

1

2

3

4 **Determinants of sugar-induced influx in the mammalian**  
5 **fructose transporter GLUT5**

6

7 Sarah E. McComas<sup>1</sup>, Darko Mitrovic<sup>2</sup>, Claudia Alleva<sup>1</sup>, Marta Bonaccorsi<sup>1</sup>, David  
8 Drew<sup>1#</sup>, Lucie Delemotte<sup>2#</sup>

9 <sup>1</sup>Department of Biochemistry and Biophysics, Stockholm University, SE-106 91  
10 Stockholm, Sweden. <sup>2</sup>Department of Applied Physics, Science for Life Laboratory,  
11 KTH Royal Institute of Technology, Stockholm, Sweden.

12

13 **#Correspondance:** [ddrew@dbb.su.se](mailto:ddrew@dbb.su.se) ; lucied@kth.se

14

15

16

17

18

19

20

21

22

23

24

## 25 Abstract

26 In mammals, glucose transporters (GLUT) control organism-wide blood glucose  
27 homeostasis. In human, this is accomplished by fourteen different GLUT isoforms, that  
28 transport glucose and other monosaccharides with varying substrate preferences and  
29 kinetics. Nevertheless, there is little difference between the sugar-coordinating residues  
30 in the GLUT proteins and even the malarial *plasmodium falciparum* transporter *Pf*HT1,  
31 which is uniquely able to transport a wide range of different sugars. *Pf*HT1 was captured  
32 in an intermediate “occluded” state, revealing how the extracellular gating helix TM7b  
33 has moved to break and occlude the sugar-binding site. Sequence difference and  
34 kinetics indicated that the TM7b gating helix dynamics and interactions likely evolved  
35 to enable substrate promiscuity in *Pf*HT1, rather than the sugar-binding site itself. It  
36 was unclear, however, if the TM7b structural transitions observed in *Pf*HT1 would be  
37 similar in the other GLUT proteins. Here, using enhanced sampling molecular  
38 dynamics simulations, we show that the fructose transporter GLUT5 spontaneously  
39 transitions through an occluded state that closely resembles *Pf*HT1. Furthermore, we  
40 observe that inclusion of fructose lowers the energetic barriers between the outward and  
41 inward-facing states, and that its binding is coupled to TM7b gating by a strictly-  
42 conserved asparagine residue and a GLUT5-specific tyrosine-histidine pairing. Rather  
43 than a substrate binding site that achieves strict specificity by having a high-affinity for  
44 the substrate, we conclude GLUT proteins have allosterically coupled sugar binding  
45 with an extracellular gate that forms the high-affinity transition-state instead. This  
46 substrate-coupling pathway presumably enables the catalysis of fast sugar flux at  
47 physiological relevant blood-glucose concentrations.

## 48 Significance statement

49 Glucose transporters (GLUTs) are responsible for the facilitated transport of glucose  
50 into cells, a process that is vital to life. While high resolution structures of GLUTs have  
51 been resolved, it has been unclear how sugar binding and translocation are ultimately  
52 coupled. Here we have used advanced molecular dynamics simulations to follow the  
53 transport cycle of GLUT5, a fructose-specific member of the GLUT family. We reveal  
54 the role that sugar plays in recruiting an extracellular gate to from the transition state,  
55 providing a molecular basis for how sugars catalyse fast, yet specific, fructose transport.

56 **Main Text**

57 **Introduction**

58 Glucose (GLUT) transporters facilitate the rapid, passive flux of monosaccharides  
59 across cell membranes at physiologically relevant concentrations ranging from 0.5 to  
60 50 mM (1, 2). In human, most GLUT isoforms transport D-glucose, but with different  
61 kinetics, regulation and tissue distribution (1, 2). For example, GLUT1 is a ubiquitously  
62 expressed transporter with saturation by D-glucose around 5 mM to maintain blood-  
63 glucose homeostasis, whereas the liver isoform GLUT2 is saturated at 50 mM, enabling  
64 a high-flux of glucose after feeding-induced insulin secretion (1, 3). Others, like  
65 GLUT4, are localized to intracellular vesicles, but will traffic to the plasma membrane  
66 of adipose and skeletal muscle cells in response to insulin signalling (4). GLUT5 is the  
67 only member thought to be specific to fructose, and is required for its intestinal  
68 absorption (5, 6). In this process, glucose is actively absorbed by sodium-coupled  
69 glucose transporters, while fructose is taken up passively by GLUT5 (7). GLUT5 must  
70 therefore efficiently transport fructose at high sugar concentrations ( $K_M = 10$  mM),  
71 whilst still maintaining sugar specificity (7). It is poorly understood how GLUT  
72 proteins retain strict sugar-specificity and how sugars are able catalyse large  
73 conformational changes when they bind to GLUT proteins with weak (mM) affinities  
74 (8). As gate-keepers to metabolic re-programming (9, 10), answers to these fundamental  
75 questions could have important physiological consequences for the treatment of  
76 diseases, such as cancer and diabetes.

77 GLUT transporters belong to the Major Facilitator Superfamily (MFS), whose topology  
78 is defined by two six-transmembrane (TM) bundles connected together by a large,  
79 cytosolic loop (Fig. 1A) (11). Within the MFS, GLUT proteins belong to a separate  
80 subfamily referred to as sugar porters, which are distinct from other well-known sugar  
81 transporters such as LacY (8, 12). Sugar porters are subclassified based on a unique  
82 sequence motif (13, 14), and crystal structures reveal that this motif corresponds to  
83 residues forming an intracellular salt-bridge network, linking the two bundles on the  
84 cytoplasmic side (Fig. 1A, Fig. S1) (14, 15). The salt-bridges are formed between the  
85 ends of TM segments and an intrahelical bundle (ICH) of four to five helices. Crystal  
86 structures of GLUT1 (16), GLUT3 (15), and GLUT5 (14) and related homologues (17-  
87 21) have shown that the GLUT proteins cycle between five different conformational

88 states: outward-open, outward-occluded, fully occluded, inward-occluded and inward-  
89 open (Fig. 1B). Whilst GLUT proteins are made up from two structurally-similar N-  
90 terminal (TM1-6) and C-terminal (7-12) bundles, structures have shown that glucose is  
91 not coordinated evenly, but almost entirely by residues located in the C-terminal bundle  
92 (15). In particular, residues in the half-helices TM7b and TM10b make up a large  
93 fraction of the sugar-binding site (Fig. 1A) (8). The current working transport model is  
94 that the half-helices TM7b and TM10b undergo local conformational changes in  
95 response to sugar binding and control substrate accessibility to its binding site from the  
96 outside and inside, respectively (Fig. 1B)(11, 14). In brief, upon sugar binding from the  
97 outside, the inward movement of the extracellular gating helix TM7b is followed by the  
98 outward movement of TM10b, and the subsequent breakage of the cytoplasmic inter-  
99 bundle salt-bridge network, enabling the two bundles to move around the substrate (8).  
100 In the inward-facing state, TM10b moves fully away from TM4b, sugar exits, and the  
101 protein spontaneously resets itself to the outward-open state (Fig 1B). Resetting back  
102 through an empty-occluded state is rate-limiting and ~100 fold slower than *via* a loaded-  
103 occluded intermediate (2, 22).

104 The intermediate, occluded conformation is arguably the most informative for  
105 understanding how sugar binding and transport are ultimately coupled (8). However,  
106 due to its transient nature, this state is rarely seen. However, it was fortuitously captured  
107 in the recent structure of the malarial parasite *plasmodium falciparum* transporter  
108 *PfHT1*(20). Nonetheless, *PfHT1* is very distantly related to GLUT proteins, and while  
109 GLUT proteins show strict sugar specificity, *PfHT1* transports a wide range of different  
110 sugars, making it unclear whether this occluded state would constitute a good  
111 representative of occluded state in GLUT proteins (20, 23). Somewhat unexpectedly,  
112 the glucose coordinating residues in *PfHT1* were found to be almost identical to those  
113 in *human GLUT3* (20, 24, 25). Based on the position of TM7b and biochemical  
114 analysis, it was concluded that the extracellular gating helix had evolved to transport  
115 many sugars, rather than the sugar-binding site itself (20). Simply put, it was proposed  
116 that *PfHT1* was less selective in what sugars it transports as its extracellular gate shuts  
117 more easily. Whilst the allosteric coupling between TM7b and the sugar-binding pocket  
118 might be more pronounced in *PfHT1*, we hypothesized that the fundamental basis for  
119 sugar-coupling should be conserved in the GLUT proteins (8, 20). Here, using enhanced  
120 sampling molecular dynamic simulations, we have reconstructed the GLUT5 transport

121 cycle in absence and in presence of fructose substrate, deciphering the molecular  
122 determinants for fructose binding and extracellular TM7b gating.

123 **Results and discussion**

124 *Modeling rat GLUT5 in all conformational states*

125 To piece together the “rocker-switch” alternating-access mechanism for the GLUT  
126 proteins (26), we must correctly assemble the relevant conformational states along the  
127 transport pathway. We thus selected to focus our efforts on the fructose transporter  
128 GLUT5 for two reasons. Firstly, GLUT5 is the only GLUT protein with structures  
129 determined in both outward-open and inward-open conformations, which principal  
130 component analysis of  $n = 17$  sugar porter structures, confirmed represents the two end  
131 states (20). Secondly, how non-glucose sugars are recognized by GLUT proteins is  
132 unknown, and a computational framework for a fructose-specific transporter would  
133 help to understand substrate specificity more broadly.

134 Initially, to fill in the “missing” GLUT5 conformational states, homology models of *rat*  
135 GLUT5 were generated using relevant structures as templates: outward-occluded  
136 (*human* GLUT3), occluded (*PfHT1*) and inward-occluded (*E. coli* Xyle) and inward-  
137 open *bison* GLUT5 (Methods). To assess the stability of the generated homology  
138 models, MD simulations on each of these models were performed in a model POPC  
139 membrane bilayer (Methods). Each model was stable during the simulation, with a  
140 slightly higher RMSD in fully-occluded, inward-occluded, and inward-open models,  
141 likely reflective of their intrinsic dynamics in absence of substrate as well as ICH  
142 mobility when the N- and C-terminal bundles are no longer held together by salt bridges  
143 (Fig. S2). Overall, we concluded that the *rat* GLUT5 models had reached an acceptable  
144 dynamic equilibrium.

