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Abstract 

Advances in spatial transcriptomics technologies produce RNA imaging data at increasingly higher 
throughput and scale. Current computational methods identify and measure the spatial relationships 
between cell-types, but do not leverage the spatial information of individual RNA molecules to reveal 
subcellular spatiotemporal dynamics of RNA processing. Here, we developed Bento, a computational 
framework for subcellular analysis of high-throughput spatial transcriptomics datasets. Bento handles 
single-molecule data generated by diverse spatial transcriptomics technologies and computes spatial 
statistics of subcellular RNA molecular distributions, compartmental expression, and cell morphology to 
build multidimensional feature sets for exploratory analysis. We also developed a multi-label ensemble 
model for generalizable classification of subcellular localization of every gene in every cell. To demonstrate 
Bento’s utility, we applied it to analyze spatial transcriptomics datasets generated by seqFISH+ (10k genes 
in ~200 fibroblast cells) and MERFISH (130 genes quantified in ~1000 U2-OS cells) to understand the 
interplay between gene function, cellular morphology and RNA localization. To understand the role of RNA 
localization in RNA processing, we integrated spatial data with RNA binding protein (RBP) binding data to 
explore the spatiotemporal dynamics of RBP-RNA interactions at unprecedented scale (3,165 RNA species 
x 148 RBPs). We found RNA targets of individual RBPs to be enriched in specific subcellular compartments 
– such as Splicing Factor 3a Protein Complex (SF3A3), and that preferential localization is influenced by 
RBP binding of genomic regions for RBPs including Staufen homolog 2 (STAU2). Bento builds on the 
existing ecosystem of single-cell and spatial analysis toolkits, to ensure accessibility and community-driven 
tool development. We provide Bento as an open-source tool for the community to further expand our 
understanding of subcellular biology. 
 
 

Introduction 

Cells are the smallest organizational unit in living organisms, and how their internal components are 
organized is critical for homeostatic function. Protein-coding genes encoded in the genome are expressed 
as RNA and after maturation are translated into proteins. Whereas protein localization is well studied1, and 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 13, 2022. ; https://doi.org/10.1101/2022.06.10.495510doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.10.495510
http://creativecommons.org/licenses/by-nc-nd/4.0/


protein mislocalization is a known driver of disease2,3, these same principles for RNA are less well 
appreciated. The spatiotemporal dynamics of RNA play a crucial role in localized cellular processes such 
as cell migration and cell division4,5, as well as specialized cell functionalities like synaptic plasticity6–8. 
Mislocalization of RNA has been associated with diseases such as Huntington’s disease (HD), where 
defects in axonal mRNA transport and subsequent translation in human spiny neurons lead to cell death 
and neurodegeneration9–12. 
 
The study of subcellular RNA localization necessitates single-molecule measurements. Since the 
development of single-molecule fluorescent in situ hybridization (smFISH), recent advances to develop 
multiplexed methods such as MERFISH13, seqFISH+14, HybISS15, and Ex-Seq16 have enabled RNA 
localization measurements at near transcriptome scales. A number of computational tools, such as 
Squidpy17, stLearn18, Giotto17, and single-cell expression tools like Seurat19 and Scanpy20, have enabled 
characterization of tissue architecture, quantify cell-cell interactions, and identify spatial expression 
patterns. While these tools get at spatial variation in tissues, they lack the ability to investigate subcellular 
resolution, which is necessary to study the function of RNA localization in normal cell function and disease 
states.  
 
Meanwhile, methods such as FISH-quant and FISHFactor have been developed to analyze fluorescent in 
situ hybridization (FISH)-based imaging data for subcellular patterns describing the spatial distribution of 
RNA species21,22. While these methods take advantage of subcellular-resolution spatial data, they cannot 
be applied to entire spatial transcriptomics datasets. More recently, the ClusterMap method was developed 
to identify cellular and subcellular regions from transcript locations alone, but only demonstrated the ability 
to identify cells and nuclei. There is clearly a need for a toolkit that scales to entire spatial transcriptomics 
datasets and has the flexibility to accommodate cutting-edge analysis approaches.  
 
To address these shortcomings, we present Bento, a toolkit for exploring spatial transcriptomics data with 
an emphasis on subcellular biology. Bento ingests single-molecule resolution data from highly multiplexed 
spatial transcriptomics imaging experiments, enabling visualization, exploration and analysis of subcellular 
biology. The toolkit has an accessible programming interface (API) in Python, and opens the doors to 
testing hypotheses about subcellular phenotypes by providing methods to compute spatial statistics and 
measure spatial phenotypes for RNA localization, compartmental expression, and cell morphology to build 
multidimensional feature sets for exploratory analysis. These methods are inspired and adapted from 
existing work21,23–25 and other scientific domains26. To demonstrate the utility of Bento, we developed a 
scalable method to quantify subcellular “localization signatures;” we define a localization signature as the 
weighted combination of localization patterns simultaneously associated with groups of genes and cells. 
We show that localization signatures link RNA subcellular localization to function. Bento can be used to 
further discover evidence of novel RNA interactions, and identify localization mechanisms of post-
transcriptional gene regulation. These contributions are important for understanding RNA processing from 
transcription to translation and how dysregulated localization may be a primary mechanism of 
neurodegenerative diseases. 
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Results 

