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Abstract

Advances in spatial transcriptomics technologies produce RNA imaging data at increasingly higher
throughput and scale. Current computational methods identify and measure the spatial relationships
between cell-types, but do not leverage the spatial information of individual RNA molecules to reveal
subcellular spatiotemporal dynamics of RNA processing. Here, we developed Bento, a computational
framework for subcellular analysis of high-throughput spatial transcriptomics datasets. Bento handles
single-molecule data generated by diverse spatial transcriptomics technologies and computes spatial
statistics of subcellular RNA molecular distributions, compartmental expression, and cell morphology to
build multidimensional feature sets for exploratory analysis. We also developed a multi-label ensemble
model for generalizable classification of subcellular localization of every gene in every cell. To demonstrate
Bento’s utility, we applied it to analyze spatial transcriptomics datasets generated by seqFISH+ (10k genes
in ~200 fibroblast cells) and MERFISH (130 genes quantified in ~1000 U2-OS cells) to understand the
interplay between gene function, cellular morphology and RNA localization. To understand the role of RNA
localization in RNA processing, we integrated spatial data with RNA binding protein (RBP) binding data to
explore the spatiotemporal dynamics of RBP-RNA interactions at unprecedented scale (3,165 RNA species
x 148 RBPs). We found RNA targets of individual RBPs to be enriched in specific subcellular compartments
— such as Splicing Factor 3a Protein Complex (SF3A3), and that preferential localization is influenced by
RBP binding of genomic regions for RBPs including Staufen homolog 2 (STAUZ2). Bento builds on the
existing ecosystem of single-cell and spatial analysis toolkits, to ensure accessibility and community-driven
tool development. We provide Bento as an open-source tool for the community to further expand our
understanding of subcellular biology.

Introduction

Cells are the smallest organizational unit in living organisms, and how their internal components are
organized is critical for homeostatic function. Protein-coding genes encoded in the genome are expressed
as RNA and after maturation are translated into proteins. Whereas protein localization is well studied®, and
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protein mislocalization is a known driver of disease”®, these same principles for RNA are less well
appreciated. The spatiotemporal dynamics of RNA play a crucial role in localized cellular processes such
as cell migration and cell division*®, as well as specialized cell functionalities like synaptic plasticity®™®.
Mislocalization of RNA has been associated with diseases such as Huntington's disease (HD), where
defects in axonal mRNA transport and subsequent translation in human spiny neurons lead to cell death
and neurodegeneration®™2,

The study of subcellular RNA localization necessitates single-molecule measurements. Since the
development of single-molecule fluorescent in situ hybridization (smFISH), recent advances to develop
multiplexed methods such as MERFISH®, seqFISH+™, HybISS™, and Ex-Seq' have enabled RNA
localization measurements at near transcriptome scales. A number of computational tools, such as
Squidpy'’, stLearn'®, Giotto'’, and single-cell expression tools like Seurat®® and Scanpy?®, have enabled
characterization of tissue architecture, quantify cell-cell interactions, and identify spatial expression
patterns. While these tools get at spatial variation in tissues, they lack the ability to investigate subcellular
resolution, which is necessary to study the function of RNA localization in normal cell function and disease
states.

Meanwhile, methods such as FISH-quant and FISHFactor have been developed to analyze fluorescent in
situ hybridization (FISH)-based imaging data for subcellular patterns describing the spatial distribution of
RNA species®>?2. While these methods take advantage of subcellular-resolution spatial data, they cannot
be applied to entire spatial transcriptomics datasets. More recently, the ClusterMap method was developed
to identify cellular and subcellular regions from transcript locations alone, but only demonstrated the ability
to identify cells and nuclei. There is clearly a need for a toolkit that scales to entire spatial transcriptomics
datasets and has the flexibility to accommodate cutting-edge analysis approaches.

To address these shortcomings, we present Bento, a toolkit for exploring spatial transcriptomics data with
an emphasis on subcellular biology. Bento ingests single-molecule resolution data from highly multiplexed
spatial transcriptomics imaging experiments, enabling visualization, exploration and analysis of subcellular
biology. The toolkit has an accessible programming interface (API) in Python, and opens the doors to
testing hypotheses about subcellular phenotypes by providing methods to compute spatial statistics and
measure spatial phenotypes for RNA localization, compartmental expression, and cell morphology to build
multidimensional feature sets for exploratory analysis. These methods are inspired and adapted from
existing work®>**2° and other scientific domains®®. To demonstrate the utility of Bento, we developed a
scalable method to quantify subcellular “localization signatures;” we define a localization signature as the
weighted combination of localization patterns simultaneously associated with groups of genes and cells.
We show that localization signatures link RNA subcellular localization to function. Bento can be used to
further discover evidence of novel RNA interactions, and identify localization mechanisms of post-
transcriptional gene regulation. These contributions are important for understanding RNA processing from
transcription to translation and how dysregulated localization may be a primary mechanism of
neurodegenerative diseases.
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Fig 1. Workflow and functionality of Bento, subcellular spatial analysis toolkit. A) Molecular coordinates and
segmentation masks from spatial transcriptomics data are required for analysis and visualization. B) Input data is
stored in the AnnData data format, which can be manipulated with Bento as well as a wide ecosystem of single-cell
omics tools. C) Quality control metrics are illustrated for the seqFISH+ dataset, where the top row shows transcript
frequency distributions and the bottom row shows distributions of simple physical measures of cells. Visualization of
distributions can be visually inspected to identify and remove outliers, which may indicate low quality cells. D) Bento
has a standard interface to calculate subcellular features, identify subcellular localization patterns and infer
localization signatures from spatial transcriptomics datasets.