145 During substrate translocation by MFS transporters, cavity-closing contacts are  
146 predominantly formed between TM1 and TM7 on the outside (extracellular gate) and  
147 between TM4 and TM10 on the inside (intracellular gate) (8) (Fig. 1C, Fig. 2A). We  
148 can therefore monitor the distances between the centers of mass of the residues forming  
149 the extracellular gate (EG) and intracellular gate (IG) as a proxy for the conformational  
150 states sampled during simulations. As seen Fig. 2B, although the most populated gating  
151 distances deviate from the starting GLUT5 models (shown as filled-circles), all states

152 equilibrated with mostly overlapping distributions. Notably, the largest deviation from  
153 the starting template is for the GLUT5 outward-occluded state modelled from *human*  
154 GLUT3, which we attribute to the fact the extracellular gate TM7b was stabilized in the  
155 crystal structure by the crystallization lipid monoolein (15). The non-filled gap between  
156 the occluded and inward-occluded state distributions corresponds to the larger global  
157 “rocker-switch” rearrangements (Fig. 2A), which are inaccessible over these short ns-  
158 long time scales.

159 *Interpolating between models of states using targeted MD simulations*

160 To fully sample the conformational space between the fully occluded and inward-  
161 occluded GLUT5 states, enhanced sampling simulations are necessary. We chose here  
162 targeted MD (TMD) simulations to interpolate between all five major states (27),  
163 applying a moving harmonic potential restraint to all heavy atoms in GLUT5. Given  
164 the uncertainty of the *Pf*HT1 occluded state as a suitable model in GLUT proteins, we  
165 performed TMD from the outward-occluded to the inward-occluded state either via the  
166 occluded state model, or directly between these two states. In both these targeted MD  
167 simulation protocols, we find that GLUT5 passes through a conformation in which the  
168 positioning of the gates closely matched the ones in the occluded model based on *Pf*HT1  
169 (Fig. 2C, Fig. S3). Having confirmed that the *Pf*HT1 structure is a reasonable  
170 approximation for the occluded state in GLUT5, we aimed to characterize the most  
171 probable transition pathway linking the outward-open and inward-open states, and  
172 calculate the free energy surface lining this pathway. To this end, we used the string-of-  
173 swarms method for GLUT5 both in its apo (rGLUT5<sup>empty</sup>) and fructose-bound  
174 (rGLUT5<sup>fructose</sup>) conditions (28). In brief, each of the five different structural models  
175 were represented as beads along a string, with a further eleven beads added from  
176 configurations extracted from the TMD, yielding in total 16 beads spanning a tentative  
177 initial pathway defined in terms of their intracellular and extracellular gate distance  
178 (Fig. 2D, Fig. S4A). From each of these beads, many short trajectories were launched  
179 (swarms) to iteratively seek an energy minimum along the string path (see Methods).  
180 In this approach, the string simulations converge when the string diffuses around an  
181 equilibrium position. This protocol has proven effective to sufficiently explore  
182 computational space for complex conformational changes (28). After ~100 iterations,  
183 the strings had converged (Fig. S4B), indicating that an equilibrium position was found.  
184 Nevertheless, we continued to run another ~450 to 650 iterations to ensure exhaustive

185 sampling of the entire transition pathway, enabling an appropriate estimation of the free  
186 energy along the converged path.

187

188 *The free-energy landscape of GLUT5 with and without fructose bound*

189 Once the strings had converged and equilibrium was reached, we calculated free energy  
190 surfaces (FES) based on the transitions of all equilibrium swarm simulations (see  
191 Methods). Comparing the free energy surfaces between these two conditions reveals  
192 obvious differences between rGLUT5<sup>empty</sup> and rGLUT5<sup>fructose</sup> simulations (Fig. 2E, F).  
193 In the absence of fructose, the outward-open state is the most energetically favorable,  
194 with higher energy barriers to either occluded or inward-facing states (Fig. 2E). This  
195 calculation is consistent with experimental observations for the related XylE that show  
196 that the outward-facing state is the most populated in the absence of sugar (29). The  
197 free energy surface of GLUT5<sup>empty</sup> is also consistent with structures that have shown  
198 that the strictly-conserved salt-bridge network is only present on the cytoplasmic inside  
199 (8), stabilizing the outward-facing state. Single point mutations to the salt-bridge  
200 network residues have indeed been shown to arrest GLUT transporters in the inward-  
201 facing conformation (16, 30). In the presence of sugar, however, the inward-facing  
202 states become accessible and are of similar energetic stability to the outward-facing  
203 states (Fig. 2F). The heights of the free energy barriers between outward and inward-  
204 facing states in presence and absence of substrate, respectively, are consistent with  
205 measurements GLUT kinetics, as rates have been shown to be 100-fold faster for  
206 substrate-bound than for empty-occluded transitions (2, 22). In other words, we can  
207 directly see the effect of substrate binding on transport, namely sugar-induced  
208 conformational changes. Based on these overall differences matching experimental  
209 observations, we conclude the free energy landscape represents the physiologically-  
210 relevant GLUT5 conformational cycle.

211 In the presence of fructose, the occluded state of GLUT5 is exactly positioned between  
212 the two energetically-favorable outward- and inward-facing states (Fig. 2F). Consistent  
213 with a transition state, the occluded state is located on the highest energetic barrier along  
214 the lowest energy pathway between the two opposite-facing conformations. Moreover,  
215 transition into the occluded state from the outward states is energetically unfavorable  
216 for GLUT5 without sugar, but the presence of fructose clearly lowers the activation

217 barrier (Fig 2E, F). These calculations are also consistent with the fact that GLUT  
218 transporters are required to spontaneously reset to the opposite-facing conformation  
219 through an empty occluded transition (8), i.e., local gates rearrangements controlling  
220 intermediate states must be able to spontaneously close in the absence of sugar.

221 *Conformational stabilization of the occluded-state by D-fructose*

222 Since the presence of D-fructose lowers the energetic barriers between outward- and  
223 inward-facing states (Fig. 2F), we reasoned that we should be able to extract the  
224 molecular determinants for D-fructose coordination in the occluded state from these  
225 simulations. Based on extensive biochemical data and the glucose-bound *human*  
226 GLUT3 structure, we know that D-glucose is transported with the C1-OH group facing  
227 the bottom of the cavity (endofacial) and the C6-OH group facing the top (exofacial)  
228 (8, 31-33). It is expected that D-fructose will be likewise transported by GLUT5 with  
229 the C1-OH group facing the endofacial direction, since substituents to fructose were  
230 better tolerated when added to the C6-OH position (34, 35). D-fructose was  
231 unconstrained during TMD and string simulations. To evaluate the conformational  
232 heterogeneity of D-fructose, we binned the energy landscape, extracted configurations  
233 corresponding to each bin, and then clustered the fructose poses for these ensembles of  
234 configurations (see Methods). As seen in Fig. 3B, in the outward-open and outward-  
235 occluded conformations, D-fructose does not display any preferential binding mode,  
236 and the C1-OH group has no preferential orientation (brown sphere). In contrast, in the  
237 occluded state, the sugar becomes highly coordinated, adopting a single well-defined  
238 binding pose in approximately 65% of conformations that is 9-fold more populated than  
239 the next most abundant pose (Fig. 3A, B). Remarkably, the two most preferred poses  
240 are very similar to the orientation that both D-glucose and D-xylose have adopted in  
241 previously determined crystal structures (Fig. 3C)(8, 15, 17).

242 Upon superimposition of all the major conformations along the GLUT transport cycle,  
243 the TM7b asparagine was shown to be the only sugar-coordinating residue significantly  
244 changing its position during the transport cycle (20). Because the TM7b asparagine  
245 residue is strictly conserved in all GLUT transporters and related sugar porters, it was  
246 proposed that the recruitment of the TM7b asparagine is a key and generic interaction  
247 required for coupling sugar binding and extracellular TM7b gating (8). Consistently, in  
248 the simulations, the TM7b asparagine (N293) is well positioned to coordinate the C4-

249 OH group of D-fructose in the most favorable binding pose in the fully occluded state,  
250 and generally maintains hydrogen-bond distance (Fig. 3D). Moreover, in the *PfHT1*  
251 occluded structure, TM7b was found to have broken into an elbow-shaped helix, with  
252 close contacts to TM1 at the break-point. In all inward-facing states, the gating helix  
253 TM7b remains at a sharp angle (8). Structural information implied the stabilization of  
254 TM7b *via* the asparagine coordination to a substrate sugar would induce TM7b to  
255 transition from a bent to a broken-helix conformation (8, 20).

256 We therefore also compared the angle formed by TM7b throughout both rGLUT5<sup>empty</sup>  
257 and rGLUT5<sup>fructose</sup> simulations (Fig. 4). Consistently, we observe that TM7b  
258 comparatively forms a sharper angle earlier in the transport cycle when sugar is present,  
259 indicating that indeed the conformational state of TM7b is connected with sugar  
260 recognition, and suggesting a mechanism whereby fructose binding induces transition  
261 into the occluded states (Fig. 4). The angle of TM7b further decreases upon transition  
262 into the occluded state to fully shut the outside gate.

263 *Coupling between fructose binding and inner gate rearrangements*

264 Extracellular TM7b gate closure in the occluded conformation must somehow trigger  
265 the breakage of the intracellular salt-bridge network on the inside in order for the two  
266 bundles to come apart. Upon closer inspection of the fructose-bound state, we see that  
267 not only does the TM7b asparagine interact within hydrogen bond distance to D-  
268 fructose, but a TM7b gating tyrosine (Y296) also forms an interaction to a histidine  
269 residue (H386) in TM10a (Fig. 5A). Both the TM10a histidine and the TM7b tyrosine  
270 are unique to GLUT5 (Figure S1) (14) and GLUT1 mimicking variants H386A, H386F  
271 and Y296A have been shown to severely diminish fructose binding (14). The TM7b  
272 tyrosine appears to also interact with an asparagine residue (N324), which is also  
273 generally within hydrogen bond distance to the C6-OH group of D-fructose (Fig. 3D).  
274 As such, the TM7b gate appears to be connected both indirectly and directly to the  
275 sugar-binding site. Interestingly, a serine residue (S391) located between the TM10a-b  
276 breakpoint also coordinates with the C1-OH group of fructose, which is an alanine  
277 residue in GLUT1. The mutation of S391 to alanine in GLUT5 also weakened D-  
278 fructose binding (14). It thus seems that the substrate-sugar stabilizes the closure of  
279 TM7b and also its interaction with TM10a. It is possible that when TM10a becomes  
280 locked in place by interaction with the substrate sugar, TM10b is allowed to move more

281 independently of TM10a, further facilitated by a very mobile GPXPXP helix-break  
282 motif (Fig. S1). Moreover, in the simulations, we see that the TM7b angle decreases  
283 from about 150 degrees to about 115 degrees without any noticeable change in TM10b  
284 (Fig. 5B). However, as the TM7b angle reaches 115 degrees in the occluded state,  
285 TM10b undergoes a large shift in position. Interestingly, the salt-bridge residues,  
286 particularly those located between TM4 and TM11, do not fully break apart until  
287 TM10b has finished rearranging (Fig. 5C, D). This would indeed be consistent with the  
288 coordinated coupling between the inward movement of TM7b triggering the outward  
289 movement of TM10b to break the inter-bundle salt-bridge network.

