescence. At least one million cells were sorted for each sample. In the expression sorts, sin-286 
glets (based on FSC vs SSC) were sorted into eight equivalent log-spaced FITC bins. For the binding 287 
sorts, FITC+ cells were sorted into 4 PE bins (the PE- population comprised bin 1, and the PE+ popula-288 
tion was split into three equivalent log-spaced bins 234 as described in Phillips and Lawrence et al. 289 
2021). Sorted cells were collected in polypropylene tubes coated and filled with 1 mL YPD supplemented 290 
with 1% BSA. Upon recovery, cells were pelleted by spinning at 3000 x g for 10 min and resuspended in 291 
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4 mL SDCAA. The cultures were rotated at 30# until late-log phase (OD600 = 0.9-1.4). 292 
 293 
Sequencing library preparation: 1.5 mL of late-log yeast cultures was pelleted and stored at -20C for at 294 
least six hours prior to extraction. Yeast display plasmids were extracted using Zymo Yeast Plasmid Min-295 
iprep II (Zymo Research # D2004), following the manufacturer9s instructions, and eluted in a 17 ¿L elu-296 
tion buffer. RBD amplicon sequencing libraries were prepared by a two-step PCR as previously de-297 
scribed15,34. In the first PCR, unique molecular identifiers (UMI), inline indices, and partial Illumina adapt-298 
ers were appended to the sequence library through 7 amplification cycles to minimize PCR amplification 299 
bias. We used 5 ¿L plasmid DNA as template in a 25 ¿L reaction volume with Q5 polymerase according 300 
to the manufacturer9s protocol (NEB # M0491L). Reaction was incubated in a thermocycler with the fol-301 
lowing program: 1. 60 s at 98°C, 2. 10 s at 98°C, 3. 30 s at 66°C, 4. 30 s at 72°C, 5. GOTO 2, 6x, 6. 60 s 302 
at 72°C. Shortly after the reaction completed, we added 25 ¿L water into reactions and performed a 1.2X 303 
magnetic bead cleanup (Aline Biosciences #C-100335). The purified products were then eluted in 35 ¿L 304 
elution buffer. In the second PCR, the remainder of the Illumina adapter and sample-specific Illumina i5 305 
and i7 indices were appended through 35 amplification cycles (see https://github.com/desai-lab/compen-306 
satory_epistasis_omicron/tree/main/Supplementary_Files for primer sequences). We used 33 ¿L of the 307 
purified PCR1 product as template, in a total volume of 50 ¿L using Kapa polymerase (Kapa Biosystems 308 
#KK2502) according to the manufacturer9s instructions. We incubated this second reaction in a thermo-309 
cycler with the following program: 1. 30 s at 98°C, 2. 20 s at 98°C, 3. 30 s at 62°C, 4. 30 s at 72°C, 5. 310 
GOTO 2, 34x, 6. 300 s at 72°C. The resulting sequencing libraries were purified using 0.85X Aline 311 
beads, amplicon size was verified to be >500 bp by running on a 1% agarose gel, and amplicon concen-312 
tration was quantified by fluorescent DNA-binding dye (Biotium, Fremont, CA, #31068, per manufac-313 
turer9s instructions) on Spectramax i3. We then pooled the amplicon libraries according to the number of 314 
cells sorted and further size-selected this pool by a two-sided Aline bead purification (0.530.9X). The final 315 
pool size was verified by Tapestation 5000 HS and 1000 HS. Final sequencing library was quantitated by 316 
Qubit fluorometer and sequenced on an Illumina NovaSeq SP with 10% PhiX. 317 
 318 
Sequence data processing 319 
We processed our raw demultiplexed sequencing reads to identify and extract the indexes and muta-320 
tional sites. To do so, we developed a snakemake pipeline (https://github.com/desai-lab/compensa-321 
tory_epistasis_omicron/tree/main/Titeseq) that first parsed through all fastq files and separated the reads 322 
according to inline indices, UMIs, and sequence reads using Python library regex35.  We accepted se-323 
quences that match the entire read (with no restrictions on bases at mutational sites) within 10% bp mis-324 
match tolerance. Next, we discarded incorrect inline indices (according to the corresponding i5/i7 indices) 325 
and parsed read sequences into binary genotypes (809 for Wuhan Hu-1 allele or 819 for Omicon BA.1 allele 326 
at each mutation position). Reads with errors at mutation sites (i.e. not matching either Wuhan Hu-1 al-327 
lele or Omicron BA.1 allele) were discarded. Finally, we counted the number of distinct UMIs for each 328 
genotype, and collated genotype counts from all samples into a single table. The mean coverage across 329 
all replicates was >150x.  330 
 331 
To fit the binding dissociation constants KD,app for each genotype, we followed the same procedure as 332 
previously described21,22. In brief, we used sequencing and flow cytometry data to calculate the mean 333 
log-fluorescence of each genotype � at each concentration �, following: 334 