Overview of Bento data infrastructure for subcellular analysis

Bento is an open-source Python toolkit for scalable analysis of multiplexed spatial transcriptomics data at
subcellular spatial resolution. It utilizes computational geospatial tools (GeoPandas?’) to enable spatial
analysis of molecular imaging data, and data science tools including SciPy®®, Dask®?°, PyTorch® and
Tensorly* to enable scalable analysis of high-dimensional data. We build on the AnnData data format*® to
store both expression and spatial information, enabling integration of subcellular spatial analysis with the
vast ecosystem of single-cell expression analysis.

In order to facilitate a flexible workflow, Bento is generally compatible with molecule-level resolution spatial
transcriptomics data (Fig. 1A), such as datasets produced by MERFISH', seqFISH+, CosMx
(NanoString)**, Xenium (10x Genomics)*>*, and Molecular Cartography (Resolve Biosciences)®*. Bento’s
workflow takes as input 1) 2D spatial coordinates of transcripts annotated by gene, 2) cell segmentation
boundaries and 3) nuclear segmentation boundaries (Fig. 1B). If available, Bento can also handle arbitrary
sets of segmentations for other subcellular structures or regions of interest. These inputs are stored in the
AnnData data format®, which links cell and gene metadata to a standard count matrix, providing
compatibility with standard single-cell RNA-seq quality control and analysis tools. Bento provides additional
spatial metrics to augment quality control (Fig. 1C). With a data structure for segmentation boundaries and
transcriot coordinates in place. Bento can easilv combpute spatial statistics and measure soatial bhenotvoes
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for every gene in every cell to build flexible multidimensional feature sets for exploratory subcellular
analysis (Fig. 1D).

To predict subcellular localization, Bento uses a multilabel classifier across five broad categories: nuclear,
cytoplasmic, nuclear edge, cell edge, and none of the above (Fig. 1D). To reveal variation in subcellular
localization patterns, we identify groups of cells and genes exhibiting similar RNA subcellular localization
patterns via tensor decomposition. In addition, Bento supports quantifying enrichment in subcellular regions
of interest (ROIs) defined by segmentation masks, enabling transcriptome-scale colocalization studies of
RNA in organelles or other segmentable cellular structures®’.

Bento also tackles the challenge of visualizing datasets of hundreds to thousands of cells each with
thousands of single RNA molecules with a suite of plotting options such as rendering single cells or fields of
view, as well as individual molecules or rasterized representations. Furthermore, its use of the AnnData

data format enables complementary spatial analysis at the tissue resolution with other tools in the
ecosystem?’1938,
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Fig 2. Scalable prediction of subcellular localization patterns in spatial transcriptomics data. A) A single
sample shown as the set of transcripts for a gene in a particular cell. Spatial features are computed for all samples
across every combination of cell and gene, which are used as input for a 5-class multilabel classifier. The output is
represented as a 3-dimensional tensor. B) Performance of 4 models trained on simulated data and evaluated on
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neural network, and CNN for convolutional neural network. C) Validation performance of the same 4 models on
manually annotated seqFISH+ and MERFISH data; RadViz projection of genes for the D) seqFISH+ dataset and E)
MERFISH dataset, where the point position denotes the balance between subcellular localization pattern
frequencies, color denotes most frequent pattern, and size denotes cell fraction. Upset plot* showing relative
proportions of all F) seqFISH+ samples and G) MERFISH samples classified across patterns. Light gray columns
correspond to samples predicted as multiple patterns, denoted by connected dots under the bar graph.

Bento annotates subcellular localization patterns

We built a multilabel classifier using a set of binary random forest classifiers to assign labels to each gene
in every cell across five categories: (i) nuclear (contained in the volume of the nucleus), (ii) cytoplasmic
(diffuse throughout the cytoplasm), (iii) nuclear edge (near the inner/outer nuclear membrane), (iv) cell edge
(near the cell membrane), and (v) none (complete spatial randomness). These categories are a
consolidation of those observed in several high-throughput smFISH imaging experiments in HeLa cells*®™*3,
We used the FISH-quant simulation framework to generate realistic ground-truth images using empirically
derived parameters from the aforementioned high-throughput smFISH HeLa cell imaging experiments*.
Each sample is defined as a set of points with coordinates in two dimensions, representing the set of
observed transcripts for a gene in a particular cell. In total, we simulated 2,000 samples per class for a total
of 10,000 samples (Methods). We used 80% of the simulated data for training and held out the remaining
20% for testing. Each sample is encoded by a set of 13 input features, describing characteristics of each
sample’s point distribution, including proximity to cellular compartments and extensions (features 1-3),
measures of symmetry about a center of mass (features 4-6), and measures of dispersion and point
density (feature 7-13) (Fig. 2A, Supp. Table 1).

