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Abstract  

The human plasma glycoproteome holds enormous potential to identify personalized biomarkers to diagnose and 
understand disease. Recent advances in mass spectrometry and software development are opening novel avenues 
to mine the glycoproteome for protein- and site-specific glycosylation changes. Here, we describe a novel plasma N-
glycoproteomics method for disease diagnosis and evaluated its clinical applicability by performing comparative 
glycoproteomics in blood plasma of 40 controls and a cohort of 74 patients with 13 different genetic diseases that 
directly impact the protein N-glycosylation pathway. The plasma glycoproteome yielded high-specificity biomarker 
signatures for each of the individual genetic defects. Bioinformatic analyses revealed site-specific glycosylation 
differences that could be explained by underlying glycobiology and in specific diseases by protein-intrinsic factors. 
Our work illustrates the strong potential of plasma glycoproteomics to significantly increase specificity of 
glycoprotein biomarkers with direct insights in site-specific glycosylation changes to better understand the 
mechanisms underlying human disease. 
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Introduction  

Protein glycosylation is one of the most prominent post-translational modifications known, with strong effects on 

protein biology1. The blood plasma glycoproteome holds great potential for biomarker discovery since abnormal 

glycomes have been reported for numerous human diseases2. Evidence is emerging that protein-specific analysis of 

glycosylation changes will drastically increase the specificity of such biomarkers3-6. Proteome-wide analysis of 

protein glycosylation through liquid chromatography – tandem mass spectrometry (LC-MS/MS) analysis of 

glycopeptides, or glycoproteomics, has matured to such a state in recent years that clinical application is becoming 

reality to improve diagnostics and gain new insights into disease mechanisms.     

Recent efforts have been made to optimize glycoproteomics technology for blood plasma samples using different 

tandem mass spectrometry approaches for N-glycopeptide and O-glycopeptide analysis7-9. Significant advances in 

hardware and software developments have been made, while methods for correct elucidation of both glycan and 

peptide moieties from large numbers of MS/MS fragmentation spectra are emerging10. This pioneering work yielded 

a characterization depth of the N- and O-glycoproteome in plasma ranging from tens of glycosylation sites and 

glycoproteins up to hundreds of glycosylation sites and glycoproteins depending on the sample fractionation depth 

and thus measurement time per sample11-17. As such, individual glycopeptide differentials have started to be 

identified in diseases such as cancer18-22, bacterial bloodstream infection23, IgA nephropathy24 and myocardial 

infarction25. These studies focused on glycopeptides as individual biomarkers by direct comparison of their signal 

intensities between sample groups which can be influenced by e.g. changes in expression level of the protein carrier, 

glycoform shifts or even additional post-translational modifications of the peptide-moiety. This leaves the key 

question if plasma glycopeptide differentials are clinically relevant to enable interpretation of underlying 

glycobiology in disease. 

To answer this question we developed a glycoproteomics method based on glycopeptide profiling in blood plasma 

and assessed its clinical applicability for disease diagnosis by investigating a large cohort of patients with well-defined 

congenital disorder of glycosylation (CDG). CDG plasma samples present unique possibilities as model system to 

define aberrant glycosylation in the context of the underlying glycobiology due to their primary defects in N-glycan 

synthesis. This allowed us to demonstrate superior sample classification using glycopeptide intensities as compared 

to the use of single protein MS in current diagnostics. Moreover, we were able to deduce protein- and site-specific 

glycosylation shifts to translate to biological and clinical insights. 
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Results  

Towards a clinically applicable strategy for plasma glycoproteomics 

In view of the intended clinical application, we developed a holistic glycopeptide profiling workflow that required 

practical sample amounts (10µl of blood plasma) whilst achieving reasonable sample throughput for analysis (20 

samples in 24 hours). Intact tryptic glycopeptides were enriched using Sepharose CL-4B26 in 96-well plates and 

analysed by C18 reversed phase LC-MS/MS without any further fractionation (figure 1a). Fragmentation experiments 

were performed at <low= and <high= collision energies to generate structurally informative fragments for the glycan- 

and peptide-moiety, respectively27. Optimal collision energy settings were selected using glycan- and peptide-

database search results based on the number of identifications and identification scores. For pre-processing of 

acquired data we used available software to extract LC-MS feature information (OpenMS28) or to identify glycan 

compositions (ProteinScapeTM-GlycoQuest29) and peptide sequences (MASCOT30). MATLAB scripts were developed 

to integrate the output of individual software tools by mapping peptide and glycan identities onto their respective 

LC-MS features in the consensus map. This strategy supported the use of all quantified LC-MS features in subsequent 

statistical and chemometric analyses irrespective of identification status and maximized feature annotations by 

integrating identification results from all analyses.     

