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Abstract

The emergence of SARS-CoV-2, and the challenge of pinpointing its ecological and evolutionary
context, has highlighted the importance of evidence-based strategies for monitoring viral dynamics
in bat reservoir hosts. Here, we compiled the results of 93,877 samples collected from bats across
111 studies between 1996 and 2018, and used these to develop an unprecedented open database,
with over 2,400 estimates of coronavirus infection prevalence or seroprevalence at the finest
methodological, spatiotemporal, and phylogenetic level of detail possible from public records.
These data revealed a high degree of heterogeneity in viral prevalence, reflecting both real
spatiotemporal variation in viral dynamics and the effect of variation in sampling design.
Phylogenetically controlled meta-analysis revealed that the most significant determinant of
successful viral detection was repeat sampling (i.e., returning to the same site multiple times);
however, fewer than one in five studies longitudinally collected and reported data. Viral detection
was also more successful in some seasons and from certain tissues, but was not improved by the
use of euthanasia, indicating that viral detection may not be improved by terminal sampling.
Finally, we found that prior to the pandemic, sampling effort was highly concentrated in ways that
reflected concerns about zoonotic risk, leaving several broad geographic regions (e.g., South Asia,
Latin America and the Caribbean, and most of Sub-Saharan Africa) and bat subfamilies (e.g.,
Stenodermatinae and Pteropodinae) measurably undersampled. These gaps constitute a notable
vulnerability for global health security and will likely be a future barrier to contextualizing the

origin of novel zoonotic coronaviruses.
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Introduction

Since the emergence of severe acute respiratory syndrome-associated coronavirus (SARS-CoV)
in 2002, coronaviruses (Coronaviridae: Orthocoronavirinae) have been the subject of concern as
potential pandemic threats. The group comprises four genera containing an estimated hundreds
or thousands of viruses [1]. Two of these genera, the delta- and gammacoronaviruses, are
primarily pathogens of birds, though they infect a handful of mammals: notably, porcine
deltacoronavirus became the first shown to infect humans in 2021 [2]. The alpha- and
betacoronaviruses contain all other known human-infective coronaviruses; the latter includes
SARS-CoV, Middle East respiratory syndrome—related coronavirus (MERS-CoV), and severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the three highly pathogenic
coronaviruses that have caused significant morbidity and mortality in humans [3]. While alpha-
and betacoronaviruses exhibit a high degree of host plasticity, there is substantial diversity of
these viruses in bats, which are likely the ancestral hosts of these groups [4,5]. As such,
coronaviruses have been among a handful of other clades of zoonotic pathogens (e.g.,
filoviruses, lyssaviruses, and henipaviruses) that have been monitored extensively in wild bats,

and continue to be the subject of ongoing surveillance [6].

Research into the natural origins of SARS-CoV-2, and a broader renewed interest in coronavirus
ecology and evolution, have highlighted the immense value of these surveillance studies.
However, outside of long-term coordinated research projects, field sampling is often
opportunistic in response to concerns about spillover, and capacity for systematic sampling is
frequently financially- or logistically-constrained [7]. For example, prior comparative analyses of
bat filovirus and henipavirus positivity have found that only a small fraction of studies report
longitudinal data, limiting inference into temporal dynamics of infection in bats [6]. In turn, this
limits the interpretability of these data in aggregate: for example, single sampling events can bias
prevalence estimates in biologically meaningful ways (e.g., if sampling is more convenient in
one season over another), and may lead to non-randomly missing data. In contrast, explicit
spatiotemporal sampling designs can identify seasonal and environmental drivers of viral
prevalence and shedding intensity, but these are logistically challenging and can necessitate

prioritizing either spatial or temporal replication at the expense of the other scale [6]. These are
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essential considerations for study design, particularly if the ultimate goal is to explain and predict
pathogen spillover, a dynamic process that is driven by geographical and temporal variation in
infection prevalence and shedding from reservoir hosts [6,8], and the relative importance of non-
spatiotemporal factors that may impact virus positivity (e.g., tissues sampled, use of euthanasia,
diagnostic method) further warrants examination. Presently, our ability to quantify whether and
how these factors shape global assessments of coronavirus spillover risk is limited by a lack of

standardized and aggregated data from disparate studies.