290 **Discussion**

291 GLUT transporters are often presented as text-book examples of how small molecule  
292 transporters are functional equivalents of soluble enzymes. Yet, despite extensive  
293 kinetic, biochemical and physiological analysis, we have a poor understanding of how  
294 GLUT structures fit into such a molecular description. Here, for the first time, we can  
295 confirm that the occluded state structure of *Pf*HT1 (20) provides a suitable template for  
296 modelling the transition state in a GLUT transporter. The classical description of  
297 enzyme catalysis is that there is relatively weak binding of the substrate to the enzyme  
298 in the initial state, but a tight binding in the transition state (36, 37). This conceptual  
299 framework implies that in GLUT proteins, the sugar would bind more tightly to the  
300 transition state, which would be consistent the Induced Transition Fit of transport  
301 catalysis proposed by Klingenberg ref. (37). More specifically, in the occluded state,  
302 we find that TM7b is broken over the sugar-binding site to better coordinate D-fructose.  
303 The fundamental difference between enzymes and transporters is that the structure of  
304 the transition state determines the activation barrier for global conformational changes  
305 in the transporters, whereas in enzymes the barrier is imposed by substrate remodeling  
306 in the transition state (37). Here, we indeed observe that the energy barrier for  
307 conversion between states is clearly lowered by the coordination of D-fructose.

308 By measuring GLUT1 kinetics at different temperatures, an activation barrier ( $E_a$ ) of  
309 around 10 kcal/mol has been reported (22). This relatively low activation barrier  
310 roughly corresponds to the breakage of a few salt-bridges, which matches the  
311 expectation for the intracellular salt-bridge-rich GLUTs. The D-glucose binding  
312 energies has been estimated to be around 9 kcal/mol for GLUT3 (38), which is

313 consistent with sugar binding required to generate the global transitions by inducing  
314 formation of the occluded state. Although the transition state represents the highest  
315 energetic barriers between opposite-facing conformations in MD simulation of GLUT5,  
316 the height of the activation barrier cannot be reliably calculated from our simulations  
317 for several different reasons. Firstly, the energy barriers are estimated along a path that  
318 describes structural transitions in the extracellular and intracellular gates, rather than all  
319 conformational changes across the entire protein. Moreover, our models consider a  
320 membrane bilayer made from POPC lipids, whereas it is well established that transport  
321 by GLUT proteins requires the presence of anionic lipids. The fact that the activation  
322 barrier for GLUT1 has been shown to increase from 10 to 16 kcal/mol in liposomes  
323 made from lipids with longer fatty acids highlights just how sensitive GLUT proteins  
324 are to the lipid composition (39). Here, we chose to use a neutral lipid composition to  
325 avoid complications related to the anticipated timescales needed to equilibrate a  
326 complex bilayer. Moreover, we have focused on the sugar coupling for influx rather  
327 than efflux, because the affinities for D-glucose are reported to be 10-fold poorer on the  
328 inside (8, 40) and salt-bridge formation between the two bundles is more difficult to  
329 model than salt-bridge breakage (see Methods, Fig. S6).

330 In the promiscuous sugar transporter *PfHT1*, the TM7b gating tyrosine residues of  
331 GLUT5 have been replaced by serine and asparagine (20). These more polar residues  
332 enable closing of the outside gate more easily and play a role in catalyzing transport of  
333 different sugars. In contrast, GLUT5 is a highly specific sugar transporter and we find  
334 evidence for a finely-tuned extracellular TM7b gate. More specifically, upon TM7b gate  
335 closure, the tyrosine residue proceeding the “YY/SN” motif forms a unique pairing to  
336 a histidine residue peripheral to the sugar-binding site. The histidine can interact both  
337 with the TM7b tyrosine as well as hydrogen bond to an asparagine residue interacting  
338 with fructose. In contrast, the C6-OH group from a bound D-glucose molecule could  
339 conceivably clash with the positioned histidine residue. Although the exact rationale  
340 will require a GLUT5 structure in complex with D-fructose, it is poignant that we  
341 observe a connection between the sugar-binding site and the TM7b tyrosine residue,  
342 which is located at the region wherein TM7b transitions from a bent to broken helix in  
343 the occluded state. The importance of the evolved coupling between this region in  
344 TM7b and the sugar binding site was also observed in the *E. coli* xylose symporter  
345 XylE. Whilst XylE binds D-glucose in the same manner and with the same affinity as

346 in human GLUT3, the XylE protein is incapable of transporting the sugar, i.e., D-  
347 glucose is a dead-end inhibitor (41). However, the mutation of the residue  
348 corresponding to the TM7b tyrosine in XylE (L297F) together with a sugar binding site  
349 mutant (Q175L), enables XylE to transport D-glucose while retaining 75% of wild-type  
350 D-xylose transport (42). Thus, our work strengthens the proposal that TM7b should be  
351 considered as an extension of the sugar binding site (20).

## 352 **Conclusions**

353 Taken together, we conclude the molecular determinants for sugar transport are an  
354 intricate coupling between an extracellular gate, a sugar-binding site, and an  
355 intracellular salt-bridge network (Fig. S7). Weakly binding sugars are able to induce  
356 large conformational changes in GLUT proteins by conformational stabilization of a  
357 transition state that can already be spontaneously populated. Rather than a substrate  
358 binding site that achieves strict specificity by having a high-affinity for the substrate,  
359 GLUT proteins have allosterically coupled sugar binding with an extracellular gate that  
360 forms the high-affinity transition-state instead. Presumably, this substrate-coupling  
361 pathway ensures that sugar-binding does not become rate-limiting, and so enables  
362 GLUT proteins to catalyse fast sugar flux at physiological relevant blood-glucose  
363 concentrations in the mM range. The recent type 2 diabetes drug empagliflozin in  
364 complex with the sodium-coupled glucose transporter SGLT2, demonstrates how  
365 selective inhibition was achieved by the aglycone of the glucoside inhibitor interacting  
366 with the mobile TM1a-b and TM6a-b half-helices (43). In many aspects, while GLUT  
367 proteins are referred to as rocker-switch proteins, their asymmetric binding mode gives  
368 rise to gating elements closely resembling the structural transitions seen in rocking-  
369 bundle proteins like SGLT2 (8). Such an intricate coupling indicates that  
370 pharmacological control of GLUT proteins might best be accomplished by small  
371 molecules targeting gating regions in addition to the sugar binding site.

## 372 **Materials and Methods**

373

### 374 *Protein modeling and atomistic simulations*

375 Residue numbering for rGLUT5 is based on the UNIPROT entry of rGLUT5: P43427,  
376 and all generated models begin at residue E7 and end at residue V480. The starting  
377 models for rGLUT5 in each state were generated using homology modeling with

378 MODELLER version 10.1 (44). A summary of the details of these models and  
379 subsequent simulations are found in Table 1. The unresolved TM1-TM2 loop from  
380 chain A of the outward-open structure of rGLUT5, PDB:4ybq, was modeled using  
381 MODELLER. Human GLUT3, 4zw9 (25), served as template for the rGLUT5 outward-  
382 occluded model. *Pf*HT1 PDB:6rw3 (20) chain C served as template for the rGLUT5  
383 fully-occluded model. XYLE PDB:4ja3 (18), served as template for the rGLUT5  
384 inward-occluded model. Bovine GLUT5, PDB:4yb9 (14), served as template for the  
385 rGLUT5 inward-open model. Intracellular helix 5 (ICH5) is not present or incomplete  
386 in several structures (see Table 1) and therefore the rGLUT5 ICH5 (residues M457-  
387 V480) was added to the sequence alignment for homology modeling as a template.

388 Each rGLUT5 protein model was placed into a POPC bilayer with ~122 lipids on the  
389 top leaflet, and ~124 on the bottom, and solvated in a water box with 150mM NaCl  
390 using CHARMM-GUI (45). The total box size before equilibration was 10x10x11nm.  
391 All parameters of the system were described using CHARMM36m.

392 Each system underwent energy minimization using steepest descent, followed by  
393 system equilibration for a total of 187.5ps where positional restraints on the protein and  
394 POPC lipids were gradually released. Production MD was then run using 2fs timesteps  
395 in GROMACS version 2019.1 (46). Temperature was maintained at 303.15K using  
396 Nose-Hoover temperature coupling, using three separate groups for protein, lipid  
397 bilayer, and the solvent. Pressure was maintained at 1bar using the Parrinello-Rahman  
398 barostat with semiisotropic coupling, using a time constant of 5ps and a compressibility  
399 of  $4.5 \times 10^{-5}$  bar<sup>-1</sup>. Hydrogen bonds were constrained using LINCS (47), electrostatic  
400 interactions modelled with a 1.2nm cutoff, while long-range electrostatics were  
401 calculated with particle mesh Ewald (PME). Simulation length can be found in Table  
402 1.

403

#### 404 *Targeted molecular dynamics*

405 Targeted MD (TMD) was performed in a stepwise fashion between states to ensure that  
406 the initial string would cover the determined sugar porter conformational space  
407 observed thus far. Four main TMD protocols were used: rGLUT5<sup>empty</sup> Outward open -  
408 Inward open, rGLUT5<sup>empty</sup> Inward open - Outward open, rGLUT5<sup>fructose</sup> Outward open -  
409 Inward open, and rGLUT5<sup>fructose</sup> Inward open - Outward open.