Fig 1. Workflow and functionality of Bento, subcellular spatial analysis toolkit. A) Molecular coordinates a
segmentation masks from spatial transcriptomics data are required for analysis and visualization. B) Input data
stored in the AnnData data format, which can be manipulated with Bento as well as a wide ecosystem of single-c
omics tools. C) Quality control metrics are illustrated for the seqFISH+ dataset, where the top row shows transcr
frequency distributions and the bottom row shows distributions of simple physical measures of cells. Visualization
distributions can be visually inspected to identify and remove outliers, which may indicate low quality cells. D) Ben
has a standard interface to calculate subcellular features, identify subcellular localization patterns and inf
localization signatures from spatial transcriptomics datasets. 

 
Overview of Bento data infrastructure for subcellular analysis 
Bento is an open-source Python toolkit for scalable analysis of multiplexed spatial transcriptomics dat
subcellular spatial resolution. It utilizes computational geospatial tools (GeoPandas27) to enable spa
analysis of molecular imaging data, and data science tools including SciPy28, Dask29,30, PyTorch31 
Tensorly32 to enable scalable analysis of high-dimensional data. We build on the AnnData data format
store both expression and spatial information, enabling integration of subcellular spatial analysis with
vast ecosystem of single-cell expression analysis.  
 
In order to facilitate a flexible workflow, Bento is generally compatible with molecule-level resolution sp
transcriptomics data (Fig. 1A), such as datasets produced by MERFISH13, seqFISH+14, Co
(NanoString)34, Xenium (10x Genomics)15,35, and Molecular Cartography (Resolve Biosciences)36. Ben
workflow takes as input 1) 2D spatial coordinates of transcripts annotated by gene, 2) cell segmenta
boundaries and 3) nuclear segmentation boundaries (Fig. 1B). If available, Bento can also handle arbit
sets of segmentations for other subcellular structures or regions of interest. These inputs are stored in
AnnData data format33, which links cell and gene metadata to a standard count matrix, provid
compatibility with standard single-cell RNA-seq quality control and analysis tools. Bento provides additio
spatial metrics to augment quality control (Fig. 1C). With a data structure for segmentation boundaries 
transcript coordinates in place, Bento can easily compute spatial statistics and measure spatial phenoty
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for every gene in every cell to build flexible multidimensional feature sets for exploratory subcel
analysis (Fig. 1D). 
 
To predict subcellular localization, Bento uses a multilabel classifier across five broad categories: nuc
cytoplasmic, nuclear edge, cell edge, and none of the above (Fig. 1D). To reveal variation in subcell
localization patterns, we identify groups of cells and genes exhibiting similar RNA subcellular localiza
patterns via tensor decomposition. In addition, Bento supports quantifying enrichment in subcellular regi
of interest (ROIs) defined by segmentation masks, enabling transcriptome-scale colocalization studie
RNA in organelles or other segmentable cellular structures37. 
 
Bento also tackles the challenge of visualizing datasets of hundreds to thousands of cells each 
thousands of single RNA molecules with a suite of plotting options such as rendering single cells or field
view, as well as individual molecules or rasterized representations. Furthermore, its use of the AnnD
data format enables complementary spatial analysis at the tissue resolution with other tools in 
ecosystem17,19,38. 
 

Fig 2. Scalable prediction of subcellular localization patterns in spatial transcriptomics data. A) A sing
sample shown as the set of transcripts for a gene in a particular cell. Spatial features are computed for all sampl
across every combination of cell and gene, which are used as input for a 5-class multilabel classifier. The output
represented as a 3-dimensional tensor. B) Performance of 4 models trained on simulated data and evaluated 
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neural network, and CNN for convolutional neural network. C) Validation performance of the same 4 models on 
manually annotated seqFISH+ and MERFISH data; RadViz projection of genes for the D) seqFISH+ dataset and E) 
MERFISH dataset, where the point position denotes the balance between subcellular localization pattern 
frequencies, color denotes most frequent pattern, and size denotes cell fraction. Upset plot39 showing relative 
proportions of all F) seqFISH+ samples and G) MERFISH samples classified across patterns. Light gray columns 
correspond to samples predicted as multiple patterns, denoted by connected dots under the bar graph. 

 
Bento annotates subcellular localization patterns  
We built a multilabel classifier using a set of binary random forest classifiers to assign labels to each gene 
in every cell across five categories: (i) nuclear (contained in the volume of the nucleus), (ii) cytoplasmic 
(diffuse throughout the cytoplasm), (iii) nuclear edge (near the inner/outer nuclear membrane), (iv) cell edge 
(near the cell membrane), and (v) none (complete spatial randomness). These categories are a 
consolidation of those observed in several high-throughput smFISH imaging experiments in HeLa cells40–43. 
We used the FISH-quant simulation framework to generate realistic ground-truth images using empirically 
derived parameters from the aforementioned high-throughput smFISH HeLa cell imaging experiments42. 
Each sample is defined as a set of points with coordinates in two dimensions, representing the set of 
observed transcripts for a gene in a particular cell. In total, we simulated 2,000 samples per class for a total 
of 10,000 samples (Methods). We used 80% of the simulated data for training and held out the remaining 
20% for testing. Each sample is encoded by a set of 13 input features, describing characteristics of each 
sample’s point distribution, including proximity to cellular compartments and extensions (features 1-3), 

measures of symmetry about a center of mass (features 4-6), and measures of dispersion and point 

density (feature 7-13) (Fig. 2A, Supp. Table 1).  
 
