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Abstract

Understanding the demographic history of populations is a key goal in population genetics,
and with improving methods and data, ever more complex models are being proposed and
tested. Demographic models of current interest typically consist of a set of discrete populations,
their sizes and growth rates, and continuous and pulse migrations between those populations
over a number of epochs, which can require dozens of parameters to fully describe. There is
currently no standard format to define such models, significantly hampering progress in the
field. In particular, the important task of translating the model descriptions in published work
into input suitable for population genetic simulators is labor intensive and error prone. We
propose the Demes data model and file format, built on widely used technologies, to alleviate
these issues. Demes provides a well-defined and unambiguous model of populations and their
properties that is straightforward to implement in software, and a text file format that is designed
for simplicity and clarity. We provide thoroughly tested implementations of Demes parsers in
multiple languages including Python and C, and showcase initial support in several simulators
and inference methods. An introduction to the file format and a detailed specification are
available at:
https://popsim-consortium.github.io/demes-spec-docs/.
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Introduction

The ever-increasing amount of genetic sequencing data from genetically and geographically diverse
species and populations has allowed us to infer complex demography and study life history at fine
scales. An integral component to such population genetics studies is simulation. Software to either
simulate whole genome sequences (THORNTON, 2014, 2019, STAAB et al., 2015, BAUMDICKER et al.,
2022, KELLEHER et al., 2016, HALLER and MESSER, 2019) or informative summary statistics of
diversity (GUTENKUNST et al., 2009, KAMM et al., 2017, JOUGANOUS et al., 2017) have enabled
the increasing complexity of genomic studies, with several software packages capable of handling
large sample sizes, many interacting populations, and deviations from panmictic random-mating
assumptions. This ability to infer and simulate such complex demographic scenarios, however, has
highlighted a major shortcoming in community standards: the fragmented landscape of different
ways to describe demographic models makes it difficult to compare inferences made by different
methods and to reliably simulate from previously inferred models. Inference results are typically re-
ported in publications via a combination of visual depiction, a list of key parameters in tabular form
and a discussion within the text. Unfortunately these descriptions are often ambiguous, and imple-
menting the precise model inferred for later simulation is at best tedious and error prone (ADRION
et al., 2020, RAGSDALE et al., 2020), and occasionally impossible because of missing information.

Simulation is a core tool in population genetics, and many methods have been developed over
the past three decades (CARVAJAL-RODRIGUEZ, 2008, L1U et al., 2008, ARENAS, 2012, YUAN et al.,
2012, HOBAN et al., 2012). Simulations are based on highly idealized population models, and one
of the key uses of inferred demographic histories is to make simulations more realistic. Simulation
methods take three broad approaches to specifying the demographic model to simulate, using either
a command line interface (e.g., HUDSON, 2002, HERNANDEZ, 2008, KERN and SCHRIDER, 2016), a
custom input file format (e.g., GUILLAUME and ROUGEMONT, 2006, EXCOFFIER and FoLL, 2011,
SHLYAKHTER et al., 2014), or an Application Programming Interface (API) to allow models to be
defined programmatically (e.g., THORNTON, 2014, HERNANDEZ and URICCHIO, 2015, KELLEHER
et al., 2016, BECHELER et al., 2019, HALLER and MESSER, 2019, THORNTON, 2019, BAUMDICKER
et al., 2022). Command line interfaces are a concise way of expressing demographic models, and the
syntax defined by ms (HUDSON, 2002) is used by several simulators (e.g., EWING and HERMISSON,
2010, CHEN et al., 2009, STAAB et al., 2015). However, this conciseness means that models of even
intermediate complexity are difficult for humans to understand, making errors likely. APIs are
more verbose, but require a substantial time investment to learn, and as they are tied to a specific
tool this knowledge is not portable to other simulators. Like APIs, input parameter file formats for
simulators allow the model specification to be less terse and allow for documentation in the form of
comments. Several graphical user interfaces and visualization methods have been developed, which
greatly facilitate interpretation (MAILUND et al., 2005, ANTAO et al., 2007, PARREIRA et al., 2009,
EwING and HERMISSON, 2010, PAROBEK et al., 2017, ZHOU et al., 2018). However, these methods
currently have little traction as they are all either directly coupled to an internal simulation method
or to the syntax of a specific simulator. There is currently no way in which demographic models
inferred by different packages can be simulated or visualized by downstream software.