410 TMD was performed using GROMACS version 2019.5 patched with PLUMED version  
411 2.5.5 (48). Each TMD condition was performed in a stepwise, iterative fashion. The  
412 first TMD run of each of the four conditions was performed biasing stepwise, either the  
413 outward open structure or inward open homology model towards the respective targets,  
414 the outward occluded or inward occluded models. All structures and models used, be it  
415 as a starting point or as a target for the TMD, are from unequilibrated (not from the  
416 aforementioned MD) structures/ models, to ensure that the TMD was not generated  
417 from a local minima distant from a desired state. The positions of all heavy atoms were  
418 biased in a geometric space with incrementally increasing harmonic restraints, initially  
419 starting at 0 kJ/mol/nm and increasing to 2500 kJ/mol/nm at step 5000. After 5000  
420 steps, the force applied was squared every 150000 steps until the heavy atom RMSD of  
421 the system was within about 0.05nm of their target conformation. After this was  
422 achieved, the final frame of the TMD run was used to generate the next TMD run's

423 input model for each condition. Table 2 details each TMD run length, starting and  
424 ending conformations for each condition, and the RMSD of the final TMD timepoint.

425 For rGLUT5<sup>fructose</sup> TMD runs, beta-D-fructofuranose was placed in the outward open  
426 structure or inward open model based on the positioning of glucose in hGLUT1  
427 (4pyp)(15) after structural alignment with the models in PyMol version 2.5.0. The  
428 fructose-bound outward open structure or inward open model were then briefly energy  
429 minimized to ensure no sugar and water atoms clashing during simulation. During TMD  
430 runs, fructose coordinates were left unbiased. Despite this, inspecting the fructose  
431 position revealed that fructose did not leave the binding cavity.

432

433 *Limitations of inward open to outward open simulations in regards to salt bridge*  
434 *distances*

435 Initially, as described above, TMD was also performed with both rGLUT5<sup>empty</sup> and  
436 rGLUT5<sup>fructose</sup>, from inward open to outward open. However, string simulations  
437 performed of these conditions did not converge. Upon examination of features of these  
438 simulations, we could see the state-dependent salt-bridge residues losing contact in  
439 states where they should not (Fig. S6), and thus we elected to focus further simulations  
440 on GLUT5 influx, as discussed in the main text.

441

442 *Collective variables selection*

443 Collective variables (CVs) were chosen based on features that were transferable to other  
444 sugar porters, and that would separate different functional states. Two CVs were used  
445 for this state differentiation, measuring opening of the extracellular and the intracellular  
446 gates, respectively (Fig. 1C, Fig. 2A, Fig. S1). The distance between the centers of mass  
447 of the extracellular gating parts of the transmembrane helices TM1 (residues 36 to 43)  
448 and TM7 (residues 295 to 301) were used to measure opening of the extracellular gate  
449 (referred to as extracellular gate distance). The distance between the centers of mass of  
450 the intracellular gating parts of the transmembrane helices TM4 (residues 142 to 151)  
451 and TM10 (residues 392 to 400) were used to measure opening of the intracellular gate  
452 (referred to as intracellular gate distance).

453

454 *String preparation*

455 For each of the conditions, snapshots corresponding to points lining the string were  
456 extracted from the TMD runs (referred to as beads hereafter). 16 beads were chosen in  
457 total, five of which correspond to the outward open, outward occluded, fully occluded,  
458 inward occluded, and inward open models, and based on the first or final frames of the  
459 TMD runs. The other 11 beads were chosen to cover uniformly the CV space between  
460 states (Fig. 2D for rGLUT5<sup>fructose</sup>, Fig. S4A for rGLUT5<sup>empty</sup>).

461

462

463 *String method with swarms of trajectories*

464 The string simulations with swarms of trajectories were performed as described in ref  
465 (28), with a brief summary as follows. With the exception of bead 0 and bead 15  
466 (outward open and inward open models), which were held fixed and therefore not  
467 simulated in each run, each bead along the string undergoes several simulation steps in  
468 every iteration of the string simulations. Step 1: short string reparametrization and CV  
469 equilibration. The CV values are extracted for each bead, and the relevant system is  
470 equilibrated with a 10,000 kJ nm<sup>-2</sup> harmonic force potential acting on each CV for 30ps.  
471 Step 2: swarms of trajectories. From each bead, 32 swarms are launched and run for  
472 10ps each. The swarms were launched in parallel. Step 3: calculate CV drift for next  
473 iteration. The drift per bead is calculated by measuring the average of the CV distance  
474 over the simulation swarm. Step 4: Using the updated CV coordinates, the string is  
475 reparametrized so that the beads are equidistantly placed along the string, therefore  
476 stopping each bead from falling into nearby energy minima. Details of this  
477 reparameterization can be found in (29). Then, the iteration is complete and the next  
478 iteration can begin, with the initial simulation restraining the system in the  
479 reparametrized CV space. The rGLUT5<sup>fructose</sup> simulations were run for a total of 552  
480 iterations, and the rGLUT5<sup>empty</sup> simulations were run for a total of 745 iterations.

481 The code for running the string simulations with the conditions above, as well as a  
482 tutorial and simple system setup and analysis code can be found on GitHub at  
483 [https://github.com/delemottelab/string-method-swarms-](https://github.com/delemottelab/string-method-swarms-trajectories)  
484 trajectories. All simulation parameters of the string simulations are the same as  
485 mentioned above, with the exception of GROMACS version (2020.5 instead of 2019.1),  
486 and the use of a V-rescale thermostat instead of Nose-Hoover.

487

488 *Free energy landscape calculation*

489 The free energy landscapes as depicted in Fig. 2E and 2F were calculated from the  
490 transition matrix of the swarm simulations in the CV space once they were determined  
491 to be in equilibrium (Fig. S4B), after about 100 iterations. Therefore, 452 iterations of  
492 data was used to calculate rGLUT5<sup>fructose</sup> free energy surfaces, and 645 iterations of data  
493 for rGLUT5<sup>empty</sup>. First, a time-lagged independent component analysis (TICA) of the  
494 CVs was performed over every iteration, for each bead, using each start and end  
495 position in the swarm, to efficiently separate the data for state discretization. Next, these  
496 TICA projections were clustered using k-means clustering. Finally, a Markov state  
497 model (MSM) was constructed with n=100 clusters and a kernel density estimation  
498 (KDE) of the resulting MSM was projected into the 2D collective variable space, using  
499 a bandwidth of 0.05, on a 55x55 grid.

500

501 *Analysis of simulations*

502 The resulting free energy landscape is defined on a 55x55 grid. For the analysis of  
503 protein features (such as sugar coordination, TM7b angle, and salt bridge distances),  
504 each of the bins in the grid was analyzed independently. For this, structural snapshots  
505 from the endpoints of swarm simulations corresponding to the CV values of each bin  
506 were extracted, with a maximum of 1000 frames per bin (see Fig. S5A).

507 In the sugar coordination analysis, the snapshots extracted for each bin were aligned on  
508 the entire protein position in cartesian space. Then, clustering was performed on each  
509 of the sugar coordinates using `gmx cluster` with the Jarvis-Patrick algorithm and a  
510 cutoff of 0.08nm for each cluster center. The percentage of total frames occupied by the  
511 most populated cluster is presented in Fig. 3B. Table 3 below summarizes the clusters  
512 for two representative bins, the outward open and occluded state. The area shaded grey  
513 in the table indicate clusters used in the Fig 3B inserts, highlighting the most populated  
514 clusters summing to ~70% of the total possible sugar poses in a bin. The most populated  
515 cluster for the occluded state, highlighted with a red border, is shown in Fig. 3C.  
516 Distances between certain sugar hydroxyl groups and residue side chains, as shown in  
517 Fig. 3D, are calculated from this cluster as well. These measurements are the minimum  
518 closest distance between any atom of a given hydroxyl group, to any atom of a residue  
519 side chain for each frame in this bin (n=447).

520 In other feature analysis such as TM7b angle or salt bridge distances, the snapshots  
521 extracted for each bin were analyzed in Python version 3.8.5 using MD Analysis  
522 version 2.0.0<sup>12</sup> and plotted in matplotlib version 3.3.4.

523 Images overlaying simulation features with an energy surface (such as Fig. 3B and Fig.  
524 4) use an abstraction of the free energy surfaces as depicted in Fig 2E and 2F. A  
525 depiction of this abstraction can be found in Fig. S5B.

526 To estimate average properties for each grid point ( $X_i$ ), weighted averages ( $W$ ) are  
527 reported, using the weights for each snapshot estimated from the MSM ( $w_i$ ).

528 
$$W = \frac{\sum_{i=1}^n w_i X_i}{\sum_{i=1}^n w_i} \quad (1)$$

529

530 The TM7b angle  $\theta$  was calculated as the angle between two vectors defined by two  
531 groups of residues center of mass (COM):

532 
$$\theta = \arccos \left( \frac{\overrightarrow{BA} \cdot \overrightarrow{BC}}{|\overrightarrow{BA}| |\overrightarrow{BC}|} \right) \quad (2)$$

533 where A represents the vector of positions of residues 289-291 COM, B the vector of  
534 positions of residues 296-298 COM and C the vector of positions of residues 304-306  
535 COM.

536

537 The TM10b RMSD was calculated as the weighted average of each grid's RMSD of  
538 the backbone of residues 391-401 after superposition of all backbone atoms onto the  
539 outward open structure 4yb9.

540 The state-dependent salt bridge residue distance is calculated as the minimum distance  
541 averaged between residue pairs E151-R407, and E400-R158.

542 The aforementioned Python codes written for all analysis and free energy landscape  
543 calculations can be found at:  
544 [https://github.com/semccomas/GLUT5\\_string](https://github.com/semccomas/GLUT5_string)

545

546 **Acknowledgements**

547 This work was funded by grants from Novo Nordisk foundation (to D.D.) and The Knut  
548 and Alice Wallenberg Foundation (to D.D.) and Göran Gustafsson foundation ( to D.D  
549 and L.D) . LD acknowledges SciLifeLab and the Swedish Research Council (VR 2019-  
550 02433) for funding. The MD simulations were performed on resources provided by the  
551 Swedish National Infrastructure for Computing (SNIC) on Beskow at the PDC Center  
552 for High Performance Computing (PDC-HPC). We thank Sergio Perez Conesa for  
553 support using the string of swarms method and related discussions.

554

555 **Author contribution**

556 D.D. and L.D designed research; S.M performed research; S.M, D.D and L.D.  
557 analyzed data; S.M, D.M, C.A, M.B, D.D and L.D wrote the paper. All authors  
558 approved the final manuscript.