Here, we compiled a standardized global database of infection prevalence and seroprevalence
estimates from pre-pandemic coronavirus testing in wild bats, alongside relevant metadata on bat
and viral taxonomy, study methodology, bat demography and seasonality, and ecological
context. We first identified global biases in the distribution and intensity of pre-pandemic bat
coronavirus surveillance, followed by comparative analyses to quantify phylogenetic signal in
sampling effort and identify especially oversampled or undersampled bat clades. Next, we used a
phylogenetically controlled meta-analysis to identify study designs, spatiotemporal factors, and
biological traits that predict higher viral prevalence, with the aim of identifying potential ways to
optimize future sampling. More broadly, we evaluate the global state of coronavirus surveillance

in natural bat hosts prior to SARS-CoV-2-motivated research efforts.

Results

Descriptive analyses

From publicly available literature over the last quarter-century, we were able to recover data on
93,877 tests worth of coronavirus surveillance in bats. Over 90% of the 2,434 data points in our
database report infection prevalence (93.7%; compared to 6.3% seroprevalence data ascertained
using a mix of immunologic assays, including ELISA, western blot, and indirect
immunofluorescence). Within the pooled-coronavirus genera (i.e., alpha- and betacoronavirus)
infection prevalence dataset, nearly 95% of estimates used PCR targeting the RNA-dependent
RNA polymerase (RdRp) gene; other gene targets included subunits of the coronavirus spike
protein, the nucleocapsid gene, or the envelope protein. Of the 99.6% of rows detecting

coronaviruses via PCR, approximately 56% used single-round PCR as opposed to nested PCR or
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100  multiple PCR assays in parallel (e.g., targeting different genes on the same RNA sample). More
101 than half of these records (53.8%) based their primers on protocols from four past studies [9—12].
102  34.8% of the pooled-coronavirus genera infection prevalence records were derived from studies
103  that had euthanised their sampled bats. Table S2 shows the distribution of tissue types analyzed
104  and the associated percentages of positive and zero infection prevalence values. Fecal samples
105  and rectal swabs were the most common tissue used to detect coronavirus RNA. Sex and/or
106  reproductive status of the bats sampled was only described in 12.6% of studies (14/111),

107  resulting in 10% of individual prevalence records being stratified by sex.

108

109  Spatial bias in surveillance effort

110  Prior to the COVID-19 pandemic, we found recoverable data describing sampling of wild bats
111 for coronaviruses across 54 countries spanning six continents. However, we found that the

112  distribution and intensity of viral surveillance has been starkly uneven (Fig. 1). Sampled

113  countries varied in having one to 32 bat coronavirus studies (Fig. 1a), with the number of total
114 samples tested ranging from four to 26,313 (Fig. 1b). Whereas sampling has occurred across all
115  North American countries, both Central America and South America have had sparse

116  surveillance. Similarly, sampling in sub-Saharan Africa as well as Central and South Asia has
117  been inconsistent, with the majority of global surveillance having taken place in China, and to a
118  lesser extent other regions of Southeast Asia. A generalized linear model (GLM) of binary

119 sampling effort (y*= 12.08, p = 0.02, R’ = 0.04) confirmed that countries in Asia and Europe
120  were marginally more likely to be sampled for bat coronaviruses than those in the Americas

121  (Table S3). We found more substantial geographic biases regarding the relative intensity of
122 sampling, specifically from the number of studies (y° = 17.08, p = 0.002, R’ = 0.05) and the
123 number of tested samples (¥’ = 19549, p < 0.001, R’ = 0.11). Post-hoc comparisons from GLMs
124  revealed significantly more studies per country in Asia compared to Africa and to Europe (Table
125  S4). Similarly, the greatest contrast in total number of tested samples was between Asia and
126  Europe (risk ratio [RR] = 4.41) and between the Americas and Europe (RR =2.11; Table S5).
127