We evaluated several base models for the multilabel classifier including random forests (RF), support
vector machines (SVM), feed-forward fully-connected neural networks (NN), and convolutional neural
networks (CNN) (Methods, Supp. Table 2). To evaluate their performance on simulated data, we
compared the model macro area under receiving operator curve (macro-AUROC) values on the hold-out
test data. All models except the CNN were able to generalize well to the simulated test data (Fig. 2B).

To evaluate the ability of each model to generalize to real world data in contrast to simulated data, we
identified datasets with a large number of target genes or a large number of cells. We manually annotated a
random subset of samples across these datasets for benchmarking model performance (Methods). The
seqFISH+ dataset met the first criteria, targeting 10,000 genes across 227 cultured NIH/3T3 mouse
embryonic fibroblast cells spatially profiled with seqFISH+". We also generated a MERFISH dataset
capturing 2,716 cultured U2-OS osteosarcoma cells, profiling 130 genes and 5 non-targeting. The RF
classifier consistently had the best agreement with manual annotations on a held-out test set, with a macro-
AUROC of 0.76 and 0.81 in the seqFISH+ and MERFISH datasets respectively, in contrast to a macro-
AUROC of 0.99 in the held-out test data (Fig. 2C).

The multilabel classifier was used to assign one or more labels to every cell-gene pair in each dataset. We
first preprocessed datasets to remove genes with low expression and cells without annotated nuclei
(Methods). Genes commonly showed a wide range of variability in localization across cells (Fig. 2D&E). Of
the localization patterns besides “none”, “cell edge” was the most common (15.9%) in the 3T3 fibroblast
cells while “nuclear” was the most common (22.1%) in the U2-OS osteosarcoma cells (Fig. 2F&G). We
compared 63 orthologous genes measured in both cell types and found that 28 genes shared the same
most frequent localization pattern and the rest had different localizations, possibly reflecting cell type
specific localization behavior (Methods, Supp. Fig 1). With the ability to annotate localization patterns for
entire spatial transcriptomics datasets, we can now interrogate how pattern frequencies vary within a gene

across cells and between genes for the entire transcriptome.

Tensor decomposition identifies subcellular localization signatures
Just as transcription shows cell-to-cell variation in expression, even within the same cell type, the
subcellular spatial distribution of RNA molecules is not deterministic. To understand how RNA subcellular
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localization varies across cells and between genes simultaneously, we employed tensor decomposition —
specifically, non-negative parallel factor analysis — a data-driven, unsupervised approach for discovering
substructure in high-dimensional data®**. We used tensor decomposition to decompose spatial
transcriptomics datasets into a set of “localization signatures" representing combinations of cells and genes
that share similar localization behavior. First, we represent a single spatial transcriptomics dataset as a
third-order tensor of size PxCxG where P, C, and G represent the number of patterns, cells, and genes,
respectively, in our data. In this approach, P = 5 for the 5 subcellular localization patterns (i.e., as defined
previously, this is nuclear, cytoplasmic, nuclear edge, cell edge, and none) while C and G represent the
number of genes and cells measured in the dataset. Missing and low-expression data are removed and
ignored in downstream calculations that utilize the dataset tensor. This allows the tensor to hold the output
of the spatial localization classifier as a five-digit binary vector for every sample (Methods).

Tensor decomposition factors the dataset tensor into k localization signatures using the elbow method
heuristic to determine the least number of signatures needed to reconstruct the original tensor, optimizing
for the mean squared error reconstruction loss function. Missing values are ignored when calculating the
loss. Unlike matrix dimensionality reduction methods, such as PCA, the order of the components
(signatures) is unassociated with the amount of variance explained. Each of the k signatures resulting from
tensor decomposition is composed of 3 loading vectors, corresponding to the pattern, cell, and gene
dimensions. Higher values denote a stronger association with that signature. We interpret a particular
signature’s pattern loading as the weighted combination of patterns characterizing that signature. Similarly,
a signature’s cell loading and gene loading denote the strength of association of cells and genes
respectively. The localization signatures derived from tensor decomposition are not necessarily mutually
exclusive and can share overlapping sets of patterns, cells and genes.
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Fig 3. Identification of seqFISH+ subcellular localization signatures via tensor decomposition. A) Schematic
of the tensor decomposition procedure applied to the dataset tensor, producing localization signatures. B-D)
Localization signatures of the seqFISH+ dataset. In each row, the bar plots show associations of localization pattern
loadings with the respective signatures colored by pattern class. Heatmaps show log-scaled cell and gene loadings
along the top and left while associated cell-gene pairs are shown in the center heatmap as a dot product of the log-
scaled cell and gene loadings. The top 4 genes are shown in the top-ranked cell for each signature under the
heatmaps. E) ssGSEA scores for GO Ontology (Cellular Component) terms calculated using gene loadings of each
signature. Heatmap shows the top 5 terms for each signature aggregated and hierarchically clustered. F) Dot plot
shows correlation of signature cell loadings with cell morphology measures. Larger dots denote higher significance
while color saturation indicates a stronger magnitude of correlation.