�"!,# 	= 	3 �$,# 	�$,!|#$ , 335 
where �!,# is the mean log-fluorescence of bin � at concentration �, and 	�!,$|# is the inferred proportion of 336 
cells from genotype s that are sorted into bin � at concentration �. The 	�!,$|# is in turn estimated from the 337 
read counts as 338 

	�$,!|# =

!",$,%

3 !",$,%'
&",%

3 (
!",$,%

3 !",$,%'
&",%)"

 , 339 

where �!,$,# is the number of reads from genotype s that are found in bin � at concentration �, whereas  340 
�!,# refers to the number of cells sorted into bin � at concentration �. 341 
 342 
To propagate the uncertainty in the mean bin estimate, we used the formula  343 
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)  344 

where ��!,# is the spread of log fluorescence of cells sorted into bin � at concentration �. As previously 345 
investigated, we found that estimating  ��!,# j ��!,# is sufficient to capture the variation we observed in 346 
log-fluorescence within each bin. In contrast, the error in �!,$|# emerges from the sampling error, which 347 
can be approximated as a Poisson process when read counts are high enough. 348 
Thus we have: 349 

��
�,�|�

=
��,�|�

&��,�,�
. 350 

 351 
Finally, we inferred the binding dissociation constant (KD,s) for each variant by fitting the logarithm of Hill 352 
function to the mean log-fluorescence	�"!,#, as a function of ACE2 concentrations �: 353 

�"!,# =���01
(

#

#23,,$
�! + �!) , 354 

where �$ is the increase in fluorescence at ACE2 saturation, and �$ is the background fluorescence 355 
level. The fit was performed using the curve_fit function in the Python package scipy.optimize. Across all 356 
genotypes, we gave reasonable bounds on the values of �$ to be 10²-10v, �$ to be 1-10u, and KD,s to be 357 
10{¹t-10{u. We then averaged the inferred KD,s values across the three replicates after removing values 358 
with poor fit (�' 	< 	0.8). 359 
 360 
Isogenic measurements for validation 361 
We validated our high-throughput binding affinity method by selecting 10 specific RBD clones for lower-362 
throughput validation: Wuhan Hu-1, Omicron, 5 single-mutants (K417N, S477N, T478K, Q498R, N501), 363 
two double mutants (Q498R/N501Y and E484A/Q498R), and one genotype with four mutations 364 
(K417N/E484A/Q498R/N501Y). For each isogenic titration curve, we followed the same labeling strat-365 
egy, titrating ACE2 at concentrations ranging from 10{12-10{7 M for isogenic yeast strains that display 366 
only the sequence of interest. The mean log fluorescence was measured using a BD LSR Fortessa cell 367 
analyzer. We directly computed the mean and variances of these distributions for each concentration and 368 
used them to infer the value of -log¡ (KD) using formula (shown above) (see Extended Data Figure 1).  369 
 370 
Epistasis analysis 371 
We first used a simple linear model where the effects of combinations of mutations sum to the phenotype 372 
of a sequence. The logarithm of the binding affinity  is proportional to free energy changes, 373 
hence in a model without interaction, they would combine additively35. The full K-order model can be writ-374 
ten: 375 