559

560 **References**

1. G. D. Holman, Structure, function and regulation of mammalian glucose transporters of the SLC2 family. *Pflugers Arch* **472**, 1155-1175 (2020).
2. M. Mueckler, B. Thorens, The SLC2 (GLUT) family of membrane transporters. *Mol Aspects Med* **34**, 121-138 (2013).
3. B. Thorens, GLUT2, glucose sensing and glucose homeostasis. *Diabetologia* **58**, 221-232 (2015).
4. S. Huang, M. P. Czech, The GLUT4 glucose transporter. *Cell Metab* **5**, 237-252 (2007).
5. V. Douard, R. P. Ferraris, Regulation of the fructose transporter GLUT5 in health and disease. *Am J Physiol Endocrinol Metab* **295**, E227-237 (2008).
6. T. Kayano *et al.*, Human facilitative glucose transporters. Isolation, functional characterization, and gene localization of cDNAs encoding an isoform (GLUT5) expressed in small intestine, kidney, muscle, and adipose tissue and an unusual glucose transporter pseudogene-like sequence (GLUT6). *J Biol Chem* **265**, 13276-13282 (1990).
7. H. Koepsell, Glucose transporters in brain in health and disease. *Pflugers Arch* **472**, 1299-1343 (2020).
8. D. Drew, R. A. North, K. Nagarathinam, M. Tanabe, Structures and General Transport Mechanisms by the Major Facilitator Superfamily (MFS). *Chem Rev* (2021).
9. Y. Zhang, Y. Zhang, K. Sun, Z. Meng, L. Chen, The SLC transporter in nutrient and metabolic sensing, regulation, and drug development. *J Mol Cell Biol* **11**, 1-13 (2019).
10. P. B. Ancey, C. Contat, E. Meylan, Glucose transporters in cancer - from tumor cells to the tumor microenvironment. *FEBS J* **285**, 2926-2943 (2018).
11. D. Drew, R. A. North, K. Nagarathinam, M. Tanabe, Structures and General Transport Mechanisms by the Major Facilitator Superfamily (MFS). *Chem Rev* **121**, 5289-5335 (2021).

589 12. S. S. Pao, I. T. Paulsen, M. H. Saier, Jr., Major facilitator superfamily. *Microbiol*  
590 *Mol Biol Rev* **62**, 1-34 (1998).

591 13. M. C. Maiden, E. O. Davis, S. A. Baldwin, D. C. Moore, P. J. Henderson,  
592 Mammalian and bacterial sugar transport proteins are homologous. *Nature* **325**,  
593 641-643 (1987).

594 14. N. Nomura *et al.*, Structure and mechanism of the mammalian fructose  
595 transporter GLUT5. *Nature* **526**, 397-401 (2015).

596 15. D. Deng *et al.*, Molecular basis of ligand recognition and transport by glucose  
597 transporters. *Nature* **526**, 391-396 (2015).

598 16. D. Deng *et al.*, Crystal structure of the human glucose transporter GLUT1.  
599 *Nature* **510**, 121-125 (2014).

600 17. L. Sun *et al.*, Crystal structure of a bacterial homologue of glucose transporters  
601 GLUT1-4. *Nature* **490**, 361-366 (2012).

602 18. E. M. Quistgaard, C. Low, P. Moberg, L. Tresaugues, P. Nordlund, Structural  
603 basis for substrate transport in the GLUT-homology family of monosaccharide  
604 transporters. *Nat Struct Mol Biol* **20**, 766-768 (2013).

605 19. G. Wisedchaisri, M. S. Park, M. G. Iadanza, H. Zheng, T. Gonen, Proton-  
606 coupled sugar transport in the prototypical major facilitator superfamily protein  
607 Xyle. *Nat Commun* **5**, 4521 (2014).

608 20. A. A. Qureshi *et al.*, The molecular basis for sugar import in malaria parasites.  
609 *Nature* **578**, 321-325 (2020).

610 21. P. A. Paulsen, T. F. Custodio, B. P. Pedersen, Crystal structure of the plant  
611 symporter STP10 illuminates sugar uptake mechanism in monosaccharide  
612 transporter superfamily. *Nat Commun* **10**, 407 (2019).

613 22. A. G. Lowe, A. R. Walmsley, The kinetics of glucose transport in human red  
614 blood cells. *Biochim Biophys Acta* **857**, 146-154 (1986).

615 23. C. J. Woodrow, J. I. Penny, S. Krishna, Intraerythrocytic Plasmodium  
616 falciparum expresses a high affinity facilitative hexose transporter. *J Biol Chem*  
617 **274**, 7272-7277 (1999).

618 24. X. Jiang *et al.*, Structural Basis for Blocking Sugar Uptake into the Malaria  
619 Parasite Plasmodium falciparum. *Cell* **183**, 258-268 e212 (2020).

620 25. D. Deng *et al.*, Molecular basis of ligand recognition and transport by glucose  
621 transporters. *Nature* (2015).

622 26. D. Drew, O. Boudker, Shared Molecular Mechanisms of Membrane  
623 Transporters. *Annu Rev Biochem* **85**, 543-572 (2016).

624 27. J. Schlitter, M. Engels, P. Kruger, Targeted molecular dynamics: a new approach  
625 for searching pathways of conformational transitions. *J Mol Graph* **12**, 84-89  
626 (1994).

627 28. O. Fleetwood, P. Matricon, J. Carlsson, L. Delemonette, Energy Landscapes  
628 Reveal Agonist Control of G Protein-Coupled Receptor Activation via  
629 Microswitches. *Biochemistry* **59**, 880-891 (2020).

630 29. R. Jia *et al.*, Hydrogen-deuterium exchange mass spectrometry captures distinct  
631 dynamics upon substrate and inhibitor binding to a transporter. *Nat Commun* **11**,  
632 6162 (2020).

633 30. A. Schurmann *et al.*, Role of conserved arginine and glutamate residues on the  
634 cytosolic surface of glucose transporters for transporter function. *Biochemistry*  
635 **36**, 12897-12902 (1997).

636 31. G. D. Holman, Chemical biology probes of mammalian GLUT structure and  
637 function. *Biochem J* **475**, 3511-3534 (2018).

638 32. J. E. Barnett, G. D. Holman, K. A. Munday, Structural requirements for binding  
639 to the sugar-transport system of the human erythrocyte. *Biochem J* **131**, 211-221  
640 (1973).

641 33. J. E. Barnett, G. D. Holman, R. A. Chalkley, K. A. Munday, Evidence for two  
642 asymmetric conformational states in the human erythrocyte sugar-transport  
643 system. *Biochem J* **145**, 417-429 (1975).

644 34. A. Tatibouet, J. Yang, C. Morin, G. D. Holman, Synthesis and evaluation of  
645 fructose analogues as inhibitors of the D-fructose transporter GLUT5. *Bioorg  
646 Med Chem* **8**, 1825-1833 (2000).

647 35. J. Yang, J. Dowden, A. Tatibouet, Y. Hatanaka, G. D. Holman, Development of  
648 high-affinity ligands and photoaffinity labels for the D-fructose transporter  
649 GLUT5. *Biochem J* **367**, 533-539 (2002).

650 36. K. Henzler-Wildman, D. Kern, Dynamic personalities of proteins. *Nature* **450**,  
651 964-972 (2007).

652 37. M. Klingenberg, Ligand-protein interaction in biomembrane carriers. The  
653 induced transition fit of transport catalysis. *Biochemistry* **44**, 8563-8570 (2005).

654 38. H. Liang, A. K. Bourdon, L. Y. Chen, C. F. Phelix, G. Perry, Gibbs Free-Energy  
655 Gradient along the Path of Glucose Transport through Human Glucose  
656 Transporter 3. *ACS Chem Neurosci* **9**, 2815-2823 (2018).

657 39. A. Carruthers, D. L. Melchior, Human erythrocyte hexose transporter activity is  
658 governed by bilayer lipid composition in reconstituted vesicles. *Biochemistry*  
659 **23**, 6901-6911 (1984).

660 40. E. K. Cloherty, K. S. Heard, A. Carruthers, Human erythrocyte sugar transport  
661 is incompatible with available carrier models. *Biochemistry* **35**, 10411-10421  
662 (1996).

663 41. A. Farwick, S. Bruder, V. Schadeweg, M. Oreb, E. Boles, Engineering of yeast  
664 hexose transporters to transport D-xylose without inhibition by D-glucose. *Proc  
665 Natl Acad Sci U S A* **111**, 5159-5164 (2014).

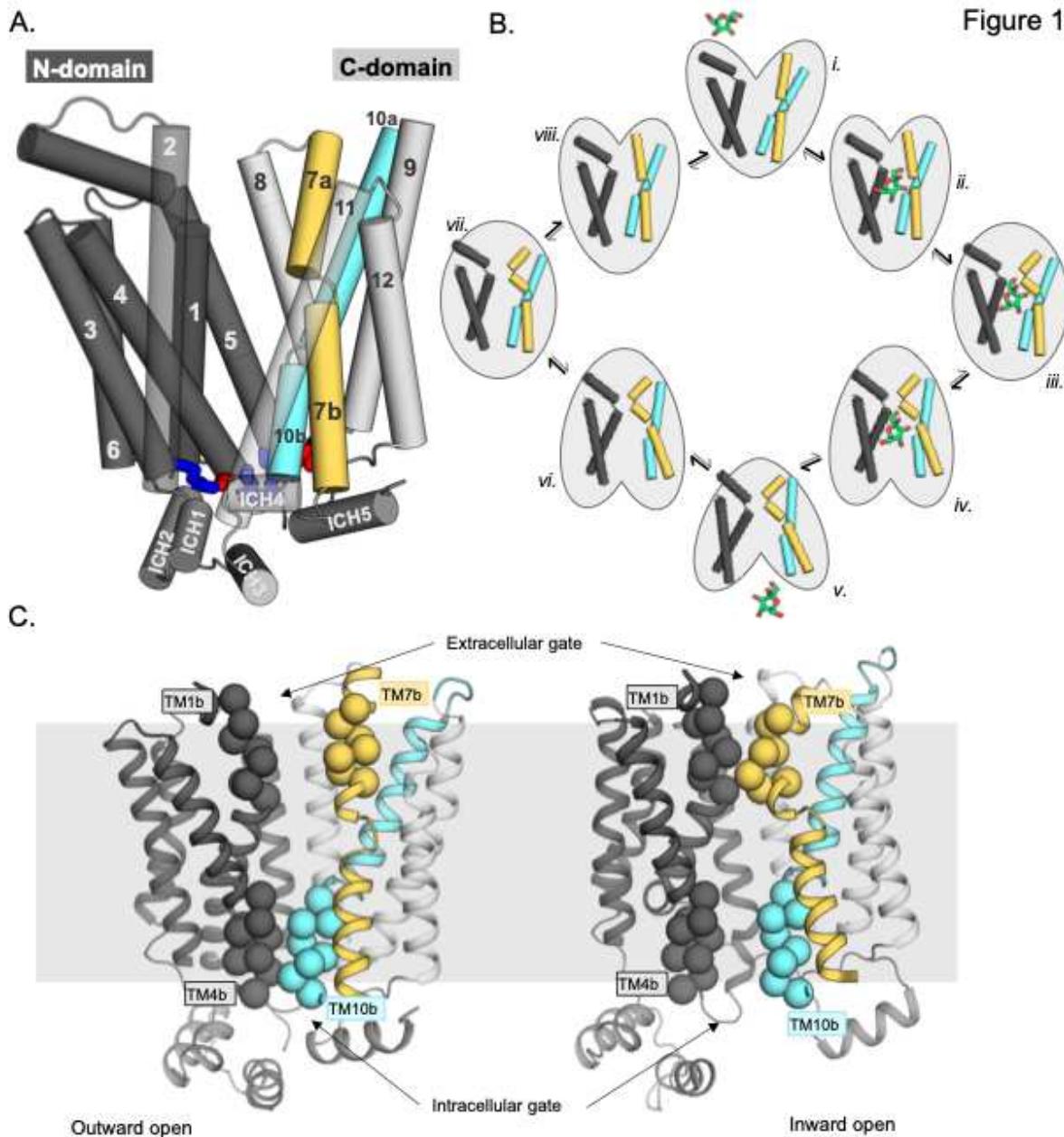
666 42. M. G. Madej, L. Sun, N. Yan, H. R. Kaback, Functional architecture of MFS D-  
667 glucose transporters. *Proc Natl Acad Sci U S A* **111**, E719-727 (2014).