Robust analytical performance and sample stability are prerequisites for successful clinical application of plasma 

glycoproteomics technology. A single control plasma sample was used to determine the intra- and inter-essay 

reproducibility via five replicate injections of the same sample preparation and analysis of five independent 

glycopeptide preparations of the same sample. Pooled Pearson’s correlation (PPC) values and median CV values for 
feature intensities were used to assess analytical performance. The feature intensities were not subjected to any 

signal intensity normalisation procedure to assess intrinsic intensity variability. The PPC value of 0.94 (figure 1e) and 

median CV of 11% for replicate injections show that analytical variability is well controlled on our LC-MS platform as 

can be observed from the base peak chromatogram overlays (figure 1c) and intensity scatterplot of two replicate 

injections (figure 1d). In inter-assay comparisons, the PPC value was 0.88 and median CV was 23%. To evaluate the 

effects of sample stability on the glycoproteomics workflow, we subjected a control pre- and post-digested plasma 

sample for up to five freeze/thaw cycles and incubated a control sample digest in the autosampler at 10°C for up to 

24 hours. Results for the plasma sample freeze/thaw cycles did show a mild increase in variability based on median 

CV values (29%) but did not affect the correlation between samples (PPC=0.90). Incubation of a control sample in 

the autosampler did not increase the variability based on the PPC (0.90) and median CV(21%) values compared to 

inter-assay variability. Similar results were obtained for up to five freeze/thaw cycles of a single glycopeptide 

preparation for which the median CV (11%) was identical to replicate injections of a single sample with PPC of 0.88. 

Retention time reproducibility was < 0.5% CV and average mass accuracy was < 2 ppm. We conclude that the 

analytical performance of the glycoproteomics procedure is sufficient for application in clinical cohort studies. 
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 Figure 1. Overall glycoproteomics strategy and analytical performance. (a) Data generation workflow: Plasma proteins were 

subjected to in solution tryptic digestion and glycopeptides were enriched by solid phase extraction using Sepharose CL-4B 

material26. Glycopeptide mixtures were analysed by C18 reversed phase liquid chromatography with online tandem mass 

spectrometry using low and high collision energies (CE) for glycan- and peptide-moiety fragmentation experiments, 

respectively27. (b) Data processing workflow. Quantitative information was extracted from data files as feature maps and 

subsequently combined into a consensus feature map in OpenMS software. ProteinScapeTM 3.1 was used to perform MS/MS 

glycopeptide spectrum searches and classified MS/MS spectra were searched against the CarbBank glycan database using 

GlycoQuest or against the Swiss-prot human protein sequence database using MASCOT. In-house developed MATLAB scripts 

were used to map identified glycan- and peptide-moieties onto the consensus feature map for subsequent analyses. (c) Base 

peak chromatogram overlay from five replicate injections of a glycopeptide preparation from a single control sample. (d) Log 

intensity scatterplot of features for two replicate injections of a single control sample. (e) Violin plot of Pearson’s correlation 
coefficients from replicate injections (Tech; n=5), independent sample preparations and measurements of a single biological 

sample (Meth; n=5), 1-5 plasma feeze/thaw cycles (Fpro n=5), 1-5 glycopeptide sample freeze/thaw cycles (Fpep n=5), and in-

time 0-24 hr technical replicates of single glycopeptide samples stored at 10°C (Time; n=5). 
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Glycopeptide identification  

Plasma glycopeptide identification by LC-MS/MS is known to be challenging due to low electrospray ionization 

efficiency, glycoform signal dilution and poor fragmentation of the peptide moiety in collision induced dissociation 

experiments27. We implemented acetonitrile-enriched nitrogen source gas31 to significantly increase ionization 

efficiency of intact glycopeptides as compared to other organic solvents that we tested (supplementary figure 1), 

thereby shifting the distribution of precursor ions towards higher charge states for enhanced peptide-moiety 

fragmentation. Application of low collision energy conditions produced rich glycan fragmentation spectra for 

subsequent glycan database searches. The relatively low intensity of peptide moiety b- and y-fragment ions in 

MS/MS spectra under high collision energy conditions complicated protein database searches. We tackled this by 

MS/MS spectrum pre-processing (supplementary figure 2) by removing most of the glycan B-, Y- and internal 

fragment ions prior to database searching. As a result, MASCOT identification scores significantly improved by 25% 

and raised the total number of peptide-spectrum matches by 42% to yield 57% more identified unique peptide-

moieties (supplementary figure 2).  

To maximize the number of annotated glycopeptide features in the consensus feature map, we then applied the 

plasma glycoproteomics method to a cohort of 200 individuals that consisted of 40 healthy donors, 12 patients with 

normal transferrin glycosylation, 30 patients with unknown genetic defect and abnormal transferrin glycosylation 

and 118 patients spanning 35 genetically resolved congenital disorders of glycosylation (CDG). The broad variation 

in glycan structures in these CDG patients was key to identify disease-specific or otherwise low-abundant glycoforms 

in control samples with the aid of increased signals from accumulated glycoforms. In total, 267.394 glycan-spectrum 

matches were obtained through GlycoQuest searches (191 unique glycan compositions) that could be mapped onto 

7.229 features of the LC-MS consensus feature map which contained merged features from all individual samples32. 

The qualitative glycome representation of detected glycan species, agglomerated in glycan traits, is shown in figure 

2b. For peptide moieties, 5.988 peptide-spectrum matches were obtained for the full CDG cohort dataset which 

could be mapped onto 1.430 LC-MS features in the consensus feature map. Peptide sequences that resulted from 

missed tryptic cleavages or that lacked a predicted or known N-glycosylation sequon were removed from the dataset 

to yield a total of 58 unique peptide sequences identified from 34 proteins for which at least one glycoform was 

identified. The identified proteins belong to abundant glycoproteins in blood plasma, spanning three orders of 

magnitude in abundance (figure 2a).  