Here we present “Demes”, a data model and file format specification for complex demographic
models developed by the PopSim Consortium (ADRION et al., 2020). The Demes data model
precisely defines the sizes and relationships of populations, and it provides a way to explicitly encode
the information relevant to demography while avoiding repetition. This data model is implemented
in the widely used YAML format (BEN-KIKI et al., 2009), which is a data serialization language that
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provides a good balance between human and machine readability. The specification precisely defines
the required behavior of implementations, ensuring that there is no ambiguity of interpretation, and
includes both a reference implementation and an extensive suite of test examples and their expected
output. The initial software ecosystem includes high-quality Python and C parser implementations,
as well as utilities for verification and visualization of Demes models, and has been implemented in
several popular inference and simulation methods (Table 1). We hope that this data model and file
format will be widely adopted by the community, such that users can expect to simulate directly
from inferred models with little to no programming effort.

Demes

The design of Demes is a balance between two partially competing requirements: that (a) models
should be easy for humans to understand and manipulate; and (b) software processing Demes mod-
els should be provided with an unambiguous representation that is straightforward to process. For
efficiency of understanding and avoidance of model specification error, we require a data representa-
tion without redundancy (i.e., repetition of values). However, for the simplicity of software working
with the Demes model (and the avoidance of programming error, or divergence in interpretations
of the specification) it is preferable to have an explicit representation, in which all relevant values
are readily available. Thus, Demes is composed of three entities: the Human Data Model (HDM)
designed for human readability; the Machine Data Model (MDM) designed for programmatic input
and processing; and the parser, which is responsible for transforming the former into the latter.

Here we provide a brief overview of the population genetics models that Demes supports
and the components of the Demes infrastructure. Complete technical details of the MDM and
HDM, and the responsibilities of the parser are provided in the online Demes specification (https:
//popsim-consortium.github.io/demes-spec-docs/)). This specification rigorously defines the
data model, fully describing the entities and their relationships, and the required behavior of im-
plementations. Since the online specification is definitive, we will not recapitulate the details here,
but instead focus on the high level properties of the model and the rationale behind key design
decisions.

Population genetics model

For inference and simulation software to meaningfully interoperate there must be a shared un-
derstanding of what a demographic model is. Population genetics is a large field, and rather
than attempting to capture all possible within- and between-population processes, we have in-
stead adopted a pragmatic approach of identifying a common set of assumptions shared by many
methods. We outline the processes and assumptions briefly here and in Appendix Al.

Demographic models consist of one or more populations (or “demes”) defined by their size
histories and the time intervals of their existence. Individuals can move between populations based
on their ancestor-descendant relationships or by continuous or discrete migration events. Within a
population, we assume Wright-Fisher dynamics (see Appendix A1.3 for more precise details). As
described in the Scope of the Specification section below, the demographic model does not, as a
deliberate simplification and separation of duties, include any information about genome biology
or selection.

These basic assumptions of discrete Wright-Fisher populations connected by instantaneous or
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Software infrastructure

demes-python A Python library for loading, saving, and working with Demes models.
Includes support for converting to and from ms (HUDSON, 2002) (https:
//github.com/popsim-consortium/demes-python).

demes-c A C library for parsing Demes YAML descriptions (https://github.
com/grahamgower/demes-c).

demes-rust A Demes parser in Rust (https://github.com/molpopgen/demes-rs).
demes-julia A parser in Julia (https://github.com/apragsdale/Demes.jl).

demesdraw A Python library for visualizing Demes models (https://github.com/
grahamgower/demesdraw).

Methods using Demes as input/output format

dadi Optimizes parameters in models of demographic history and distribu-
tions of fitness effects using SF'S (GUTENKUNST et al., 2009). Can sim-
ulate SF'S from Demes models.

demes-slim Loads Demes models into the SLiM forward simulator (HALLER and
MESSER, 2019).

fwdpy11 Simulates the Wright-Fisher model forward in time (THORNTON, 2014,
2019). Demes is the preferred format for specifying a demographic
model.

GADMA Infers models of demographic history (NOSKOVA et al., 2020). Outputs

Demes models and visualizations.

gIMble Fits IM-type demographic models and infers genomic barriers to gene-
flow (LAETSCH et al., 2022). Outputs inferred models in Demes format.

moments Optimizes parameters in models of demographic history using SF'S and
linkage disequilibrium statistics (JOUGANOUS et al., 2017, RAGSDALE
and GRAVEL, 2019). Models to be optimized can be specified in Demes.

