

1 Compensatory epistasis maintains ACE2 affinity in SARS-CoV-2 2 Omicron BA.1

3 Alief Moulana^{1*}, Thomas Dupic^{1*}, Angela M. Phillips^{1*†}, Jeffrey Chang^{2*}, Serafina Nieves³, Anne A.
4 Roffler⁴, Allison J. Greaney^{5,6,7}, Tyler N. Starr⁵, Jesse D. Bloom^{5,6,8}, Michael M. Desai^{1,2,9,10†}

5 ¹Department of Organismic and Evolutionary Biology, Harvard University, Cambridge MA 02138,

6 ²Department of Physics, Harvard University, Cambridge, MA 02138, ³Department of Molecular and

7 Cellular Biology, Harvard University, Cambridge MA 02138, ⁴Biological and Biomedical Sciences,

8 Harvard Medical School, Boston MA 02115, ⁵Basic Sciences Division and Computational Biology

9 Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, ⁶Department of Genome

10 Sciences, University of Washington, Seattle, WA 98195, ⁷Medical Scientist Training Program, University

11 of Washington, Seattle, WA 98195, ⁸Howard Hughes Medical Institute, Seattle, WA 98109, ⁹NSF-Simons

12 Center for Mathematical and Statistical Analysis of Biology, Harvard University, Cambridge MA 02138,

13 ¹⁰Quantitative Biology Initiative, Harvard University, Cambridge MA 02138.

14 *These authors contributed equally to this work.

15 †angela.phillips@ucsf.edu, mdesai@oeb.harvard.edu

16 Abstract

17 The Omicron BA.1 variant emerged in late 2021 and quickly spread across the world. Compared to the
18 ancestral Wuhan Hu-1 strain and other pre-Omicron SARS-CoV-2 variants, BA.1 has many mutations, a
19 number of which are known to enable antibody escape^{1–3}. Many of these antibody-escape mutations
20 individually decrease the spike receptor-binding domain (RBD) affinity for ACE2 in the background of
21 early SARS-CoV-2 variants⁴, but BA.1 still binds ACE2 with high affinity^{5,6}. The fitness and evolution of
22 the BA.1 lineage is therefore driven by the combined effects of numerous mutations. Here, we
23 systematically map the epistatic interactions between the 15 mutations in the RBD of BA.1 relative to the
24 Wuhan Hu-1 strain. Specifically, we measure the ACE2 affinity of all possible combinations of these 15
25 mutations ($2^{15} = 32,768$ genotypes), spanning all possible evolutionary intermediates from the ancestral
26 Wuhan Hu-1 strain to BA.1. We find that immune escape mutations in BA.1 individually reduce ACE2
27 affinity but are compensated by epistatic interactions with other affinity-enhancing mutations, including
28 Q498R and N501Y. Thus, the ability of BA.1 to evade immunity while maintaining ACE2 affinity is
29 contingent on acquiring multiple interacting mutations. Our results implicate compensatory epistasis as a
30 key factor driving substantial evolutionary change for SARS-CoV-2 and are consistent with Omicron BA.1
31 arising from a chronic infection.

32 The Omicron BA.1 variant of SARS-CoV-2 emerged in November 2021 and spread rapidly throughout
33 the world, driven in part by its ability to escape existing immunity in vaccinated and previously infected
34 individuals^{7,8}. Strikingly, Omicron did not emerge as a descendant of the then-widespread Delta lineage.
35 Instead, it appeared as a highly diverged strain after accumulating dozens of mutations within a lineage
36 that was not widely circulating at the time, including 15 mutations within the spike protein receptor-
37 binding domain (RBD)⁷.
38
39 Recent work has shown that a number of these 15 RBD mutations (some of which are seen in other
40 variants) disrupt binding of specific monoclonal antibodies^{1,3,9-11}, potentially contributing to immune
41 escape. However, most of these mutations have also been shown to reduce binding affinity to human
42 ACE2 when they arise within the Wuhan Hu-1, Delta, or several other SARS-CoV-2 lineages^{4,12},
43 potentially impairing viral entry into host cells. In contrast, the Omicron RBD tolerates these escape
44 mutations while retaining strong affinity to ACE2, suggesting that other mutations in this lineage may help
45 maintain viral entry.
46
47 Earlier work has systematically analyzed mutational effects on antibody binding and ACE2 affinity, for
48 example by using deep mutational scanning (DMS)^{12,13}. However, these approaches focus on the effects
49 of single mutations on specific genetic backgrounds. They are therefore useful for understanding the first
50 steps of evolution from existing variants but cannot explain how multiple mutations interact over longer
51 evolutionary trajectories. Thus, it remains unclear how combinations of mutations, such as those
52 observed in Omicron, interact to both evade immunity and retain strong affinity to ACE2.
53
54 To address this question, we used a combinatorial assembly approach to construct a plasmid library
55 containing all possible combinations of the 15 mutations in the Omicron BA.1 RBD (a total of $2^{15} =$
56 32,768 variants). This library includes all possible evolutionary intermediates between the Wuhan Hu-1
57 and Omicron BA.1 RBD. We transformed this plasmid library into a standard yeast display strain,
58 creating a yeast library in which each cell displays a single monomeric RBD variant corresponding to the
59 plasmid in that cell. We then used Tite-Seq, a high-throughput flow cytometry and sequencing-based
60 method^{14,15} (see Methods; Extended Data Figure 1A), to measure the binding affinities, $K_{D,app}$, of all
61 32,768 RBD variants to human ACE2 in parallel. Consistent with earlier work by ourselves¹⁵ and
62 others^{12,14,16}, we find that these Tite-Seq measurements are highly reproducible (SEM of $0.2 \log K_{D,app}$
63 between triplicate measurements) and consistent with independent low-throughput measurements (see
64 Methods; Extended Data Figure 1B-F). In addition, we find minimal variation in RBD expression levels
65 and are thus able to infer $K_{D,app}$ for the entire combinatorial library (see Methods; Extended Data Figure
66 2).
67
68 We find that all 32,768 RBD intermediates between Wuhan Hu-1 and Omicron BA.1 have detectable
69 affinity to ACE2, with $K_{D,app}$ ranging between 0.1 μ M and 0.1 nM (Figure 1A and Extended Data Figure 1;
70 see https://desai-lab.github.io/wuhan_to_omicron/ for an interactive data browser). Consistent with
71 previous studies⁵, the BA.1 RBD exhibits a slight (3-fold) improvement in binding affinity compared to
72 Wuhan Hu-1. However, most (~ 60%) of the intermediate RBD sequences actually show a weaker
73 binding affinity to ACE2 than the ancestral Wuhan Hu-1 RBD. This is because the vast majority of BA.1
74 mutations have a neutral or deleterious effect on ACE2 affinity on most genetic backgrounds (Figure 1B).
75 This is particularly true for K417N, G446S, Q493R, G496S, and Y505H, four of which are known to be
76 involved in escape from various classes of monoclonal antibodies¹⁷⁻¹⁹.
77
78 Although many BA.1 mutations reduce ACE2 affinity on average, the interactions between these
79 mutations result in improvement in ACE2 affinity for BA.1 relative to the ancestral Wuhan Hu-1 strain.
80 That is, mutations tend to be more deleterious for ACE2 affinity if few other mutations are present but
81 tend to become neutral or even beneficial in the presence of multiple other mutations (Figure 1C;
82 Extended Data Figure 3). Consistent with this, we find that although most of the 15 RBD mutations
83 reduce ACE2 affinity in the Wuhan Hu-1 background (and in many cases across most other backgrounds
84 as well), they all become less deleterious or even beneficial in the Omicron background (Figure 1B). This
85 pattern explains why the BA.1 RBD has a stronger affinity for ACE2 despite containing so many

86 mutations that individually reduce ACE2 affinity: their deleterious effects are mitigated by compensatory
87 epistatic interactions with other mutations.
88
89 To systematically analyze mutational effects and interactions, we fit a standard biochemical model of
90 epistasis²⁰ to our data. This decomposes our measured $-\log(K_{D,app})$ (which is expected to be proportional
91 to the free energy of binding, ΔG)^{21,22} into a sum of linear effects from single mutations, pairwise
92 epistasis, and higher-order epistatic interactions among larger sets of mutations (truncated at fifth order;
93 Extended Data Figure 4, see Methods). This model yields coefficients that are comparable to alternative
94 models of statistical (Extended Data Figure 5) and global²³ (Extended Data Figure 6) epistasis.
95 Generally, we find that the linear effects of individual mutations (Figure 2A) correlate with the ACE2
96 contact surface area of the corresponding residue (Figure 2B,C), and neighboring residues are more
97 likely to have strong pairwise interactions (Figure 2E), as we might expect from previous work^{15,24}.
98
99 Our inferred pairwise and higher-order coefficients reveal that strong compensatory interactions offset
100 the effects of affinity-reducing mutations (Figure 2D). The magnitude of these interactions is comparable
101 to that of the linear effects, and this epistasis is overwhelmingly positive, as excluding epistatic terms
102 leads to a consistent underestimate of the predicted affinity (Extended Data Figure 7). This strong
103 positive epistasis means that mutations which reduce ACE2 affinity become less deleterious in
104 backgrounds containing other compensatory mutations. For example, the negative linear effect of Q498R
105 is fully compensated by its interaction with nearby mutation N501Y; this pairwise interaction has been
106 highlighted in earlier work^{4,6,25}. We identify numerous additional interacting mutations, including even
107 stronger positive interactions (along with third and fourth-order effects) between Q498R, G496S, N501Y,
108 and Y505H (Figure 2D).
109
110 This high-order compensatory epistasis eliminates the strongly deleterious effects of mutations involved
111 in antibody escape on ACE2 affinity. Specifically, earlier work has shown that five BA.1 mutations
112 (K417N, G446S, E484A, Q493R, and G496S) have a particularly strong effect in promoting antibody
113 escape^{1,18,19}. These mutations all individually reduce affinity to ACE2 both on average and in the Wuhan
114 Hu-1 background (except E484A; Figure 1B, 2A, 3A), and the combination of all five is strongly
115 deleterious (Figure 3A,B). However, strong high-order epistasis with Q498R and N501Y mitigates this:
116 either N501Y or Q498R alone reduces the cost of the five escape mutations, and the combination of both
117 almost fully compensates for these deleterious effects (Figure 3B). While these escape mutations do also
118 benefit from interactions with other mutations (Extended Data Figure 8), N501Y and Q498R account for
119 the majority of the compensatory effect. We note that strong compensatory interactions also mitigate the
120 deleterious effect of Y505H (Figure 3C). This mutation has not previously been shown to be strongly
121 involved in antibody escape, but the pattern of compensation we observe suggests that it may be
122 functionally relevant in some way.
123
124 The extensive epistasis we observe means that the individual effects of each of these 15 mutations, as
125 well as the pairwise interactions between them, are likely different in other viral lineages. However,
126 earlier work has shown that the antibody escape mutations described above (K417N, G446S, E484A,
127 Q493R, and G496S) similarly reduce ACE2 affinity in several other variants (including Alpha, Beta, Eta,
128 and Delta)²⁵. Consistent with this result, we find that these mutations, along with others that we find have
129 a negative linear effect on ACE2 affinity, rarely occur across the SARS-CoV-2 phylogeny (Figure 4A).
130 This suggests that maintaining affinity to human ACE2 is likely an important aspect of viral fitness, so
131 these mutations are typically selected against. Similarly, we find that mutations with negative effects on
132 ACE2 affinity that are compensated by epistatic interactions with N501Y tend to be enriched across the
133 SARS-CoV-2 phylogeny in strains that also have N501Y, relative to strains that do not (Figure 4B; other
134 pairwise interactions co-occur too rarely to test). This further suggests that at least some of the pairwise
135 epistatic interactions we observe are also present in other backgrounds, and that viral evolution has
136 favored compensation for reduction in ACE2 affinity.
137
138 Together, these results suggest that the evolution of antibody escape in BA.1 was possible without
139 disrupting binding to ACE2 because of the compensatory interactions with numerous other mutations