We evaluated several base models for the multilabel classifier including random forests (RF), support 
vector machines (SVM), feed-forward fully-connected neural networks (NN), and convolutional neural 
networks (CNN) (Methods, Supp. Table 2). To evaluate their performance on simulated data, we 
compared the model macro area under receiving operator curve (macro-AUROC) values on the hold-out 
test data. All models except the CNN were able to generalize well to the simulated test data (Fig. 2B).  
 
To evaluate the ability of each model to generalize to real world data in contrast to simulated data, we 
identified datasets with a large number of target genes or a large number of cells. We manually annotated a 
random subset of samples across these datasets for benchmarking model performance (Methods). The 
seqFISH+ dataset met the first criteria, targeting 10,000 genes across 227 cultured NIH/3T3 mouse 
embryonic fibroblast cells spatially profiled with seqFISH+14. We also generated a MERFISH dataset 
capturing 2,716 cultured U2-OS osteosarcoma cells, profiling 130 genes and 5 non-targeting. The RF 
classifier consistently had the best agreement with manual annotations on a held-out test set, with a macro-
AUROC of 0.76 and 0.81 in the seqFISH+ and MERFISH datasets respectively, in contrast to a macro-
AUROC of 0.99 in the held-out test data (Fig. 2C). 
 
The multilabel classifier was used to assign one or more labels to every cell-gene pair in each dataset. We 
first preprocessed datasets to remove genes with low expression and cells without annotated nuclei 
(Methods). Genes commonly showed a wide range of variability in localization across cells (Fig. 2D&E). Of 
the localization patterns besides “none”, “cell edge” was the most common (15.9%) in the 3T3 fibroblast 
cells while “nuclear” was the most common (22.1%) in the U2-OS osteosarcoma cells (Fig. 2F&G). We 
compared 63 orthologous genes measured in both cell types and found that 28 genes shared the same 
most frequent localization pattern and the rest had different localizations, possibly reflecting cell type 
specific localization behavior (Methods, Supp. Fig 1). With the ability to annotate localization patterns for 
entire spatial transcriptomics datasets, we can now interrogate how pattern frequencies vary within a gene 
across cells and between genes for the entire transcriptome. 
 
Tensor decomposition identifies subcellular localization signatures 
Just as transcription shows cell-to-cell variation in expression, even within the same cell type, the 
subcellular spatial distribution of RNA molecules is not deterministic. To understand how RNA subcellular 
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localization varies across cells and between genes simultaneously, we employed tensor decomposition — 
specifically, non-negative parallel factor analysis — a data-driven, unsupervised approach for discovering 
substructure in high-dimensional data32,44. We used tensor decomposition to decompose spatial 
transcriptomics datasets into a set of “localization signatures'' representing combinations of cells and genes 
that share similar localization behavior. First, we represent a single spatial transcriptomics dataset as a 
third-order tensor of size PxCxG where P, C, and G represent the number of patterns, cells, and genes, 
respectively, in our data. In this approach, P = 5 for the 5 subcellular localization patterns (i.e., as defined 
previously, this is nuclear, cytoplasmic, nuclear edge, cell edge, and none) while C and G represent the 
number of genes and cells measured in the dataset. Missing and low-expression data are removed and 
ignored in downstream calculations that utilize the dataset tensor. This allows the tensor to hold the output 
of the spatial localization classifier as a five-digit binary vector for every sample (Methods). 
 
Tensor decomposition factors the dataset tensor into k localization signatures using the elbow method 
heuristic to determine the least number of signatures needed to reconstruct the original tensor, optimizing 
for the mean squared error reconstruction loss function. Missing values are ignored when calculating the 
loss. Unlike matrix dimensionality reduction methods, such as PCA, the order of the components 
(signatures) is unassociated with the amount of variance explained. Each of the k signatures resulting from 
tensor decomposition is composed of 3 loading vectors, corresponding to the pattern, cell, and gene 
dimensions. Higher values denote a stronger association with that signature. We interpret a particular 
signature’s pattern loading as the weighted combination of patterns characterizing that signature. Similarly, 
a signature’s cell loading and gene loading denote the strength of association of cells and genes 
respectively. The localization signatures derived from tensor decomposition are not necessarily mutually 
exclusive and can share overlapping sets of patterns, cells and genes. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 13, 2022. ; https://doi.org/10.1101/2022.06.10.495510doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.10.495510
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Fig 3. Identification of seqFISH+ subcellular localization signatures via tensor decomposition. A) Schema
of the tensor decomposition procedure applied to the dataset tensor, producing localization signatures. B-
Localization signatures of the seqFISH+ dataset. In each row, the bar plots show associations of localization patte
loadings with the respective signatures colored by pattern class. Heatmaps show log-scaled cell and gene loadin
along the top and left while associated cell-gene pairs are shown in the center heatmap as a dot product of the lo
scaled cell and gene loadings. The top 4 genes are shown in the top-ranked cell for each signature under t
heatmaps. E) ssGSEA scores for GO Ontology (Cellular Component) terms calculated using gene loadings of ea
signature. Heatmap shows the top 5 terms for each signature aggregated and hierarchically clustered. F) Dot p
shows correlation of signature cell loadings with cell morphology measures. Larger dots denote higher significan
while color saturation indicates a stronger magnitude of correlation. 