Previous clinical glycosylation studies are commonly based on a glycomics workflow in which glycans are released 

from circulating blood glycoproteins whereas here we analyse intact glycopeptides. To investigate the correlation 

between the two approaches, we compared our glycoproteomics results for healthy individuals as inferred glycomes 

with available glycomics data4 in figure 2c. The distributions of glycan intensities, expressed as relative glycan 

fractions, are nearly identical between our glycoproteomics data and reference glycomics dataset (R2=0.99) 

indicating that our workflow has no particular bias towards specific glycoforms and that we can expand current 

glycomics-based knowledge using our more in-depth glycoproteomics approach. 
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Figure 2. Blood plasma glycoproteome in healthy subjects. (a) Glycoprotein abundance distribution of identified glycopeptides. (b) Qualitative 

distribution of identified glycan moieties over major N-glycan classes and traits. (c) Relative glycome representations of our experimental 

glycoproteomics data and glycomics reference data from literature4. High abundant glycans are annotated with proposed glycan structures.  

Baseline glycoproteome in healthy subjects  

The baseline plasma glycoproteome was first assessed by determining the proteome-wide microheterogeneity of 

glycan-peptide compositions in samples from healthy individuals. The chord diagram in figure 3a depicts the 

connection of identified glycans to their peptide moiety backbones, indicating a considerable diversity in the number 

and compositions of glycans between protein glycosylation sites. Both the diversity and partial overlap in glycoforms 

between individual sites underlines the importance of capturing many complementary site-specific glycosylation 

profiles within a single measurement for clinical applications to monitor and understand disease-specific 

glycobiology. Further analysis of glycosylation sites at a higher hierarchical level of glycan traits (figure 3b) showed 

three distinct clusters where the vast majority of N-glycosylation sites belong to the red cluster that is defined by 

complex iso-sialylated diantennary glycans. N-glycosylation sites in the blue cluster are decorated with highly 

fucosylated complex glycans that lack galactose whereas the green cluster is characterized by high mannose glycans. 

Principle component analysis (PCA) of site-specific glycoform (figure 3c) and glycan trait profiles (figure 3d) revealed 

consistent glycosylation profiles among healthy individuals with no separation between sample groups based on 
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age- or sex-related differences within the first 10 principal components, respectively. The baseline plasma 

glycoproteome in healthy individuals thus presents a stable and rich source of reference data to study glycosylation 

changes in disease. 

 

Figure 3: Observed glycoproteome in healthy subjects. (a) Chord diagram that visualizes qualitative glycan – peptide relationships of the baseline 

glycoproteome. Peptides are indexed at the bottom of the diagram and connected via chords to respective identified glycan moieties at the top. 

(b) Glycosylation site similarity network with peptide moiety nodes and edges representing rg .  PCC based on relative glycan trait profiles. Colors 

are used to indicate distinct clusters. PCA score plots from the first two principal components using (c) site-specific glycoform fractions and (d) 

site-specific glycan trait profiles with age classes indicated by color coding and sex by symbols.  
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Glycopeptide biomarker discovery in clinical samples 

The diversity in glycosylation sites and glycoforms captured by a single glycoproteomics experiment has the potential 

to identify high-specificity signatures for a variety of human diseases. Indeed, multiple individual glycoproteins in 

this dataset have already been described as biomarkers for diseases such as cancer, immune disease, cirrhosis and 

rheumatoid arthritis33. Here, we evaluated this added potential of our holistic glycoproteomics workflow using rare 

human genetic diseases as unique model system. We included genetic defects in a broad range of underlying 

biological pathways such as glycosyltransferases, sugar metabolism and Golgi homeostasis, of which at least 3 

patient samples were available for analysis (10 disease groups). Samples were characterised by intact transferrin 

glycoprofiling using a clinically validated test by high-resolution mass spectrometry (TRFE IP-MS)34. Available data 

was used to assess the clinical validity of glycopeptide profiling data by comparison with transferrin glycopeptide 

results at glycome level, showing strong correlation for individual samples (PPC r=0.97; supplementary data).  

To identify glycopeptide differentials as possible biomarkers, exploratory chemometrics was performed by PCA using 

glycopeptide feature data from the 10 CDG groups and controls (n=40). Both glycoproteomics and TRFE IP-MS data 

showed clear separation between healthy individuals and each of the CDG defects by their first principal component 

in PCA score plots (figure 4a and supplementary figure 3). Glycopeptide profiling data achieved complete separation 

between four disease groups (COG5, DYM, NANS and PGM1) whereas the 95% confidence intervals overlapped for 

TRFE IP-MS data. We also included negative control subsets in which the set of 40 control samples were split into 

balanced groups of 20 vs 20 samples and unbalanced groups of 35 vs 5 samples. No separation was observed 

between balanced (20 vs 20) and unbalanced (35 vs 5) control groups as expected. Supervised learning by Partial 

Least Squares – Discriminant Analysis (PLS-DA)35 showed unambiguous disease classification for all patients suffering 

from any of the 10 CDG defects with Area Under the receiver operator Curve (AUC) values of 1.00 (figures 4a & b 

and supplementary figure 4). The PLS-DA models achieved better performance indicators for glycoproteomics data 

over TRFE IP-MS data with respect to AUC for 6 out of 10 defects and Z-score for 8 out of 10 defects. Again, no 

significant class separation was observed between balanced and unbalanced subsets of control samples. PCA score 

plots of respectively 82 up to 1542 discriminant features selected by the PLS-DA models showed clear separation 

between sample classes by their first principal components (PC1) which confirms that the selected features contain 

strong differentials.  