140 unique to this lineage. While signatures of these selection pressures and epistatic interactions are
141 present across the viral phylogeny²⁶, and antibody escape variants could have been compensated by
142 other combinations of mutations, it is only the BA.1 lineage which accumulated this particular
143 combination of interacting compensatory mutations.
144
145 Our results also provide insight into why the immune escape phenotype observed in Omicron BA.1 did
146 not arise as the result of mutations accumulating within the then-widely circulating Delta variant.
147 Specifically, the combination of multiple mutations required for both immune escape and maintaining
148 affinity to ACE2 (Figure 4C) is unlikely to have accumulated within the context of acute infections, which
149 involve few mutations between transmission bottlenecks and presumably strong selection pressures on
150 both functions²⁷. In contrast, in chronic infections (e.g. in an immunocompromised host) large population
151 sizes and relaxed selection pressures may allow for the accumulation of the many mutations required to
152 both maintain ACE2 affinity and evade neutralizing antibodies^{28,29}. Under such relaxed selection, the
153 compensatory mutations may have preceded the immune escape mutations, minimizing their otherwise
154 deleterious effects on ACE2 affinity. Alternatively, relaxed selection for binding ACE2 may have created
155 a permissive environment for the immune escape mutations, followed by compensation that then allowed
156 the variant to spread to other hosts. Phylogenetic analysis provides some support for the former
157 possibility, as two immune escape mutations (G446S and G496S) occur late in BA.1 evolution (and are
158 not shared with the BA.2 lineage; Extended Data Figure 9). In addition, a strong selection model based
159 on ACE2 affinity prefers the three BA.1-specific mutations to appear late in the evolution, as observed in
160 the phylogeny (Extended Data Figure 10). Irrespective of the exact order of mutations, the large viral
161 population size and relaxed selection pressure of a chronic infection may have created conditions
162 conducive to the fixation of the several mutations required for BA.1 to evade neutralizing antibodies while
163 maintaining ACE2 affinity.
164
165 We emphasize that our work is confined to 15 mutations within a specific region of one protein, and
166 hence neglects potential interactions with the many other mutations present in the Omicron BA.1 lineage.
167 In addition, we focus on ACE2 affinity and antibody escape, which represent only two aspects of viral
168 fitness. It is likely that other properties of BA.1 (e.g. spike protein expression and stability) also play key
169 roles in viral evolution. We find some hints of this in our data. For example, we identify a significant
170 synergistic interaction between S371L, S373P, and S375F that improves RBD expression in yeast,
171 consistent with earlier work showing that this set of mutations is associated with stabilization of a more
172 tightly packed down-conformation of the RBD³⁰ (Extended Data Figure 3). Beyond this, numerous other
173 phenotypes are also likely to be relevant.
174
175 Despite these caveats, our results demonstrate that key events in viral evolution can depend on high-
176 order patterns of epistasis. This may be especially important for complex adaptive events involving
177 numerous mutations, such as immune escape and host-switching. Thus, to predict the future of viral
178 evolution we must move beyond high-throughput screens of single mutations, and more
179 comprehensively analyze combinatorial sequence space. A key challenge is the vastness of this
180 sequence space, which makes exhaustive exploration intractable. However, generating specific
181 combinatorial landscapes like those presented here may help reveal general patterns of epistasis that
182 shape viral evolution in complex environments.

183 **METHODS**

184

185 **Yeast display plasmid & strains**

186 To generate clonal yeast strains for the Wuhan Hu-1 and Omicron BA.1 variants, we cloned the corre-
187 sponding RBD gblock (IDT, https://github.com/desai-lab/compensatory_epistasis_omicron/tree/main/Supplementary_Files) into pETcon yeast surface-display vector (plasmid 2649; Addgene,
188 Watertown, MA, #166782; https://github.com/desai-lab/compensatory_epistasis_omicron/tree/main/Supplementary_Files) via Gibson Assembly. The sequence of the gblock was codon-optimized for yeast (us-
189 ing the Twist Bioscience algorithm); we found that the codon optimization had a significant impact on dis-
190 play efficiency. Additionally, for the library construction (described below), we deleted two existing Bsa-I
191 sites from the plasmid by site-directed mutagenesis (Agilent, Santa Clara, CA, #200521). In the clonal
192 strain production, Gibson Assembly products were transformed into NEB 10-beta electrocompetent *E.*
193 *coli* cells (NEB, Ipswich, MA, #C3020K), following the manufacturer protocol. After overnight incubation
194 at 37°C, the cells were harvested, and the resulting plasmids were purified and Sanger sequenced. We
195 transformed plasmids containing the correct sequences into the AWY101 yeast strain (kind gift from Dr.
196 Eric Shusta)³¹ as described by Gietz and Schiestl³². Transformants were plated on SDCAA-agar (1.71
197 g/L YNB without amino acids and ammonium sulfate [Sigma-Aldrich #Y1251], 5 g/L ammonium sulfate
198 [Sigma-Aldrich #A4418], 2% dextrose [VWR #90000–904], 5 g/L Bacto casamino acids [VWR #223050],
199 100 g/L ampicillin [VWR #V0339], 2% Difco Noble Agar [VWR #90000–774]) and incubated at 30°C for
200 48 hr. Several colonies were restreaked on SDCAA-agar and again incubated at 30°C for 48 hr. Clonal
201 yeast strains were picked, inoculated, grown to saturation in liquid SDCAA (6.7 g/L YNB without amino
202 acid VWR #90004-150), 5 g/L ammonium sulfate (Sigma-Aldrich #A4418), 2% dextrose (VWR #90000–
203 904), 5 g/L Bacto casamino acids (VWR #223050), 1.065 g/L MES buffer (Cayman Chemical, Ann Arbor,
204 MI, #70310), 100 g/L ampicillin (VWR # V0339) at 30°C, and mixed with 5% glycerol for storage at
205 –80°C.

206

207 **Yeast display library production**

208 We generated the RBD variant library with a Golden Gate combinatorial assembly strategy. First, we di-
209 vided the RBD sequence into five fragments of about equal length, ranging from 90 to 131 bp and each
210 containing between 1 and 4 mutations. We introduced BsaI sites and overhangs to both ends of each
211 fragment sequence. These overhangs contained BsaI cut sites that would allow the five fragments to as-
212 semble uniquely in their proper order within the plasmid backbone. For each fragment with n mutations,
213 we generated 2^n fragment versions by either producing the fragments via PCR (Fragments 1-4) or pur-
214 chasing individual DNA duplexes (Fragment 5) from IDT. These permutations ensured the inclusion of all
215 possible mutation combinations in the library. In Fragment 2, we also included a synonymous substitution
216 on the K378 residue that corresponds to the K417N mutation. This substitution allows for the amplicon
217 library to be sequenced on the Illumina Novaseq SP (2x250bp). For dsDNA production by PCR, we de-
218 signed the fragments such that the mutations they contain are close to the 3' or 5' ends. This design ena-
219 bled the primers to simultaneously include and introduce the mutations, BsaI sites, and unique over-
220 hangs chosen during the PCR. We produced each version of each fragment individually (28 PCR reac-
221 tions in total; see https://github.com/desai-lab/compensatory_epistasis_omicron/tree/main/Supplementary_Files for primer sequences) and pooled the products of each fragment in equimolar ratios. Addition-
222 ally, we also pooled all 16 purchased DNA duplexes encoding the fifth fragment in equimolar ratios. We
223 then created a final fragment mix by pooling the five fragment pools together. In the Golden Gate reac-
224 tion, the versions of each fragment would be ligated together in random combinations, producing all of
225 the sequences present at approximately equal frequencies.

226

227 In addition to the fragment mix, we prepared four versions of the plasmid backbone for the Golden Gate
228 reaction. Each version contains a combination of the mutations N501Y and Y505H. Prior to the assem-
229 bly, we introduced the counter-selection marker *ccdB*, in place of the fragment insert region, with flanking
230 BsaI sites (https://github.com/desai-lab/compensatory_epistasis_omicron/tree/main/Supplementary_Files). We performed Golden Gate cloning using Golden Gate Assembly Mix (NEB, Ipswich, MA,
231 #E1601L), following the manufacturer recommended protocol, with a 7:1 molar ratio of the fragment in-

232

236 sert pool to plasmid backbone. We transformed the assembly products into NEB 10-beta electrocompet-
237 ent *E. coli* cells in 6 x 25 μ L cell aliquots. We then transferred each of the recovered cell culture to 100
238 mL of molten LB (1% tryptone, 0.5% yeast extract, 1% NaCl) containing 0.3% SeaPrep agarose (VWR,
239 Radnor, PA #12001–922) spread into a thin layer in a 1L baffled flask (about 1 cm deep). The mixture
240 was placed at 4°C for three hours, after which it was incubated for 18 hr at 37°C. We observed a total of
241 3 million transformants across aliquots. To isolate the plasmid library, we mixed the flasks by shaking for
242 1 hr and pelleted the cells for standard plasmid maxiprep (Zymo Research, Irvine, CA, D4201), from
243 which we obtained > 90 μ g of purified plasmid.
244

245 We then transformed the purified plasmid library into AWY101 cells as described above. We recovered
246 transformants in a molten SDCAA agarose gel (1.71 g/L YNB without amino acids and ammonium sul-
247 fate (Sigma-Aldrich #Y1251), 5 g/L ammonium sulfate (Sigma-Aldrich, St. Louis, MO, #A4418), 2% dex-
248 trose (VWR #90000–904), 5 g/L Bacto casamino acids (VWR #223050), 100 g/L ampicillin (VWR #
249 V0339)) containing 0.35% SeaPrep agarose (VWR #12001–922) spread into a thin layer (about 1 cm
250 deep). The mixture was placed at 4°C for three hours, after which it was incubated at 30°C for 48 hours.
251 From five aliquots, we obtained ~1.2 million colonies. After mixing the flasks by shaking for 1 hr, we grew
252 cells in 5 mL tubes of liquid SDCAA for five generations and stored the saturated culture in 1 mL aliquots
253 supplemented with 5% glycerol at -80°C.
254

255 **High-throughput binding affinity assay (Tite-Seq)**

256 Tite-Seq was performed as previously described^{12,14,15}. We performed three replicates of the assay on
257 different days. In the first two replicates, a small portion of the library variants contained an off-target mu-
258 tation (E484W) instead of the intended mutation (E484A). These variants were removed from the data
259 analysis, and in the third replicate the library was supplemented with variants containing the intended
260 mutation (E484A).
261

262 Preparation: First, we thawed yeast RBD libraries, as well as Wuhan Hu-1 and Omicron BA.1 clonal
263 strains, by inoculating 150 μ L of corresponding glycerol stock (saturated culture with 5% glycerol stored
264 at -80°C) in 5 mL SDCAA at 30°C for 20 hr. On the next day, yeast cultures were diluted to OD600=0.67
265 in 5 mL SGDCAA (6.7 g/L YNB without amino acid VWR #90004-150), 5 g/L ammonium sulfate (Sigma-
266 Aldrich #A4418), 2% galactose (Sigma-Aldrich #G0625), 0.1% dextrose (VWR #90000–904), 5 g/L Bacto
267 casamino acids (VWR #223050), 1.065 g/L MES buffer (Cayman Chemical, Ann Arbor, MI, #70310), 100
268 g/L ampicillin (VWR # V0339), and rotated at room temperature for 16–20 hr.
269

270 Labeling: After overnight induction, yeast cultures were pelleted, washed twice with 0.01% PBSA (VWR
271 #45001–130; GoldBio, St. Louis, MO, #A-420–50), and resuspended to an OD600 of 1. A total of 500-
272 700 μ L of OD1 yeast cells were labeled with biotinylated human ACE2 (Acrobiosystems #AC2-
273 H2H82E6) at each of the twelve ACE2 concentrations (half-log increments spanning $10^{-12.5} – 10^{-7}$ M),
274 with volumes adjusted to limit ligand depletion effects to be less than 10% (assuming 50,000 surface
275 RBD/cell³³). Yeast-ACE2 mixtures were incubated and rotated at room temperature for 20 hr. Following
276 the incubation, yeast-ACE2 complexes were pelleted by spinning at 3000 x g for 10 minutes at 4°C,
277 washed twice with 0.5% PBSA + 2mM EDTA, and subsequently labeled with Streptavidin-RPE (1:100,
278 Thermo Fisher #S866) and anti-cMyc-FITC (1:50, Miltenyi Biotec, Somerville, MA, #130-116-485) at 4°C
279 for 45 min. After this secondary labeling, yeast were washed twice with 0.5% PBSA + 2mM EDTA and
280 left on ice in the dark until sorting.
281

