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Abstract

The human plasma glycoproteome holds enormous potential to identify personalized biomarkers to diagnose and
understand disease. Recent advances in mass spectrometry and software development are opening novel avenues
to mine the glycoproteome for protein- and site-specific glycosylation changes. Here, we describe a novel plasma N-
glycoproteomics method for disease diagnosis and evaluated its clinical applicability by performing comparative
glycoproteomics in blood plasma of 40 controls and a cohort of 74 patients with 13 different genetic diseases that
directly impact the protein N-glycosylation pathway. The plasma glycoproteome yielded high-specificity biomarker
signatures for each of the individual genetic defects. Bioinformatic analyses revealed site-specific glycosylation
differences that could be explained by underlying glycobiology and in specific diseases by protein-intrinsic factors.
Our work illustrates the strong potential of plasma glycoproteomics to significantly increase specificity of
glycoprotein biomarkers with direct insights in site-specific glycosylation changes to better understand the
mechanisms underlying human disease.
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Introduction

Protein glycosylation is one of the most prominent post-translational modifications known, with strong effects on
protein biology®. The blood plasma glycoproteome holds great potential for biomarker discovery since abnormal
glycomes have been reported for numerous human diseases?. Evidence is emerging that protein-specific analysis of
glycosylation changes will drastically increase the specificity of such biomarkers®®. Proteome-wide analysis of
protein glycosylation through liquid chromatography — tandem mass spectrometry (LC-MS/MS) analysis of
glycopeptides, or glycoproteomics, has matured to such a state in recent years that clinical application is becoming
reality to improve diagnostics and gain new insights into disease mechanisms.

Recent efforts have been made to optimize glycoproteomics technology for blood plasma samples using different
tandem mass spectrometry approaches for N-glycopeptide and O-glycopeptide analysis”. Significant advances in
hardware and software developments have been made, while methods for correct elucidation of both glycan and
peptide moieties from large numbers of MS/MS fragmentation spectra are emerging'®. This pioneering work yielded
a characterization depth of the N- and O-glycoproteome in plasma ranging from tens of glycosylation sites and
glycoproteins up to hundreds of glycosylation sites and glycoproteins depending on the sample fractionation depth
and thus measurement time per sample!¥, As such, individual glycopeptide differentials have started to be
identified in diseases such as cancer!®??, bacterial bloodstream infection?, IgA nephropathy?* and myocardial
infarction?®. These studies focused on glycopeptides as individual biomarkers by direct comparison of their signal
intensities between sample groups which can be influenced by e.g. changes in expression level of the protein carrier,
glycoform shifts or even additional post-translational modifications of the peptide-moiety. This leaves the key
question if plasma glycopeptide differentials are clinically relevant to enable interpretation of underlying
glycobiology in disease.

To answer this question we developed a glycoproteomics method based on glycopeptide profiling in blood plasma
and assessed its clinical applicability for disease diagnosis by investigating a large cohort of patients with well-defined
congenital disorder of glycosylation (CDG). CDG plasma samples present unique possibilities as model system to
define aberrant glycosylation in the context of the underlying glycobiology due to their primary defects in N-glycan
synthesis. This allowed us to demonstrate superior sample classification using glycopeptide intensities as compared
to the use of single protein MS in current diagnostics. Moreover, we were able to deduce protein- and site-specific
glycosylation shifts to translate to biological and clinical insights.
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Results

Towards a clinically applicable strategy for plasma glycoproteomics

In view of the intended clinical application, we developed a holistic glycopeptide profiling workflow that required
practical sample amounts (10pl of blood plasma) whilst achieving reasonable sample throughput for analysis (20
samples in 24 hours). Intact tryptic glycopeptides were enriched using Sepharose CL-4B% in 96-well plates and
analysed by C18 reversed phase LC-MS/MS without any further fractionation (figure 1a). Fragmentation experiments
were performed at “low” and “high” collision energies to generate structurally informative fragments for the glycan-
and peptide-moiety, respectively?’. Optimal collision energy settings were selected using glycan- and peptide-
database search results based on the number of identifications and identification scores. For pre-processing of
acquired data we used available software to extract LC-MS feature information (OpenMS?8) or to identify glycan
compositions (ProteinScape™-GlycoQuest?®) and peptide sequences (MASCOT3). MATLAB scripts were developed
to integrate the output of individual software tools by mapping peptide and glycan identities onto their respective
LC-MS features in the consensus map. This strategy supported the use of all quantified LC-MS features in subsequent
statistical and chemometric analyses irrespective of identification status and maximized feature annotations by
integrating identification results from all analyses.