   376 

where  contains all  combinations of size i of the mutations and  is equal to 1 if the sequence  377 
contains all the mutations in   and to 0 otherwise. This choice is called 8biochemical9 or 8local9 epistasis36 378 
and is the one used in the main text. Another option, called 8statistical9 or 8ensemble9 consists in replacing 379 
the coefficients  by . We present the result of this analysis, and the differences 380 
with the biochemical model, in Extended Data Figure 5. 381 
 382 
To choose the optimal value of K, we follow the method detailed in Phillips and Lawrence et al., 202136. 383 
Briefly, we use 10-fold cross-validation to test all values of K f 6. For each value of K, the data is split 384 
into ten and each of the ten sub-dataset is used as a test set for a model trained on the rest of the data. 385 
We chose the value of K that maximizes the prediction performance (R²) averaged over all ten testing 386 
datasets. For this dataset we found an optimal value of K=5 (Extended Data Figure 4). Finally, we trained 387 
a K=5 model over the complete dataset to get the final coefficients. The number of parameters of the fi-388 
nal model (~5000) is much lower than the number of observed data points (2¹u = 32768).  389 
 390 
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As mentioned above, the logarithm of binding affinity is proportional to a free energy change, an exten-391 
sive quantity. This theoretically justifies the use of a linear model. Nonetheless, in some scenarios, the 392 
interactions between mutations can be better explained by a nonlinear function with few parameters act-393 
ing on the full phenotype (<global epistasis=) rather than a large number of small-effects interactions at 394 
high order (<idiosyncratic epistasis=). Our implementation is similar to that described by Sailer and 395 
Harms, 201737 and follows closely Phillips and Lawrence et al., 202115,24. In short, we use a logistic func-396 
tion §, with four parameters, to fit the expression: 397 

 398 
The choice of a logistic function is justified by the general form of KD,app distribution, which slightly <plat-399 
eaued= at strong KD,app. This effect is not caused by experimental artifacts (Extended Data Figure 2) but 400 
instead by a form of <diminishing returns= epistasis37. Practically, the parameters are inferred by fitting 401 
successively the additive ³i and the nonlinear function parameters. Although the global epistasis trans-402 
formation does improve the fit, the additive coefficients observed at low order do not change significantly 403 
(Extended Data Figure 6). 404 
 405 
Structural analysis  406 
We used the reference structure of a 2.79 Å cryo-EM structure of Omicron BA.1 complexed with ACE2 407 
(PDB ID: 7WPB). In Figure 2C, the contact surface area is determined by using ChimeraX38 to measure 408 
the buried surface area between ACE2 and each mutated residue in the RBD (measure buriedarea func-409 
tion, default probeRadius of 1.4Å). In Figure 2E, the distance between ³-carbons is measured using 410 
PyMol39. 411 
 412 
Order of mutations 413 
ACE2 binding affinity impacts the fitness of SARS-CoV-2 variants and can thus be leveraged to partially 414 
infer its past trajectory. This piece of information is particularly important for Omicron BA.1, where phylo-415 
genetic information is limited. Because our dataset contains the ACE2 affinity of all possible evolutionary 416 
intermediates, we can infer the likelihoods of all pathways between the ancestral Wuhan Hu-1 sequence 417 
and Omicron BA.1. To do this we need to choose a selection model. The circumstances in which the 418 
Omicron variant evolved are unknown, and the evolutionary fitness of the virus is more complex than its 419 
capacity to bind ACE2 3 immune pressure, structural stability, and expression level also play a role, 420 
among many other factors40. In addition, back-mutations are common in viral evolution and selection 421 
pressure can change depending on whether the strain is switching hosts rapidly or part of a long-term 422 
infection. Here, we have chosen to adopt an extremely simple weak-mutation/strong-selection regime of 423 
viral evolution. 424 
 425 
In that model, selection proceeds as a Markov process, where the population is characterized by a single 426 
sequence that acquires a single mutation at each discrete step29,41. We assume that back mutations (i.e. 427 
a residue changing from the Wuhan Hu-1 amino-acid to the BA.1 one) are not possible. Once such a se-428 
quence is generated, it will either fix in the full population or die out. The important parameter is then the 429 
fixation probability, which depends on the binding affinity of both the original and mutated sequences. 430 
We choose to use the commonly used classical fixation probability42, for a mutation with selection coeffi-431 
cient Ã in a population of size N: 432 