282 Sorting and recovery: We sorted the yeast library complex on a BD FACS Aria Illu, equipped with 405
283 nm, 440 nm, 488 nm, 561 nm, and 635 nm lasers, and an 85 micron fixed nozzle. To minimize the spec-
284 tral overlap effects, we determined compensation between FITC and PE using single-fluorophore con-
285 trols. Single cells were first gated by FSC vs SSC and then sorted by either expression (FITC) or binding
286 (PE) fluorescence. At least one million cells were sorted for each sample. In the expression sorts, sin-
287 glets (based on FSC vs SSC) were sorted into eight equivalent log-spaced FITC bins. For the binding
288 sorts, FITC+ cells were sorted into 4 PE bins (the PE- population comprised bin 1, and the PE+ popula-
289 tion was split into three equivalent log-spaced bins 2–4 as described in Phillips and Lawrence et al.
290 2021). Sorted cells were collected in polypropylene tubes coated and filled with 1 mL YPD supplemented
291 with 1% BSA. Upon recovery, cells were pelleted by spinning at 3000 x g for 10 min and resuspended in

292 4 mL SDCAA. The cultures were rotated at 30°C until late-log phase (OD600 = 0.9-1.4).
293

294 **Sequencing library preparation:** 1.5 mL of late-log yeast cultures was pelleted and stored at -20C for at
295 least six hours prior to extraction. Yeast display plasmids were extracted using Zymo Yeast Plasmid Min-
296 iprep II (Zymo Research # D2004), following the manufacturer's instructions, and eluted in a 17 μ L elu-
297 tion buffer. RBD amplicon sequencing libraries were prepared by a two-step PCR as previously de-
298 scribed^{15,34}. In the first PCR, unique molecular identifiers (UMI), inline indices, and partial Illumina adapt-
299 ers were appended to the sequence library through 7 amplification cycles to minimize PCR amplification
300 bias. We used 5 μ L plasmid DNA as template in a 25 μ L reaction volume with Q5 polymerase according
301 to the manufacturer's protocol (NEB # M0491L). Reaction was incubated in a thermocycler with the fol-
302 lowing program: 1. 60 s at 98°C, 2. 10 s at 98°C, 3. 30 s at 66°C, 4. 30 s at 72°C, 5. GOTO 2, 6x, 6. 60 s
303 at 72°C. Shortly after the reaction completed, we added 25 μ L water into reactions and performed a 1.2X
304 magnetic bead cleanup (Aline Biosciences #C-1003-5). The purified products were then eluted in 35 μ L
305 elution buffer. In the second PCR, the remainder of the Illumina adapter and sample-specific Illumina i5
306 and i7 indices were appended through 35 amplification cycles (see https://github.com/desai-lab/compensatory_epistasis_omicron/tree/main/Supplementary_Files for primer sequences). We used 33 μ L of the
307 purified PCR1 product as template, in a total volume of 50 μ L using Kapa polymerase (Kapa Biosystems
308 #KK2502) according to the manufacturer's instructions. We incubated this second reaction in a thermo-
309 cycler with the following program: 1. 30 s at 98°C, 2. 20 s at 98°C, 3. 30 s at 62°C, 4. 30 s at 72°C, 5.
310 GOTO 2, 34x, 6. 300 s at 72°C. The resulting sequencing libraries were purified using 0.85X Aline
311 beads, amplicon size was verified to be ~500 bp by running on a 1% agarose gel, and amplicon concen-
312 tration was quantified by fluorescent DNA-binding dye (Biotium, Fremont, CA, #31068, per manufac-
313 turer's instructions) on Spectramax i3. We then pooled the amplicon libraries according to the number of
314 cells sorted and further size-selected this pool by a two-sided Aline bead purification (0.5–0.9X). The final
315 pool size was verified by Tapestation 5000 HS and 1000 HS. Final sequencing library was quantitated by
316 Qubit fluorometer and sequenced on an Illumina NovaSeq SP with 10% PhiX.
317

318 319 **Sequence data processing**

320 We processed our raw demultiplexed sequencing reads to identify and extract the indexes and muta-
321 tional sites. To do so, we developed a snakemake pipeline (https://github.com/desai-lab/compensatory_epistasis_omicron/tree/main/Titeseq) that first parsed through all fastq files and separated the reads
322 according to inline indices, UMIs, and sequence reads using Python library regex³⁵. We accepted se-
323 quences that match the entire read (with no restrictions on bases at mutational sites) within 10% bp mis-
324 match tolerance. Next, we discarded incorrect inline indices (according to the corresponding i5/i7 indices)
325 and parsed read sequences into binary genotypes ('0' for Wuhan Hu-1 allele or '1' for Omicron BA.1 allele
326 at each mutation position). Reads with errors at mutation sites (i.e. not matching either Wuhan Hu-1 al-
327 lele or Omicron BA.1 allele) were discarded. Finally, we counted the number of distinct UMIs for each
328 genotype, and collated genotype counts from all samples into a single table. The mean coverage across
329 all replicates was ~150x.
330

331 332 To fit the binding dissociation constants $K_{D,app}$ for each genotype, we followed the same procedure as
333 previously described^{21,22}. In brief, we used sequencing and flow cytometry data to calculate the mean
334 log-fluorescence of each genotype s at each concentration c , following:
335

$$\bar{F}_{s,c} = \sum_b F_{b,c} p_{b,s|c},$$

336 where $F_{b,c}$ is the mean log-fluorescence of bin b at concentration c , and $p_{b,s|c}$ is the inferred proportion of
337 cells from genotype s that are sorted into bin b at concentration c . The $p_{b,s|c}$ is in turn estimated from the
338 read counts as

$$p_{b,s|c} = \frac{\frac{R_{b,s,c}}{\sum_s R_{b,s,c}} C_{b,c}}{\sum_b \left(\frac{R_{b,s,c}}{\sum_s R_{b,s,c}} C_{b,c} \right)},$$

339 340 where $R_{b,s,c}$ is the number of reads from genotype s that are found in bin b at concentration c , whereas
341 $C_{b,c}$ refers to the number of cells sorted into bin b at concentration c .
342

343 344 To propagate the uncertainty in the mean bin estimate, we used the formula

344
$$\delta\bar{F}_{s,c} = \sqrt{\sum_b (\delta F_{b,c}^2 p_{b,s|c}^2 + F_{b,c}^2 \delta p_{b,s|c}^2)}$$

345 where $\delta F_{b,c}$ is the spread of log fluorescence of cells sorted into bin b at concentration c . As previously
346 investigated, we found that estimating $\delta F_{b,c} \approx \sigma F_{b,c}$ is sufficient to capture the variation we observed in
347 log-fluorescence within each bin. In contrast, the error in $p_{b,s|c}$ emerges from the sampling error, which
348 can be approximated as a Poisson process when read counts are high enough.

349 Thus we have:

350
$$\delta p_{b,s|c} = \frac{p_{b,s|c}}{\sqrt{R_{b,s|c}}}.$$

351
352 Finally, we inferred the binding dissociation constant ($K_{D,s}$) for each variant by fitting the logarithm of Hill
353 function to the mean log-fluorescence $\bar{F}_{s,c}$, as a function of ACE2 concentrations c :

354
$$\bar{F}_{s,c} = \log_{10} \left(\frac{c}{c + K_{D,s}} A_s + B_s \right),$$

355 where A_s is the increase in fluorescence at ACE2 saturation, and B_s is the background fluorescence
356 level. The fit was performed using the *curve_fit* function in the Python package *scipy.optimize*. Across all
357 genotypes, we gave reasonable bounds on the values of A_s to be 10^2 - 10^6 , B_s to be 1 - 10^5 , and $K_{D,s}$ to be
358 10^{-14} - 10^{-5} . We then averaged the inferred $K_{D,s}$ values across the three replicates after removing values
359 with poor fit ($r^2 < 0.8$).

360

361 **Isogenic measurements for validation**

362 We validated our high-throughput binding affinity method by selecting 10 specific RBD clones for lower-
363 throughput validation: Wuhan Hu-1, Omicron, 5 single-mutants (K417N, S477N, T478K, Q498R, N501),
364 two double mutants (Q498R/N501Y and E484A/Q498R), and one genotype with four mutations
365 (K417N/E484A/Q498R/N501Y). For each isogenic titration curve, we followed the same labeling strat-
366 egy, titrating ACE2 at concentrations ranging from 10^{-12} - 10^{-7} M for isogenic yeast strains that display
367 only the sequence of interest. The mean log fluorescence was measured using a BD LSR Fortessa cell
368 analyzer. We directly computed the mean and variances of these distributions for each concentration and
369 used them to infer the value of $-\log_{10}(K_D)$ using formula (shown above) (see Extended Data Figure 1).

370

371 **Epistasis analysis**

372 We first used a simple linear model where the effects of combinations of mutations sum to the phenotype
373 of a sequence. The logarithm of the binding affinity $\log_{10}(K_{D,s})$ is proportional to free energy changes,
374 hence in a model without interaction, they would combine additively³⁵. The full K-order model can be writ-
375 ten:

376
$$\log_{10}(K_{D,s}) = \beta_0 + \sum_{i=1}^K \sum_{c \in \mathcal{C}_i} \beta_c x_{c,s}$$

377 where \mathcal{C}_i contains all $\binom{L}{i}$ combinations of size i of the mutations and $x_{c,s}$ is equal to 1 if the sequence s
378 contains all the mutations in c and to 0 otherwise. This choice is called ‘biochemical’ or ‘local’ epistasis³⁶
379 and is the one used in the main text. Another option, called ‘statistical’ or ‘ensemble’ consists in replacing
380 the coefficients x_s by $y_s = 2x_s - 1 \in \{-1, 1\}$. We present the result of this analysis, and the differences
381 with the biochemical model, in Extended Data Figure 5.

382

383 To choose the optimal value of K , we follow the method detailed in Phillips and Lawrence et al., 2021³⁶.
384 Briefly, we use 10-fold cross-validation to test all values of $K \leq 6$. For each value of K , the data is split
385 into ten and each of the ten sub-dataset is used as a test set for a model trained on the rest of the data.
386 We chose the value of K that maximizes the prediction performance (R^2) averaged over all ten testing
387 datasets. For this dataset we found an optimal value of $K=5$ (Extended Data Figure 4). Finally, we trained
388 a $K=5$ model over the complete dataset to get the final coefficients. The number of parameters of the fi-
389 nal model (~ 5000) is much lower than the number of observed data points ($2^{15} = 32768$).

390

391 As mentioned above, the logarithm of binding affinity is proportional to a free energy change, an exten-
392 sive quantity. This theoretically justifies the use of a linear model. Nonetheless, in some scenarios, the
393 interactions between mutations can be better explained by a nonlinear function with few parameters act-
394 ing on the full phenotype (“global epistasis”) rather than a large number of small-effects interactions at
395 high order (“idiosyncratic epistasis”). Our implementation is similar to that described by Sailer and
396 Harms, 2017³⁷ and follows closely Phillips and Lawrence et al., 2021^{15,24}. In short, we use a logistic func-
397 tion Φ , with four parameters, to fit the expression:

$$\log_{10}(K_{D,s}) = \Phi(\beta_0 + \sum_{i=1}^K \sum_{c \in \mathcal{C}_i} \beta_c x_{c,s}) \quad \text{with} \quad \Phi(y) = \frac{A}{1 + e^{(y-\mu)/\sigma}} + B$$

398 The choice of a logistic function is justified by the general form of $K_{D,app}$ distribution, which slightly “plat-
399 eaued” at strong $K_{D,app}$. This effect is not caused by experimental artifacts (Extended Data Figure 2) but
400 instead by a form of “diminishing returns” epistasis³⁷. Practically, the parameters are inferred by fitting
401 successively the additive β_i and the nonlinear function parameters. Although the global epistasis trans-
402 formation does improve the fit, the additive coefficients observed at low order do not change significantly
403 (Extended Data Figure 6).

404 **Structural analysis**

405 We used the reference structure of a 2.79 Å cryo-EM structure of Omicron BA.1 complexed with ACE2
406 (PDB ID: 7WPB). In Figure 2C, the contact surface area is determined by using ChimeraX³⁸ to measure
407 the buried surface area between ACE2 and each mutated residue in the RBD (*measure buriedarea* func-
408 tion, default probeRadius of 1.4 Å). In Figure 2E, the distance between α -carbons is measured using
409 PyMol³⁹.