Robust analytical performance and sample stability are prerequisites for successful clinical application of plasma
glycoproteomics technology. A single control plasma sample was used to determine the intra- and inter-essay
reproducibility via five replicate injections of the same sample preparation and analysis of five independent
glycopeptide preparations of the same sample. Pooled Pearson’s correlation (PPC) values and median CV values for
feature intensities were used to assess analytical performance. The feature intensities were not subjected to any
signal intensity normalisation procedure to assess intrinsic intensity variability. The PPC value of 0.94 (figure 1e) and
median CV of 11% for replicate injections show that analytical variability is well controlled on our LC-MS platform as
can be observed from the base peak chromatogram overlays (figure 1c) and intensity scatterplot of two replicate
injections (figure 1d). In inter-assay comparisons, the PPC value was 0.88 and median CV was 23%. To evaluate the
effects of sample stability on the glycoproteomics workflow, we subjected a control pre- and post-digested plasma
sample for up to five freeze/thaw cycles and incubated a control sample digest in the autosampler at 10°C for up to
24 hours. Results for the plasma sample freeze/thaw cycles did show a mild increase in variability based on median
CV values (29%) but did not affect the correlation between samples (PPC=0.90). Incubation of a control sample in
the autosampler did not increase the variability based on the PPC (0.90) and median CV(21%) values compared to
inter-assay variability. Similar results were obtained for up to five freeze/thaw cycles of a single glycopeptide
preparation for which the median CV (11%) was identical to replicate injections of a single sample with PPC of 0.88.
Retention time reproducibility was < 0.5% CV and average mass accuracy was < 2 ppm. We conclude that the
analytical performance of the glycoproteomics procedure is sufficient for application in clinical cohort studies.
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Figure 1. Overall glycoproteomics strategy and analytical performance. (a) Data generation workflow: Plasma proteins were
subjected to in solution tryptic digestion and glycopeptides were enriched by solid phase extraction using Sepharose CL-4B
material?®. Glycopeptide mixtures were analysed by C18 reversed phase liquid chromatography with online tandem mass
spectrometry using low and high collision energies (CE) for glycan- and peptide-moiety fragmentation experiments,
respectively?’. (b) Data processing workflow. Quantitative information was extracted from data files as feature maps and
subsequently combined into a consensus feature map in OpenMS software. ProteinScape™ 3.1 was used to perform MS/MS
glycopeptide spectrum searches and classified MS/MS spectra were searched against the CarbBank glycan database using
GlycoQuest or against the Swiss-prot human protein sequence database using MASCOT. In-house developed MATLAB scripts
were used to map identified glycan- and peptide-moieties onto the consensus feature map for subsequent analyses. (c) Base
peak chromatogram overlay from five replicate injections of a glycopeptide preparation from a single control sample. (d) Log
intensity scatterplot of features for two replicate injections of a single control sample. (e) Violin plot of Pearson’s correlation
coefficients from replicate injections (Tech; n=5), independent sample preparations and measurements of a single biological
sample (Meth; n=5), 1-5 plasma feeze/thaw cycles (Fpro n=>5), 1-5 glycopeptide sample freeze/thaw cycles (Fpep n=5), and in-
time 0-24 hr technical replicates of single glycopeptide samples stored at 10°C (Time; n=5).
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Glycopeptide identification

Plasma glycopeptide identification by LC-MS/MS is known to be challenging due to low electrospray ionization
efficiency, glycoform signal dilution and poor fragmentation of the peptide moiety in collision induced dissociation
experiments?’. We implemented acetonitrile-enriched nitrogen source gas3! to significantly increase ionization
efficiency of intact glycopeptides as compared to other organic solvents that we tested (supplementary figure 1),
thereby shifting the distribution of precursor ions towards higher charge states for enhanced peptide-moiety
fragmentation. Application of low collision energy conditions produced rich glycan fragmentation spectra for
subsequent glycan database searches. The relatively low intensity of peptide moiety b- and y-fragment ions in
MS/MS spectra under high collision energy conditions complicated protein database searches. We tackled this by
MS/MS spectrum pre-processing (supplementary figure 2) by removing most of the glycan B-, Y- and internal
fragment ions prior to database searching. As a result, MASCOT identification scores significantly improved by 25%
and raised the total number of peptide-spectrum matches by 42% to yield 57% more identified unique peptide-
moieties (supplementary figure 2).

To maximize the number of annotated glycopeptide features in the consensus feature map, we then applied the
plasma glycoproteomics method to a cohort of 200 individuals that consisted of 40 healthy donors, 12 patients with
normal transferrin glycosylation, 30 patients with unknown genetic defect and abnormal transferrin glycosylation
and 118 patients spanning 35 genetically resolved congenital disorders of glycosylation (CDG). The broad variation
in glycan structures in these CDG patients was key to identify disease-specific or otherwise low-abundant glycoforms
in control samples with the aid of increased signals from accumulated glycoforms. In total, 267.394 glycan-spectrum
matches were obtained through GlycoQuest searches (191 unique glycan compositions) that could be mapped onto
7.229 features of the LC-MS consensus feature map which contained merged features from all individual samples32,
The qualitative glycome representation of detected glycan species, agglomerated in glycan traits, is shown in figure
2b. For peptide moieties, 5.988 peptide-spectrum matches were obtained for the full CDG cohort dataset which
could be mapped onto 1.430 LC-MS features in the consensus feature map. Peptide sequences that resulted from
missed tryptic cleavages or that lacked a predicted or known N-glycosylation sequon were removed from the dataset
to yield a total of 58 unique peptide sequences identified from 34 proteins for which at least one glycoform was
identified. The identified proteins belong to abundant glycoproteins in blood plasma, spanning three orders of
magnitude in abundance (figure 2a).