668 43. Y. Niu *et al.*, Structural basis of inhibition of the human SGLT2-MAP17 glucose  
669 transporter. *Nature* **601**, 280-284 (2022).

670 44. A. Sali, T. L. Blundell, Comparative protein modelling by satisfaction of spatial  
671 restraints. *J Mol Biol* **234**, 779-815 (1993).

672 45. S. Jo, T. Kim, V. G. Iyer, W. Im, CHARMM-GUI: a web-based graphical user  
673 interface for CHARMM. *J Comput Chem* **29**, 1859-1865 (2008).

674 46. M. M. Abraham, T. Roland, S. Páll, S. Smith, J. Hess, B. Lindahl, E.,  
675 GROMACS: High performance molecular simulations through multi-level  
676 parallelism from laptops to supercomputers. *SoftwareX* **1**, 19-25 (2015).


677 47. B. Hess, P-LINCS: A parallel linear constraint solver for molecular simulation.  
678 *Journal of Chemical Theory and Computation* **4**, 116-122 (2008).

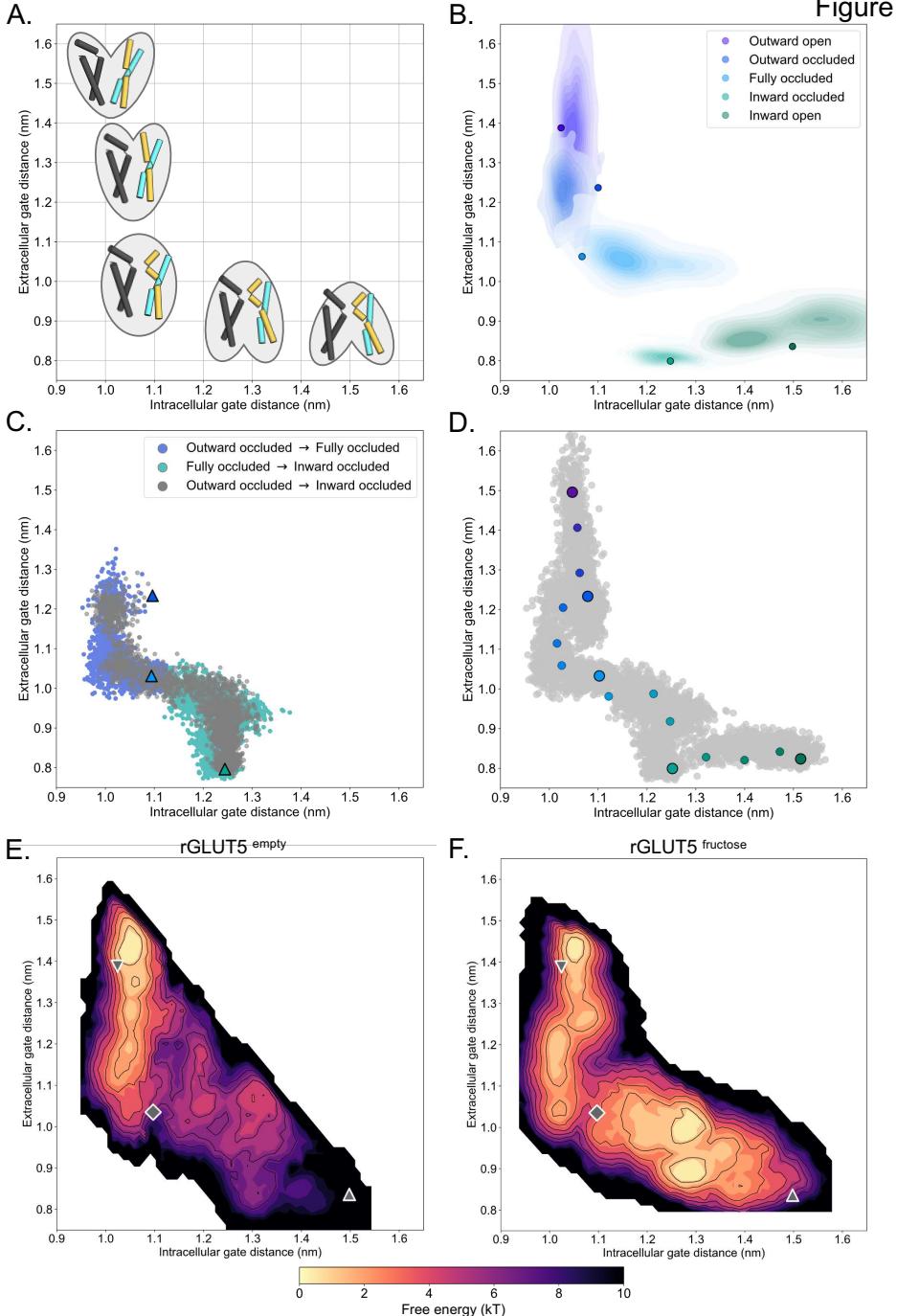
679 48. G. A. Tribello, Bonomi, M., Branduardi, D., Camilloni, C. & Bussi, G.,  
680 PLUMED 2: New feathers for an old bird. *Comput. Phys. Commun.* **185**, 604-  
681 613 (2014).

682

683

684 **Figures and Tables**



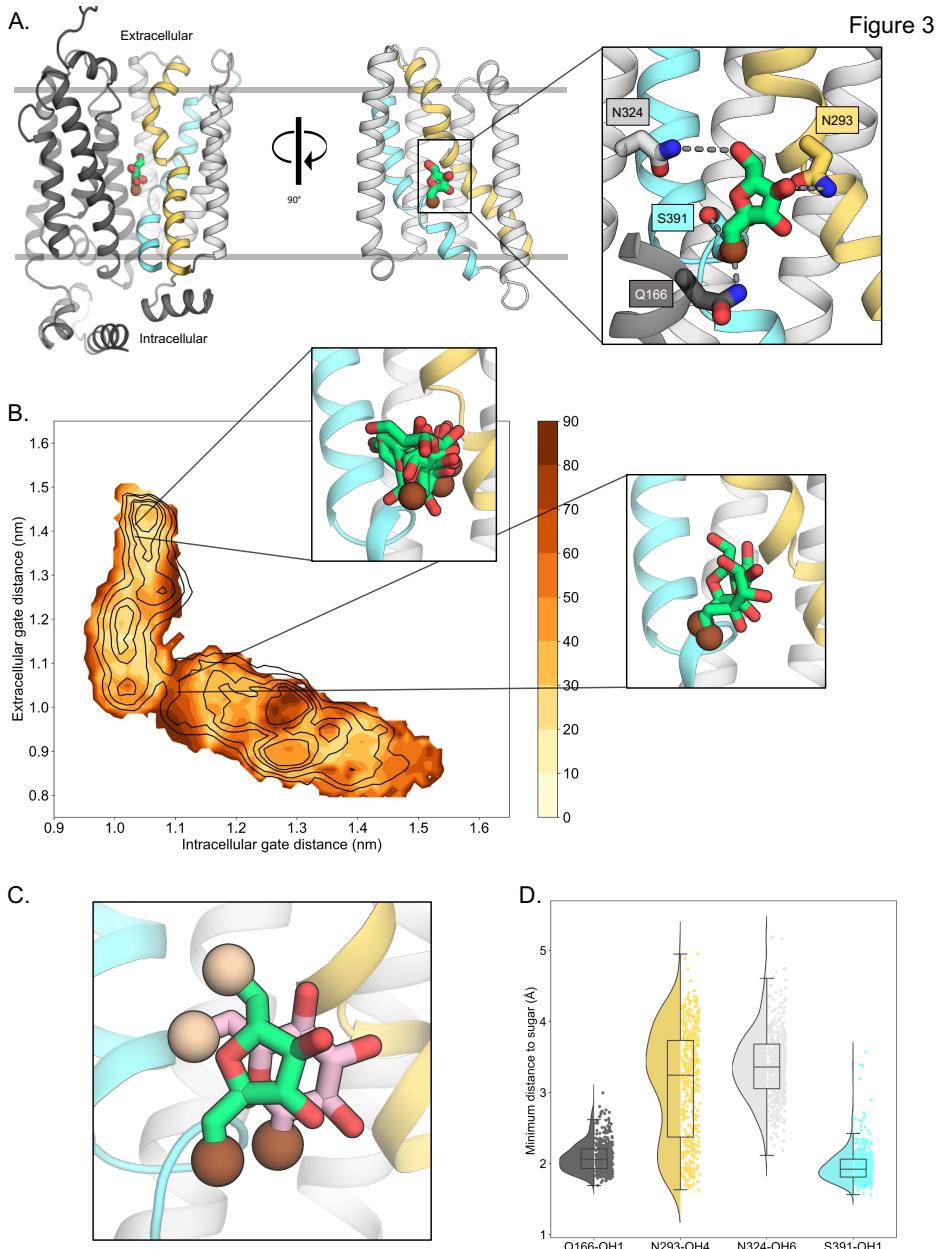

685

686 **Fig. 1. Schematic highlighting the GLUT structural features and their major**  
687 **conformations in the transport cycle.** A. Structural overview of a sugar porter,  
688 GLUT5 (PDB:4ybq). The N-domain (left, dark grey, transmembrane helices 1-6) and  
689 C-domain (right, light grey, transmembrane helices 7-12) form the separate six-  
690 transmembrane bundles, which are connected by the large cytosolic loop comprising  
691 intracellular helices (ICH) 1 - 4. The salt bridge forming residues linking the two  
692 bundles are shown as sticks in blue and red, indicating the positive and negative charge  
693 of the side chains, respectively. The broken transmembrane helices TM7 (forming  
694 TM7a and TM7b) and TM10 (forming TM10a and TM10b) are colored yellow and  
695 cyan respectively. B. Schematic conformational cycle a sugar porter will undergo, based  
696 on currently available protein structures. Briefly, moving clockwise from top middle,