Functional characterization of localization signatures

We applied the tensor decomposition strategy to the seqFISH+ dataset and found 3 distinct signatures
(Fig. 3A). The first signature’s pattern loading is dominated by “none” and “cytoplasmic”, while signature 2
is a combination of “nuclear” and “nuclear edge” and signature 3 is primarily “cell edge” (Fig. 3B-D). These
signatures recapitulate patterns found in the original seqFISH+ study, in which three major clusters of
spatially co-occurring genes were observed and manually annotated as protrusion, nuclear/perinuclear, and
cytoplasmic*. This demonstrates the ability of tensor decomposition to extract meaningful biological
striictiire from localization nafterns in a data-driven manner. We also annlied the tensor decomnaosition
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results suggest that subcellular localization is systematically regulated regardless of cell type and that
identifying localization signatures is robust to measurement platforms.

To determine if gene signatures are associated with specific subcellular compartments corresponding to
their localization preferences, we used single-sample Gene Set Enrichment Analysis (sSGSEA) to identify
enriched terms from the GO Cellular Component domain®*~*® (Fig. 3E, Methods). For example, we found
that organelles involved in cotranslational translocation e.g. the endoplasmic reticulum, golgi apparatus and
the extracellular matrix (ECM), characterize gene signature 2, which was dominated by the nuclear and
nuclear edge patterns. Additionally, we found gene signature 3 (cell edge) was enriched for cytoskeleton
components. While RNA localization patterns in these fibroblasts cells reflected stereotypical organelle
organization, we found that localization also reflected cell type-specific function. Secreted vesicle terms
were associated with gene signatures 1 and 3 and ECM terms were associated with gene signature 2,
reflecting the primary function of mouse embryonic fibroblasts to synthesize and secrete ECM proteins.
These results show concordance of RNA localization to their protein counterparts regarding subcellular
organelles and cellular function.

We next characterized the morphological features of cells with different localization signatures. To do so,
we compared cell signatures to spatial measures of cell morphology, nucleus morphology and total cell
expression (Fig. 3F, Methods). Cell and nucleus morphology measures include perimeter, area, aspect
ratio (i.e. minor to major axis ratio), the ratio of nucleus to cell area, and the distance between nucleus and
cell centroids. These measures correlated only moderately to weakly with localization signatures
(Spearman correlation analysis); all correlation coefficient magnitudes were less than or equal to 0.4. Cell
signature 2 was positively correlated with cell area and nuclear area while cell signature 3 was positively
correlated with elongated cells. Conversely, cell signature 1 was negatively correlated with elongated cells,
preferring more evenly shaped cells. Visually inspecting the top scoring cells of each signature confirms
these associations (Fig. 3B-D). In conclusion, we found evidence that cell morphology is a source of
heterogeneity in localization signatures but is insufficient to fully explain it. These results show that our
tensor decomposition approach can systematically identify biological factors explaining RNA localization
patterns considering cells and genes simultaneously.
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Fig 4. Complex RBP-RNA interactions drive RNA subcellular localization. A) Distribution of RNA targets across
localization patterns for RBPs with significant eCLIP-seq binding peaks (RBP-Bind) overlapping genomic regions of
3,165 genes measured by segFISH+. The top 10 enriched RBPs (sorted by log2 fold-change) for each localization
pattern are shown. Color denotes log2 fold-change of one localization category versus mean of rest. Size denotes
RBP target count capped at 24 for clarity. B) All RNA binding partners of RBPs SF3A3, CDC40, NOL12 and FXR1
are shown as points and colored by their most frequent localization pattern. RNA targets are enriched for different
localization patterns, reflecting RBP function. C) Visualization of single molecules of STAU2 RNA targets based on
binding to their 3' UTR or other region in a field of view. D) STAU2 targets show preferential localization throughout
the 3T3 dataset based on 3' UTR binding. E) Correlations between RBP binding to genomic regions and localization

patterns of RNA targets.

RNA binding protein interactions with RNA influence subcellular localization

RNA subcellular localization is governed by an elaborate choreography of RNA binding, transport, and
degradation mechanisms that all depend on RNA binding proteins (RBPs). However, the complexity of
multiple binding partners and promiscuous RBPs has made it difficult to discern exactly which RBPs and
which sequence features govern the rules of RNA subcellular transport and localization®®. With our ability to
annotate RNA subcellular localization with Bento, we can systematically explore the complex RBP-RNA
relationships that influence RNA localization.