128  Taxonomic biases in surveillance effort

129  Over one in four bat species (363 species of the 1,287 included in our phylogeny [13]) were at

130  some point targeted by pre-pandemic coronavirus surveillance. Surprisingly, bats have been
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131 sampled relatively evenly across the phylogeny (Fig. 2a). Indeed, we only identified intermediate
132  phylogenetic signal in binary sampling effort (D = 0.88) that departed from both phylogenetic
133  randomness (p < 0.001) and Brownian motion models of evolution (p < 0.001). Similarly,

134  phylogenetic factorization [14], a graph-partitioning algorithm based on the bat phylogeny, did
135 not identify any bat clades that differed significantly in their fraction of sampled species. In

136  contrast, we observed stronger taxonomic biases in sampling intensity. The number of studies
137  per sampled species ranged from one to 24 (Miniopterus schreibersii), whereas the number of
138  total samples tested ranged from one to 16,628 (Rhinolophus sinicus). The number of studies per
139  sampled species showed low phylogenetic signal (A = 0.04) that departed from Brownian motion
140  models of evolution (p < 0.001) but not phylogenetic randomness (p = 0.35); phylogenetic

141  factorization did, however, more flexibly identify four bat clades with significantly greater mean
142  numbers of studies than the paraphyletic remainder (Fig. 2b): a subclade of the genus Myotis
143  (including both European and Asian species), a subclade of the tribe Pipistrellini (including

144  pipistrelle and noctule bats), the sister families Hipposideridae and Rhinolophidae, and the whole
145  genus Miniopterus (Table S8).

146

147  For the total number of tested samples per species, we instead observed more intermediate

148  phylogenetic signal (A = 0.2) that departed from both Brownian motion models of evolution (p <
149  0.001) as well as phylogenetic randomness (p < 0.001). Accordingly, phylogenetic factorization
150  identified a total of 23 clades with differential intensities of sampling effort, seven of which had
151  relatively more tested samples and 16 of which had relatively fewer tested samples (Fig. 2c). The
152  top clades with comparatively fewer total samples included the sister families Hipposideridae
153  and Rhinolophidae as well as the above subclade of the tribe Pipistrellini, suggesting a greater
154  number of publications on these bats but fewer tested samples. However, smaller subclades of
155  the Hipposideridae and Rhinolophidae families were some of the most heavily sampled,

156  suggesting key biases in sampling effort within these taxa that have been the subject of much
157  coronavirus research (Table S9). Finally, members of the subfamily Stenodermatinae within

158  phyllostomid bats were undersampled, as were several genera within the Pteropodinae subfamily
159  (i.e., Pteropus, Eidolon, and Acerodon).

160

161
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162

163  Heterogeneity in coronavirus infection prevalence

164  Using a phylogenetic meta-analysis model that accounted for sampling variance, bat phylogeny,
165  additional species effects, and within- and between-study variation [15,16], we observed high
166  heterogeneity among coronavirus infection prevalence estimates (I° = 86.32%, Q2975 = 12995.13,
167  p <0.0001). This heterogeneity was mainly driven by within-study (42.15%) and between-study
168  effects (37%), with lesser contributions from bat phylogeny (7.04%) and additional species

169  effects (0.13%). When repeating this intercept-only model for alphacoronavirus- and

170  betacoronavirus-specific datasets, prevalence showed similar patterns of heterogeneity

171 (alphacoronavirus: I° = 82.37%, Q1760 = 8759.34, p < 0.0001; betacoronavirus: I° = 76.9%, Q1626
172 =6043.81, p <0.0001), driven primarily by within-study (alphacoronavirus: 46.53%;

173  betacoronavirus: 36.43%) and between-study effects (alphacoronavirus: 29.003%;

174  betacoronavirus: 27.10%), and secondarily by phylogenetic (alphacoronavirus: 6.83%;

175  betacoronavirus: 13.37%) and other species-level effects (alphacoronavirus: 0.003%;

176  betacoronavirus: 0.003%).