Subsequently, we challenged the potential of glycopeptide biomarkers to stratify patients at the level of affected 

individual genes using a Genetic Algorithm – Random Forest (GA-RF) supervised learning model36. Results in figure 

4b show that 104 out of 108 samples could be successfully classified to their respective sample groups with high 

model performance indicators (AUC=0.94 and F1 score=0.88). Three out of four misclassifications were caused by 

misassignment of TMEM199 samples to similar defects in the V-ATPase complex (ATP6AP1 and ATP6V0A2), that 

functionally all lead to impairment of the V-ATPase. Unsupervised t-stochastic neighbour embedding (tSNE37) of the 

GA-RF selected features was performed to visualize sample relationships (figure 4c). The tSNE plot shows separated 

sample clusters of healthy individuals (controls), defects in sugar metabolism (PGM1 and NANS), 

galactosyltransferase deficiency (B4GALT1), mannosidase deficiency (MAN1B1) and overlapping defects in Golgi 

homeostasis (ATP6AP1, ATP6V0A2, TMEM199, DYM, CCDC115, and COG5), indicating that the plasma 

glycoproteomics data can differentiate biologically distinct mechanisms underlying CDG.  
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Figure 4. Sample stratification and biomarker identification results for CDG defects. (a) Supervised PLS-DA results for glycoproteomics and intact 

TRFE IP-MS data of CDG defects versus controls as reported area under the curve (AUC), Z-score and number of significant features. (b) GA-RF 

confusion matrix showing the number of correct classifications for samples (rows) to respective genetic defect classes (columns) in green or 

incorrect classification results in red. (c) Unsupervised t-stochastic neighbour embedding plot of GA-RF selected features shows clear separation 

of samples according to disturbed biological processes. Perturbated Golgi function: ATP6AP1, ATP6V0A2, CCDC115, TMEM199, DYM, COG5. 

Impaired sugar metabolism: PGM1 and NANS. Independent clusters of N-glycan synthesis enzymes: MAN1B1 and B4GALT1.   
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From disease signatures to understanding site-specific glycosylation effects  

After the holistic plasma glycoproteomics analyses, we zoomed in to the level of site-specific protein glycosylation 

to determine if and how these defined genetic defects influence glycosylation in a site-specific manner. Average 

changes at glycan class level were first determined for five CDG defects in defined steps of the N-glycosylation 

pathway (figure 5a). Our site-specific data showed that the most prominent glycosylation abnormalities functionally 

reflect disease mechanisms for each CDG. Reduced fucosylated glycans (F) were observed due to a defect in GDP-

fucose transporter SLC35C1, reduced sialylated glycans (Si) and increased hyposialylated glycans (Sh) due to a defect 

in CMP-sialic acid transporter SLC35A1, while a reduction in GlcNAc-lacking glycans (GN) was observed due to 

defective UDP-GlcNAc transporter SLC35A3. Additionally, defects in glycan processing enzymes mannosidase 

MAN1B1 and galactosyltransferase B4GALT1 resulted in increased hybrid structures (H) or galactose-lacking glycans 

(G), respectively, directly corresponding to the defective step in the N-glycosylation pathway. Subsequent analysis 

of site-specific glycoforms relative to baseline glycosylation showed that also changes in glycan stoichiometry and 

expression of disease-specific glycans are directly linked to these respective CDGs (figures 5b & c). We conclude that 

meaningful site-specific glycosylation changes in disease can reliably be retrieved from holistic plasma 

glycoproteomics data and correlate with underlying glycobiological mechanisms, demonstrating its potential to 

translate biomarker signatures to underlying biology.  
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Figure 5. Clinical relevance of site-specific glycosylation changes in CDG. (a) Site-specific glycosylation profiles for five CDG types with defined 

defects in N-glycan biosynthesis were compared to healthy controls, expressed as (b) average change in glycan trait distribution.. This indicates 

the average relative change in glycan traits in patients compared to controls from all glycosylation sites. Glycan classes were categorized as 

follows: C: complex, H: hybrid, HM: high mannose, 1A: single antenna, 2A: two antenna, >2A: 3 or more antenna, G: galactose lacking, GN: 