 
Functional characterization of localization signatures 
We applied the tensor decomposition strategy to the seqFISH+ dataset and found 3 distinct signatu
(Fig. 3A). The first signature’s pattern loading is dominated by “none” and “cytoplasmic”, while signatu
is a combination of “nuclear” and “nuclear edge” and signature 3 is primarily “cell edge” (Fig. 3B-D). Th
signatures recapitulate patterns found in the original seqFISH+ study, in which three major cluster
spatially co-occurring genes were observed and manually annotated as protrusion, nuclear/perinuclear, 
cytoplasmic14. This demonstrates the ability of tensor decomposition to extract meaningful biolog
structure from localization patterns in a data-driven manner. We also applied the tensor decomposi
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results suggest that subcellular localization is systematically regulated regardless of cell type and that 
identifying localization signatures is robust to measurement platforms. 
 
To determine if gene signatures are associated with specific subcellular compartments corresponding to 
their localization preferences, we used single-sample Gene Set Enrichment Analysis (ssGSEA) to identify 
enriched terms from the GO Cellular Component domain45–48 (Fig. 3E, Methods). For example, we found 
that organelles involved in cotranslational translocation e.g. the endoplasmic reticulum, golgi apparatus and 
the extracellular matrix (ECM), characterize gene signature 2, which was dominated by the nuclear and 
nuclear edge patterns. Additionally, we found gene signature 3 (cell edge) was enriched for cytoskeleton 
components. While RNA localization patterns in these fibroblasts cells reflected stereotypical organelle 
organization, we found that localization also reflected cell type-specific function. Secreted vesicle terms 
were associated with gene signatures 1 and 3 and ECM terms were associated with gene signature 2, 
reflecting the primary function of mouse embryonic fibroblasts to synthesize and secrete ECM proteins. 
These results show concordance of RNA localization to their protein counterparts regarding subcellular 
organelles and cellular function. 
 
We next characterized the morphological features of cells with different localization signatures. To do so, 
we compared cell signatures to spatial measures of cell morphology, nucleus morphology and total cell 
expression (Fig. 3F, Methods). Cell and nucleus morphology measures include perimeter, area, aspect 
ratio (i.e. minor to major axis ratio), the ratio of nucleus to cell area, and the distance between nucleus and 
cell centroids. These measures correlated only moderately to weakly with localization signatures 
(Spearman correlation analysis); all correlation coefficient magnitudes were less than or equal to 0.4. Cell 
signature 2 was positively correlated with cell area and nuclear area while cell signature 3 was positively 
correlated with elongated cells. Conversely, cell signature 1 was negatively correlated with elongated cells, 
preferring more evenly shaped cells. Visually inspecting the top scoring cells of each signature confirms 
these associations (Fig. 3B-D). In conclusion, we found evidence that cell morphology is a source of 
heterogeneity in localization signatures but is insufficient to fully explain it. These results show that our 
tensor decomposition approach can systematically identify biological factors explaining RNA localization 
patterns considering cells and genes simultaneously. 
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Fig 4. Complex RBP-RNA interactions drive RNA subcellular localization. A) Distribution of RNA targets acro
localization patterns for RBPs with significant eCLIP-seq binding peaks (RBP-Bind) overlapping genomic regions
3,165 genes measured by seqFISH+. The top 10 enriched RBPs (sorted by log2 fold-change) for each localizatio
pattern are shown. Color denotes log2 fold-change of one localization category versus mean of rest. Size denot
RBP target count capped at 24 for clarity. B) All RNA binding partners of RBPs SF3A3, CDC40, NOL12 and FXR
are shown as points and colored by their most frequent localization pattern. RNA targets are enriched for differe
localization patterns, reflecting RBP function. C) Visualization of single molecules of STAU2 RNA targets based o
binding to their 3’ UTR or other region in a field of view. D) STAU2 targets show preferential localization througho
the 3T3 dataset based on 3’ UTR binding. E) Correlations between RBP binding to genomic regions and localizati
patterns of RNA targets. 

 
 
RNA binding protein interactions with RNA influence subcellular localization 
RNA subcellular localization is governed by an elaborate choreography of RNA binding, transport, 
degradation mechanisms that all depend on RNA binding proteins (RBPs). However, the complexit
multiple binding partners and promiscuous RBPs has made it difficult to discern exactly which RBPs 
which sequence features govern the rules of RNA subcellular transport and localization49. With our abilit
annotate RNA subcellular localization with Bento, we can systematically explore the complex RBP-R
relationships that influence RNA localization. 
 