177

178  Methodological and biological predictors of infection prevalence

179  When considering our suite of methodological and biological predictors in phylogenetic meta-
180  analysis models, the fixed effects explained approximately 20% of the variance in infection

181  prevalence (pooled-coronavirus genera R’: 0.21; alphacoronavirus-only R?: 0.21;

182  betacoronavirus-only R?: 0.20). Across all three datasets, repeat sampling was associated with a
183  0.84-1.6% percentage point increase in coronavirus prevalence (pooled coronavirus:

184  untransformed £ = 0.15; 95% confidence interval (CI) 0.06-0.25, p < 0.005; alphacoronavirus:
185  untransformed £ = 0.14; 95% 0.03-0.26, p < 0.05; betacoronavirus: untransformed £ = 0.14; 95%
186  CI: 0.04-0.24, p < 0.05) as compared to one-time (single) sampling (Fig. 3). Similarly,

187  longitudinal study design predicted a small increase (~ 0.2-0.3% percentage points) in positive
188  wviral detection in the pooled coronavirus (untransformed g = 0.06; 95% CI: 0.02-0.11, p <0.01)
189  and alphacoronavirus-only (untransformed £ = 0.07; 95% CI: 0.02-0.12, p < 0.01) datasets, as
190  opposed to cross-sectional sampling. Other model variables including tissue type, sampling

191  season, bat family, PCR type, and gene target showed weak or no significant association with
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192  coronavirus positivity across all datasets. Notably, use of euthanasia was not associated with
193  greater ability to detect coronavirus RNA.

194

195  Discussion

196

197  Since the onset of the COVID-19 pandemic, significantly increased research attention has been
198  paid to bats as potential reservoir hosts of coronaviruses (including, presumably, many with

199  zoonotic potential) [17—19]. While other studies have reported data on the geographical and

200 taxonomic distribution of reported bat hosts [19,20], ours has generated the first standardized,
201  PRISMA-generated open database of coronavirus surveillance in bats that provides

202  disaggregated data (including negative results). In doing so, our study takes one of many first
203  steps towards building an open database of wildlife disease surveillance with relevance to

204  pandemic prediction and preparedness [21].

205

206  Our initial dataset represents a systematic snapshot of bat coronavirus research prior to the

207  COVID-19 pandemic and includes 111 studies, 2,434 records, and a total of 93,877 bat samples.
208  Our geographic and taxonomic analyses suggest a large focus on bat sampling in China

209  compared to (and potentially at the expense of) gaps throughout South Asia, the Americas, Sub-
210  Saharan Africa, and East Africa. Additionally, very few studies sampled in the United States and
211 Canada (two and three, respectively). However, we acknowledge that progress towards

212  addressing some of these gaps has been made since the onset of the pandemic; for example, more
213  recent bat surveillance work has taken place in Latin America and Madagascar [19,22-26].

214  While phylogenetic coverage across bats is a strength of the dataset, we noted key taxonomic
215  biases in the intensity of sampling efforts, with subclades of the Hipposideridae and

216 Rhinolophidae families being some of the most heavily sampled taxa versus significant

217  undersampling within the Stenodermatinae and Pteropodinae subfamilies. Priorities for future
218  research should include strengthening surveillance efforts in these undersampled regions and bat
219  taxa, especially as some have been predicted to harbor novel betacoronaviruses [19].

220

221  After controlling for bat phylogeny, sampling variance, and both study- and observation-level

222 heterogeneity, repeat sampling and longitudinal study design were the only consistently
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223  significant predictors of positive coronavirus prevalence. Thus, to optimize detection sensitivity,
224  substantial resources and careful planning should be allocated towards following this study

225  format [27]. Additionally, euthanasia did not impact the likelihood of viral detection; thus,

226  terminal sampling may not be necessary for studies attempting to detect coronavirus RNA, and
227  our analysis suggests that coronavirus positivity will not be substantially biased by tissue or

228  sample type. This is important for researchers, given that coronavirus surveillance can be

229  accomplished with opportunistic (e.g., roost feces) and readily accessible (e.g., museum-derived)
230 samples [28]. Further, avoiding euthanasia reduces negative impacts of virus surveillance studies
231  on bat population dynamics, and also facilitates true longitudinal, mark-recapture designs.