697 the transporter will receive a sugar in the outward open state (i). The transporter then  
698 undergoes a partial occlusion of the extracellular gate (outward occluded, ii), followed  
699 by full occlusion (iii). Once both gates are fully shut, the inner gates begin to open  
700 (inward occluded, iv) where the salt bridge residues begin to lose contact. Finally, the  
701 salt bridges are fully broken apart in an inward open state (v), and the sugar can be  
702 released into the cell. The transporter will then go through the same motions in reversed  
703 order in the absence of sugar to reset to the outward open state (vi-viii). **C.** The  
704 extracellular gate is formed by TM1b and TM7b half-helices, and the intracellular gate  
705 is formed by TM4b and TM10b half-helices. Residues defining these gates are shown  
706 as spheres. In the outward open state (left), the extracellular gate is open, and  
707 intracellular gate is shut. In the inward open state (right), the opposite occurs. The grey  
708 slab behind the proteins indicates the rough location of the lipid bilayer membrane.

709

710

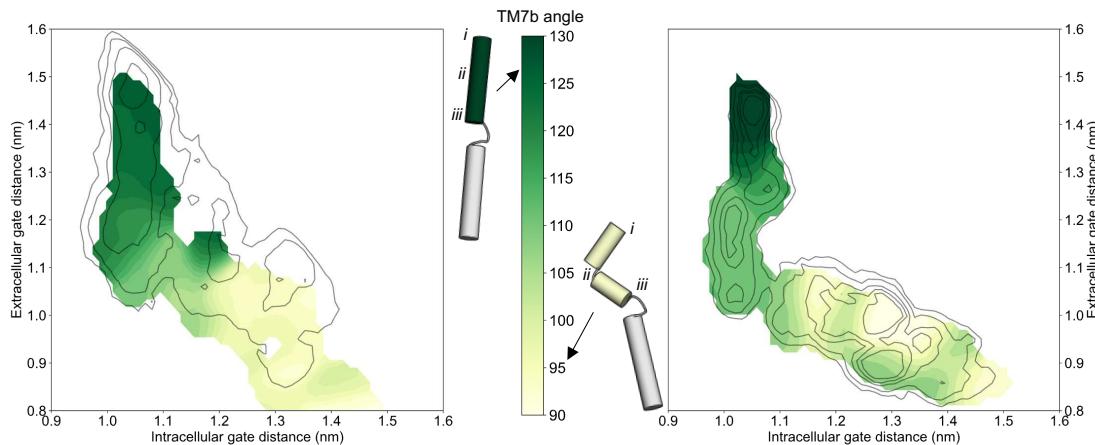



721

**Fig. 2 A free-energy landscape for D-fructose influx by GLUT5. A.** A graphical illustration of the five major states, with the intracellular (IC) and extracellular (EC) gate distances on the x-axis and y-axis, respectively. Only TM1, TM4, TM7, and TM10 are drawn here, with the intent to highlight only major elements of the rocker switch conformational change. **B.** IC and EC gate population densities of atomistic simulations of each rGLUT5 homology model. Filled circles represent the starting configurations from each rGLUT5 homology model. **C.** Targeted MD (TMD) with bound fructose. Individual states are shown in triangles, with the following color schemes: outward occluded: deep blue, occluded: light blue, inward occluded: green. Grey dots represent all frames corresponding to TMD of outward occluded to inward occluded skipping the

732 occluded state. This follows a pathway similar to sequential TMD from outward  
733 occluded to fully occluded (blue circles), and fully occluded to inward occluded (teal  
734 circles). rGLUT5<sup>empty</sup> TMD results can be found in Figure S3. **D.** Beads chosen for the  
735 string simulations from the TMD projected onto the space defined by the IC and EC  
736 gate distances for rGLUT5<sup>fructose</sup>. The cloud of grey dots represent all gate distance  
737 configurations through the TMD simulations, larger colored dots represent each initial  
738 homology model, and the smaller colored dots represent the beads between each of  
739 these models, which were chosen for the first iteration of the string-of-swarms method.  
740 Beads for rGLUT5<sup>empty</sup> found in Fig. S4A. **E.** Free energy surface for rGLUT5<sup>empty</sup>. The  
741 triangles and diamond illustrate the respective positions along the surface , for the  
742 homology model states: outward open (top left triangle), fully occluded (diamond), and  
743 inward open (bottom right). **F.** Free energy surface for rGLUT5<sup>fructose</sup>, with the same  
744 homology model projection as in E.

745



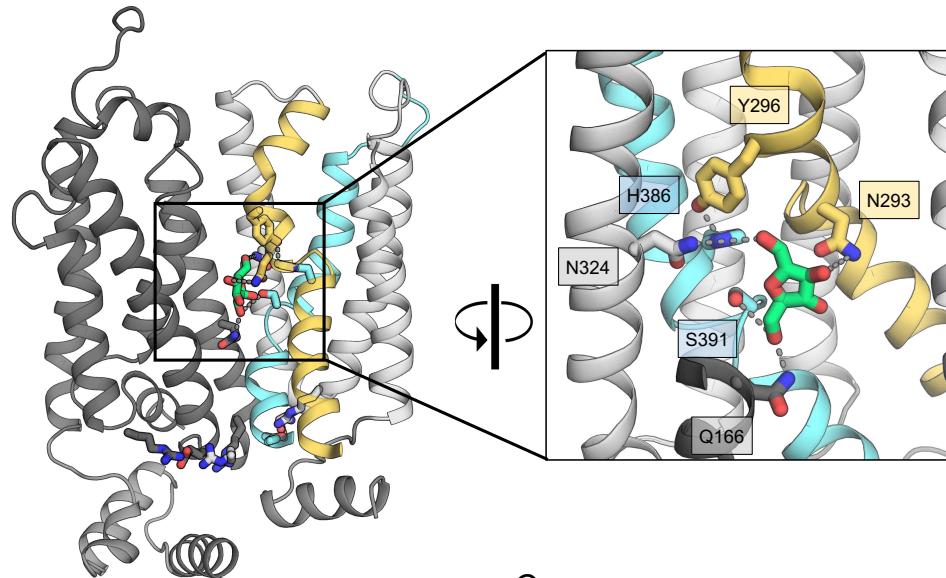

746

747 **Fig. 3 D-fructose becomes highly-coordinated in the occluded conformation. A.**  
748 An overview of a representative binding pose of fructose in the fully occluded GLUT5,  
749 coloring as in Figure 1. The D-fructose C1 hydroxyl group is for orientation purposes  
750 colored brown and shown as enlarged spheres. Selected interacting residues shown as  
751 sticks, and possible hydrogen bonds (as in panel D) are indicated by dashed lines. **B.**  
752 Sugar coordination of the fructose-bound simulations superimposed onto the free  
753 energy landscape for rGLUT5<sup>fructose</sup>, colored according to the frequency of the most  
754 populated cluster in each bin, therefore darker colors indicate a more consistent pose  
755 (see Methods for bin description). Snapshots extracted from two bins, corresponding to  
756 the outward open or occluded states respectively, depicting ~70% of total pose  
757 variability (see Table 3 in Methods) are shown as inserts. GLUT5 helices, D-fructose,  
758 and C1 hydroxyl group shown as in A. **C.** The coordination of fructose is oriented the  
759 same as previously determined glucose positions, such as in *PfHT1* (PDB:6rw3, pink).  
760 The C6 hydroxyl group is shown as an enlarged sphere colored tan, and the C1 hydroxyl

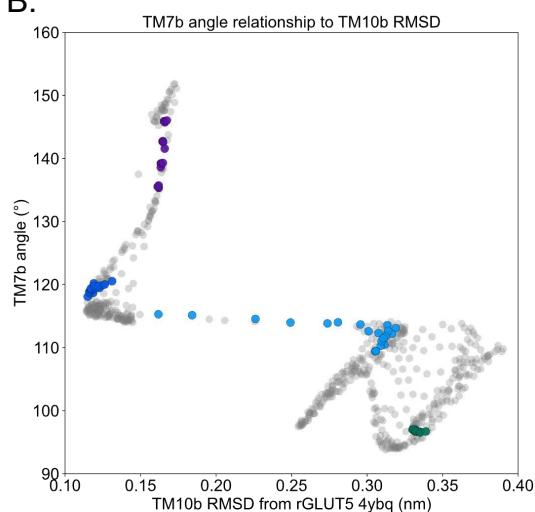
761 group in brown as in A. The fructose pose chosen here is the most populated cluster, as  
762 seen in Methods, Table 3. **D.** The distribution of distances of indicated fructose  
763 hydroxyl groups to certain side chains. Distances shown originate from the most  
764 populated cluster in the occluded state bin (Table 3, Methods).