We sought to identify RBP-RNA interactions associated with subcellular localization patterns in 
seqFISH+ 3T3 fibroblast cell line dataset as previously identified with Bento. For RBP-RNA interactions,
used publicly available cross-linking immunoprecipitation high-throughput sequencing (CLIP-seq) data f
RBP-Bind to identify RNA targets bound by RBPs in each genomic regions50 (Methods). Using Ben

 

ross 
s of 

ation 
otes 
XR1 
rent 
d on 
hout 
ation 

t, and 
xity of 
s and 
ility to 
RNA 

in the 
ns, we 
a from 
ento’s 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 13, 2022. ; https://doi.org/10.1101/2022.06.10.495510doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.10.495510
http://creativecommons.org/licenses/by-nc-nd/4.0/


subcellular localization pattern annotations, we were able to quantify the subcellular enrichment of RNA 
targets for each RBP across genomic regions. We observe a number of RBPs preferentially binding to 
targets in particular localization patterns (Fig 4A). This preferential binding reflects RBP function. For 
example, Splicing Factor 3a Protein Complex (SF3A3), a component of the U2 snRNP splicing 
machinery51, and Cell Division Cycle 40 (CDC40), another RBP involved in RNA splicing52, both bind 
transcripts in the nucleus and nuclear edge (Fig 4B). Nucleolar Protein 12 (NOL12) is a multifunctional 
RBP regulating RNA metabolism in nucleoli, nucleoplasm, paraspeckles, as well as GW/P-bodies in the 
cytoplasm53. Mirroring the multifaceted nature of its function, NOL12 targets localize to the nucleus, nuclear 
edge, as well as the cell edge (Fig 4B). Fragile X Mental Retardation, Autosomal Homolog 1 (FXR1) is an 
RBP that shuttles between the nucleus and cytoplasm and associates with polyribosomes54. Reflecting the 
nuclear-cytoplasmic shuttling, FXR1 targets are present throughout the cell. 
 
While RBP binding state can inform RBP-RNA spatiotemporal associations, the location in the target RNA’s 
sequence an RBP binds can also influence the RBP-RNA functional relationship. We explore this 
sequence-feature centered relationship in Staufen homolog 2 (STAU2), an RBP involved in the transport 
and localization of mRNAs to subcellular compartments and organelles55. In neurons, STAU2 is a marker 
for dendritic transport of ribonucleoprotein particles (RNPs) transporting target transcripts by 3’UTR 
binding56. In retinal ganglion cells (RGCs), STAU2 has been demonstrated to accumulate asymmetrically 
during prophase and metaphase stages of mitosis during corticogenesis, driving asymmetry in mRNA 
localization and leading to cell fate differentiation of daughter cells57. Furthermore, proteins in the larger 
Staufen family are found in ribosome and endoplasmic reticulum (ER) containing granules58. For the 
transcripts in the seqFISH+ 3T3 fibroblast dataset, STAU2 binds to a variety of regions for a number of 
genes, resulting in no discernable spatial relationship (Fig 4C&D). However, by highlighting transcripts that 
are only bound by STAU2 in their 3’ UTRs, spatial relationships emerge that reflect the prior 
understandings of STAU2 spatiotemporal behavior. 3’ UTR-bound transcripts localize preferentially to the 
nucleus and nuclear edge, a localization characteristic previously demonstrated for HSPA5 and other ER-
enriched RNAs as measured by MERFISH59 (Fig 4C&D). Furthermore, an asymmetric polarization in target 
localization can be observed in a majority of cells across the nuclear membrane. To test if RBP binding to 
specific regions in mRNA more broadly affects RNA localization, we looked at the enrichment of region-
specific binding events in targets localized to each subcellular region (Fig 4E). While patterns emerge, such 
as an enrichment of CDS binding events in transcripts localized to the cell edge or 3’ UTR binding events 
and nuclear edge localization, the correlations are weak. This reflects the complexity of factors driving RNA 
localization and RBP-RNA spatiotemporal relationships, such as compartment-specific localization and 
function of RBPs and their interactors60. 
 
We conclude that Bento enables exploration of links between RBP-RNA interactions and RNA localization. 
Using Bento’s ability to distinguish subcellular localization patterns and visualization capabilities, we enable 
exploration of how RBPs and the sequence features they bind to preferentially localize transcripts. 
 

Discussion 

Bento seeks to interrogate subcellular biology via its “subcellular first” approach to spatial analysis, 
complementary to “cell-type or tissue first” spatial analysis methods. It is a platform to explore the spatial 
relationships between the transcriptome and subcellular structures. Bento implements a classification 
strategy to label five RNA subcellular localization patterns relative to the cell membrane and nuclear 
membrane. Bento also enables discovery of biological structure with an unsupervised approach for 
decomposing high-dimensional spatial feature sets. Finally, Bento provides tools to study enrichment of 
RNA vis-a-vis subcellular location. We demonstrate its versatility by successfully applying it to two publicly 
available datasets despite differences in technology, detection efficiency, and upstream image processing. 
While Bento can be utilized for any subcellular resolution spatial transcriptomic datasets, image 
segmentation will be a significant factor for studying subcellular localization, especially in noisier contexts 
such as tissue. Nevertheless, image segmentation is an active area of computational research and 
improving continuously. With that in mind, Bento can be applied to reveal transcript localization patterns 
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across datasets including spatial tissue atlases, maps of the tumor immune microenvironment, 
developmental systems, and more. 
 