 433 

 434 
 435 
Here, the selection coefficient is proportional to the difference in log binding affinities between the two 436 
sequences. We use this model in the <strong selection= limit (N ³ > and Ã ³>), where a mutation fixes if 437 
it is advantageous or if it is the less deleterious choice among all the leftover mutations. Weaker selec-438 
tion models give qualitatively similar results. In terms of implementation, we use a transition matrix ap-439 
proach that allows us to quickly compute the probability that each residue appears at a specific position.  440 
 441 
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Force directed layout 442 
The high-dimensional binding affinity landscape can be projected in two dimensions with a force-directed 443 
graph layout approach (see https://desai-lab.github.io/wuhan_to_omicron/). Each sequence in the anti-444 
body library is a node, connected by edges to its single-mutation neighbors. An edge between two se-445 
quences s and t is given the weight: 446 

 447 
In a force-directed representation, nodes repel each other, while the edges pull together the nodes they 448 
are attached to. In our scenario, this means that nodes with a similar genotype (a few mutations apart) 449 
and a similar phenotype (binding affinity) will be close to each other in two dimensions. 450 
 451 
Importantly this is not a <landscape= representation: the distance between two points is unrelated to how 452 
easy it is to reach one genotype from another in a particular selection model. Practically, after assigning 453 
all edge weights, we use the layout function layout_drl from the Python package iGraph, with default set-454 
tings, to obtain the layout coordinates for each variant. 455 
 456 
Genomic data 457 
 458 
To analyze SARS-CoV-2 phylogeny (Figure 4A and 4B), we used all complete RBD sequences from all 459 
SARS-CoV-2 genomes deposited in the Global Initiative on Sharing All Influenza Data (GISAID) reposi-460 
tory43345 with the GISAID Audacity global phylogeny (EPI_SET ID: EPI_SET_20220615uq, available on 461 
GISAID up to June 15, 2022, and accessible at https://doi.org/10.55876/gis8.220615uq) . We pruned the 462 
tree to remove all sequences with RBD not matching any of the possible intermediates between Wuhan 463 
Hu-1 and Omicron BA.1 and analyzed this tree using the python toolkit ete346. We measured the fre-464 
quency of each mutation (Figure 4A) by counting how many times it occurs independently in the tree 465 
(i.e., how often the mutation appears on a node whose parent node does not have that mutation). For 466 
Figure 4B, we counted two mutations as co-appearing if both mutations are absent in the parent node 467 
and contained in at least one of the descendant nodes. This strategy of studying the relative frequency of 468 
co-appearing mutations is a specific case to the method developed in Kryazhimskiy et al41, which infers 469 
epistasis between mutations from phylogenetic data (the general method was not applicable in this spe-470 
cific dataset due to its size).  471 
 472 
Statistical analyses and visualization 473 
All data processing and statistical analyses were performed using R v4.1.047 and python 3.10.048. All fig-474 
ures were generated using ggplot249 and matplotlib50.  475 
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FIGURES AND CAPTIONS 
 

 
 