410 **Order of mutations**

411 ACE2 binding affinity impacts the fitness of SARS-CoV-2 variants and can thus be leveraged to partially
412 infer its past trajectory. This piece of information is particularly important for Omicron BA.1, where phylo-
413 genetic information is limited. Because our dataset contains the ACE2 affinity of all possible evolutionary
414 intermediates, we can infer the likelihoods of all pathways between the ancestral Wuhan Hu-1 sequence
415 and Omicron BA.1. To do this we need to choose a selection model. The circumstances in which the
416 Omicron variant evolved are unknown, and the evolutionary fitness of the virus is more complex than its
417 capacity to bind ACE2 – immune pressure, structural stability, and expression level also play a role,
418 among many other factors⁴⁰. In addition, back-mutations are common in viral evolution and selection
419 pressure can change depending on whether the strain is switching hosts rapidly or part of a long-term
420 infection. Here, we have chosen to adopt an extremely simple weak-mutation/strong-selection regime of
421 viral evolution.

422 In that model, selection proceeds as a Markov process, where the population is characterized by a single
423 sequence that acquires a single mutation at each discrete step^{29,41}. We assume that back mutations (i.e.
424 a residue changing from the Wuhan Hu-1 amino-acid to the BA.1 one) are not possible. Once such a se-
425 quence is generated, it will either fix in the full population or die out. The important parameter is then the
426 fixation probability, which depends on the binding affinity of both the original and mutated sequences.
427 We choose to use the commonly used classical fixation probability⁴², for a mutation with selection coeffi-
428 cient σ in a population of size N :

$$p_{\text{fix}}(\sigma, N) = \frac{1 - e^{-\sigma}}{1 - e^{-N\sigma}}$$

429 Here, the selection coefficient is proportional to the difference in log binding affinities between the two
430 sequences. We use this model in the “strong selection” limit ($N \rightarrow \infty$ and $\sigma \rightarrow \infty$), where a mutation fixes if
431 it is advantageous or if it is the less deleterious choice among all the leftover mutations. Weaker selec-
432 tion models give qualitatively similar results. In terms of implementation, we use a transition matrix ap-
433 proach that allows us to quickly compute the probability that each residue appears at a specific position.

442 **Force directed layout**

443 The high-dimensional binding affinity landscape can be projected in two dimensions with a force-directed
444 graph layout approach (see https://desai-lab.github.io/wuhan_to_omicron/). Each sequence in the anti-
445 body library is a node, connected by edges to its single-mutation neighbors. An edge between two se-
446 quences s and t is given the weight:

$$w_{s,t} = \frac{1}{0.01 + |\log_{10}(K_{D,s}) - \log_{10}(K_{D,t})|}$$

447
448 In a force-directed representation, nodes repel each other, while the edges pull together the nodes they
449 are attached to. In our scenario, this means that nodes with a similar genotype (a few mutations apart)
450 and a similar phenotype (binding affinity) will be close to each other in two dimensions.
451

452 Importantly this is not a “landscape” representation: the distance between two points is unrelated to how
453 easy it is to reach one genotype from another in a particular selection model. Practically, after assigning
454 all edge weights, we use the layout function *layout_drl* from the Python package *iGraph*, with default set-
455 tings, to obtain the layout coordinates for each variant.
456

457 **Genomic data**

458

459 To analyze SARS-CoV-2 phylogeny (Figure 4A and 4B), we used all complete RBD sequences from all
460 SARS-CoV-2 genomes deposited in the Global Initiative on Sharing All Influenza Data (GISAID) reposi-
461 tory⁴³⁻⁴⁵ with the GISAID Audacity global phylogeny (EPI_SET ID: EPI_SET_20220615uq, available on
462 GISAID up to June 15, 2022, and accessible at <https://doi.org/10.55876/gis8.220615uq>) . We pruned the
463 tree to remove all sequences with RBD not matching any of the possible intermediates between Wuhan
464 Hu-1 and Omicron BA.1 and analyzed this tree using the python toolkit ete3⁴⁶. We measured the fre-
465 quency of each mutation (Figure 4A) by counting how many times it occurs independently in the tree
466 (i.e., how often the mutation appears on a node whose parent node does not have that mutation). For
467 Figure 4B, we counted two mutations as co-appearing if both mutations are absent in the parent node
468 and contained in at least one of the descendant nodes. This strategy of studying the relative frequency of
469 co-appearing mutations is a specific case to the method developed in Kryazhimskiy et al⁴¹, which infers
470 epistasis between mutations from phylogenetic data (the general method was not applicable in this spe-
471 cific dataset due to its size).
472

473 **Statistical analyses and visualization**

474 All data processing and statistical analyses were performed using R v4.1.0⁴⁷ and python 3.10.0⁴⁸. All fig-
475 ures were generated using ggplot2⁴⁹ and matplotlib⁵⁰.

476 **REFERENCES CITED**

- 477
- 478 1. Cao, Y. *et al.* Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. *Nature* **602**, 657–663 (2022).
- 479
- 480 2. Ao, D. *et al.* SARS-CoV-2 Omicron variant: Immune escape and vaccine development. *MedComm* (2020) **3**, e126 (2022).
- 481
- 482 3. Planas, D. *et al.* Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. *Nature* **602**, 671–675 (2022).
- 483
- 484 4. Starr, T. N. *et al.* Shifting mutational constraints in the SARS-CoV-2 receptor-binding domain during viral evolution. *bioRxiv* (2022) doi:10.1101/2022.02.24.481899.
- 485
- 486 5. Wu, L. *et al.* SARS-CoV-2 Omicron RBD shows weaker binding affinity than the currently dominant Delta variant to human ACE2. *Sig. Transduct. Target* **7**, 8 (2022).
- 487
- 488 6. Han, P. *et al.* Receptor binding and complex structures of human ACE2 to spike RBD from omicron and delta SARS-CoV-2. *Cell* **185**, 630-640.e10 (2022).
- 489
- 490 7. Viana, R. *et al.* Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. *Nature* **603**, 679–686 (2022).
- 491
- 492 8. Dejnirattisai, W. *et al.* SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses. *Cell* **185**, 467-484.e15 (2022).
- 493
- 494 9. Cameroni, E. *et al.* Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. *Nature* **602**, 664–670 (2022).
- 495
- 496 10. Liu, L. *et al.* Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. *Nature* **602**, 676–681 (2022).
- 497
- 498 11. Mannar, D. *et al.* SARS-CoV-2 Omicron variant: Antibody evasion and cryo-EM structure of spike protein-ACE2 complex. *Science* **375**, 760–764 (2022).
- 500
- 501 12. Starr, T. N. *et al.* Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding. *Cell* **182**, 1295-1310.e20 (2020).
- 502
- 503 13. Greaney, A. J. *et al.* Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies. *Cell Host Microbe* **29**, 463-476.e6 (2021).
- 504
- 505 14. Adams, R. M., Mora, T., Walczak, A. M. & Kinney, J. B. Measuring the sequence-affinity landscape of antibodies with massively parallel titration curves. *Elife* **5**, (2016).
- 506
- 507 15. Phillips, A. M. *et al.* Binding affinity landscapes constrain the evolution of broadly neutralizing anti-influenza antibodies. *Elife* **10**, (2021).
- 508
- 509 16. Adams, R. M., Kinney, J. B., Walczak, A. M. & Mora, T. Epistasis in a fitness landscape defined by antibody-antigen binding free energy. *Cell Syst* **8**, 86-93.e3 (2019).
- 510
- 511 17. McCallum, M. *et al.* Structural basis of SARS-CoV-2 Omicron immune evasion and receptor engagement. *Science* **375**, 864–868 (2022).
- 512
- 513 18. Greaney, A. J. *et al.* Mapping mutations to the SARS-CoV-2 RBD that escape binding by different classes of antibodies. *Nat. Commun.* **12**, 4196 (2021).
- 514
- 515 19. Greaney, A. J., Starr, T. N. & Bloom, J. D. An antibody-escape calculator for mutations to the SARS-CoV-2 receptor-binding domain. *bioRxiv* (2021) doi:10.1101/2021.12.04.471236.
- 516
- 517 20. Sailer, Z. R. & Harms, M. J. High-order epistasis shapes evolutionary trajectories. *PLoS Comput. Biol.* **13**, e1005541 (2017).
- 518
- 519 21. Wells, J. A. Additivity of mutational effects in proteins. *Biochemistry* **29**, 8509–8517 (1990).
- 520
- 521 22. Olson, C. A., Wu, N. C. & Sun, R. A comprehensive biophysical description of pairwise epistasis throughout an entire protein domain. *Curr. Biol.* **24**, 2643–2651 (2014).
- 522
- 523 23. Otwinowski, J., McCandlish, D. M. & Plotkin, J. B. Inferring the shape of global epistasis. *Proc. Natl. Acad. Sci. U. S. A.* **115**, E7550–E7558 (2018).
- 524
- 525 24. Starr, T. N. & Thornton, J. W. Epistasis in protein evolution. *Protein Sci.* **25**, 1204–1218 (2016).
- 526
- 527 25. Zahradník, J. *et al.* SARS-CoV-2 variant prediction and antiviral drug design are enabled by RBD in vitro evolution. *Nat. Microbiol.* **6**, 1188–1198 (2021).
- 528
- 529 26. Rochman, N. D. *et al.* Ongoing global and regional adaptive evolution of SARS-CoV-2. *Proc. Natl. Acad. Sci. U. S. A.* **118**, (2021).
- 529 27. Lythgoe, K. A. *et al.* SARS-CoV-2 within-host diversity and transmission. *Science* **372**, eabg0821

- 530 (2021).
- 531 28. Kemp, S. A. *et al.* SARS-CoV-2 evolution during treatment of chronic infection. *Nature* **592**, 277–282
532 (2021).
- 533 29. Choi, B. *et al.* Persistence and evolution of SARS-CoV-2 in an immunocompromised host. *N. Engl.
534 J. Med.* **383**, 2291–2293 (2020).
- 535 30. Gobeil, S. M.-C. *et al.* Structural diversity of the SARS-CoV-2 Omicron spike. *Mol. Cell* **82**, 2050–
536 2068.e6 (2022).
- 537 31. Wentz, A. E. & Shusta, E. V. A novel high-throughput screen reveals yeast genes that increase
538 secretion of heterologous proteins. *Appl. Environ. Microbiol.* **73**, 1189–1198 (2007).
- 539 32. Gietz, R. D. & Schiestl, R. H. Quick and easy yeast transformation using the LiAc/SS carrier
540 DNA/PEG method. *Nat. Protoc.* **2**, 35–37 (2007).
- 541 33. Boder, E. T. & Wittrup, K. D. Yeast surface display for screening combinatorial polypeptide libraries.
542 *Nat. Biotechnol.* **15**, 553–557 (1997).
- 543 34. Nguyen Ba, A. N. *et al.* High-resolution lineage tracking reveals travelling wave of adaptation in
544 laboratory yeast. *Nature* **575**, 494–499 (2019).
- 545 35. Barnett, M. Regex. (2013).
- 546 36. Poelwijk, F. J., Krishna, V. & Ranganathan, R. The context-dependence of mutations: A linkage of
547 formalisms. *PLoS Comput. Biol.* **12**, e1004771 (2016).
- 548 37. Sailer, Z. R. & Harms, M. J. Detecting high-order epistasis in nonlinear genotype-phenotype maps.
549 *Genetics* **205**, 1079–1088 (2017).
- 550 38. Pettersen, E. F. *et al.* UCSF ChimeraX: Structure visualization for researchers, educators, and
551 developers. *Protein Sci.* **30**, 70–82 (2021).
- 552 39. Schrodinger, L. L. C. *The PyMOL Molecular Graphics System*. (2015).
- 553 40. Upadhyay, V., Patrick, C., Lucas, A. & Mallela, K. M. G. Convergent evolution of multiple mutations
554 improves the viral fitness of SARS-CoV-2 variants by balancing positive and negative selection.
555 *Biochemistry* **61**, 963–980 (2022).
- 556 41. Kryazhimskiy, S., Dushoff, J., Bazykin, G. A. & Plotkin, J. B. Prevalence of epistasis in the evolution
557 of influenza A surface proteins. *PLoS Genet.* **7**, e1001301 (2011).
- 558 42. Kimura, M. On the probability of fixation of mutant genes in a population. *Genetics* **47**, 713–719
559 (1962).
- 560 43. Khare, S. *et al.* GISAID's role in pandemic response. *China CDC Wkly* **3**, 1049–1051 (2021).
- 561 44. Elbe, S. & Buckland-Merrett, G. Data, disease and diplomacy: GISAID's innovative contribution to
562 global health. *Global Chall.* **1**, 33–46 (2017).
- 563 45. Shu, Y. & McCauley, J. GISAID: Global initiative on sharing all influenza data – from vision to reality.
564 *Euro Surveill.* **22**, (2017).
- 565 46. Huerta-Cepas, J., Serra, F. & Bork, P. ETE 3: Reconstruction, analysis, and visualization of
566 phylogenomic data. *Mol. Biol. Evol.* **33**, 1635–1638 (2016).
- 567 47. R Core Team. *R: A language and environment for statistical computing*. (2017).
- 568 48. Van Rossum, G. & Drake, F. L. *Python 3 Reference Manual*. (CreateSpace, 2009).
- 569 49. Wickham, H. *Ggplot2*. (Springer International Publishing, 2016).
- 570 50. Hunter, J. D. Matplotlib: A 2D graphics environment. *Computing in Science & Engineering* **9**, 90–95
571 (2007).