We sought to identify RBP-RNA interactions associated with subcellular localization patterns in the
seqFISH+ 3T3 fibroblast cell line dataset as previously identified with Bento. For RBP-RNA interactions, we
used publicly available cross-linking immunoprecipitation high-throughput sequencing (CLIP-seq) data from
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subcellular localization pattern annotations, we were able to quantify the subcellular enrichment of RNA
targets for each RBP across genomic regions. We observe a number of RBPs preferentially binding to
targets in particular localization patterns (Fig 4A). This preferential binding reflects RBP function. For
example, Splicing Factor 3a Protein Complex (SF3A3), a component of the U2 snRNP splicing
machinery®*, and Cell Division Cycle 40 (CDC40), another RBP involved in RNA splicing®, both bind
transcripts in the nucleus and nuclear edge (Fig 4B). Nucleolar Protein 12 (NOL12) is a multifunctional
RBP regulating RNA metabolism in nucleoli, nucleoplasm, paraspeckles, as well as GW/P-bodies in the
cytoplasm®3. Mirroring the multifaceted nature of its function, NOL12 targets localize to the nucleus, nuclear
edge, as well as the cell edge (Fig 4B). Fragile X Mental Retardation, Autosomal Homolog 1 (FXR1) is an
RBP that shuttles between the nucleus and cytoplasm and associates with polyribosomes®*. Reflecting the
nuclear-cytoplasmic shuttling, FXR1 targets are present throughout the cell.

While RBP binding state can inform RBP-RNA spatiotemporal associations, the location in the target RNA’s
sequence an RBP binds can also influence the RBP-RNA functional relationship. We explore this
sequence-feature centered relationship in Staufen homolog 2 (STAU2), an RBP involved in the transport
and localization of mMRNAs to subcellular compartments and organelles®®. In neurons, STAU2 is a marker
for dendritic transport of ribonucleoprotein particles (RNPs) transporting target transcripts by 3'UTR
binding®. In retinal ganglion cells (RGCs), STAU2 has been demonstrated to accumulate asymmetrically
during prophase and metaphase stages of mitosis during corticogenesis, driving asymmetry in mRNA
localization and leading to cell fate differentiation of daughter cells®’. Furthermore, proteins in the larger
Staufen family are found in ribosome and endoplasmic reticulum (ER) containing granules®®. For the
transcripts in the seqFISH+ 3T3 fibroblast dataset, STAU2 binds to a variety of regions for a number of
genes, resulting in no discernable spatial relationship (Fig 4C&D). However, by highlighting transcripts that
are only bound by STAUZ2 in their 3' UTRs, spatial relationships emerge that reflect the prior
understandings of STAUZ2 spatiotemporal behavior. 3' UTR-bound transcripts localize preferentially to the
nucleus and nuclear edge, a localization characteristic previously demonstrated for HSPA5 and other ER-
enriched RNAs as measured by MERFISH* (Fig 4C&D). Furthermore, an asymmetric polarization in target
localization can be observed in a majority of cells across the nuclear membrane. To test if RBP binding to
specific regions in MRNA more broadly affects RNA localization, we looked at the enrichment of region-
specific binding events in targets localized to each subcellular region (Fig 4E). While patterns emerge, such
as an enrichment of CDS binding events in transcripts localized to the cell edge or 3' UTR binding events
and nuclear edge localization, the correlations are weak. This reflects the complexity of factors driving RNA
localization and RBP-RNA spatiotemporal relationships, such as compartment-specific localization and
function of RBPs and their interactors®.

We conclude that Bento enables exploration of links between RBP-RNA interactions and RNA localization.
Using Bento’s ability to distinguish subcellular localization patterns and visualization capabilities, we enable
exploration of how RBPs and the sequence features they bind to preferentially localize transcripts.

Discussion

Bento seeks to interrogate subcellular biology via its “subcellular first” approach to spatial analysis,
complementary to “cell-type or tissue first” spatial analysis methods. It is a platform to explore the spatial
relationships between the transcriptome and subcellular structures. Bento implements a classification
strategy to label five RNA subcellular localization patterns relative to the cell membrane and nuclear
membrane. Bento also enables discovery of biological structure with an unsupervised approach for
decomposing high-dimensional spatial feature sets. Finally, Bento provides tools to study enrichment of
RNA vis-a-vis subcellular location. We demonstrate its versatility by successfully applying it to two publicly
available datasets despite differences in technology, detection efficiency, and upstream image processing.
While Bento can be utilized for any subcellular resolution spatial transcriptomic datasets, image
segmentation will be a significant factor for studying subcellular localization, especially in noisier contexts
such as tissue. Nevertheless, image segmentation is an active area of computational research and
improving continuously. With that in mind, Bento can be applied to reveal transcript localization patterns
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across datasets including spatial tissue atlases, maps of the tumor immune microenvironment,
developmental systems, and more.