232

233  Finally, our systematic data compilation process revealed marked challenges in synthesizing

234  viral surveillance data from wildlife studies. Although study-level effects are in part accounted
235  for with the random effects structure of our meta-analysis, we note that at least some of our non-
236  significant results could still be due to variability in study format, sampling design, and

237  reporting. To reduce this risk in future analyses, we encourage researchers collecting these data
238  to be methodical in reporting their data at the finest resolution possible (i.e., fully stratified by
239 location, timepoint, bat species, virus species or strain, tissue type, etc.). In the longer term,

240  developing and adopting data standards for reporting these types of data—and developing real-
241  time channels to aggregate them with standardized metadata—could significantly improve their
242  ability to address key questions about transmission dynamics, bat immunology, viral evolution,

243  and spillover risk.
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244  Methods

245

246  Systematic review

247  To identify studies quantifying the proportion of wild bats positive for alpha- or

248  betacoronaviruses using PCR or serological methods, we followed the Preferred Reporting Items
249  for Systematic Reviews and Meta-Analyses (PRISMA) protocol (Figure S1) [29]. We

250  systematically searched Web of Science, PubMed, and Global Health (a database comprising
251  publications from the Public Health and Tropical Medicine database and CAB Abstracts).

252  PubMed searches used the following string: (bat* OR Chiroptera*) AND (coronavirus* OR

253  CoV*). Web of Science and Global Health (comprised of CAB Abstracts and Public Health and
254  Tropical Medicine database) searches used the following string: (bat* OR Chiroptera*) AND
255  (coronavirus® OR CoV*) AND (wild*). Searches were performed on September 24, 2020.

256

257  We screened a total of 1,016 abstracts for studies that included sampling of wild bats for

258  coronaviruses. Publications were excluded if they did not assess coronavirus prevalence or

259  seroprevalence in bats or were published in languages other than English. In total, we identified a
260 total of 159 candidate articles that we screened for these data. Of these, 111 studies tested bats
261  for coronaviruses, reported reusable data, and were included in our final, publicly available

262  dataset. Geographic and taxonomic analyses, which did not rely on prevalence proportion

263  positive, were performed on a 109-study subset of the public dataset which excludes records with
264  genus- or family-level versus species-level bat data and includes seroprevalence data as well as
265  data that could not be used to calculate prevalence (e.g., number of samples corresponds to

266  geographic region rather than bat species). Infection prevalence analyses were performed on a
267  107-study subset of the public dataset. Each of these two datasets were then divided into three
268  more: pooled-coronavirus genera, alphacoronavirus genus-only, and betacoronavirus genus-only
269  (Table S1). The datasets used for geographic and taxonomic analyses, which included

270  seroprevalence data as well as data that could not be used to calculate prevalence (e.g., number
271  of samples corresponds to geographic region rather than bat species) had 176 (pooled-

272  coronavirus genera), 56 (alphacoronavirus genus-only), and 143 (betacoronavirus genus-only)
273  more rows than the corresponding infection prevalence datasets.

274

10
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275  Our aim was to provide a comprehensive record of bat coronavirus surveillance up to the

276  beginning of the COVID-19 pandemic, and our sample necessarily omits some more recent

277  publications that have reanalyzed samples motivated by investigations into the evolutionary

278  origins of SARS-CoV-2 and other L2 lineage sarbecoviruses. It also omits the final dataset

279  compiled by the USAID PREDICT dataset and released at the end of 2020. While these data are
280 an incomparable resource, their scope and standardized format makes them a substantively

281  different kind of data than all other studies we analyze here; these data have been extensively
282  analyzed elsewhere [1]. Perhaps most importantly, the majority of studies that report primary
283  data on bat coronavirus testing by this program are included in our dataset.

284

285  Data collection

286  Our initial dataset consists of a total of 111 studies and 2,434 records. Each record provides a
287  prevalence or seroprevalence estimate at the finest spatiotemporal, methodological, and

288  phylogenetic scale reported. More precisely, each unique record includes a distinct combination
289  of coronavirus genus; bat genus, family, and/or species; sampled tissue; detection method (i.e.,
290 PCR or serology); gene/protein target; date, and geographic location (sampling country, state,
291  and specific site and/or geographic coordinates, if available). Detection estimates derived at finer
292  phylogenetic scales (e.g., virus strain) were aggregated to genus. As observed previously for bat
293 filoviruses and henipaviruses, some studies pooled coronavirus detection estimates for more than
294  one bat species [6]. Rows with these pooled prevalence estimates were excluded from

295  subsequent statistical analyses. Sampling strategies were classified as longitudinal and cross-
296  sectional: prevalence estimates derived from repeated sampling at one location were marked as
297  longitudinal, while those derived from one location on a specific date were listed as cross-

298  sectional. Thus, most studies (93.6%) yielded more than one detection estimate record: for

299  example, a longitudinal study that provides individual coronavirus detection estimates from two
300 types of tissue in a given bat species on six separate dates spanning several years would result in
301  atleast 12 records in the dataset.