Notably, we found that the CNN-based model had difficulty generalizing across datasets; we speculate that 
its learned features are highly dependent on detection efficiency. Because many more molecules were 
detected per gene in the MERFISH dataset, the input images had a different distribution of pixel intensities 
compared to the seqFISH+ input images. In contrast, the other models mitigated this effect using features 
that aggregate across the set of molecules rather than encoding their presence or absence. As a result, we 
chose to use the random forest-based model for our task. Our adaptation reflects how the relative sparsity 
and presence/absence nature of multiplexed transcriptomics data poses a challenge to pixel-based 
analysis approaches, in comparison to their success in analyzing proteomics imaging data 61. We anticipate 
unsupervised deep learning methods will be useful for spatial transcriptomics as datasets with sufficient 
data become available. 
 
As the major role of coding RNA is as an intermediary information molecule for proteins, we expected RNA 
localization to correspond to that of their functional protein counterparts. In our analysis, we found that 
localization signatures are dominated by genes informative of subcellular compartments and cell-type 
specific function. Additionally, we found the localization signatures grouped cells with similar morphology 
suggesting early links between RNA subcellular localization and cell state. We expect there are many more 
sources of heterogeneity that play a role in subcellular localization and should be interrogated, including cell 
type effects, cell cycle effects, noncoding RNA interactions and more.  
 
At the center of RNA processing lie multifaceted spatiotemporal RBP-RNA interactions which we explore at 
unprecedented scale leveraging Bento’s classification and visualization capabilities. Many models have 
been proposed involving RBP interactions with target “zipcode” sequences that drive RNA transport and 
localized RNA stability and result in subcellular RNA patterning49,62. While specific instances of RBPs and 
sequence features have been demonstrated to influence RNA localization, a global understanding of RNA 
localization remains elusive. We explored the subcellular localization phenotypes of the RNA targets of 148 
RBPs and found most RBPs to preferentially bind to RNA targets in specific subcellular compartments. 
Furthermore, the subcellular localization of RNA targets reflects well characterized RBP function, of RBPs 
such as RNA splicing, RNA transport, and cell cycle. We also demonstrated that RNA targets of STAU2 
preferentially localize dependent on 3’ UTR binding. When examining the relationship across the whole 
dataset between genomic regions of RBP binding and RNA subcellular localization, we found modest 
correlations to exist between specific sequence features and subcellular compartments. The weakness of 
the correlations is partially attributed to the lack of isoform-specificity in the seqFISH+ and MERFISH data. 
Prior studies using APEX-labeling approaches to RNA subcellular localization found splicing to be an 
important driver of RNA localization63,64. The ability to resolve isoforms in spatial transcriptomics data will be 
necessary to push forward our understanding of the mechanisms governing RBP-RNA spatiotemporal 
dynamics. 
 
In summary, we developed Bento, a toolkit for analyzing subcellular RNA organization from spatial 
transcriptomics data. We demonstrate that Bento identifies biologically relevant localization signatures 
leveraging spatial relationships between molecules and subcellular segmentation boundaries, scaling to 
entire datasets by utilizing open-source scientific computing tools. Bento fills the need for accessible 
subcellular spatial analysis in the existing ecosystem of single-cell and spatial analysis toolkits. We provide 
Bento as an open-source tool for the community to further expand our understanding of subcellular biology. 
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Methods 

Simulating subcellular RNA localization patterns 
We trained a multilabel classifier to assign each gene in every cell labels from five categories: (i) nuclear 
(contained in the volume of the nucleus), (ii) cytoplasmic (diffuse throughout the cytoplasm), (iii) nuclear 
edge (near the inner/outer nuclear membrane), (iv) cell edge (near the cell membrane), and (v) none 
(complete spatial randomness). These categories are a consolidation of those observed in several high-
throughput smFISH imaging experiments in HeLa cells 40–43. We used the FISH-quant simulation framework 
to generate realistic ground-truth images using empirically derived parameters from the mentioned high-
throughput smFISH imaging experiments in HeLa cells 42. In total, we simulate 2,000 samples per class for 
a total of 10,000 training samples. 
 

1. Cell shape: Cell morphology varies widely across cell types and for classifier generalizability, it is 
important to include many different morphologies in the training set. We use a catalog of cell shapes 
for over 300 cells from smFISH images in HeLa cells that captures nucleus and cell membrane 
shape 42. Cell shapes were obtained by cell segmentation with CellMask and nuclear segmentation 
was obtained from DAPI staining. 

2. mRNA abundance: We simulated mRNA abundance at three different expression levels (40, 100, 
and 200 mRNA per average sized cell) with a Poisson noise term. Consequently, total mRNA 
abundance per cell was between 5 and 300 transcripts. 

3. Localization pattern: We focused on 5 possible 2D localization patterns, including cell edge, 
cytoplasmic, none, nuclear, and nuclear edge. Each pattern was further evaluated at 3 different 
degrees - weak, moderate, and strong. Moderate corresponds to a pattern typically observed in a 
cell, whereas weak is close to spatially random. These 5 classes aim to capture biologically relevant 
behavior generalizable to most cell types; there is room for additional classes describing other 
biologically relevant localization patterns so long as they can be accurately modeled. 