Notably, we found that the CNN-based model had difficulty generalizing across datasets; we speculate that
its learned features are highly dependent on detection efficiency. Because many more molecules were
detected per gene in the MERFISH dataset, the input images had a different distribution of pixel intensities
compared to the seqFISH+ input images. In contrast, the other models mitigated this effect using features
that aggregate across the set of molecules rather than encoding their presence or absence. As a result, we
chose to use the random forest-based model for our task. Our adaptation reflects how the relative sparsity
and presence/absence nature of multiplexed transcriptomics data poses a challenge to pixel-based
analysis approaches, in comparison to their success in analyzing proteomics imaging data °*. We anticipate
unsupervised deep learning methods will be useful for spatial transcriptomics as datasets with sufficient
data become available.

As the major role of coding RNA is as an intermediary information molecule for proteins, we expected RNA
localization to correspond to that of their functional protein counterparts. In our analysis, we found that
localization signatures are dominated by genes informative of subcellular compartments and cell-type
specific function. Additionally, we found the localization signatures grouped cells with similar morphology
suggesting early links between RNA subcellular localization and cell state. We expect there are many more
sources of heterogeneity that play a role in subcellular localization and should be interrogated, including cell
type effects, cell cycle effects, noncoding RNA interactions and more.

At the center of RNA processing lie multifaceted spatiotemporal RBP-RNA interactions which we explore at
unprecedented scale leveraging Bento’s classification and visualization capabilities. Many models have
been proposed involving RBP interactions with target “zipcode” sequences that drive RNA transport and
localized RNA stability and result in subcellular RNA patterning**®2. While specific instances of RBPs and
sequence features have been demonstrated to influence RNA localization, a global understanding of RNA
localization remains elusive. We explored the subcellular localization phenotypes of the RNA targets of 148
RBPs and found most RBPs to preferentially bind to RNA targets in specific subcellular compartments.
Furthermore, the subcellular localization of RNA targets reflects well characterized RBP function, of RBPs
such as RNA splicing, RNA transport, and cell cycle. We also demonstrated that RNA targets of STAU2
preferentially localize dependent on 3° UTR binding. When examining the relationship across the whole
dataset between genomic regions of RBP binding and RNA subcellular localization, we found modest
correlations to exist between specific sequence features and subcellular compartments. The weakness of
the correlations is partially attributed to the lack of isoform-specificity in the seqFISH+ and MERFISH data.
Prior studies using APEX-labeling approaches to RNA subcellular localization found splicing to be an
important driver of RNA localization®®*®*. The ability to resolve isoforms in spatial transcriptomics data will be
necessary to push forward our understanding of the mechanisms governing RBP-RNA spatiotemporal
dynamics.

In summary, we developed Bento, a toolkit for analyzing subcellular RNA organization from spatial
transcriptomics data. We demonstrate that Bento identifies biologically relevant localization signatures
leveraging spatial relationships between molecules and subcellular segmentation boundaries, scaling to
entire datasets by utilizing open-source scientific computing tools. Bento fills the need for accessible
subcellular spatial analysis in the existing ecosystem of single-cell and spatial analysis toolkits. We provide
Bento as an open-source tool for the community to further expand our understanding of subcellular biology.
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Methods

Simulating subcellular RNA localization patterns

We trained a multilabel classifier to assign each gene in every cell labels from five categories: (i) nuclear
(contained in the volume of the nucleus), (ii) cytoplasmic (diffuse throughout the cytoplasm), (iii) nuclear
edge (near the inner/outer nuclear membrane), (iv) cell edge (near the cell membrane), and (v) none
(complete spatial randomness). These categories are a consolidation of those observed in several high-
throughput smFISH imaging experiments in HelLa cells *°~*%, We used the FISH-quant simulation framework
to generate realistic ground-truth images using empirically derived parameters from the mentioned high-
throughput smFISH imaging experiments in HeLa cells *%. In total, we simulate 2,000 samples per class for
a total of 10,000 training samples.

1. Cell shape: Cell morphology varies widely across cell types and for classifier generalizability, it is
important to include many different morphologies in the training set. We use a catalog of cell shapes
for over 300 cells from smFISH images in HeLa cells that captures nucleus and cell membrane
shape *%. Cell shapes were obtained by cell segmentation with CellMask and nuclear segmentation
was obtained from DAPI staining.

2. mRNA abundance: We simulated mRNA abundance at three different expression levels (40, 100,
and 200 mRNA per average sized cell) with a Poisson noise term. Consequently, total mRNA
abundance per cell was between 5 and 300 transcripts.

3. Localization pattern: We focused on 5 possible 2D localization patterns, including cell edge,
cytoplasmic, none, nuclear, and nuclear edge. Each pattern was further evaluated at 3 different
degrees - weak, moderate, and strong. Moderate corresponds to a pattern typically observed in a
cell, whereas weak is close to spatially random. These 5 classes aim to capture biologically relevant
behavior generalizable to most cell types; there is room for additional classes describing other
biologically relevant localization patterns so long as they can be accurately modeled.