572 **ACKNOWLEDGEMENTS**

573 We thank Zach Niziolek for assistance with flow cytometry and members of the Desai lab for helpful
574 discussions. T.D. acknowledges support from the Human Frontier Science Program Postdoctoral
575 Fellowship, A.M.P. acknowledges support from the Howard Hughes Medical Institute Hanna H. Gray
576 Postdoctoral Fellowship, J.C. acknowledges support from the National Science Foundation Graduate
577 Research Fellowship, and M.M.D. acknowledges support from the NSF-Simons Center for Mathematical
578 and Statistical Analysis of Biology at Harvard University, supported by NSF grant no. DMS-1764269, and
579 the Harvard FAS Quantitative Biology Initiative, grant DEB-1655960 from the NSF and grant GM104239
580 from the NIH. J.D.B. acknowledges support from NIH/NIAID grant R01AI141707 and is an Investigator of
581 the Howard Hughes Medical Institute. We gratefully acknowledge all data contributors, i.e. the Authors
582 and their Originating laboratories responsible for obtaining the specimens, and their Submitting
583 laboratories for generating the genetic sequence and metadata and sharing via the GISAID Initiative.
584 Computational work was performed on the FASRC Cannon cluster supported by the FAS Division of
585 Science Research Computing Group at Harvard University.

586

587 **AUTHOR CONTRIBUTIONS**

588 Conceptualization: A.M., T.D., A.M.P., J.C., T.N.S., A.J.G., J.D.B., and M.M.D. Methodology: A.M., T.D.,
589 A.M.P., J.C., S.N., T.N.S., and A.J.G. Library design and production: A.M., T.D., A.M.P., J.C., and A.J.G.
590 Experiments: A.M., T.D., A.M.P., J.C., and A.A.R. Validation: A.M., T.D., A.M.P., J.C., S.N., and T.N.S.
591 Data analysis: A.M., T.D., A.M.P., J.C., S.N., and T.N.S. Supervision: A.M.P., J.D.B., and M.M.D. Funding
592 acquisition: J.D.B. and M.M.D. Writing—original draft: A.M., T.D., A.M.P., J.C., and M.M.D. All the
593 authors reviewed and edited the manuscript.

594

595 **COMPETING INTERESTS**

596 J.D.B. has or has recently consulted for Apriori Bio, Oncorus, Moderna, and Merck. J.D.B., A.J.G., and
597 T.N.S. are inventors on Fred Hutch licensed patents related to viral deep mutational scanning. The other
598 authors declare no competing financial interests.

599

600 **MATERIALS AND CORRESPONDENCE**

601 Correspondence and requests for materials should be addressed to M.M.D. (mdesai@oeb.harvard.edu).

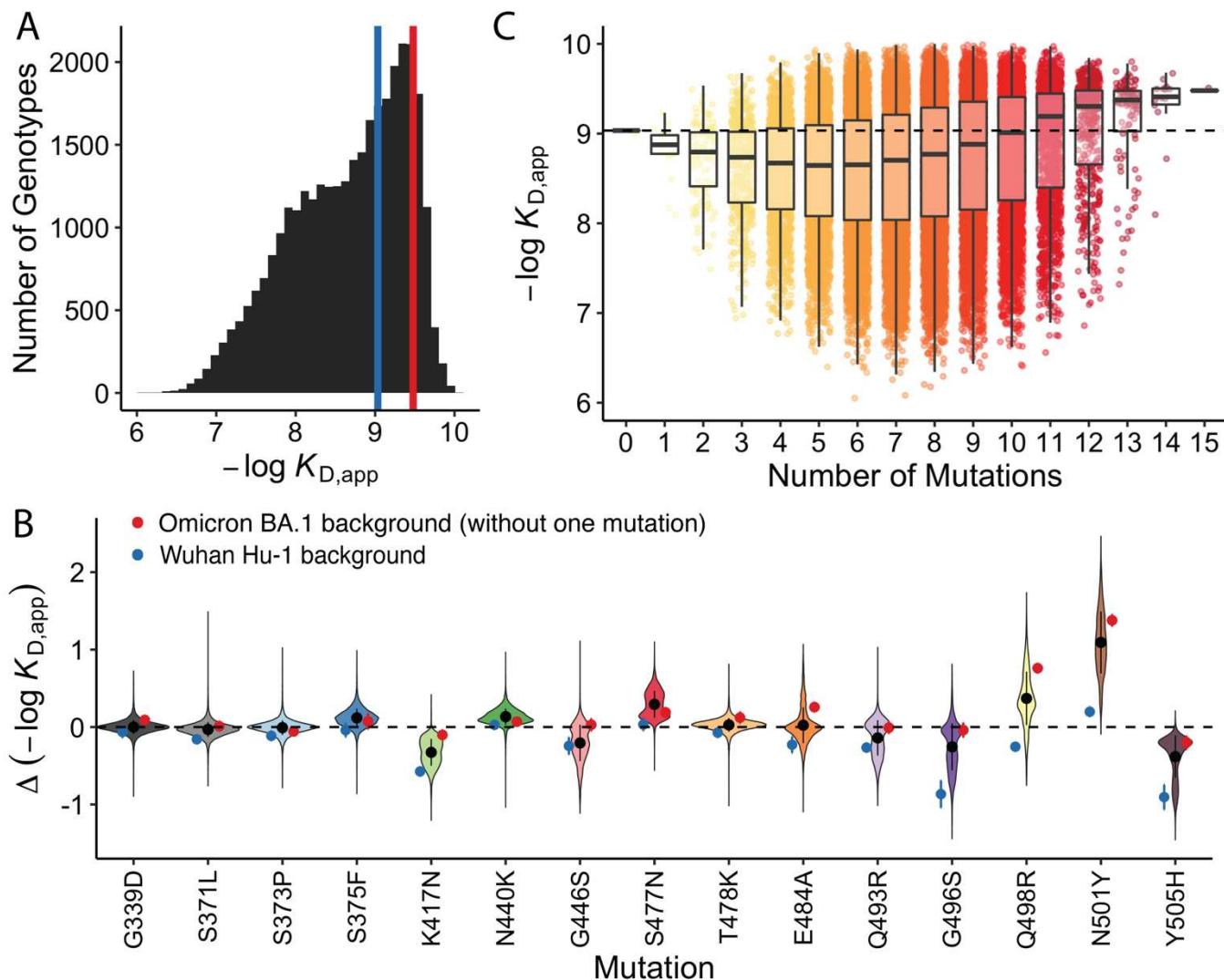
602

603 **DATA AND CODE AVAILABILITY STATEMENT**

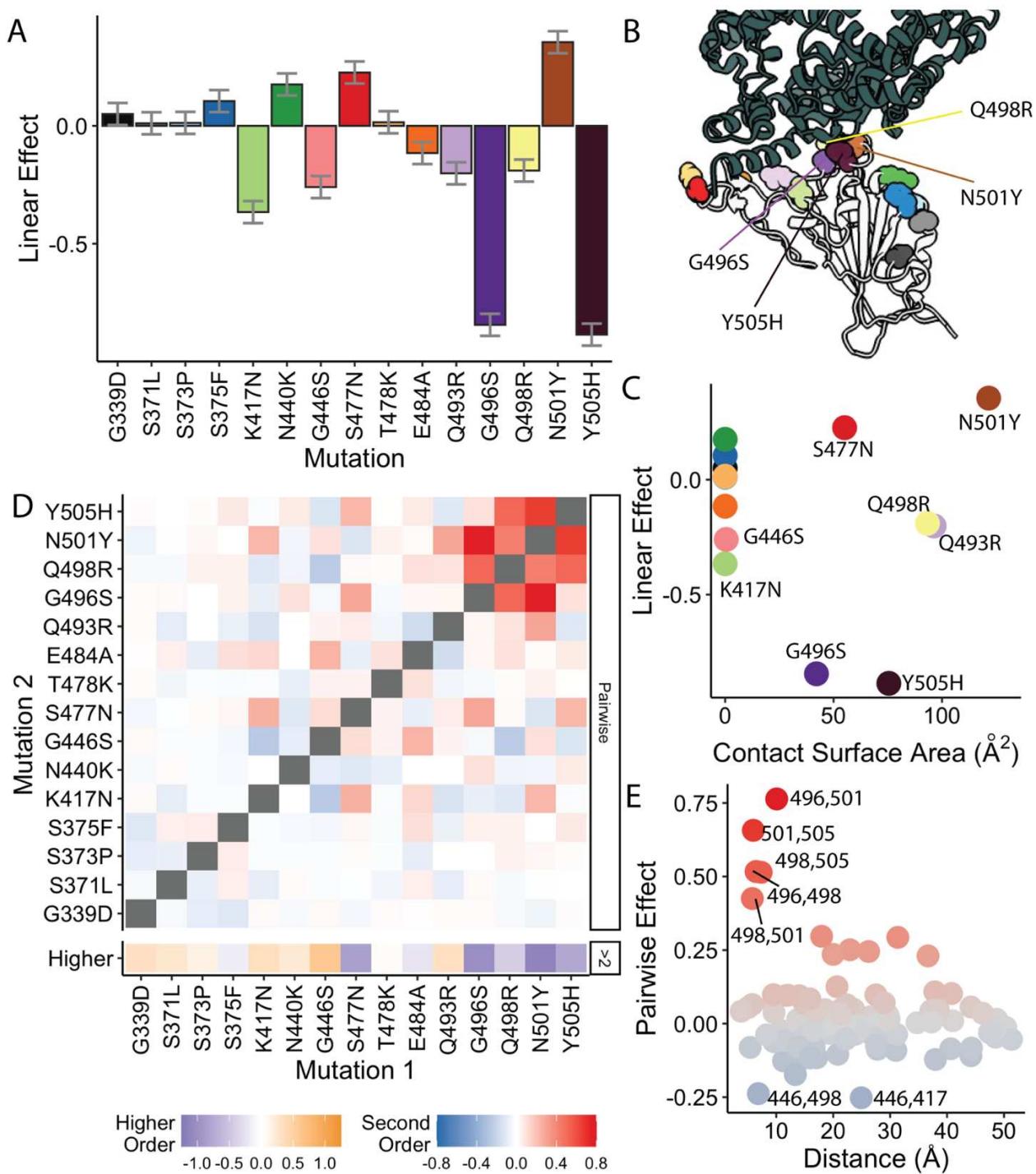
604 Raw sequencing reads have been deposited in the NCBI BioProject database under accession number
605 PRJNA849979. All associated metadata are available at https://github.com/desai-lab/compensatory_epistasis_omicron.