GlcNAc lacking, F: fucosylated, Sh: hypo-sialylated, Si: iso-sialylated. (c) Illustrative case examples of relative site-specific glycan changes in 

patient samples from the five CDG defects versus healthy controls, visualized for the indicated sites of glycoproteins immunoglobulin heavy 

constant gamma 1 (IGHG1), haptoglobin (HPT), immunoglobulin heavy constant mu (IGHM), complement C3 (CO3), vitronectin (VTNC) and 

plasma protease C1 inhibitor (IC1).  
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We subsequently aimed to evaluate disease-specific glycosylation changes in an integral analysis that captures 

system-wide relationships, rather than comparisons of individual glycosylation sites. We therefore visualized 

glycosylation differences relative to baseline glycosylation in differential chord diagrams (figure 6a, supplementary 

figure 5).  his visualization provided a  ird’s eye view of glo al and site-specific glycoproteome changes from both 

the glycan and peptide perspectives in a single figure. Clear protein- and site-specific glycosylation differences were 

observed that correlated strongly with the presence or absence of glycans at respective sites in controls. For 

example, strongly reduced glycan fucosylation could be readily observed for SLC35C1-CDG on immunoglobulins that 

possess high levels of fucosylation (about 80-90%) in healthy individuals. In contrast, loss of fucosylation on liver-

derived transferrin is barely noticeable due to its very low fucosylation level of ~1% in controls. As a second example, 

the high-mannose glycans of the Asn85 site of complement component CO3 are affected by reduced mannosidase 

activity in MAN1B1-CDG but remain unaffected in CDG types that impair post-mannose trimming steps in N-glycan 

biosynthesis (SLC35A1, SLC35A3, SLC35C1 and B4GALT1). As such, baseline glycosylation is a pre-determining factor 

that dictates if site-specific glycosylation can be affected in specific CDG and thus explains in part protein or site-

specific glycosylation changes in disease. 

To investigate site-specific glycosylation changes in more detail we focused on the two glycosylation sites of 

transferrin (N432 and N630) that have nearly identical baseline glycosylation profiles (complex iso-sialylated 

diantennary N-glycans) to rule out differences in baseline glycosylation and (tissue-specific) protein synthesis as 

potential factors. Out of the five genetic defects, only MAN1B1 and SLC35A3 deficiency primarily affected the 

glycosylation profile at the N432 site, while leaving N630 unaffected (supplementary figure 5, figures 6b and 6c for 

MAN1B1). For MAN1B1-CDG, this site-specific effect could be confirmed by including macroheterogeneity 

information (figure 6d). Data from intact TRFE IP MS experiments show that any of the aberrant TRFE glycoforms 

(H5N4S2-H6N3S1 and H5N4S2-H5N3S1) always contains one normal complex glycan (H5N4S2) and one disease-

specific hybrid glycan (H6N3S1 or H5N3S1). Combining both macro- and micro-heterogeneity data enabled a 

comprehensive view for the exact distribution of TRFE glycoforms in MAN1B1-CDG (figure 6e) where only Asn432 

glycosylation is affected. This site-specific effect might be explained by steric hindrance for N-glycosylation enzymes 

to reach the N432 site, which is located within a pocket of the 3D surface structure of TRFE. This is in line with our 

observations that N432 is more severely affected than N630 in most CDGs. In general, these results underline the 

importance of site-specific glycosylation data to explore the glycobiological mechanisms underlying human disease 

and may provide opportunities to discern genetic defects with shared disease-glycoforms by their site-specific 

patterns. 
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Figure 6. Site-specific glycosylation changes in MAN1B1 deficiency. (a) Differential chord diagram depicting all site-specific glycosylation changes 

relative to baseline glycosylation for MAN1B1 deficiency (see supplementary figure 5 for other CDG types). Chord colors and width indicate 

relative changes in patients versus controls. TRFE glycopeptides N432 (CGLVPVLAENYNK) and N630 (QQQHLFGSNVTDCSGNFCLFR) are boxed in 

the chord diagram. Site-specific glycosylation profiles (microheterogeneity) of TRFE at (b) Asn432 and (c) Asn630 in healthy individuals (n=40) 

and MAN1B1 deficiency patients (n=8) show that glycosylation of TRFE is exclusively affected at Asn432. (d) Macroheterogeneity profiles of TRFE 

determined in healthy (n=40) and disease subjects (n=8) by intact protein LC-MS show that only one of both glycosylation sites of TRFE is always 

affected by MAN1B1 deficiency. (e) Inferred TRFE glycoform distributions from combining micro- and macro-heterogeneity data visualized with 

glycan positions indicated in the 3D surface structure of TRFE (pdb: 6JAS). 
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Discussion  

In this work we demonstrated the potential of plasma glycoproteomics for patient stratification in clinical studies by 

virtue of protein- and site-specific glycosylation changes in disease. The analytical robustness of the platform and 

the strong correlation between baseline glycoproteome and reference glycomes fulfil the prerequisites to diagnose 

disease through comparative glycoproteomics. Application to a clinical cohort of genetically defined glycosylation 

diseases (CDG) as proof-of-concept study showed that plasma glycoproteomics is able to detect site-specific 

glycosylation changes that are directly related to the underlying glycobiology, thereby confirming the clinical 

relevance of glycoproteome differentials. Our methodology revealed site-specific glycosylation profiles, indicating 

that the glycosylation status of N-glycoproteins can be affected in a protein- and even site-specific manner in human 

disease.  