Previous clinical glycosylation studies are commonly based on a glycomics workflow in which glycans are released
from circulating blood glycoproteins whereas here we analyse intact glycopeptides. To investigate the correlation
between the two approaches, we compared our glycoproteomics results for healthy individuals as inferred glycomes
with available glycomics data® in figure 2c. The distributions of glycan intensities, expressed as relative glycan
fractions, are nearly identical between our glycoproteomics data and reference glycomics dataset (R?=0.99)
indicating that our workflow has no particular bias towards specific glycoforms and that we can expand current
glycomics-based knowledge using our more in-depth glycoproteomics approach.
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Figure 2. Blood plasma glycoproteome in healthy subjects. (a) Glycoprotein abundance distribution of identified glycopeptides. (b) Qualitative
distribution of identified glycan moieties over major N-glycan classes and traits. (c) Relative glycome representations of our experimental
glycoproteomics data and glycomics reference data from literature®. High abundant glycans are annotated with proposed glycan structures.

Baseline glycoproteome in healthy subjects

The baseline plasma glycoproteome was first assessed by determining the proteome-wide microheterogeneity of
glycan-peptide compositions in samples from healthy individuals. The chord diagram in figure 3a depicts the
connection of identified glycans to their peptide moiety backbones, indicating a considerable diversity in the number
and compositions of glycans between protein glycosylation sites. Both the diversity and partial overlap in glycoforms
between individual sites underlines the importance of capturing many complementary site-specific glycosylation
profiles within a single measurement for clinical applications to monitor and understand disease-specific
glycobiology. Further analysis of glycosylation sites at a higher hierarchical level of glycan traits (figure 3b) showed
three distinct clusters where the vast majority of N-glycosylation sites belong to the red cluster that is defined by
complex iso-sialylated diantennary glycans. N-glycosylation sites in the blue cluster are decorated with highly
fucosylated complex glycans that lack galactose whereas the green cluster is characterized by high mannose glycans.
Principle component analysis (PCA) of site-specific glycoform (figure 3c) and glycan trait profiles (figure 3d) revealed
consistent glycosylation profiles among healthy individuals with no separation between sample groups based on
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age- or sex-related differences within the first 10 principal components, respectively. The baseline plasma
glycoproteome in healthy individuals thus presents a stable and rich source of reference data to study glycosylation
changes in disease.
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Figure 3: Observed glycoproteome in healthy subjects. (a) Chord diagram that visualizes qualitative glycan — peptide relationships of the baseline
glycoproteome. Peptides are indexed at the bottom of the diagram and connected via chords to respective identified glycan moieties at the top.
(b) Glycosylation site similarity network with peptide moiety nodes and edges representing r>0.8 PCC based on relative glycan trait profiles. Colors
are used to indicate distinct clusters. PCA score plots from the first two principal components using (c) site-specific glycoform fractions and (d)
site-specific glycan trait profiles with age classes indicated by color coding and sex by symbols.


https://doi.org/10.1101/2022.05.31.494121
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.31.494121; this version posted May 31, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Glycopeptide biomarker discovery in clinical samples

The diversity in glycosylation sites and glycoforms captured by a single glycoproteomics experiment has the potential
to identify high-specificity signatures for a variety of human diseases. Indeed, multiple individual glycoproteins in
this dataset have already been described as biomarkers for diseases such as cancer, immune disease, cirrhosis and
rheumatoid arthritis33. Here, we evaluated this added potential of our holistic glycoproteomics workflow using rare
human genetic diseases as unique model system. We included genetic defects in a broad range of underlying
biological pathways such as glycosyltransferases, sugar metabolism and Golgi homeostasis, of which at least 3
patient samples were available for analysis (10 disease groups). Samples were characterised by intact transferrin
glycoprofiling using a clinically validated test by high-resolution mass spectrometry (TRFE IP-MS)3*. Available data
was used to assess the clinical validity of glycopeptide profiling data by comparison with transferrin glycopeptide
results at glycome level, showing strong correlation for individual samples (PPC r=0.97; supplementary data).