A model for predicting subcellular localization  
We evaluated 4 base models for the multilabel classifier including random forests (RF), support vector 
machines (SVM), feed-forward fully-connected neural networks (NN), and convolutional neural networks 
(CNN). Each multilabel classifier consists of 5 binary classifiers with the same base model. We used the 
labeled 10,000 simulated samples for training, stratifying 80% of the simulated data for training and holding 
out the remaining 20% for testing. To select the best hyperparameters for each multilabel classifier, we 
sampled from a fixed hyperparameter space with the Tree-structured Parzen Estimator algorithm, and 
evaluated performance with 5-fold cross validation (Supp. Table 2). We retrained the final model (random 
forest base model) on all training data with the best performing set of hyperparameters.  
 
Manually annotated validation data 
Using 3 individual annotators, we annotated the same 600 samples across both datasets, keeping samples 
with 2 or more annotator agreements as true annotations, resulting in 165 annotated seqFISH+ samples 
and 238 annotated MERFISH samples (403 total). We used Cohen’s kappa coefficient65 to calculate 
agreement between pairs of annotators for each label, yielding an overall coefficient of 0.602. We found 
that pairwise agreement between annotators across labels was fairly consistent ranging between 0.588 and 
0.628, while label-specific agreement varied more, ranging between 0.45 and 0.72 (Supplementary Table 
3). 
 
Comparison of localization patterns across datasets 
To compare the subcellular localization of genes between the MERFISH dataset and the seqFISH+ 
dataset, we first found the set of orthologous genes measured in both datasets with MyGene.info 
(http://mygene.info). The MERFISH genes were first matched to their mouse orthologs, since the U2-OS 
cell line is human while the seqFISH+ 3T3 cell line is mouse. 63 genes were present in both datasets. Each 
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gene was assigned to its most frequent pattern within each dataset. We found 28 of the 63 genes were 
found to share the same label across both datasets while 35 genes had different patterns. 
 
Data preprocessing and filtering 
For the seqFISH+ dataset, we limited the scope of our analysis to the set of genes for which at least 10 
molecules were detected in at least one cell. This helped reduce sparsity in the data, resulting in 3726 
genes remaining. Because pattern classification requires nuclear segmentation masks, we removed all 
cells lacking annotated nuclei for a remainder of 179 cells. Because the MERFISH data had a much higher 
number of molecules detected per gene, no gene filtering was performed. Again, cells without annotated 
nuclei were removed, leaving 1022 cells for pattern analysis. 

 

Tensor decomposition for identifying localization signatures 
To understand the heterogeneity in subcellular localization across the transcriptome, we employed non-
negative parallel factor analysis, which seeks to represent our dataset tensor X in a lower dimensional 
space of R signatures by decomposing X as the sum of R rank-one 3-way tensors. Each of these tensors is 
described as the outer product of 3 vectors, ��

�, ��
�  and ��

�. The collection of vectors across R signatures we 

denote as �� (cell loadings), �� (gene loadings) and �� (pattern loadings) respectively. We find the optimal 
rank-R decomposition of X by minimizing reconstruction error as a function of the number of signatures R 
and use the elbow function heuristic to choose the best-fit across the range of 2-10 factors.  
 

����  �  �
�

���

��������� 

 
 
Characterizing subcellular compartments associated with localization signatures  
To identify subcellular compartments associated with localization signatures, we performed single-sample 
Gene Set Enrichment Analysis (ssGSEA) on each signature’s gene loadings to compute normalized 
enrichment scores. ssGSEA was performed with the GSEApy Python package and the 
“GO_Cellular_Component_2021” gene set library curated by Enrichr. For the seqFISH+ dataset, gene sets 
with a minimum size of 50 and a maximum size of 500 were analyzed. For the MERFISH dataset, gene 
sets with a minimum size of 15 and maximum size of 500 were analyzed to account for fewer genes 
measured. 
 
Cell morphology associated with localization signatures 
We investigated the relationship of localization signatures with cell morphology by correlating cell loadings 
with spatial measures. These spatial measures were calculated by converting the cell's segmentation mask 
and nuclear segmentation mask to closed polygons with GeoPandas. By treating each mask as separate 
polygons, GeoPandas was used to calculate cell perimeter, cell area and cell aspect ratio (major to minor 
axis ratio) for each cell shape. It was also used to calculate nucleus area, the ratio of nucleus to cell area, 
nucleus aspect ratio, and absolute distance from the nucleus centroid to the cell centroid. Finally, pairwise 
Spearman correlations and p-values were calculated between these measures and each signature’s cell 
loadings. P-values were adjusted for multiple-hypothesis testing with the Holm-Bonferroni method to 
measure significance. 
 
 
RBP-RNA interaction analyses 
Cross-linking immunoprecipitation high-throughput sequencing (CLIP-seq) data from the ENCODE 
database was accessed using RBP-Bind. High confidence reproducible peaks between replicates (IDR 
peaks) showing a fold enrichment greater than or equal to 8 and with a p-value of less than 0.0001 across 
two replicates in HepG2 cells across all RBPs were gathered for each gene in the 3T3 seqFISH+ dataset. 
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Genes with no IDR peaks were removed from the analysis. In total, 3,165 genes had IDR peaks across 148 
different RBPs (Supplementary Table 4). 
 