The observed heterogeneous protein glycosylation abnormalities in our CDG cohort illustrates the complexity to 

interpret glycosylation changes in clinical samples. It emphasizes the need to examine protein glycosylation for 

multiple proteins simultaneously in a site-specific manner using holistic multiplex biomarker analysis methods. We 

here demonstrated a big step forward in the analysis of a large number of glycopeptides in a single experiment for 

improved sample stratification as compared to the use of a single glycoprotein biomarker such as transferrin, as 

used in current CDG diagnostics. Previously observed glycomics changes in various human diseases point towards 

the existence of novel specific glycoprotein biomarkers in plasma. Here, based on results for CDG patients, we expect 

that glycopeptide profiling could achieve unparalleled sample stratification for common diseases by providing large-

scale site-specific glycosylation data.  

At the single protein molecule level, the site-specific behaviour of individual N-glycosylation sites as observed here 

in CDG patients stresses the importance to take micro-heterogeneity into account next to macro-heterogeneity 

(unique combinations of glycans at different sites of the same protein molecule38), meta-heterogeneity (variation in 

glycosylation across multiple sites of a given protein9) and likely even proteoforms (unique combinations of 

polypeptide backbone and all present post-translational modifications39). Our integrated analysis of transferrin 

glycopeptides and intact protein mass spectrometry highlights the strength to combine micro- and 

macroheterogeneity data. It will be key to combine complementary proteomics technologies that characterize 

proteins from the fragmented bottom-up as well as intact top-down or native perspectives with advanced data 

modelling as exciting next steps towards improved molecular understanding of glycoproteins and underlying 

mechanisms in disease. 

At the glycoproteome level, the current challenges to translate the potential of glycoproteomics to clinical 

applications are informatics solutions to reduce, visualize and interpret the complex site-specific glycosylation data 

with all its intricate relationships. The chord diagrams proposed in this work provide a  ird’s eye view of 
glycoproteome changes in disease but might be of limited practical use when information density increases further. 

This prompts the development of novel bioinformatic solutions to unravel meaningful correlations between 

multidimensional glycoproteome changes and clinical phenome data. Successful application of such glycoproteome 

centric approaches would benefit from recent hardware and software developments for increased glycoproteome 

coverage and large-scale elucidation of glycan-moiety structures10 as additional layer of glycobiology information. In 

conclusion, glycoproteomics methodologies are emerging to the level of clinical applications in diagnostics and 

patient stratification, while keeping a detailed level of glycobiological understanding. 
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Materials and Methods 

Samples.  

Plasma samples of patients were obtained from the diagnostic archive of the Radboud University Medical Center, 

Translational Metabolic Laboratory, expertise center on Congenital Disorders of Glycosylation and used in 

accordance with  elsinki’s Declaration under local ethical approval (nr 2019-5591). Plasma samples of 40 healthy 

controls were received from the Sanquin blood bank (Nijmegen, Netherlands) according to their protocols of 

informed consent. An overview of all samples with associated metadata is available from the supplementary data 

file.  

 

Sample preparation for glycopeptide analysis. 

Ten microliter of plasma was denatured in 10µl urea (8 M urea, 10 mM Tris-HCl pH 8.0) and reduced with 15 µl 10 

mM dithiothreitol for 30 min at room temperature (RT). Reduced cysteines were alkylated through incubation with 

15 µl 50 mM 2-chloroacetamide (CAA) in the dark for 20 min at RT. Next, proteins were subjected to LysC digestion 

(1 µg LysC/50µg protein) by incubating the sample at RT for 3 hours. Then, samples were diluted with 3 volumes of 

50 mM ammonium bicarbonate and trypsin was added (1 µg trypsin /50 µg protein) for overnight digestion at 37°C. 

Glycopeptides were enriched using 100 µl Sepharose CL-4B beads slurry (Sigma) per sample well in a 0.20 µm pore 

size 96 multi well filter plate (AcroPrep Advance, VWR). The beads were washed three times with 20% ethanol and 

83% acetonitrile (ACN), respectively, prior to sample application. The sample was then incubated on the beads for 

20 min at room temperature on a shaking plate. The filter plate was then centrifuged and beads were first washed 

three times with 83% ACN and then three times with 83% ACN with 0.1% trifluoroacetic acid (TFA). Next, 

glycopeptide eluates were collected by incubation of the beads with 50 µl milliQ water for 5 min at room 

temperature, followed by centrifugation.  

Glycopeptide analysis by LC-MS/MS. 

Samples were analyzed in randomized order by means of liquid chromatography (nano-Advance, Bruker Daltonics) 

with online tandem mass spectrometry (maXis Plus, Bruker Daltonics) interfaced via a vacuum-assisted axial 

desolvation nanoflow electrospray ionization source (CaptiveSpray, Bruker Daltonics) for data-dependent 

acquisition. Five microliters of sample were loaded onto the trapping column (Acclaim PepMap RSLC, 100 μm × 2 

cm, nanoViper, 5 μm    Å C   particles,  hermo  cientific) using 0.1% acetic acid at a flow rate of 7000 nl/min for 

3 minutes at RT. Next, peptides were separated on a C18 reversed phase 15 cm length × 7 μm internal diameter 

C18RP analytical column (Acclaim PepMap RSLC, C18 ReproSil AQ, 1.9 µm particles, 120 Å pore size, Thermo 

Scientific) at 45°C using a linear gradient of 3–45% ACN 0.1% acetic acid in 60 minutes at a flow rate of 500 nl/min. 