606

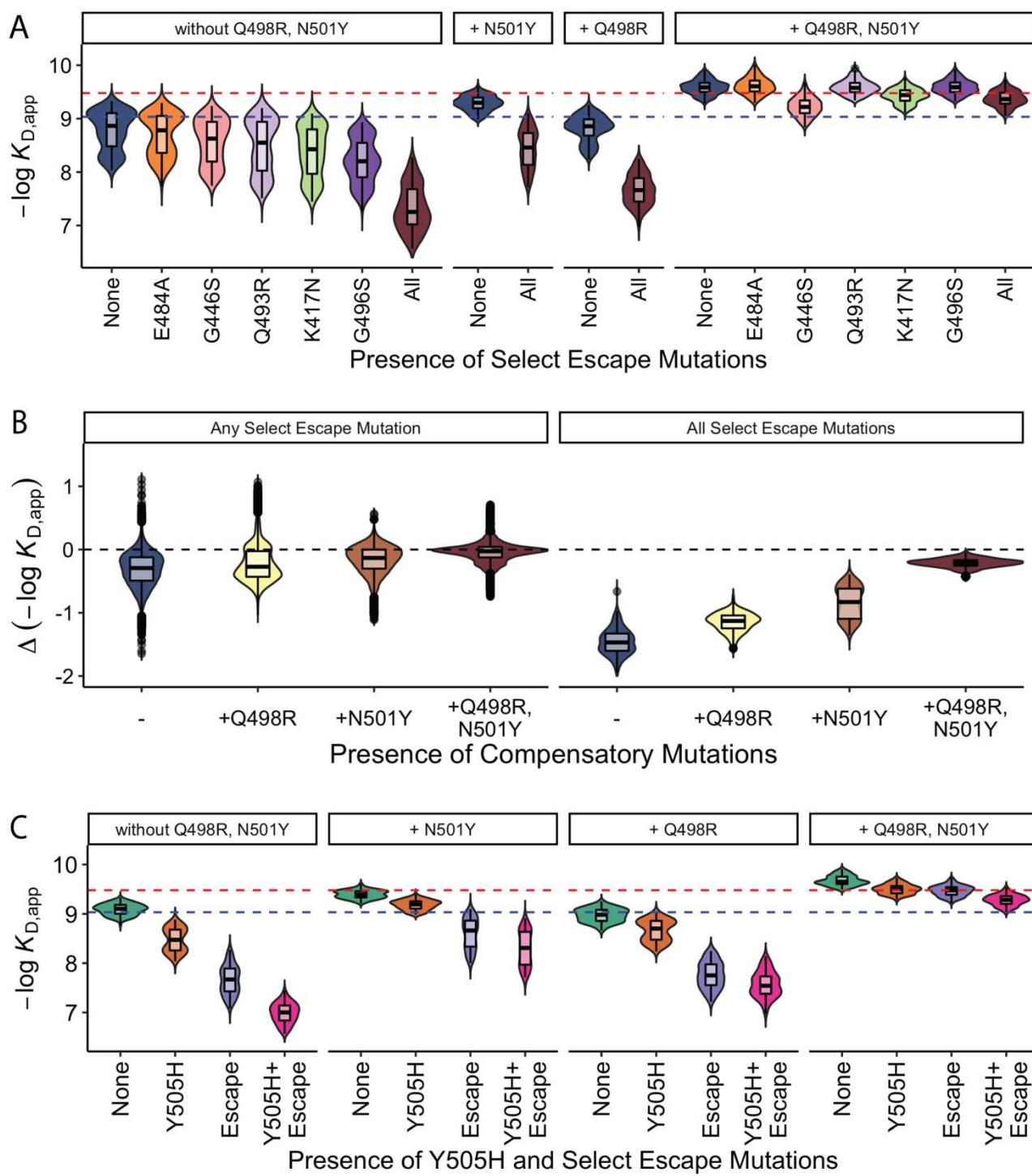
FIGURES AND CAPTIONS



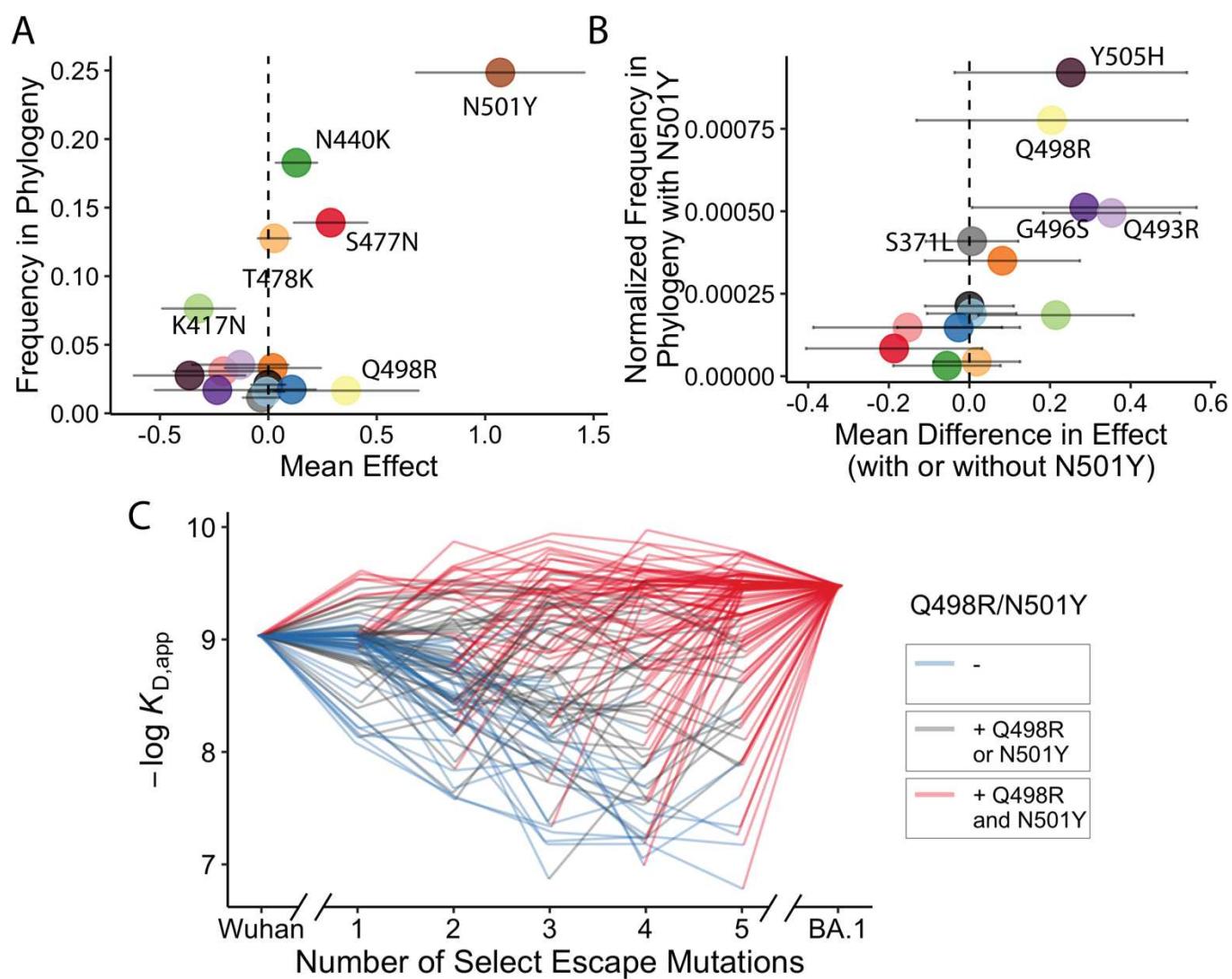
607 **Figure 1. Binding affinity landscape.** (A) Distribution of binding affinities to ACE2 across all N=32,768
608 RBD genotypes tested. Binding affinities are shown as $-\log K_{D,app}$; vertical blue and red lines indicate the -
609 $-\log K_{D,app}$ for Wuhan Hu-1 and Omicron BA.1, respectively. (B) Distributions of the effect of each mutation
610 on ACE2 affinity (defined as the change in $-\log K_{D,app}$ resulting from mutation) across all possible genetic
611 backgrounds at the other 14 loci. Black line segments indicate 25th and 75th percentiles of the effect
612 distributions and points represent distribution means. Blue and red points specify effects on Wuhan Hu-1
613 and Omicron BA.1 backgrounds, respectively. (C) Distribution of binding affinities grouped by number of
614 Omicron BA.1 mutations. Binding affinity of the Wuhan Hu-1 variant is indicated by horizontal dashed
615 line.



616 **Figure 2. Linear and epistatic effects of mutations.** (A) First-order effects in best-fitting epistatic
617 interaction model (up to fifth order). Error bars represent standard errors from the model fit. (B) Co-
618 crystal structure of Omicron BA.1 RBD and ACE2 receptor (PDB ID 7WPB). Mutated residues shown as
619 spheres colored as in (A). (C) First-order effects for each mutation plotted against contact surface area
620 between corresponding BA.1 RBD residue and ACE2. Mutations colored as in (A). (D) Second-order
621 epistatic interaction coefficients and higher order interaction coefficients. For each mutation, higher order
622 interaction coefficient (shown at bottom of heat map plot) is calculated by summing over all third- and
623 fourth-order interaction coefficients involving the mutation. (E) Pairwise interaction coefficients plotted
624 against the distances between the respective alpha-carbons. Mutations are colored by pairwise
625 coefficient as in (D).

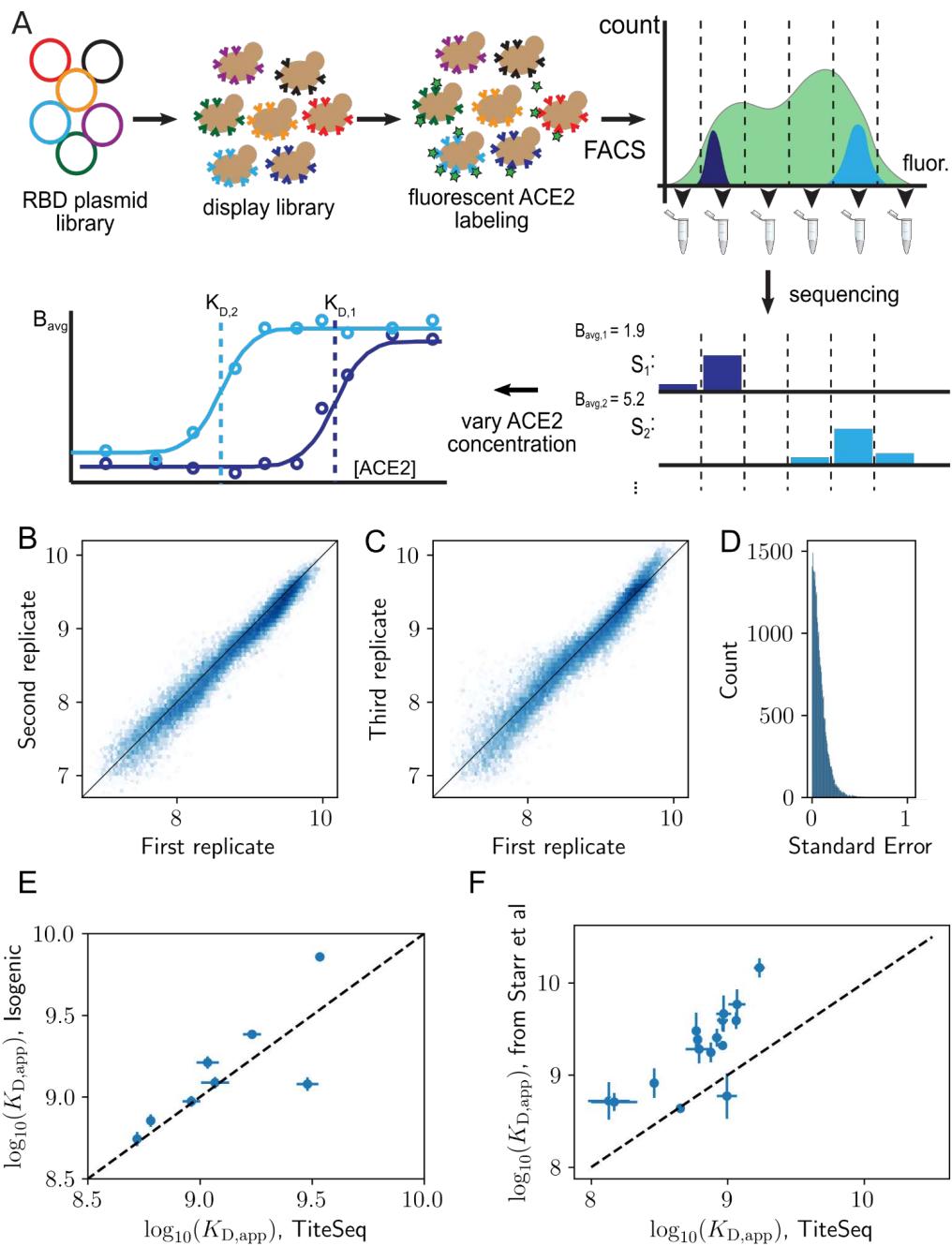


626 **Figure 3. Epistasis compensates for reductions in ACE2 affinity.** (A) ACE2 binding affinities for
627 variants containing mutations that have a strong effect on antibody escape: K417N, G446S, E484A,
628 Q493R, and G496S grouped by the presence of compensatory mutations (Q498R and N501Y). Dashed
629 blue (resp. red) line indicates Wuhan Hu-1 (resp. Omicron BA.1) ACE2 binding affinity. (B) The changes
630 in ACE2 binding affinities for variants containing any one (or all) of select escape mutations grouped by
631 the presence of compensatory mutations (Q498R and N501Y). Dashed line indicates no affinity change.
632 (C) ACE2 binding affinities for variants containing Y505H and antibody escape mutations presented as in
633 (A).