To identify glycopeptide differentials as possible biomarkers, exploratory chemometrics was performed by PCA using
glycopeptide feature data from the 10 CDG groups and controls (n=40). Both glycoproteomics and TRFE IP-MS data
showed clear separation between healthy individuals and each of the CDG defects by their first principal component
in PCA score plots (figure 4a and supplementary figure 3). Glycopeptide profiling data achieved complete separation
between four disease groups (COG5, DYM, NANS and PGM1) whereas the 95% confidence intervals overlapped for
TRFE IP-MS data. We also included negative control subsets in which the set of 40 control samples were split into
balanced groups of 20 vs 20 samples and unbalanced groups of 35 vs 5 samples. No separation was observed
between balanced (20 vs 20) and unbalanced (35 vs 5) control groups as expected. Supervised learning by Partial
Least Squares — Discriminant Analysis (PLS-DA)3* showed unambiguous disease classification for all patients suffering
from any of the 10 CDG defects with Area Under the receiver operator Curve (AUC) values of 1.00 (figures 4a & b
and supplementary figure 4). The PLS-DA models achieved better performance indicators for glycoproteomics data
over TRFE IP-MS data with respect to AUC for 6 out of 10 defects and Z-score for 8 out of 10 defects. Again, no
significant class separation was observed between balanced and unbalanced subsets of control samples. PCA score
plots of respectively 82 up to 1542 discriminant features selected by the PLS-DA models showed clear separation
between sample classes by their first principal components (PC1) which confirms that the selected features contain
strong differentials.

Subsequently, we challenged the potential of glycopeptide biomarkers to stratify patients at the level of affected
individual genes using a Genetic Algorithm — Random Forest (GA-RF) supervised learning model3®. Results in figure
4b show that 104 out of 108 samples could be successfully classified to their respective sample groups with high
model performance indicators (AUC=0.94 and F1 score=0.88). Three out of four misclassifications were caused by
misassignment of TMEM199 samples to similar defects in the V-ATPase complex (ATP6AP1 and ATP6V0A2), that
functionally all lead to impairment of the V-ATPase. Unsupervised t-stochastic neighbour embedding (tSNE?’) of the
GA-RF selected features was performed to visualize sample relationships (figure 4c). The tSNE plot shows separated
sample clusters of healthy individuals (controls), defects in sugar metabolism (PGM1 and NANS),
galactosyltransferase deficiency (B4GALT1), mannosidase deficiency (MAN1B1) and overlapping defects in Golgi
homeostasis (ATP6AP1, ATP6VOA2, TMEM199, DYM, CCDC115, and COG5), indicating that the plasma
glycoproteomics data can differentiate biologically distinct mechanisms underlying CDG.
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Figure 4. Sample stratification and biomarker identification results for CDG defects. (a) Supervised PLS-DA results for glycoproteomics and intact
TRFE IP-MS data of CDG defects versus controls as reported area under the curve (AUC), Z-score and number of significant features. (b) GA-RF
confusion matrix showing the number of correct classifications for samples (rows) to respective genetic defect classes (columns) in green or
incorrect classification results in red. (c) Unsupervised t-stochastic neighbour embedding plot of GA-RF selected features shows clear separation
of samples according to disturbed biological processes. Perturbated Golgi function: ATP6AP1, ATP6VOA2, CCDC115, TMEM199, DYM, COG5.
Impaired sugar metabolism: PGM1 and NANS. Independent clusters of N-glycan synthesis enzymes: MAN1B1 and B4GALT1.
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From disease signatures to understanding site-specific glycosylation effects

After the holistic plasma glycoproteomics analyses, we zoomed in to the level of site-specific protein glycosylation
to determine if and how these defined genetic defects influence glycosylation in a site-specific manner. Average
changes at glycan class level were first determined for five CDG defects in defined steps of the N-glycosylation
pathway (figure 5a). Our site-specific data showed that the most prominent glycosylation abnormalities functionally
reflect disease mechanisms for each CDG. Reduced fucosylated glycans (F) were observed due to a defect in GDP-
fucose transporter SLC35C1, reduced sialylated glycans (Si) and increased hyposialylated glycans (Sh) due to a defect
in CMP-sialic acid transporter SLC35A1, while a reduction in GIcNAc-lacking glycans (GN) was observed due to
defective UDP-GIcNAc transporter SLC35A3. Additionally, defects in glycan processing enzymes mannosidase
MAN1B1 and galactosyltransferase BAGALT1 resulted in increased hybrid structures (H) or galactose-lacking glycans
(G), respectively, directly corresponding to the defective step in the N-glycosylation pathway. Subsequent analysis
of site-specific glycoforms relative to baseline glycosylation showed that also changes in glycan stoichiometry and
expression of disease-specific glycans are directly linked to these respective CDGs (figures 5b & c). We conclude that
meaningful site-specific glycosylation changes in disease can reliably be retrieved from holistic plasma
glycoproteomics data and correlate with underlying glycobiological mechanisms, demonstrating its potential to
translate biomarker signatures to underlying biology.
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Figure 5. Clinical relevance of site-specific glycosylation changes in CDG. (a) Site-specific glycosylation profiles for five CDG types with defined
defects in N-glycan biosynthesis were compared to healthy controls, expressed as (b) average change in glycan trait distribution.. This indicates
the average relative change in glycan traits in patients compared to controls from all glycosylation sites. Glycan classes were categorized as
follows: C: complex, H: hybrid, HM: high mannose, 1A: single antenna, 2A: two antenna, >2A: 3 or more antenna, G: galactose lacking, GN:
GIcNAc lacking, F: fucosylated, Sh: hypo-sialylated, Si: iso-sialylated. (c) Illustrative case examples of relative site-specific glycan changes in
patient samples from the five CDG defects versus healthy controls, visualized for the indicated sites of glycoproteins immunoglobulin heavy
constant gamma 1 (IGHG1), haptoglobin (HPT), immunoglobulin heavy constant mu (IGHM), complement C3 (CO3), vitronectin (VTNC) and
plasma protease C1 inhibitor (IC1).
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We subsequently aimed to evaluate disease-specific glycosylation changes in an integral analysis that captures
system-wide relationships, rather than comparisons of individual glycosylation sites. We therefore visualized
glycosylation differences relative to baseline glycosylation in differential chord diagrams (figure 6a, supplementary
figure 5). This visualization provided a bird’s eye view of global and site-specific glycoproteome changes from both
the glycan and peptide perspectives in a single figure. Clear protein- and site-specific glycosylation differences were
observed that correlated strongly with the presence or absence of glycans at respective sites in controls. For
example, strongly reduced glycan fucosylation could be readily observed for SLC35C1-CDG on immunoglobulins that
possess high levels of fucosylation (about 80-90%) in healthy individuals. In contrast, loss of fucosylation on liver-
derived transferrin is barely noticeable due to its very low fucosylation level of ~¥1% in controls. As a second example,
the high-mannose glycans of the Asn85 site of complement component CO3 are affected by reduced mannosidase
activity in MAN1B1-CDG but remain unaffected in CDG types that impair post-mannose trimming steps in N-glycan
biosynthesis (SLC35A1, SLC35A3, SLC35C1 and B4GALT1). As such, baseline glycosylation is a pre-determining factor
that dictates if site-specific glycosylation can be affected in specific CDG and thus explains in part protein or site-
specific glycosylation changes in disease.