Electrospray ionization conditions were 3 L/min 180°C N2 drying gas, 1500 V capillary voltage and 0.2 Bar N2 nebulizer 

gas flow for gas phase supercharging using ACN as dopant (nanoBooster, Bruker Daltonics). All samples were 

analysed by data dependent acquisition (AutoMSn) for feature map data generation and glycan-moiety 

identifications by using a 3s duty cycle at 2 Hz acquisition rate for full MS spectra and a variable number of MS/MS 

experiments at precursor intensity scaled acquisition rate (4 Hz MS/MS spectral rate at 10.000 counts, 9 Hz MS/MS 

spectral rate at 75.000 counts). Collision induced dissociation (CID) parameters used for glycan fragmentation: 

Charge state values [z]: 1; 2; 3; 4; 5; 1; 2; 3; 4; 5; 1; 2; 3; 4; 5; 1; 2; 3; 4; 5, Isolation mass values [m/z]: 300; 300; 300; 

300; 300; 500; 500; 500; 500; 500; 1000; 1000; 1000; 1000; 1000; 2000; 2000; 2000; 2000; 2000, Isolation width 

values [Th]: 4; 4; 4; 4; 4; 5; 5; 5; 5; 5; 8; 8; 8; 8; 8; 20; 20; 20; 20; 20, Collision energy values [eV]: 34; 28; 23; 18; 18; 
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40; 28; 22; 18; 18; 55; 44; 39; 36; 36; 77; 54; 50; 50; 50, Fallback chargestate [z]: 3. Ion optics tuning: 110 µsec transfer 

time, 23 µsec pre-pulse storage time, 1200 Volt peak-to-peak (Vpp) collision cell radio frequency (RF). 

Respective pooled samples of healthy individuals and selected CDG patient groups (ATP6AP1, ATP6V0A2, B4GALT1, 

CCDC115, COG5, Cohen syndrome, DYM, MAN1B1, NANS, PGM1, SLC10A7, SLC35A2, TMEM199, VMA21) were 

analysed in random order to generate peptide-moiety identification data using CID energy stepping to acquire 

glycan- and peptide-moiety fragmentation data within a merged MS/MS spectrum27. To this end, fragmentation 

spectra were recorded at 100% base collision energy for glycan fragmentation and 200% base collision energy for 

peptide fragmentation in a 3:7 spectra acquisition stoichiometry. Collision cell tuning was respectively stepped for 

50% of each CE MS/MS step time interval from 1000 to 1200 Vpp collision cell RF at 64 to 110 µsec transfer time. 

Intensity dependent MS/MS spectra acquisition rate was scaled between 2Hz at 10.000 counts and 4Hz at 1.000.000 

counts. Precursor ions above 700 m/z with charge state z=2+ or higher (preferred charge state range of z=2+ to z=6+) 

were selected for MS/MS analysis with active exclusion enabled (excluded after one spectrum, released after 0.5 

min, reconsidered precursor if current intensity previous intensity g3, smart exclusion disabled). The mass 

spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE40 partner 

repository with the dataset identifier PXD034214.  

Intact transferrin mass spectrometry. 

Glycosylation patterns of intact transferrin that are used as a known biochemical for CDG were analysed by the 

established CDG diagnostics ESI-MS method34. Briefly, rabbit antihuman transferrin antibody (DAKO cat. no. A0061) 

coupled to N-hydroxysuccinimidyl (NHS)-activated Sepharose (GE Healthcare) was used to immunocapture 

transferrin from plasma samples. Neutralized samples were analysed on a microfluidic 6540 HPLC-chip-QTOF 

instrument (Agilent Technologies) using a reversed phase C8 stationary phase. Data analysis was performed using 

Agilent Mass Hunter Qualitative Analysis Software B.04.00 in combination with the Agilent BioConfirm Software for 

charge deconvolution using the maximum entropy algorithm.  

Database searches and consensus feature map generation. 

Raw data were processed using DataAnalysis 4.2 for post-acquisition internal mass calibration (sodium-acetate 

clusters) and subsequent export of MS/MS data to MGF file format. Mass calibrated raw data files were converted 

to mzML using compassXport (Bruker Daltonics) and subsequently processed by OpenMS (Knime v3.2.1) to generate 

a consensus feature map that contains intensities and associated metadata for aligned features from all analysis 

files. The OpenMS workflow can be downloaded from proteomeXchange (PXD034214). The MGF-files were 

processed in ProteinScapeTM 3.1 (Bruker Daltonics) to classify glycopeptide fragmentation spectra using sugar mass 

distance pattern matching and to calculate peptide- and glycan-moiety masses, respectively. Classified glycopeptide 

fragmentation MS/MS spectra were searched against the Carbbank glycan structure database (date: 2016-08-05) 

using GlycoQuest (ProteinScapeTM 3.1, Bruker Daltonics) and following acceptance criteria: score>20, >10% spectral 

intensity coverage and >10% theoretical fragment ion coverage (B-,Y- and internal-fragment ions). An in-house 

developed Perl script was used to remove oxonium ions (B-, and i-ions) based on 25% detection frequency and 

glycan-peptide fragment ions (Y-ions) with mass above the calculated non-glycosylated peptide moiety from CE 

stepping fragmentation spectra and searched against the human SwissProt protein sequence database (date: 2016-