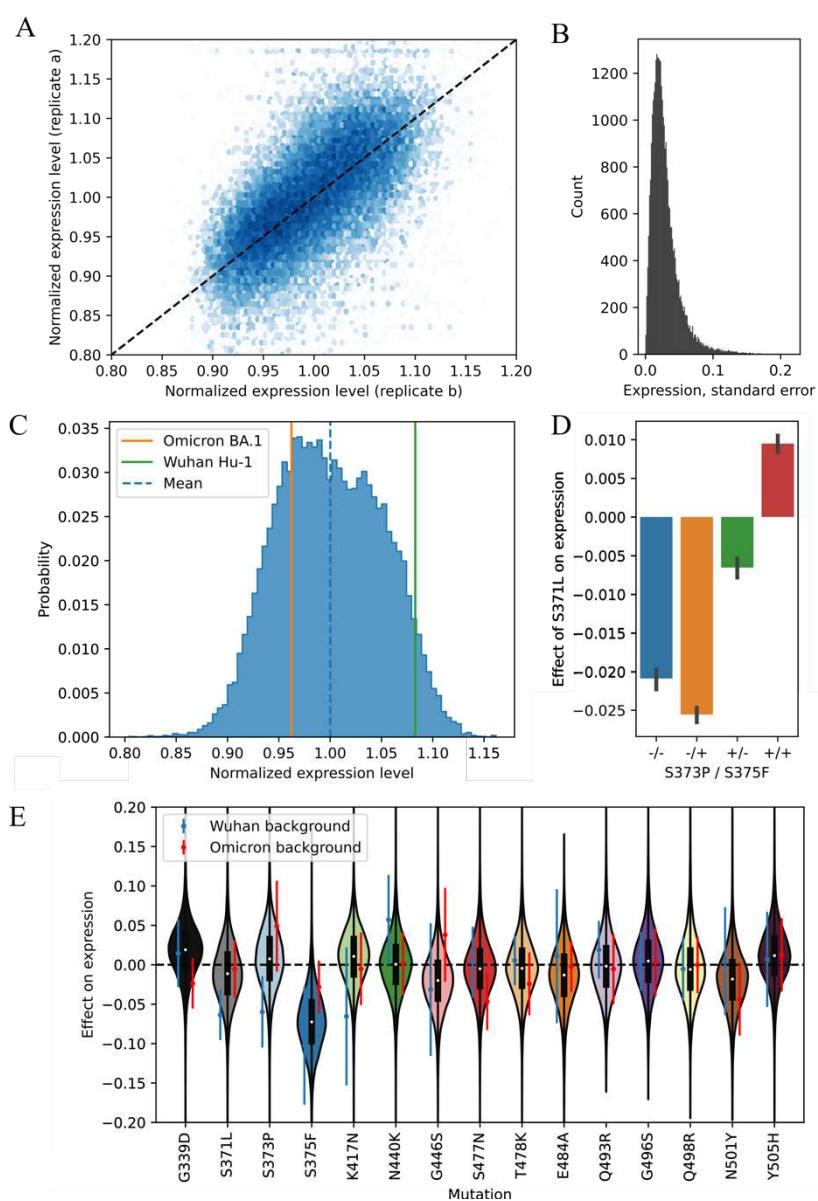


634 **Figure 4. Trajectory of Omicron BA.1 evolution** (A) Frequency of occurrences for each mutation
635 across SARS-CoV-2 sequences available on GISAID (see Methods) as a function of their average effect
636 on ACE2 affinity in our data. Error bars indicate standard deviation of effect sizes. (B) Normalized
637 frequency of mutations co-occurring with N501Y across SARS-CoV-2 sequences available on GISAID
638 (calculated based on the frequency at which each mutation occurs on the same branch as N501Y,
639 normalized by their overall frequency; see Methods) as a function of the difference in their effect on
640 ACE2 affinity in the presence of N501Y. Error bars indicate standard deviation of effects. (C) ACE2
641 affinity trajectories for 100 randomly selected pathways (involving all 15 mutations), shown as a function
642 of the number of mutations with strong effect on antibody escape (K417N, G446S, E484A, Q493R, and
643 G496S) and the presence or absence of compensatory mutations Q498R and N501Y (shown with
644 colors). Each trajectory represents a possible mutation order, starting at the Wuhan Hu-1 genotype and
645 ending at Omicron BA.1.

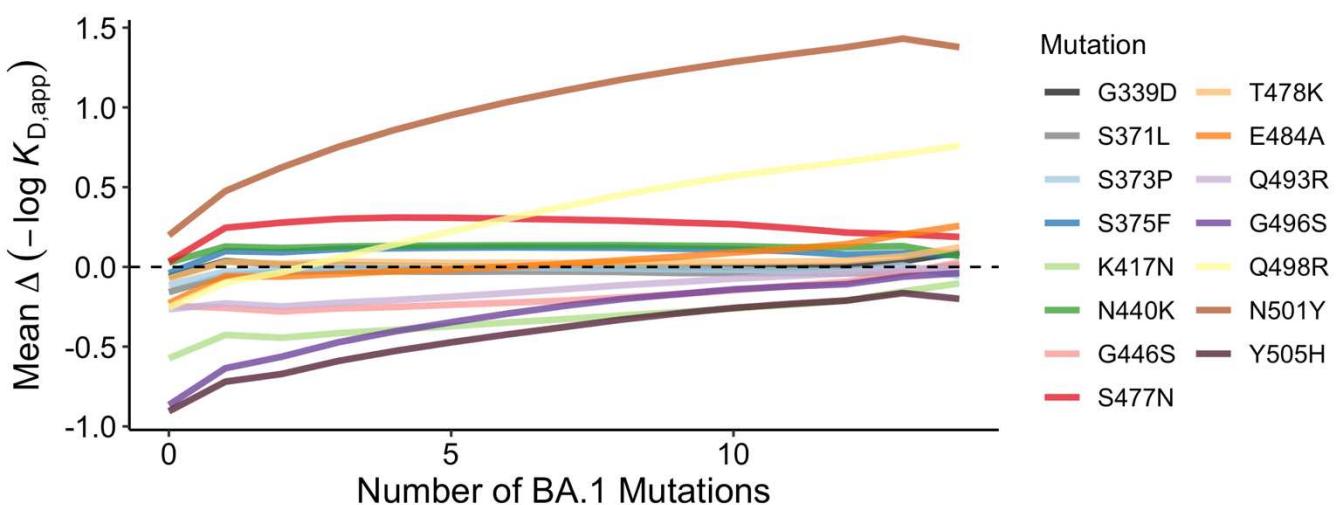
EXTENDED DATA FIGURES AND CAPTIONS



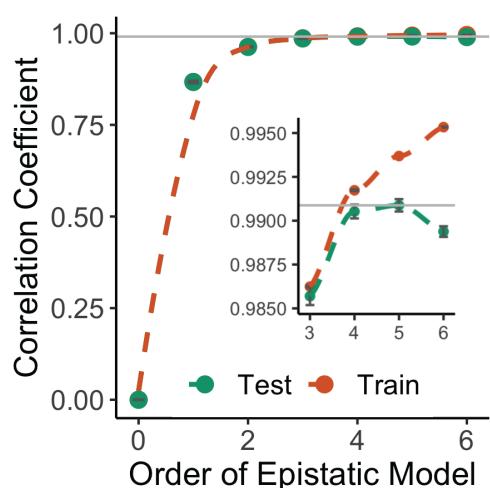
646 **Extended Data Figure 1: Schematic overview of the experimental method and reproducibility of**
647 **dissociation constants determined via Tite-seq. (A)** The plasmid library of RBD variants is first
648 transformed into a standard yeast display strain. The library is incubated with soluble, fluorescent ACE2
649 and sorted by flow cytometry into bins based on ACE2 fluorescence. Deep sequencing of each bin yields
650 an estimate for the mean bin (B_{avg}) of each RBD variant. This is repeated for varying ACE2 concentration
651 to produce a titration curve. Since the fluorescence is linearly related to the RBD occupancy on the yeast
652 cell surface, apparent equilibrium dissociation constants can be inferred by fitting B_{avg} to the ACE2
653 concentration. **(B)** Correlation of $-\log(K_{D,app})$ between the first and second biological replicates. **(C)**
654 Correlation of $-\log(K_{D,app})$ between the first and third biological replicates. **(D)** Distribution of the standard
655 error of $-\log(K_{D,app})$ between biological replicates. **(E)** Isogenic measurements (see Methods) versus Tite-
656 Seq measurement with a 1:1 dotted line. **(F)** Comparison of Tite-Seq K_D measurements with independent
657 K_D measurements reported in Starr et al¹² with a 1:1 dotted line.



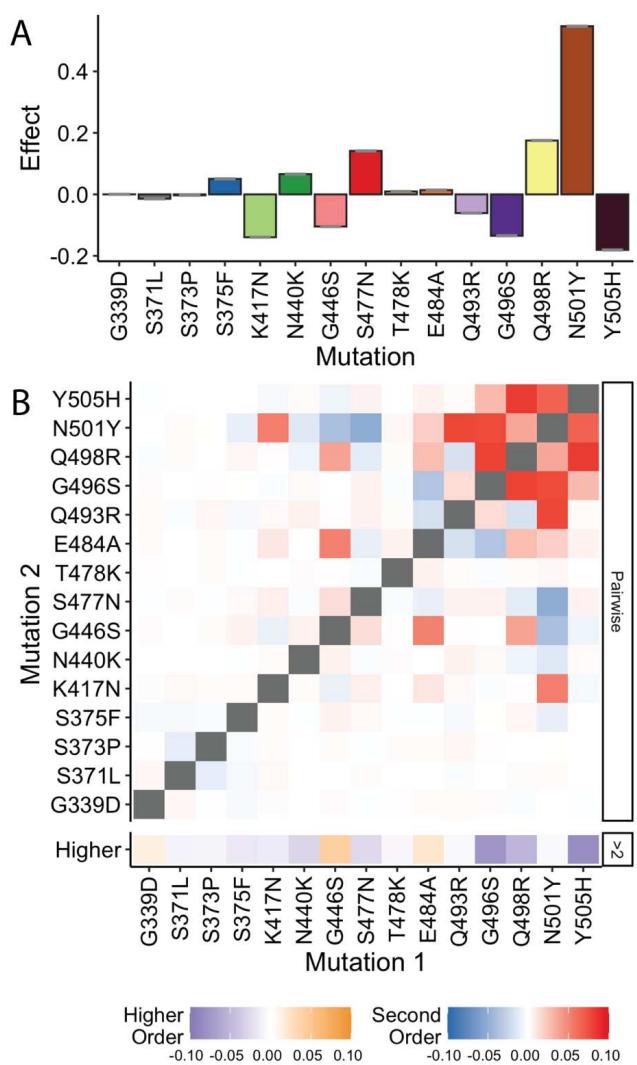
658 **Extended Data Figure 2: Expression level of RBD in the yeast display system. (A)** Correlation of
659 normalized expression levels between the first and second biological replicates. **(B)** Distribution of the
660 normalized expression levels between biological replicates. **(C)** Distribution of the normalized yeast-
661 display expression of each RBD variant in the library. Vertical red and green lines represent the
662 expression for Wuhan Hu-1 and Omicron BA.1, respectively. **(D)** Effect of the S371L mutation on
663 expression levels depending on the S373P and S375F background. **(E)** Mutational effects (defined as
664 the difference in normalized expression after adding one mutation) for each Omicron BA.1 RBD
665 mutation. Violin plots show full distribution of effects, where black lines indicate 25th and 75th percentiles
666 and the black point denotes mean. Blue and red points specify effects on Wuhan Hu-1 and into Omicron
667 BA.1 variants, respectively.