To investigate site-specific glycosylation changes in more detail we focused on the two glycosylation sites of
transferrin (N432 and N630) that have nearly identical baseline glycosylation profiles (complex iso-sialylated
diantennary N-glycans) to rule out differences in baseline glycosylation and (tissue-specific) protein synthesis as
potential factors. Out of the five genetic defects, only MAN1B1 and SLC35A3 deficiency primarily affected the
glycosylation profile at the N432 site, while leaving N630 unaffected (supplementary figure 5, figures 6b and 6c for
MAN1B1). For MAN1B1-CDG, this site-specific effect could be confirmed by including macroheterogeneity
information (figure 6d). Data from intact TRFE IP MS experiments show that any of the aberrant TRFE glycoforms
(H5N4S2-H6N3S1 and H5N4S2-H5N3S1) always contains one normal complex glycan (H5N4S2) and one disease-
specific hybrid glycan (H6N3S1 or H5N3S1). Combining both macro- and micro-heterogeneity data enabled a
comprehensive view for the exact distribution of TRFE glycoforms in MAN1B1-CDG (figure 6e) where only Asn432
glycosylation is affected. This site-specific effect might be explained by steric hindrance for N-glycosylation enzymes
to reach the N432 site, which is located within a pocket of the 3D surface structure of TRFE. This is in line with our
observations that N432 is more severely affected than N630 in most CDGs. In general, these results underline the
importance of site-specific glycosylation data to explore the glycobiological mechanisms underlying human disease
and may provide opportunities to discern genetic defects with shared disease-glycoforms by their site-specific
patterns.
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Figure 6. Site-specific glycosylation changes in MAN1B1 deficiency. (a) Differential chord diagram depicting all site-specific glycosylation changes
relative to baseline glycosylation for MAN1B1 deficiency (see supplementary figure 5 for other CDG types). Chord colors and width indicate
relative changes in patients versus controls. TRFE glycopeptides N432 (CGLVPVLAENYNK) and N630 (QQQHLFGSNVTDCSGNFCLFR) are boxed in
the chord diagram. Site-specific glycosylation profiles (microheterogeneity) of TRFE at (b) Asn432 and (c) Asn630 in healthy individuals (n=40)
and MAN1B1 deficiency patients (n=8) show that glycosylation of TRFE is exclusively affected at Asn432. (d) Macroheterogeneity profiles of TRFE
determined in healthy (n=40) and disease subjects (n=8) by intact protein LC-MS show that only one of both glycosylation sites of TRFE is always
affected by MAN1B1 deficiency. (e) Inferred TRFE glycoform distributions from combining micro- and macro-heterogeneity data visualized with
glycan positions indicated in the 3D surface structure of TRFE (pdb: 6JAS).
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Discussion

In this work we demonstrated the potential of plasma glycoproteomics for patient stratification in clinical studies by
virtue of protein- and site-specific glycosylation changes in disease. The analytical robustness of the platform and
the strong correlation between baseline glycoproteome and reference glycomes fulfil the prerequisites to diagnose
disease through comparative glycoproteomics. Application to a clinical cohort of genetically defined glycosylation
diseases (CDG) as proof-of-concept study showed that plasma glycoproteomics is able to detect site-specific
glycosylation changes that are directly related to the underlying glycobiology, thereby confirming the clinical
relevance of glycoproteome differentials. Our methodology revealed site-specific glycosylation profiles, indicating
that the glycosylation status of N-glycoproteins can be affected in a protein- and even site-specific manner in human
disease.