Figure 4

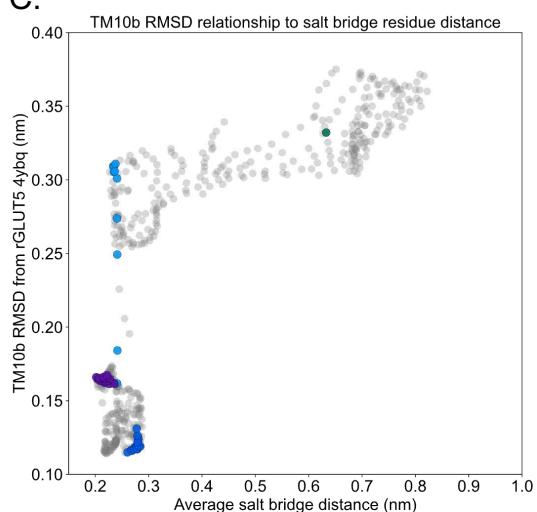



765

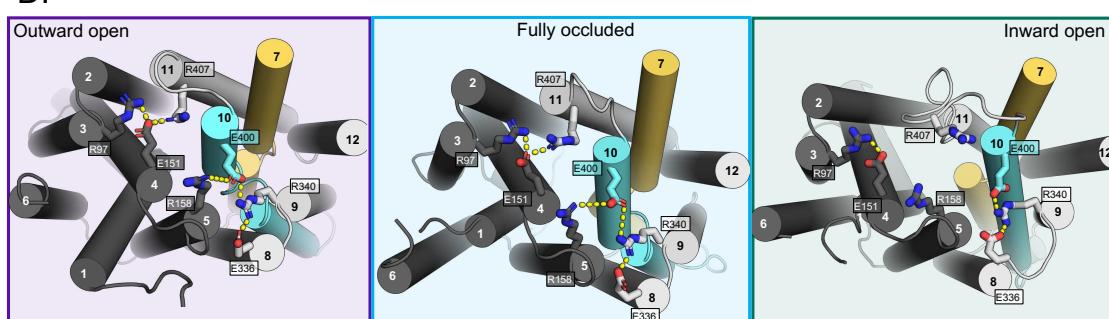
766 **Fig. 4 The coupling between the extracellular gate TM7b and the intracellular**  
767 **gate TM10b.** TM7b angle for rGLUT5<sup>empty</sup> (left) and rGLUT5<sup>fructose</sup> (right) superimposed  
768 onto the respective free energy landscapes. This angle is calculated by measuring the  
769 vector formed between residue groups *i,ii,iii* as shown on the protein cartoons (details  
770 in Methods). The angle in the outward open state is approximately 130 degrees, and  
771 will bend to nearly a 90 degree angle towards the inward-facing states.


772

A.


Figure 5




B.



C.



D.



773

774 **Fig. 5 Relationship between sugar binding, TM10b mobility, and salt bridge**  
775 **breakage.** A. An overview of the residues connecting the coupling of TM7b breakage  
776 during sugar binding to the movement of TM10b. The occluded state is represented  
777 here. When N293 is pulled towards the fructose hydroxyl group on C4, TM7b is kinked,  
778 and Y296 is then able to interact with H386 on TM10a.

779 Colouring and objects shown as described in Figure 1. TM2, TM11, and ICH4 are  
780 omitted for clarity, though the salt bridge residue R407 on TM11 remains. The inlay  
781 represented highlights key interactions with the sugar and the Y296-H386 interaction.  
782 Dashes represent possible hydrogen bond interactions (as shown in Fig. 3A and 3D, not  
783 including Y296-H386). **B.** Relationship between TM7b angle and TM10b RMSD.  
784 Circles colored correspond to bins with EC and IC values near the outward open  
785 (purple), outward occluded (deep blue), occluded (light blue), and inward open (green)  
786 conformations, respectively. The trajectory does not sample enough around the original  
787 inward occluded model to enable its inclusion in the analysis. **C.** Relationship between  
788 TM10b RMSD and the average of the two state-dependent salt bridge network  
789 distances. Coloring as in panel B. **D.** The salt bridge residues of GLUT5 in three of the  
790 major conformations, forming two main salt bridge groups, where interactions are  
791 indicated by yellow dashes. State-dependent interactions are observed for the salt  
792 bridge between E151-R401 (TM4-TM11) and E400-R158 (TM10-TM5), which are not  
793 observed in the inward open state (right, green). Protein coloring as in Figure 1, and  
794 background coloring indicates states representing the same colors in panel B and C.

795

796 **Table 1 GLUT5 model and simulation details**

| State modeled    | Type of model | ICH5 resolved? | Template structure (if applicable)                      | PDB code | Percentage identity to rat GLUT5 | Simulation time (ns) |
|------------------|---------------|----------------|---------------------------------------------------------|----------|----------------------------------|----------------------|
| Outward open     | Structure     | Yes            |                                                         | 4ybq     | 100%                             | 523                  |
| Outward occluded | Model         | Yes            | Human GLUT3                                             | 4zw9     | 40.8%                            | 298                  |
| Fully occluded   | Model         | No             | <i>Plasmodium falciparum</i> hexose transporter (PfHT1) | 6rw3     | 26.0%                            | 381                  |
| Inward occluded  | Model         | No             | <i>E. Coli</i> xylose transporter (XylE)                | 4ja3     | 23.3%                            | 158                  |
| Inward open      | Model         | No             | Bovine GLUT5                                            | 4yb9     | 76.7%                            | 550                  |

797

798

799 **Table 2 Summary of targeted MD simulations**

| rGLUT5 <sup>empty</sup> Outward open - Inward open (condition 1)    |                                            |                  |           |                            |
|---------------------------------------------------------------------|--------------------------------------------|------------------|-----------|----------------------------|
| TMD number                                                          | Starting configuration                     | Target state     | Time (ps) | Final heavy atom RMSD (nm) |
| 1.1                                                                 | Out open structure                         | Outward occluded | 11,220    | 0.048415                   |
| 1.2                                                                 | TMD 1.1 final frame                        | Fully occluded   | 10,890    | 0.050022                   |
| 1.3                                                                 | TMD 1.2 final frame                        | Inward occluded  | 8,120     | 0.062960                   |
| 1.4                                                                 | TMD 1.3 final frame                        | Inward open      | 10,780    | 0.052656                   |
| 1.5 (skipping occluded state validation)                            | TMD 1.1 final frame                        | Inward occluded  | 10,440    | 0.051464                   |
| rGLUT5 <sup>empty</sup> Inward open - Outward open (condition 2)    |                                            |                  |           |                            |
| TMD number                                                          | Starting configuration                     | Target state     | Time (ps) | Final heavy atom RMSD (nm) |
| 2.1                                                                 | In open homology model                     | Inward occluded  | 9,620     | 0.066614                   |
| 2.2                                                                 | TMD 2.1 final frame                        | Fully occluded   | 8,620     | 0.053146                   |
| 2.3                                                                 | TMD 2.2 final frame                        | Outward occluded | 7,760     | 0.058147                   |
| 2.4                                                                 | TMD 2.3 final frame                        | Outward open     | 9,120     | 0.054561                   |
| 2.5 (skipping occluded state validation)                            | TMD 2.1 final frame                        | Outward occluded | 11,840    | 0.048901                   |
| rGLUT5 <sup>fructose</sup> Outward open - Inward open (condition 3) |                                            |                  |           |                            |
| TMD number                                                          | Starting configuration                     | Target state     | Time (ps) | Final heavy atom RMSD (nm) |
| 3.1                                                                 | Out open structure with fructose bound     | Outward occluded | 8,500     | 0.065881                   |
| 3.2                                                                 | TMD 3.1 final frame                        | Fully occluded   | 10,780    | 0.052316                   |
| 3.3                                                                 | TMD 3.2 final frame                        | Inward occluded  | 12,630    | 0.059851                   |
| 3.4                                                                 | TMD 3.3 final frame                        | Inward open      | 10,260    | 0.045643                   |
| 3.5 (skipping occluded state validation)                            | TMD 3.1 final frame                        | Inward occluded  | 12,480    | 0.055612                   |
| rGLUT5 <sup>fructose</sup> Inward open - Outward open (condition 4) |                                            |                  |           |                            |
| TMD number                                                          | Starting configuration                     | Target state     | Time (ps) | Final heavy atom RMSD (nm) |
| 4.1                                                                 | In open homology model with fructose bound | Inward occluded  | 10,000    | 0.075750                   |
| 4.2                                                                 | TMD 4.1 final frame                        | Fully occluded   | 12,980    | 0.048203                   |
| 4.3                                                                 | TMD 4.2 final frame                        | Outward occluded | 11,780    | 0.049837                   |
| 4.4                                                                 | TMD 4.3 final frame                        | Outward open     | 12,420    | 0.049001                   |
| 4.5 (skipping occluded state validation)                            | TMD 4.1 final frame                        | Outward occluded | 12,480    | 0.049699                   |

800

801

802 **Table 3 Analysis of sugar binding pose in outward open and occluded states**

| Bin closest to: <b>Outward open state</b><br>Total frames in bin: <b>1000</b><br>Total possible clusters for sugar pose: <b>217</b> |                             |                                   | Bin closest to: <b>Occluded state</b><br>Total frames in bin: <b>690</b><br>Total possible clusters for sugar pose: <b>116</b> |                             |                                   |
|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------|
| Cluster number                                                                                                                      | Number of frames in cluster | Percentage of total frames in bin | Cluster number                                                                                                                 | Number of frames in cluster | Percentage of total frames in bin |
| 1                                                                                                                                   | 234                         | 23.40%                            | 1                                                                                                                              | 447                         | 64.78%                            |
| 2                                                                                                                                   | 123                         | 12.30%                            | 2                                                                                                                              | 52                          | 7.54%                             |
| 3                                                                                                                                   | 106                         | 10.60%                            | 3                                                                                                                              | 24                          | 3.48%                             |
| 4                                                                                                                                   | 86                          | 8.60%                             | 4                                                                                                                              | 23                          | 3.33%                             |
| 5                                                                                                                                   | 59                          | 5.90%                             | 5,6,7                                                                                                                          | 3                           | 0.43%                             |
| 6                                                                                                                                   | 38                          | 3.80%                             | 8-12                                                                                                                           | 2                           | 0.29%                             |
| 7                                                                                                                                   | 36                          | 3.60%                             | 13-116                                                                                                                         | 1                           | 0.14%                             |
| 8-12                                                                                                                                | 32-10                       | 3.20% - 1.00%                     |                                                                                                                                |                             |                                   |
| 13-16                                                                                                                               | 5-2                         | 0.50% - 0.20%                     |                                                                                                                                |                             |                                   |
| 17-217                                                                                                                              | 1                           | 0.10%                             |                                                                                                                                |                             |                                   |

803