Figure 1. Binding affinity landscape. (A) Distribution of binding affinities to ACE2 across all N=32,768 607 
RBD genotypes tested. Binding affinities are shown as -logKD,app; vertical blue and red lines indicate the -608 
logKD,app for Wuhan Hu-1 and Omicron BA.1, respectively. (B) Distributions of the effect of each mutation 609 
on ACE2 affinity (defined as the change in -logKD,app resulting from mutation) across all possible genetic 610 
backgrounds at the other 14 loci. Black line segments indicate 25th and 75th percentiles of the effect 611 
distributions and points represent distribution means. Blue and red points specify effects on Wuhan Hu-1 612 
and Omicron BA.1 backgrounds, respectively. (C) Distribution of binding affinities grouped by number of 613 
Omicron BA.1 mutations. Binding affinity of the Wuhan Hu-1 variant is indicated by horizontal dashed 614 
line. 615 
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Figure 2. Linear and epistatic effects of mutations. (A) First-order effects in best-fitting epistatic 616 
interaction model (up to fifth order). Error bars represent standard errors from the model fit. (B) Co-617 
crystal structure of Omicron BA.1 RBD and ACE2 receptor (PDB ID 7WPB). Mutated residues shown as 618 
spheres colored as in (A). (C) First-order effects for each mutation plotted against contact surface area 619 
between corresponding BA.1 RBD residue and ACE2. Mutations colored as in (A). (D) Second-order 620 
epistatic interaction coefficients and higher order interaction coefficients. For each mutation, higher order 621 
interaction coefficient (shown at bottom of heat map plot) is calculated by summing over all third- and 622 
fourth-order interaction coefficients involving the mutation. (E) Pairwise interaction coefficients plotted 623 
against the distances between the respective alpha-carbons. Mutations are colored by pairwise 624 
coefficient as in (D). 625 
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Figure 3. Epistasis compensates for reductions in ACE2 affinity. (A) ACE2 binding affinities for 626 
variants containing mutations that have a strong effect on antibody escape: K417N, G446S, E484A, 627 
Q493R, and G496S grouped by the presence of compensatory mutations (Q498R and N501Y). Dashed 628 
blue (resp. red) line indicates Wuhan Hu-1 (resp. Omicron BA.1) ACE2 binding affinity. (B) The changes 629 
in ACE2 binding affinities for variants containing any one (or all) of select escape mutations grouped by 630 
the presence of compensatory mutations (Q498R and N501Y). Dashed line indicates no affinity change. 631 
(C) ACE2 binding affinities for variants containing Y505H and antibody escape mutations presented as in 632 
(A). 633 
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Figure 4. Trajectory of Omicron BA.1 evolution (A) Frequency of occurrences for each mutation 634 
across SARS-CoV-2 sequences available on GISAID (see Methods) as a function of their average effect 635 
on ACE2 affinity in our data. Error bars indicate standard deviation of effect sizes. (B) Normalized 636 
frequency of mutations co-occurring with N501Y across SARS-CoV-2 sequences available on GISAID 637 
(calculated based on the frequency at which each mutation occurs on the same branch as N501Y, 638 
normalized by their overall frequency; see Methods) as a function of the difference in their effect on 639 
ACE2 affinity in the presence of N501Y. Error bars indicate standard deviation of effects. (C) ACE2 640 
affinity trajectories for 100 randomly selected pathways (involving all 15 mutations), shown as a function 641 
of the number of mutations with strong effect on antibody escape (K417N, G446S, E484A, Q493R, and 642 
G496S) and the presence or absence of compensatory mutations Q498R and N501Y (shown with 643 
colors). Each trajectory represents a possible mutation order, starting at the Wuhan Hu-1 genotype and 644 
ending at Omicron BA.1.   645 
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EXTENDED DATA FIGURES AND CAPTIONS 
 