The observed heterogeneous protein glycosylation abnormalities in our CDG cohort illustrates the complexity to
interpret glycosylation changes in clinical samples. It emphasizes the need to examine protein glycosylation for
multiple proteins simultaneously in a site-specific manner using holistic multiplex biomarker analysis methods. We
here demonstrated a big step forward in the analysis of a large number of glycopeptides in a single experiment for
improved sample stratification as compared to the use of a single glycoprotein biomarker such as transferrin, as
used in current CDG diagnostics. Previously observed glycomics changes in various human diseases point towards
the existence of novel specific glycoprotein biomarkers in plasma. Here, based on results for CDG patients, we expect
that glycopeptide profiling could achieve unparalleled sample stratification for common diseases by providing large-
scale site-specific glycosylation data.

At the single protein molecule level, the site-specific behaviour of individual N-glycosylation sites as observed here
in CDG patients stresses the importance to take micro-heterogeneity into account next to macro-heterogeneity
(unique combinations of glycans at different sites of the same protein molecule3?), meta-heterogeneity (variation in
glycosylation across multiple sites of a given protein®) and likely even proteoforms (unique combinations of
polypeptide backbone and all present post-translational modifications3®). Our integrated analysis of transferrin
glycopeptides and intact protein mass spectrometry highlights the strength to combine micro- and
macroheterogeneity data. It will be key to combine complementary proteomics technologies that characterize
proteins from the fragmented bottom-up as well as intact top-down or native perspectives with advanced data
modelling as exciting next steps towards improved molecular understanding of glycoproteins and underlying
mechanisms in disease.

At the glycoproteome level, the current challenges to translate the potential of glycoproteomics to clinical
applications are informatics solutions to reduce, visualize and interpret the complex site-specific glycosylation data
with all its intricate relationships. The chord diagrams proposed in this work provide a bird’s eye view of
glycoproteome changes in disease but might be of limited practical use when information density increases further.
This prompts the development of novel bioinformatic solutions to unravel meaningful correlations between
multidimensional glycoproteome changes and clinical phenome data. Successful application of such glycoproteome
centric approaches would benefit from recent hardware and software developments for increased glycoproteome
coverage and large-scale elucidation of glycan-moiety structures® as additional layer of glycobiology information. In
conclusion, glycoproteomics methodologies are emerging to the level of clinical applications in diagnostics and
patient stratification, while keeping a detailed level of glycobiological understanding.
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Materials and Methods

Samples.

Plasma samples of patients were obtained from the diagnostic archive of the Radboud University Medical Center,
Translational Metabolic Laboratory, expertise center on Congenital Disorders of Glycosylation and used in
accordance with Helsinki’s Declaration under local ethical approval (nr 2019-5591). Plasma samples of 40 healthy
controls were received from the Sanquin blood bank (Nijmegen, Netherlands) according to their protocols of
informed consent. An overview of all samples with associated metadata is available from the supplementary data
file.

Sample preparation for glycopeptide analysis.

Ten microliter of plasma was denatured in 10ul urea (8 M urea, 10 mM Tris-HCI pH 8.0) and reduced with 15 ul 10
mM dithiothreitol for 30 min at room temperature (RT). Reduced cysteines were alkylated through incubation with
15 pl 50 mM 2-chloroacetamide (CAA) in the dark for 20 min at RT. Next, proteins were subjected to LysC digestion
(1 pg LysC/50ug protein) by incubating the sample at RT for 3 hours. Then, samples were diluted with 3 volumes of
50 mM ammonium bicarbonate and trypsin was added (1 pg trypsin /50 ug protein) for overnight digestion at 37°C.
Glycopeptides were enriched using 100 pl Sepharose CL-4B beads slurry (Sigma) per sample well in a 0.20 um pore
size 96 multi well filter plate (AcroPrep Advance, VWR). The beads were washed three times with 20% ethanol and
83% acetonitrile (ACN), respectively, prior to sample application. The sample was then incubated on the beads for
20 min at room temperature on a shaking plate. The filter plate was then centrifuged and beads were first washed
three times with 83% ACN and then three times with 83% ACN with 0.1% trifluoroacetic acid (TFA). Next,
glycopeptide eluates were collected by incubation of the beads with 50 ul milliQ water for 5 min at room
temperature, followed by centrifugation.

Glycopeptide analysis by LC-MS/MS.