MSMC A script provided in the MSMC-tools repository (https://github.
com/stschiff/msmc-tools) converts MSMC (SCHIFFELS and DURBIN,
2014, ScHIFFELS and WANG, 2020) output to the demes format.

msprime Simulates population genetic models using tree sequences (KELLEHER
et al., 2016, KELLEHER and LOHSE, 2020, BAUMDICKER et al., 2022).
Demographic history models can be specified using Demes.

Table 1: Software support for Demes. We have included software infrastructure developed for
working with Demes models (such as parsing, validation, and visualization) as well as downstream
software that implement the specification, at the time of writing.


https://github.com/popsim-consortium/demes-python
https://github.com/popsim-consortium/demes-python
https://github.com/grahamgower/demes-c
https://github.com/grahamgower/demes-c
https://github.com/molpopgen/demes-rs
https://github.com/apragsdale/Demes.jl
https://github.com/grahamgower/demesdraw
https://github.com/grahamgower/demesdraw
https://github.com/stschiff/msmc-tools
https://github.com/stschiff/msmc-tools
https://doi.org/10.1101/2022.05.31.494112
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.31.494112; this version posted August 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

continuous migrations are shared by many inference methods (e.g., GUTENKUNST et al., 2009, L1
and DURBIN, 2011, GRAVEL, 2012, SCHIFFELS and DURBIN, 2014, KAMM et al., 2017, JOUGANOUS
et al., 2017, RAGSDALE and GRAVEL, 2019, EXCOFFIER et al., 2021), and forwards- and backwards-
time simulators (e.g., HUDSON, 2002, GUTENKUNST et al., 2009, EXCOFFIER and Forr, 2011,
KELLEHER et al., 2016, JOUGANOUS et al., 2017, HALLER and MESSER, 2019, THORNTON, 2019).
Demes therefore serves as “middleware” between inference methods and simulation software, cap-
turing these common assumptions.

It is important to note that the goal of describing the basic population processes precisely is
not to be proscriptive about what methods may or may not use the specification, but so that we
can be clear on what situations we can expect methods to agree exactly. Arbitrary population
processes —for example, within-deme continuous spatial structure (WRIGHT, 1943, BARTON et al.,
2002, 2010, RINGBAUER et al., 2017, BATTEY et al., 2020)—may be layered on top of this basic
description, but as dynamics diverge from the core assumptions, then of course we can expect
results to differ accordingly.

Human Data Model

The Demes Human Data Model (HDM) is focused on efficient human understanding and avoiding
errors. We have adopted the widely used YAML format (BEN-KIKI et al., 2009) as the primary
interface for writing and interchanging demographic models (see Appendix A2 for rationale). De-
mographic models provide information about global features of the model (such as time units and
generation times), populations (as “demes”) and their existence intervals (as “epochs”), and gene
flow between populations (as continuous “migrations” or instantaneous “pulse” events). Fig 1
shows an example isolation-with-migration model in HDM format.

Structurally, the HDM encourages human understanding by avoiding redundancy in the descrip-
tion where possible and by providing a mechanism for specifying default values that are inherited
hierarchically. For values that repeat across fields, the “defaults” mechanism may be used to im-
plicitly assign default values to fields of the given type. A default is superseded by an explicitly
provided value if given. Size values are inherited naturally following the progression of time. For
example, if an epoch start_size is not provided (either directly, or via a defaults section), it is
assumed to be equal to the end_size of the previous epoch. This also means that the first epoch
of each population must specify the initial size (or it must be provided in a defaults section).

Avoiding redundancy in this way reduces the cognitive load on readers, by highlighting necessary
parameters which may be otherwise be obscured. It is not necessary—or indeed recommended—
that all models are expressed in a maximally concise form, and we wholeheartedly endorse the
explicit statement of parameters where it increases model legibility.

Parsers

While the HDM is designed for human readability and conciseness, the underlying data model suit-
able for software implementation (the Machine Data Model, or MDM) is redundant and exhaustive.
Translation from the HDM to the MDM requires resolving hierarchically-defined default values and
verifying relationships between populations and the validity of specified parameter values. Because
this translation and validation requires significant programming effort, we define a standard soft-
ware entity as part of the specification to perform this task (the parser), which is intended to
be shared by programs that support Demes as input. The Demes specification precisely defines
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the required behavior of parsers, and we provide a reference implementation written in Python to
resolve any potential ambiguities, as well as an extensive test suite of examples and the expected
outputs. In addition, we have high-quality parser implementations in the Python, C, Rust, and
Julia languages (Table 1) providing a solid foundation for the software ecosystem. By maintaining
high-quality Demes parsers available as libraries, we ensure consistency across simulation and infer-
ence software. Having common parsers also benefits users by providing consistent and informative
error messages for missing values or issues in formatting.