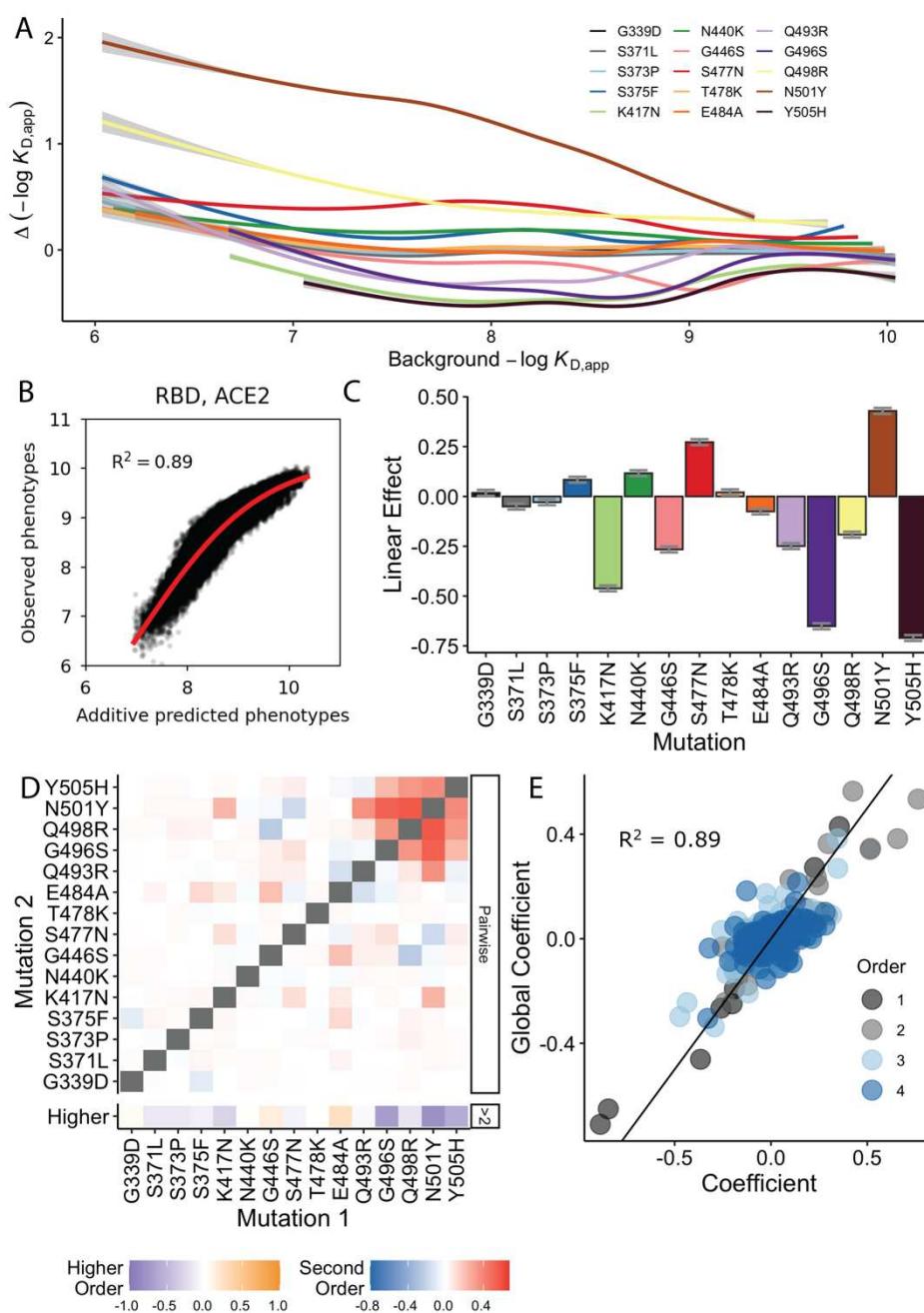
668 **Extended Data Figure 3: Change in ACE2 affinity across number of mutations.** The mean effect of
669 each mutation is plotted against the number of BA.1 mutations in the genotypic background. Dashed line
670 indicates no change in affinity.



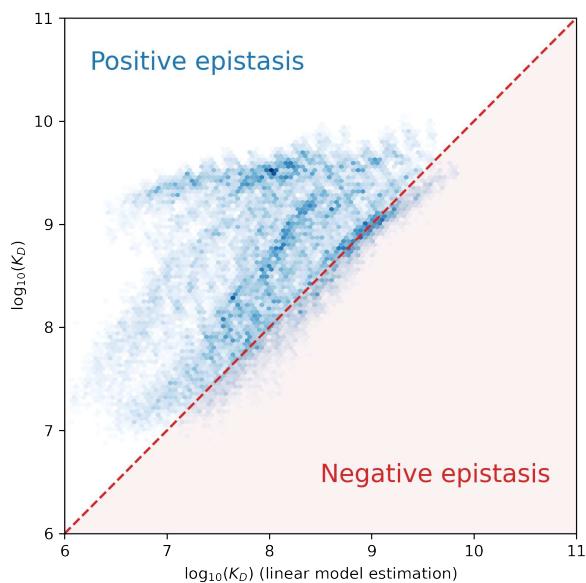
671 **Extended Data Figure 4: Truncation of biochemical epistasis model.** Correlation coefficients
672 between the measured values of $-\log(K_{D,app})$ and the model estimate for various orders of epistatic
673 model. Correlations are computed on the subset of the dataset on which the model was trained (orange)
674 and on the hold-out subset (green), averaged over the 10 folds of cross-validation. The inset is a
675 zoomed-in version for orders 3 to 6.



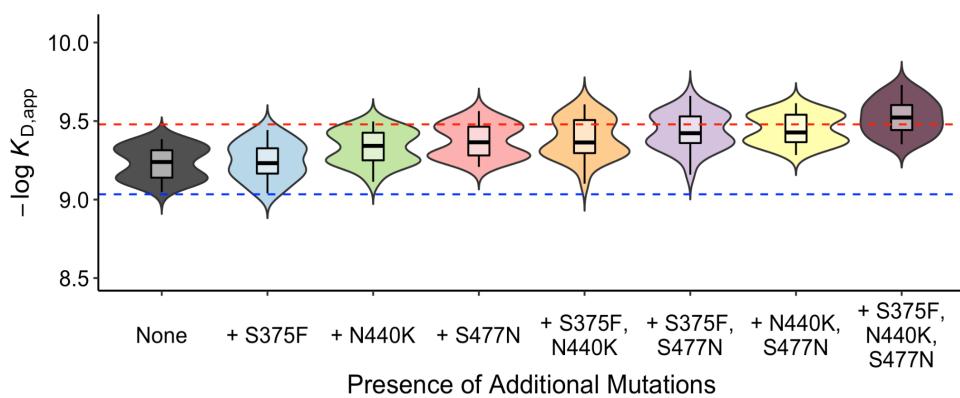
676 **Extended Data Figure 5: Alternative model of statistical epistasis. (A)** Linear effect of each mutation
 677 in the statistical epistasis model that is truncated at the fourth order. **(B)** Second-order epistatic
 678 interaction coefficients and higher order interaction in the statistical epistasis model.



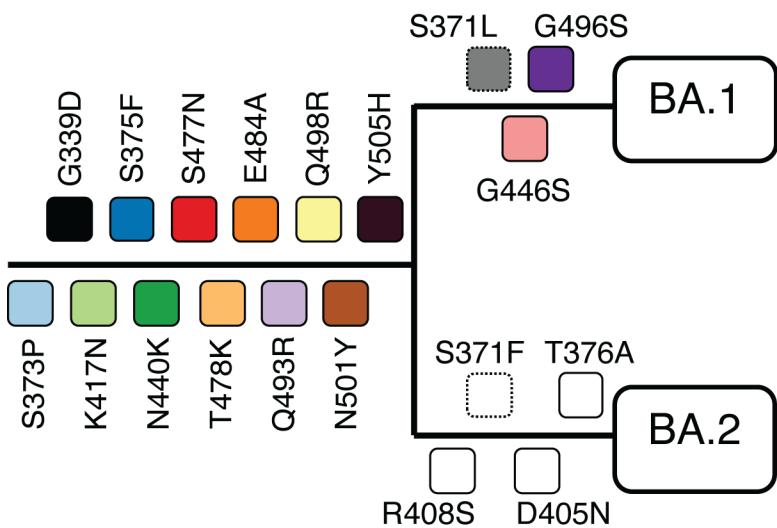
679 **Extended Data Figure 6: Global epistasis** **(A)** Relationship between the binding affinity and the mean
680 effect of an additional mutation on this background. **(B)** Relationship between the observed binding
681 affinity and the affinity predicted with a linear additive model without epistasis. The red line represents
682 the global epistasis function. **(C)** Linear effect of each mutation in the global epistasis model that is
683 truncated at the fourth order. **(D)** Second-order and higher-order epistatic interaction coefficients in the
684 global epistatic model. **(E)** Correlation between the epistatic interaction coefficients of the models with
685 and without global epistasis. The black line represents the best fit.



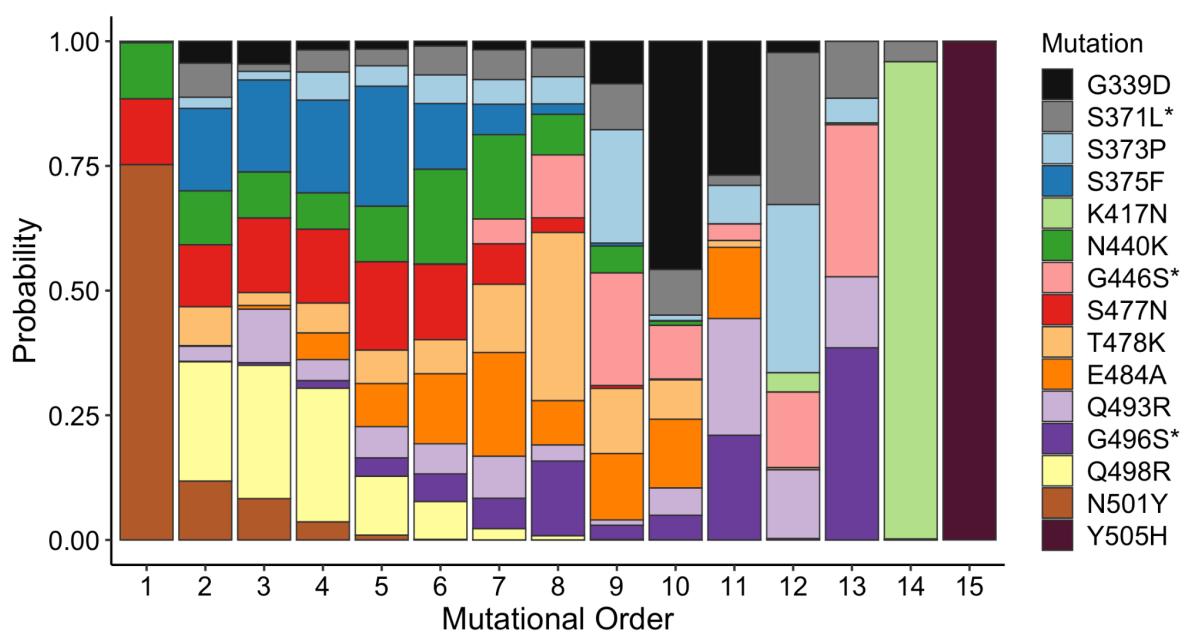
686 **Extended Data Figure 7: Comparison between the linear model estimate of the binding affinity**
687 **and the measured binding affinity.** The x-axis is the predicted binding affinity, using only the linear
688 coefficients of the full 5th-order model; the y-axis is the measured binding affinity.



689 **Extended Data Figure 8: Binding affinity of escape genotypes with additional compensatory
690 mutations.** The ACE2 binding affinities of variants with all seven mutations discussed in the main text
691 (the five escape mutations K417N, G446S, E484A, Q493R, and G496S, plus Q498R and N501Y) with all
692 possible combinations of three other mutations (S375F, N440K, and S477N). Blue and red dashed lines
693 represent Wuhan Hu-1 and Omicron BA.1 affinity, respectively.



694 **Extended Data Figure 9: Phylogeny of BA.1 and BA.2 showing mutations in spike protein RBD.**
695 Mutations are colored as in Figure 2A. Dashed boxes indicate mutations with ambiguous positions on the
696 tree.



697 **Extended Data Figure 10: Inferred order of mutations.** Conditional probability of mutation order from
698 Wuhan-Hu-1 to Omicron BA.1 variant, assuming a classical population dynamics model (see Methods).
699 Mutations with asterisks are known to happen last (see Extended Data Figure 9).