Samples were analyzed in randomized order by means of liquid chromatography (nano-Advance, Bruker Daltonics)
with online tandem mass spectrometry (maXis Plus, Bruker Daltonics) interfaced via a vacuum-assisted axial
desolvation nanoflow electrospray ionization source (CaptiveSpray, Bruker Daltonics) for data-dependent
acquisition. Five microliters of sample were loaded onto the trapping column (Acclaim PepMap RSLC, 100 um x 2
cm, nanoViper, 5 um 100A C18 particles, Thermo Scientific) using 0.1% acetic acid at a flow rate of 7000 nl/min for
3 minutes at RT. Next, peptides were separated on a C18 reversed phase 15 cm length x 7 um internal diameter
C18RP analytical column (Acclaim PepMap RSLC, C18 ReproSil AQ, 1.9 um particles, 120 A pore size, Thermo
Scientific) at 45°C using a linear gradient of 3—45% ACN 0.1% acetic acid in 60 minutes at a flow rate of 500 nl/min.
Electrospray ionization conditions were 3 L/min 180°C N2 drying gas, 1500 V capillary voltage and 0.2 Bar N2 nebulizer
gas flow for gas phase supercharging using ACN as dopant (nanoBooster, Bruker Daltonics). All samples were
analysed by data dependent acquisition (AutoMSn) for feature map data generation and glycan-moiety
identifications by using a 3s duty cycle at 2 Hz acquisition rate for full MS spectra and a variable number of MS/MS
experiments at precursor intensity scaled acquisition rate (4 Hz MS/MS spectral rate at 10.000 counts, 9 Hz MS/MS
spectral rate at 75.000 counts). Collision induced dissociation (CID) parameters used for glycan fragmentation:
Charge state values [z]: 1; 2; 3;4; 5; 1; 2; 3; 4; 5; 1; 2; 3; 4; 5; 1; 2; 3; 4; 5, Isolation mass values [m/z]: 300; 300; 300;
300; 300; 500; 500; 500; 500; 500; 1000; 1000; 1000; 1000; 1000; 2000; 2000; 2000; 2000; 2000, Isolation width
values [Th]: 4; 4; 4; 4; 4,5, 5;5; 5; 5; 8; 8; 8; 8; 8; 20; 20; 20; 20; 20, Collision energy values [eV]: 34; 28; 23; 18; 18;
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40; 28; 22; 18; 18; 55; 44; 39; 36; 36; 77; 54; 50; 50; 50, Fallback chargestate [z]: 3. lon optics tuning: 110 usec transfer
time, 23 psec pre-pulse storage time, 1200 Volt peak-to-peak (Vpp) collision cell radio frequency (RF).

Respective pooled samples of healthy individuals and selected CDG patient groups (ATP6AP1, ATP6VOA2, BAGALT1,
CCDC115, COGS5, Cohen syndrome, DYM, MAN1B1, NANS, PGM1, SLC10A7, SLC35A2, TMEM199, VMA21) were
analysed in random order to generate peptide-moiety identification data using CID energy stepping to acquire
glycan- and peptide-moiety fragmentation data within a merged MS/MS spectrum?’. To this end, fragmentation
spectra were recorded at 100% base collision energy for glycan fragmentation and 200% base collision energy for
peptide fragmentation in a 3:7 spectra acquisition stoichiometry. Collision cell tuning was respectively stepped for
50% of each CE MS/MS step time interval from 1000 to 1200 Vpp collision cell RF at 64 to 110 psec transfer time.
Intensity dependent MS/MS spectra acquisition rate was scaled between 2Hz at 10.000 counts and 4Hz at 1.000.000
counts. Precursor ions above 700 m/z with charge state z=2+ or higher (preferred charge state range of z=2+ to z=6+)
were selected for MS/MS analysis with active exclusion enabled (excluded after one spectrum, released after 0.5
min, reconsidered precursor if current intensity/previous intensity >3, smart exclusion disabled). The mass
spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE*° partner
repository with the dataset identifier PXD034214.

Intact transferrin mass spectrometry.

Glycosylation patterns of intact transferrin that are used as a known biochemical for CDG were analysed by the
established CDG diagnostics ESI-MS method3*. Briefly, rabbit antihuman transferrin antibody (DAKO cat. no. A0061)
coupled to N-hydroxysuccinimidyl (NHS)-activated Sepharose (GE Healthcare) was used to immunocapture
transferrin from plasma samples. Neutralized samples were analysed on a microfluidic 6540 HPLC-chip-QTOF
instrument (Agilent Technologies) using a reversed phase C8 stationary phase. Data analysis was performed using
Agilent Mass Hunter Qualitative Analysis Software B.04.00 in combination with the Agilent BioConfirm Software for
charge deconvolution using the maximum entropy algorithm.

Database searches and consensus feature map generation.