302

303 In addition to these spatial and temporal components, we recorded data on detection

304  methodology (e.g., single or nested/multiple PCR for RNA detection, ELISA for antibody

305  detection, or immunohistochemistry), additional virus taxonomy (e.g., subgenus, strain), PCR

11
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306  primers (and their gene targets), and whether the authors included information on the sex of the
307  sampled bats or the use of euthanasia.

308

309  Geographic and taxonomic analyses of sampling effort

310  With these data, we assessed geographic and taxonomic patterns in bat sampling effort. For the
311  former, we fit a generalized linear model (GLM) with whether a country had been sampled for
312  Dbat coronaviruses as a binomial response and region as the predictor in R. For sampled countries
313  (n=55), we fit equivalent GLMs that modeled the number of unique studies and the total samples
314  per country as a Poisson-distributed response. For each GLM, we assessed fit using McFadden’s
315 R’ and the performance package [30]. We also adjusted for the inflated false-discovery rate in
316 post-hoc comparisons using emmeans [31].

317

318  For taxonomic patterns, we derived equivalent response variables across bat species, using a

319  recent phylogeny as a taxonomic backbone [13]. For all bat species in this phylogeny (n = 1287),
320  we derived a binary response for whether a species had been sampled for coronaviruses. For

321  those sampled species (n = 363), we derived the number of unique studies and the total samples.
322  Using the caper package [32], we first estimated phylogenetic signal in sampling effort (i.e., the
323  propensity for related bat species to be sampled in a similar intensity). For binary sampling

324  effort, we calculated D, where a value of 1 indicates a phylogenetically random trait distribution
325  and 0 indicates phylogenetic clustering under a Brownian motion model of evolution [33]. For
326  sampled species, we estimated Pagel’s A for the logio-transformed number of studies and samples
327  [34]. Next, we applied a graph-partitioning algorithm, phylogenetic factorization, to more

328 flexibly identify any bat clades across taxonomic levels that differ in sampling effort. With a
329  standardized taxonomy from our bat phylogeny [13], we used the phylofactor package to

330  partition binary sampling effort, number of studies, and number of samples in a series of iterative
331  GLMs for each edge in the tree [14,35]. As in our geographic analyses, we modeled these

332  variables with binomial and Poisson distributions. We then determined the number of significant
333 clades using Holm’s sequentially rejective test with a 5% family-wise error rate [36].

334

335  Phylogenetic meta-analysis of infection prevalence
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336  We first used the metafor package to calculate Freeman—Tukey double arcsine transformed

337  proportions of coronavirus infection-positive bats and their corresponding sampling variances
338 [162010]. We then built two hierarchical meta-analysis models for three infection prevalence
339  datasets: the global dataset, an alphacoronavirus-specific dataset, and a betacoronavirus-specific
340  dataset (see Table S1 for the sample size per model). Each model was fit using restricted

341  maximum likelihood and included bat species and phylogeny (using the previous bat tree) as
342  random effects alongside an observation-level random effect nested within a study-level effect
343  [15]. The first model (i.e., model 1) for each dataset only included an intercept and was used to
344  estimate I°, which quantifies the contribution of true heterogeneity (rather than noise) to variance
345  in infection prevalence [37]. We report both the overall I per dataset as well as the proportional
346 I for each random effect, and we used Cochran’s Q to test if such heterogeneity was greater than
347  that expected by sampling error alone. The second model (i.e., model 2) for each dataset

348  included the following moderators: sampling method (repeat vs. single) study type (longitudinal
349  vs. cross-sectional sampling), PCR type (nested/multiple vs. single), tissue analyzed, whether
350 terminal sampling was performed, bat family, sampling season, and gene target. We calculated
351  variance inflation factors of all moderators in the linear model: the moderators displayed no