 
Extended Data Figure 1: Schematic overview of the experimental method and reproducibility of 646 
dissociation constants determined via Tite-seq. (A) The plasmid library of RBD variants is first 647 
transformed into a standard yeast display strain. The library is incubated with soluble, fluorescent ACE2 648 
and sorted by flow cytometry into bins based on ACE2 fluorescence. Deep sequencing of each bin yields 649 
an estimate for the mean bin (Bavg) of each RBD variant. This is repeated for varying ACE2 concentration 650 
to produce a titration curve. Since the fluorescence is linearly related to the RBD occupancy on the yeast 651 
cell surface, apparent equilibrium dissociation constants can be inferred by fitting Bavg to the ACE2 652 
concentration. (B) Correlation of -log(KD,app) between the first and second biological replicates. (C) 653 
Correlation of -log(KD,app) between the first and third biological replicates. (D) Distribution of the standard 654 
error of -log(KD,app) between biological replicates. (E) Isogenic measurements (see Methods) versus Tite-655 
Seq measurement with a 1:1 dotted line. (F) Comparison of Tite-Seq KD measurements with independent 656 
KD measurements reported in Starr et al12 with a 1:1 dotted line. 657 
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Extended Data Figure 2: Expression level of RBD in the yeast display system. (A) Correlation of 658 
normalized expression levels between the first and second biological replicates. (B) Distribution of the 659 
normalized expression levels between biological replicates.  (C) Distribution of the normalized yeast-660 
display expression of each RBD variant in the library. Vertical red and green lines represent the 661 
expression for Wuhan Hu-1 and Omicron BA.1, respectively. (D) Effect of the S371L mutation on 662 
expression levels depending on the S373P and S375F background. (E) Mutational effects (defined as 663 
the difference in normalized expression after adding one mutation) for each Omicron BA.1 RBD 664 
mutation. Violin plots show full distribution of effects, where black lines indicate 25th and 75th percentiles 665 
and the black point denotes mean. Blue and red points specify effects on Wuhan Hu-1 and into Omicron 666 
BA.1 variants, respectively.  667 
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Extended Data Figure 3: Change in ACE2 affinity across number of mutations. The mean effect of 668 
each mutation is plotted against the number of BA.1 mutations in the genotypic background. Dashed line 669 
indicates no change in affinity.  670 
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Extended Data Figure 4: Truncation of biochemical epistasis model. Correlation coefficients 671 
between the measured values of -log(KD,app) and the model estimate for various orders of epistatic 672 
model. Correlations are computed on the subset of the dataset on which the model was trained (orange) 673 
and on the hold-out subset (green), averaged over the 10 folds of cross-validation. The inset is a 674 
zoomed-in version for orders 3 to 6.  675 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 19, 2022. ; https://doi.org/10.1101/2022.06.17.496635doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.17.496635
http://creativecommons.org/licenses/by-nc/4.0/


 
 
Extended Data Figure 5: Alternative model of statistical epistasis. (A) Linear effect of each mutation 676 
in the statistical epistasis model that is truncated at the fourth order. (B)  Second-order epistatic 677 
interaction coefficients and higher order interaction in the statistical epistasis model.  678 
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Extended Data Figure 6: Global epistasis (A) Relationship between the binding affinity and the mean 679 
effect of an additional mutation on this background. (B) Relationship between the observed binding 680 
affinity and the affinity predicted with a linear additive model without epistasis. The red line represents 681 
the global epistasis function. (C) Linear effect of each mutation in the global epistasis model that is 682 
truncated at the fourth order.  (D) Second-order and higher-order epistatic interaction coefficients in the 683 
global epistatic model. (E) Correlation between the epistatic interaction coefficients of the models with 684 
and without global epistasis. The black line represents the best fit.  685 
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Extended Data Figure 7: Comparison between the linear model estimate of the binding affinity 686 
and the measured binding affinity. The x-axis is the predicted binding affinity, using only the linear 687 
coefficients of the full 5th-order model; the y-axis is the measured binding affinity.  688 
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Extended Data Figure 8: Binding affinity of escape genotypes with additional compensatory 689 
mutations. The ACE2 binding affinities of variants with all seven mutations discussed in the main text 690 
(the five escape mutations K417N, G446S, E484A, Q493R, and G496S, plus Q498R and N501Y) with all 691 
possible combinations of three other mutations (S375F, N440K, and S477N). Blue and red dashed lines 692 
represent Wuhan Hu-1 and Omicron BA.1 affinity, respectively.  693 
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Extended Data Figure 9: Phylogeny of BA.1 and BA.2 showing mutations in spike protein RBD. 694 
Mutations are colored as in Figure 2A. Dashed boxes indicate mutations with ambiguous positions on the 695 
tree.   696 
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Extended Data Figure 10: Inferred order of mutations. Conditional probability of mutation order from 697 
Wuhan-Hu-1 to Omicron BA.1 variant, assuming a classical population dynamics model (see Methods). 698 
Mutations with asterisks are known to happen last (see Extended Data Figure 9).  699 
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