A model for predicting subcellular localization

We evaluated 4 base models for the multilabel classifier including random forests (RF), support vector
machines (SVM), feed-forward fully-connected neural networks (NN), and convolutional neural networks
(CNN). Each multilabel classifier consists of 5 binary classifiers with the same base model. We used the
labeled 10,000 simulated samples for training, stratifying 80% of the simulated data for training and holding
out the remaining 20% for testing. To select the best hyperparameters for each multilabel classifier, we
sampled from a fixed hyperparameter space with the Tree-structured Parzen Estimator algorithm, and
evaluated performance with 5-fold cross validation (Supp. Table 2). We retrained the final model (random
forest base model) on all training data with the best performing set of hyperparameters.

Manually annotated validation data

Using 3 individual annotators, we annotated the same 600 samples across both datasets, keeping samples
with 2 or more annotator agreements as true annotations, resulting in 165 annotated seqFISH+ samples
and 238 annotated MERFISH samples (403 total). We used Cohen’s kappa coefficient® to calculate
agreement between pairs of annotators for each label, yielding an overall coefficient of 0.602. We found
that pairwise agreement between annotators across labels was fairly consistent ranging between 0.588 and
0.628, while label-specific agreement varied more, ranging between 0.45 and 0.72 (Supplementary Table
3).

Comparison of localization patterns across datasets

To compare the subcellular localization of genes between the MERFISH dataset and the seqFISH+
dataset, we first found the set of orthologous genes measured in both datasets with MyGene.info
(http://mygene.info). The MERFISH genes were first matched to their mouse orthologs, since the U2-0OS
cell line is human while the seqFISH+ 3T3 cell line is mouse. 63 genes were present in both datasets. Each
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gene was assigned to its most frequent pattern within each dataset. We found 28 of the 63 genes were
found to share the same label across both datasets while 35 genes had different patterns.

Data preprocessing and filtering

For the seqFISH+ dataset, we limited the scope of our analysis to the set of genes for which at least 10
molecules were detected in at least one cell. This helped reduce sparsity in the data, resulting in 3726
genes remaining. Because pattern classification requires nuclear segmentation masks, we removed all
cells lacking annotated nuclei for a remainder of 179 cells. Because the MERFISH data had a much higher
number of molecules detected per gene, no gene filtering was performed. Again, cells without annotated
nuclei were removed, leaving 1022 cells for pattern analysis.

Tensor decomposition for identifying localization signatures

To understand the heterogeneity in subcellular localization across the transcriptome, we employed non-
negative parallel factor analysis, which seeks to represent our dataset tensor X in a lower dimensional
space of R signatures by decomposing X as the sum of R rank-one 3-way tensors. Each of these tensors is
described as the outer product of 3 vectors, x;, yg and z,. The collection of vectors across R signatures we
denote as x" (cell loadings), y" (gene loadings) and z" (pattern loadings) respectively. We find the optimal
rank-R decomposition of X by minimizing reconstruction error as a function of the number of signatures R
and use the elbow function heuristic to choose the best-fit across the range of 2-10 factors.

R
— T A,V T
Xegp = Z XeYgZp

r=1

Characterizing subcellular compartments associated with localization signatures

To identify subcellular compartments associated with localization signatures, we performed single-sample
Gene Set Enrichment Analysis (sSGSEA) on each signature’s gene loadings to compute normalized
enrichment scores. ssGSEA was performed with the GSEApy Python package and the
“GO_Cellular_Component_2021" gene set library curated by Enrichr. For the seqFISH+ dataset, gene sets
with a minimum size of 50 and a maximum size of 500 were analyzed. For the MERFISH dataset, gene
sets with a minimum size of 15 and maximum size of 500 were analyzed to account for fewer genes
measured.

Cell morphology associated with localization signatures

We investigated the relationship of localization signatures with cell morphology by correlating cell loadings
with spatial measures. These spatial measures were calculated by converting the cell's segmentation mask
and nuclear segmentation mask to closed polygons with GeoPandas. By treating each mask as separate
polygons, GeoPandas was used to calculate cell perimeter, cell area and cell aspect ratio (major to minor
axis ratio) for each cell shape. It was also used to calculate nucleus area, the ratio of nucleus to cell area,
nucleus aspect ratio, and absolute distance from the nucleus centroid to the cell centroid. Finally, pairwise
Spearman correlations and p-values were calculated between these measures and each signature’s cell
loadings. P-values were adjusted for multiple-hypothesis testing with the Holm-Bonferroni method to
measure significance.

RBP-RNA interaction analyses

Cross-linking immunoprecipitation high-throughput sequencing (CLIP-seq) data from the ENCODE
database was accessed using RBP-Bind. High confidence reproducible peaks between replicates (IDR
peaks) showing a fold enrichment greater than or equal to 8 and with a p-value of less than 0.0001 across
two replicates in HepG2 cells across all RBPs were gathered for each gene in the 3T3 seqFISH+ dataset.
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Genes with no IDR peaks were removed from the analysis. In total, 3,165 genes had IDR peaks across 148
different RBPs (Supplementary Table 4).