352  substantial collinearity [38]. To facilitate estimating model coefficients, we removed levels for
353  any moderators with n < 3. For each iteration of model 2, we assessed moderator significance
354  using the Q test (i.e., a Wald-like test of all coefficients per moderator) and estimated a pseudo-
355 R’ as the proportional reduction in the summed variance components compared against those
356  from an intercept-only model [39].
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381 Figures and Tables

382

383  Figure 1. Geographic distribution of bat coronavirus sampling effort, defined by the

384  number of studies per country (a) and the number of samples tested per country (b).

385  Sampled countries varied in having one to 32 bat coronavirus studies (a), with the number of
386  total samples tested ranging from four to 26,313 (b). A disproportionate number of bat

387  coronavirus studies and testable samples were conducted and assayed in China, likely reflecting
388 interest in the subgenus Sarbecovirus and the risk of future SARS-like virus emergence. Many
389 areas were severely understudied, particularly relative to ecological and evolutionary risk factors
390 for emergence [19]. In particular, sampling in Central and South America, sub-Saharan Africa,
391  and Central and South Asia was notably limited.

392

o suteo I ) compe 1) IR
393
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394  Figure 2. Evolutionary distribution of bat coronavirus sampling effort, defined as whether
395 a bat species has been sampled (a), the number of studies (b), and the number of samples
396 tested (c). Clades identified by phylogenetic factorization with greater or lesser sampling effort
397  compared to a paraphyletic remainder are shown in red and blue, respectively, alongside clade
398  numbers per analysis. Phylogenetic factorization did not identify any taxonomic patterns in

399  binary sampling effort across the bat phylogeny (a) but did identify a number of bat clades within
400 sampled bat species that have been particularly well-sampled for coronaviruses, both in terms of
401  number of studies (b; Table S8) and number of samples (c; Table S9, only the first 10

402 phylogenetic factors are displayed). For analyses of total studies and tested samples, segment
403  length corresponds to the relative degree of sampling effort.

404

(a) binary studied (b) log1o(studies)

405
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406  Figure 3. Methodological and biological predictors of coronavirus prevalence in wild bats.

407  Phylogenetic meta-analysis model coefficients and 95% confidence intervals, estimated using

408 restricted maximum likelihood (REML) for each of our three datasets. Colors indicate the 11

409  variables included in each model (binary covariates for sampling season). Estimate confidence

410 intervals are shaded by whether they cross zero (the vertical dashed line), with increased

411  transparency denoting non-significant effects. The intercept contains the following reference

412  levels: single sampling (sampling method); cross-sectional study (study format); single PCR

413  (PCR type); fecal, rectal, or anal sample (tissue type); euthanasia not used (euthanasia use);

414  Craseonycteridae (bat family); not fall, not winter, not spring, and not summer (sampling

415  season); and RNA-dependent RNA polymerase (RdRp) only (gene target).
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417

418  Table 1. Meta-analysis of coronavirus prevalence across studies. ANOVA table from the
419  phylogenetic meta-analysis model fit using REML to all data and each data subset

420 (alphacoronavirus only or betacoronavirus only). For each variable, we provide Cochran’s Q, the

421  associated degrees of freedom, and the p value.

422
any coronavirus genus alphacoronavirus only betacoronavirus only
0 df p 0 df p 0 df p
sampling method| 16.754 2 <0.001 | 9.516 2 0.009 | 18.765 2 <0.001
study format 6.650 1 0.01 7.283 1 0.007 | 2.380 1 0.123
PCR type 1.279 1 0.258 0.428 1 0.513 2.833 1 0.092
tissue type 36.536 8 <0.001 [ 15.556 8 0.049 | 29.398 8 <0.001
euthanasia use | 0.098 1 0.755 0.254 1 0.614 | 0.001 1 0.975
bat family 12.679 11 0.315 | 11.670 11 0.389 | 12.617 11 0.319
sampling season | 8.406 4 0.078 | 10.177 4 0.038 7.263 11 0.123
gene target 1.989 2 0.370 | 0.556 2 0.758 | 2.408 2 0.300
423
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