08-05) by MASCOT (v2.5.1.1, Matrix science) with the following settings: tryptic cleavage specificity, precursor mass 

tolerance of 20.0 ppm, MS/MS tolerance of 0.05 Da, allowing for 1 missed cleavage and a fixed carbamidomethyl 

modification (C), and variable deamidation (NQ), oxidation (M), acetyl (protein N-terminus), HexNAc (N) and pyro-

carbamidomethyl (peptide N-terminus) modifications, with percolator enabled to achieve f1.0% false discovery rate.  
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Data pre-processing and integration 

In-house developed MATLAB R2014b functions and Perl scripts were used to map the identification data onto 

features of the consensus feature map using a rectangular bucketing approach and to perform subsequent data pre-

processing and downstream analyses. All functions and scripts used in this work are available from 

proteomeXchange (PXD034214). Briefly, in pre-processing relevant features within specified retention time and 

mass-to-charge ranges ( 10 - 67 min, 600 - 3700 m/z) and with detection frequency of at least 75% in samples within 

any sample group were subjected to quantile intensity normalization prior to missing value imputation for 

subsequent machine learning approaches. Identified non-redundant peptide- and glycan-moieties from individual 

search results were first subjected to retention time alignment by LOESS regression and subsequently linked to 

consensus features in rectangular buckets (1 min retention time width x 20 ppm mass width). Inter-search result 

conflicts were resolved by majority vote calling for respectively peptide- and glycan-moieties prior to filtering out 

cases where the sum of the glycan- and peptide-moiety masses was greater than the (combined) feature mass after 

proximal HexNAc classification ambiguity correction, when possible. Next, identification results from annotated 

features were transferred onto unannotated co-eluting features with identical charge deconvoluted mass. Finally, 

peptide identifications from fully annotated features (both peptide- and glycan-moiety elucidated) were matched to 

co-eluting features with identified glycan-moieties when the calculated peptide-moiety mass from the glycan 

identification corresponded with the experimental mass of the identified peptide-moiety mass within 20 ppm and 

num er of sialic acids  etween  oth features’ glycan-moieties were identical.  

Bioinformatics analysis 

Site-specific glycosylation profiles were generated as glycoform fractions by dividing the glycan intensity by the total 

sum of glycan intensities for each respective peptide sequence. Composition Based glycan Classification (CBC) was 

performed using computational logic described as pseudo algorithm and available from the proteomeXchange 

deposition. Peptide sequences lacking the consensus [N-X-S/T] N-glycosylation sequon and peptide-moieties with 1 

or more missed cleavages were removed from the dataset. Baseline and transferrin glycopeptide-based glycome 

inference was performed by summing intensities from identical glycoform features and expressed as relative glycan 

fractions. Glycome inference from intact transferrin – MS macro-heterogeneity data was performed by summing the 

respective glycan intensity for each protein glycoform after correction for the number of occupied N-glyosylation 

site positions and expressed as relative glycan fractions. Chord diagrams for glycoproteome visualizations were 

prepared using the circlize package41 in R programming language v4.1.142. To generate a site-specific CBC similarity 

network we first constructed a Pearson’s correlation matrix from the C C distributions of all peptide-moieties after 

which correlations between glycosylation sites with r g 0.8 were used as edges for peptide-moiety nodes in the 

MATLAB biograph function for network generation.   

Supervised machine learning and nonlinear dimensional reduction 

Partial Least Squares - Discriminant Analysis (PLS-DA) models were constructed using a repeated double cross 

validation procedure in 21 model iterations with number of latent variables optimized in a Leave-One-Out inner 

cross validation loop and classification models build using a 3-fold outer cross validation loop resulting in predicted 

class labels. PLS-DA features with variable importance in project (VIP) >1 and with false discovery rate (FDR) <1% 

based on 2000 permutations were selected as discriminant features from the models. In Genetic Algorithm – 

Random Forest (GA-RF)36 classification a genetic algorithm was used to select significant features using the number 

of misclassifications from the random forest algorithm as fitness function. GA parameters used were population size: 

200, selection function: tournament, uniform mutation: 0.1, crossover heuristic: 0.2, elite count: 2, stall generation 

limit: 10. Each RF classification was performed using 100 trees with a leave-one-out cross validation for prediction 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 31, 2022. ; https://doi.org/10.1101/2022.05.31.494121doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.31.494121
http://creativecommons.org/licenses/by-nc-nd/4.0/


and subsequent performance calculation. Principle Component Analysis (PCA) and mahalanobis distance measures 

were performed using standard MATLAB R2014b functions. Nonlinear dimensional reduction using t-distributed 

Stochastic Neighbor Embedding (t-SNE) was performed using the non-parametric t-SNE MATLAB function from van 

der Maaten et al 37with 6 initial dimensions and 10 perplexity.  
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