Scope of the specification

A primary design goal of Demes is to provide a means of unambiguously communicating the results
of demographic model inferences to population genetic simulators. Since demography is defined in
terms of groups of individuals and these groupings are influenced by genetics, it is difficult to find
a simple definition that separates the two. Thus, we have attempted to be pragmatic, limiting the
features that we include in Demes to those that are in practise regarded as part of a demographic
model.

The model is therefore limited to features that we can expect many different demographic
inference and simulation methods to share. The specification only describes demographic features
at the population level. Features of genome biology are out of scope, including mutation and
recombination rates, genome annotations, ploidy, and so on. Selection and dominance models
are absent, as discussed in Appendix Al. It is important to note, however, that Demes may
be used in applications that include additional population genetic processes outside of what is
explicitly modeled in the specification, such as interpreting population sizes as carrying capacities,
implementations of hard selection, or layering more complicated mating or spatial structure. The
Demes specification is intended to provide a basic model that can be elaborated on where necessary.

Demes is not a standard population genetic simulation specification, although it could be part
of one. Since the standard is based on JSON, and JSON documents can be arbitrarily nested, we
can imagine a simple specification of genome features such as mutation and recombination rates in
which the demography is defined by an embedded Demes specification. Features of the simulation
specification (such as defining the time and location of samples) can then refer to the Demes model.
This design, in which we embed the demographic model within a larger specification rather than
adding arbitrary and unrelated complexities to the demography is an essential simplification and
separation of duties.

The Demes specification is static by design—we wish to unambiguously describe a demographic
model with a concrete set of parameters. This simplicity means that we cannot directly specify
parameter distributions or estimated confidence intervals for those parameters. While it is not
difficult to imagine extending the specification in ways that would allow this, it is not clear that
the benefits are worth the greatly increased parser complexity (see Appendix A3).

Example: an isolation-with-migration model

In Figure 1 we provide an example isolation-with-migration model. Models typically start with a
concise description, followed by the mandatory time_units field. This model uses the defaults
section to provide a default start_size of 1000 individuals for each epoch of each deme. There are
three demes in the model, an ancestral deme named “A” which exists arbitrarily far back into the
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A B
B
# Comments start with a hash.
description: 160
Two-deme isolation-with-migration model.
time_units: generations 140 4
defaults: A
epoch:
start_size: 1000 /\120-
demes: g
- name: A 2100 A Q >
description: The ancestral deme Q
epochs: k) a4
- end_time: 100 =3
- name: X g
description: First descendant deme. £ 601
ancestors: [A] -
- name: Y 40
description: Second descendant deme.
ancestors: [A]
epochs: 201
- end_time: 50
. - end_size: 3000 0- X Y
migrations:

- demes: [X, Y]
rate: le-4

Figure 1: Example isolation-with-migration Demes model. (A) The Human Data Model repre-
sentation expressed using YAML. (B) A visual representation of the model using demesdraw. The
same model in the Machine Data Model form is provided in Figure Al.

past then ceases to exist at 100 generations ago, and demes “X” and “Y” that derive their ancestry
from A when it goes extinct. Demes A and X have only one epoch, in which the population sizes are
constant, whereas deme Y has two epochs. Deme Y’s second epoch has a different end_size than its
start_size, which indicates the size grows exponentially from 1000 individuals at 50 generations
ago to 3000 individuals at time O (the present). The migration section lists one migration stanza,
between demes X and Y. This migration stanza doesn’t indicate a source or destination deme, so
the migration is symmetric. No migration times are specified, so migrations occur continuously
at the given rate during the time interval over which both demes exist (from 100 generations ago
until the present). We do not attempt a detailed explanation of all Demes features here, and
readers are instead directed to the tutorial and detailed specification in the online documentation
(https://popsim-consortium.github.io/demes-spec-docs/).