Raw data were processed using DataAnalysis 4.2 for post-acquisition internal mass calibration (sodium-acetate
clusters) and subsequent export of MS/MS data to MGF file format. Mass calibrated raw data files were converted
to mzML using compassXport (Bruker Daltonics) and subsequently processed by OpenMS (Knime v3.2.1) to generate
a consensus feature map that contains intensities and associated metadata for aligned features from all analysis
files. The OpenMS workflow can be downloaded from proteomeXchange (PXD034214). The MGF-files were
processed in ProteinScape™ 3.1 (Bruker Daltonics) to classify glycopeptide fragmentation spectra using sugar mass
distance pattern matching and to calculate peptide- and glycan-moiety masses, respectively. Classified glycopeptide
fragmentation MS/MS spectra were searched against the Carbbank glycan structure database (date: 2016-08-05)
using GlycoQuest (ProteinScape™ 3.1, Bruker Daltonics) and following acceptance criteria: score>20, >10% spectral
intensity coverage and >10% theoretical fragment ion coverage (B-,Y- and internal-fragment ions). An in-house
developed Perl script was used to remove oxonium ions (B-, and i-ions) based on 25% detection frequency and
glycan-peptide fragment ions (Y-ions) with mass above the calculated non-glycosylated peptide moiety from CE
stepping fragmentation spectra and searched against the human SwissProt protein sequence database (date: 2016-
08-05) by MASCOT (v2.5.1.1, Matrix science) with the following settings: tryptic cleavage specificity, precursor mass
tolerance of 20.0 ppm, MS/MS tolerance of 0.05 Da, allowing for 1 missed cleavage and a fixed carbamidomethyl
modification (C), and variable deamidation (NQ), oxidation (M), acetyl (protein N-terminus), HexNAc (N) and pyro-
carbamidomethyl (peptide N-terminus) modifications, with percolator enabled to achieve <1.0% false discovery rate.
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Data pre-processing and integration

In-house developed MATLAB R2014b functions and Perl scripts were used to map the identification data onto
features of the consensus feature map using a rectangular bucketing approach and to perform subsequent data pre-
processing and downstream analyses. All functions and scripts used in this work are available from
proteomeXchange (PXD034214). Briefly, in pre-processing relevant features within specified retention time and
mass-to-charge ranges ( 10 - 67 min, 600 - 3700 m/z) and with detection frequency of at least 75% in samples within
any sample group were subjected to quantile intensity normalization prior to missing value imputation for
subsequent machine learning approaches. Identified non-redundant peptide- and glycan-moieties from individual
search results were first subjected to retention time alignment by LOESS regression and subsequently linked to
consensus features in rectangular buckets (1 min retention time width x 20 ppm mass width). Inter-search result
conflicts were resolved by majority vote calling for respectively peptide- and glycan-moieties prior to filtering out
cases where the sum of the glycan- and peptide-moiety masses was greater than the (combined) feature mass after
proximal HexNAc classification ambiguity correction, when possible. Next, identification results from annotated
features were transferred onto unannotated co-eluting features with identical charge deconvoluted mass. Finally,
peptide identifications from fully annotated features (both peptide- and glycan-moiety elucidated) were matched to
co-eluting features with identified glycan-moieties when the calculated peptide-moiety mass from the glycan
identification corresponded with the experimental mass of the identified peptide-moiety mass within 20 ppm and
number of sialic acids between both features’ glycan-moieties were identical.

Bioinformatics analysis

Site-specific glycosylation profiles were generated as glycoform fractions by dividing the glycan intensity by the total
sum of glycan intensities for each respective peptide sequence. Composition Based glycan Classification (CBC) was
performed using computational logic described as pseudo algorithm and available from the proteomeXchange
deposition. Peptide sequences lacking the consensus [N-X-S/T] N-glycosylation sequon and peptide-moieties with 1
or more missed cleavages were removed from the dataset. Baseline and transferrin glycopeptide-based glycome
inference was performed by summing intensities from identical glycoform features and expressed as relative glycan
fractions. Glycome inference from intact transferrin — MS macro-heterogeneity data was performed by summing the
respective glycan intensity for each protein glycoform after correction for the number of occupied N-glyosylation
site positions and expressed as relative glycan fractions. Chord diagrams for glycoproteome visualizations were
prepared using the circlize package*! in R programming language v4.1.1%%. To generate a site-specific CBC similarity
network we first constructed a Pearson’s correlation matrix from the CBC distributions of all peptide-moieties after
which correlations between glycosylation sites with r > 0.8 were used as edges for peptide-moiety nodes in the
MATLAB biograph function for network generation.

Supervised machine learning and nonlinear dimensional reduction

Partial Least Squares - Discriminant Analysis (PLS-DA) models were constructed using a repeated double cross
validation procedure in 21 model iterations with number of latent variables optimized in a Leave-One-Out inner
cross validation loop and classification models build using a 3-fold outer cross validation loop resulting in predicted
class labels. PLS-DA features with variable importance in project (VIP) >1 and with false discovery rate (FDR) <1%
based on 2000 permutations were selected as discriminant features from the models. In Genetic Algorithm —
Random Forest (GA-RF) classification a genetic algorithm was used to select significant features using the number
of misclassifications from the random forest algorithm as fitness function. GA parameters used were population size:
200, selection function: tournament, uniform mutation: 0.1, crossover heuristic: 0.2, elite count: 2, stall generation
limit: 10. Each RF classification was performed using 100 trees with a leave-one-out cross validation for prediction
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and subsequent performance calculation. Principle Component Analysis (PCA) and mahalanobis distance measures
were performed using standard MATLAB R2014b functions. Nonlinear dimensional reduction using t-distributed
Stochastic Neighbor Embedding (t-SNE) was performed using the non-parametric t-SNE MATLAB function from van
der Maaten et al ¥with 6 initial dimensions and 10 perplexity.
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