We then calculated correlations between localization pattern proportions and sequence regions proportions. 
The 7 sequence regions include coding sequence, 5-prime splice site, 3-prime splice site, 5-prime 
untranslated region (UTR), 3-prime UTR, proximal intron and distal intron as defined in the RBP-Bind 
database. For localization pattern proportions, we first labeled each gene with its most common localization 
pattern in the seqFISH+ dataset. Then for each RBP, we counted the number of target genes per pattern 
and normalized counts by the number of target genes. This yielded pattern proportions, summing to 1 for 
each RBP. To get sequence region proportions, we counted the number of target genes bound by each 
RBP within each sequence region. Similarly, these values were normalized by the number of target genes 
yielding sequence region proportions summing to 1 for each RBP. With these RBP-specific binding 
proportions, we performed pairwise correlations between the 5 localization pattern proportions and the 7 
sequence region proportions. 
 
MERFISH of U2-OS cells 
MERFISH sample preparation. MERFISH measurements of 130 genes with five non-targeting blank 
controls were done as previously described, using the published encoding66 and readout probes67. Briefly, 
U2-OS cells were cultured on 40 mm #1.5 coverslips that are silanized and poly-L-lysine coated66 and 
subsequently fixed in 4% (vol/vol) paraformaldehyde in 1x PBS for 15 minutes at room temperature. Cells 
were then permeabilized in 0.5% Triton X-100 for 10 minutes at room temperature and washed in 1x PBS 
containing Murine RNase Inhibitor (NEB M0314S). Cells were preincubated with a hybridization wash buffer 
(30% (vol/vol) formamide in 2x SSC) for ten minutes at room temperature with gentle shaking. After 
preincubation, the coverslip was moved to a fresh 60 mm petri dish and residual hybridization wash buffer 
was removed with a Kimwipe lab tissue. In the new dish, 50 uL of encoding probe hybridization buffer (2X 
SSC, 30% (vol/vol) formamide, 10% (wt/vol) dextran sulfate, 1 mg ml-1 yeast tRNA, and a total 
concentration of 5 uM encoding probes and 1 μM of anchor probe: a 15-nt sequence of alternating dT and 
thymidine-locked nucleic acid (dT+) with a 5′-acrydite modification (Integrated DNA Technologies). The 
sample was placed in a humidified 37C oven for 36 to 48 hours then washed with 30% (vol/vol) formamide 
in 2X SSC for 20 minutes at 37C, 20 minutes at room temperature. Samples were post-fixed with 4% 
(vol/vol) paraformaldehyde in 2X SSC and washed with 2X SSC with murine RNase inhibitor for five 
minutes. The samples were finally stained with an Alexa 488-conjugated anchor probe-readout oligo 
(Integrated DNA Technologies) and DAPI solution at 1 μg/ml.  
 
MERFISH imaging. MERFISH measurements were conducted on a home-built system as described in 
Huang et al. 202167. 
 
MERFISH analysis. Individual RNA molecules were decoded in MERFISH images using MERlin v0.1.668. 
Images were aligned across hybridization rounds by maximizing phase cross-correlation on the fiducial 
bead channel to adjust for drift in the position of the stage from round to round. Background was reduced 
by applying a high-pass filter and decoding was then performed per-pixel. For each pixel, a vector was 
constructed of the 16 brightness values from each of the 16 rounds of imaging. These vectors were then L2 
normalized and their euclidean distances to each of the L2 normalized barcodes from the MERFISH 
codebook was calculated. Pixels were assigned to the gene whose barcode they were closest to, unless 
the closest distance was greater than 0.512, in which case the pixel was not assigned a gene. Adjacent 
pixels assigned to the same gene were combined into a single RNA molecule. Molecules were filtered to 
remove potential false positives by comparing the mean brightness, pixel size, and distance to the closest 
barcode of molecules assigned to blank barcodes to those assigned to genes to achieve an estimated 
misidentification rate of 5%. The exact position of each molecule was calculated as the median position of 
all pixels consisting of the molecule. 
 
Cellpose v1.0.269 was used to perform image segmentation to determine the boundaries of cells and nuclei. 
The nuclei boundaries were determined by running Cellpose with the ‘nuclei’ model using default 
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parameters on the DAPI stain channel of the pre-hybridization images. Cytoplasm boundaries were 
segmented with the ‘cyto’ model and default parameters using the polyT stain channel. RNA molecules 
identified by MERlin were assigned to cells and nuclei by applying these segmentation masks to the 
positions of the molecules. 
 

Data Availability 

Preprocessed datasets have been deposited at https://doi.org/10.6084/m9.figshare.15109236.v2 and are 
accessible through the Bento Python package. These include the seqFISH+14 and the generated MERFISH 
datasets. Raw MERFISH data is available upon request. 
 

Code Availability 

The source code for Bento is available on the GitHub repository: https://github.com/ckmah/bento-tools. 
Documentation for Bento can be found here: http://bento-tools.readthedocs.io/. 
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