We then calculated correlations between localization pattern proportions and sequence regions proportions.
The 7 sequence regions include coding sequence, 5-prime splice site, 3-prime splice site, 5-prime
untranslated region (UTR), 3-prime UTR, proximal intron and distal intron as defined in the RBP-Bind
database. For localization pattern proportions, we first labeled each gene with its most common localization
pattern in the seqFISH+ dataset. Then for each RBP, we counted the number of target genes per pattern
and normalized counts by the number of target genes. This yielded pattern proportions, summing to 1 for
each RBP. To get sequence region proportions, we counted the number of target genes bound by each
RBP within each sequence region. Similarly, these values were normalized by the number of target genes
yielding sequence region proportions summing to 1 for each RBP. With these RBP-specific binding
proportions, we performed pairwise correlations between the 5 localization pattern proportions and the 7
sequence region proportions.

MERFISH of U2-0S cells

MERFISH sample preparation. MERFISH measurements of 130 genes with five non-targeting blank
controls were done as previously described, using the published encoding® and readout probes®’. Briefly,
U2-0S cells were cultured on 40 mm #1.5 coverslips that are silanized and poly-L-lysine coated®® and
subsequently fixed in 4% (vol/vol) paraformaldehyde in 1x PBS for 15 minutes at room temperature. Cells
were then permeabilized in 0.5% Triton X-100 for 10 minutes at room temperature and washed in 1x PBS
containing Murine RNase Inhibitor (NEB M0314S). Cells were preincubated with a hybridization wash buffer
(30% (vol/vol) formamide in 2x SSC) for ten minutes at room temperature with gentle shaking. After
preincubation, the coverslip was moved to a fresh 60 mm petri dish and residual hybridization wash buffer
was removed with a Kimwipe lab tissue. In the new dish, 50 uL of encoding probe hybridization buffer (2X
SSC, 30% (vol/vol) formamide, 10% (wt/vol) dextran sulfate, 1 mg ml™ yeast tRNA, and a total
concentration of 5 uM encoding probes and 1 uM of anchor probe: a 15-nt sequence of alternating dT and
thymidine-locked nucleic acid (dT+) with a 5'-acrydite modification (Integrated DNA Technologies). The
sample was placed in a humidified 37C oven for 36 to 48 hours then washed with 30% (vol/vol) formamide
in 2X SSC for 20 minutes at 37C, 20 minutes at room temperature. Samples were post-fixed with 4%
(vol/vol) paraformaldehyde in 2X SSC and washed with 2X SSC with murine RNase inhibitor for five
minutes. The samples were finally stained with an Alexa 488-conjugated anchor probe-readout oligo
(Integrated DNA Technologies) and DAPI solution at 1 pg/mil.

MERFISH imaging. MERFISH measurements were conducted on a home-built system as described in
Huang et al. 2021°".

MERFISH analysis. Individual RNA molecules were decoded in MERFISH images using MERIin v0.1.6%,
Images were aligned across hybridization rounds by maximizing phase cross-correlation on the fiducial
bead channel to adjust for drift in the position of the stage from round to round. Background was reduced
by applying a high-pass filter and decoding was then performed per-pixel. For each pixel, a vector was
constructed of the 16 brightness values from each of the 16 rounds of imaging. These vectors were then L2
normalized and their euclidean distances to each of the L2 normalized barcodes from the MERFISH
codebook was calculated. Pixels were assigned to the gene whose barcode they were closest to, unless
the closest distance was greater than 0.512, in which case the pixel was not assigned a gene. Adjacent
pixels assigned to the same gene were combined into a single RNA molecule. Molecules were filtered to
remove potential false positives by comparing the mean brightness, pixel size, and distance to the closest
barcode of molecules assigned to blank barcodes to those assigned to genes to achieve an estimated
misidentification rate of 5%. The exact position of each molecule was calculated as the median position of
all pixels consisting of the molecule.

Cellpose v1.0.2% was used to perform image segmentation to determine the boundaries of cells and nuclei.
The nuclei boundaries were determined by running Cellpose with the ‘nuclei’ model using default
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parameters on the DAPI stain channel of the pre-hybridization images. Cytoplasm boundaries were
segmented with the ‘cyto’ model and default parameters using the polyT stain channel. RNA molecules
identified by MERIin were assigned to cells and nuclei by applying these segmentation masks to the
positions of the molecules.

Data Availability

Preprocessed datasets have been deposited at https://doi.org/10.6084/m9.figshare.15109236.v2 and are
accessible through the Bento Python package. These include the seqFISH+* and the generated MERFISH
datasets. Raw MERFISH data is available upon request.

Code Availability

The source code for Bento is available on the GitHub repository: https://github.com/ckmah/bento-tools.
Documentation for Bento can be found here: http://bento-tools.readthedocs.io/.
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