Application: simulation using Demes

Here, we highlight the interaction between Demes and other software, including simulation and
model illustration tools. Demes allows us to specify a demographic model which can be used as the
input for a growing number of simulation packages (Table 1). We implemented the human two-
population demographic model from TENNESSEN et al. (2012) inferred from European and African-
American sequencing data. This model (shown in Demes format in Figure A2) is parameterized
by an ancestral population with an ancient growth, divergence into “AFR” and “EUR” that each
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[} import demes, msprime, moments
£ # load the demographic model and specify sample sizes
+ 102 model = demes.load("tennessen.yml")
samples = {"AFR": 20, "EUR": 20}
# import model as msprime demography and simulate ancestry
demography = msprime.Demography.from_demes (model)
ts = msprime.sim_ancestry(
10t [msprime.SampleSet(n, ploidy=1, population=p) for p, n in samples.items()],
demography=demography)
# compute the ezpected joint SFS using moments
sfs = moments.Spectrum.from_demes(model, samples=samples)
10°
AFR EUR

Figure 2: Illustration and simulation using Demes. (A) Using an inferred demographic
model from TENNESSEN et al. (2012) specified as a YAML file in Demes format (Figure A2), we
used demesdraw to visualize the demographic model (note the recent exponential growth resulting
in present-day population sizes that greatly exceed those in the past). We then used msprime
to simulate genomic data for 20 genome copies sampled from the two contemporary populations,
and we used moments to compute the expected joint site-frequency spectrum for the same sample
sizes (Figure A3). (B, C) We compared the single-population SFS in each population, showing
agreement between the simulation methods. (D) Python code snippets of the interactions between
demes and the simulation software. An extended script to compute the SFS shown in (B) and (C)
is given in Figure A3.

have multiple-epoch size histories, and multiple epochs of continuous migration between the two
branches (illustrated using demesdraw in Figure 2A). The large final sizes (= 500,000 individuals
each) are one to three orders of magnitude larger than ancestral population sizes, reflecting the
recent, explosive population size increase in humans.

We used this model to simulate 20 haploid genome copies from EUR and AFR at time zero
(i.e., present day) to obtain the joint site-frequency spectrum (SFS), a summary of observed al-
lele frequencies widely used in evolutionary inference (BUSTAMANTE et al., 2001, GUTENKUNST
et al., 2009, TENNESSEN et al., 2012, JOUGANOUS et al., 2017, Kamm et al., 2017, KiM et al.,
2017). The Demes model (Figures 2A and A2) was provided as the input demography to msprime
(BAUMDICKER et al., 2022) to simulate a large recombining region under the mutation rate as-
sumed in TENNESSEN et al. (2012), and we computed the observed SFS using tskit (RALPH et al.,
2020). Using the same Demes model as input to moments (JOUGANOUS et al., 2017), we computed
the expectation of the joint SFS and compared to the msprime simulated data (Figure 2B,C). Fig-
ure 2D shows the code required to run the simulations in msprime and moments, and demonstrates
that precisely the same input model, without modification, was provided to both packages. Such
interoperability is a major gain for researchers, which we hope will become the expected norm as
more packages adopt the Demes format.
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Discussion

Stable and healthy software ecosystems require standard interchange formats, allowing for the
development of high-quality and long-lasting tools that produce and consume the standard. Demo-
graphic models are a key part of population genetics research, and to date the transfer of inferred
models to downstream simulations has been ad-hoc, and conversions between the many different
ways of expressing such models is both labor intensive and error-prone. The proposed Demes stan-
dard is an attempt to bridge this gap between inference and simulation, and also to provide the
foundations for a sustainable ecosystem of tools built around this data model. Table 1 shows some
initial infrastructure that we have built as part of developing Demes, but many other useful tools
can be envisaged that produce, consume, or transform this format.

Reproducibility is a significant problem throughout the sciences (BAKER, 2016), and various
measures have been proposed to increase the likelihood of researchers being able to replicate results
in the literature (MUNAFO et al., 2017). The most basic requirement for reproducibility is that we
must be able to state precisely what the result in question 4s. The lack of standardization in how
complex demographic models are communicated today, and the lack of precision in the published
model descriptions means that it is difficult to replicate analyses, or reproduce those models for
later simulation. Thus, we hope that the Demes standard introduced here will be widely adopted
by simulation and inference methods and be used for reporting results in publications, either as
supplemental material or uploaded to a data repository.
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Appendix

The Demes specification is a formal data model for describing the properties of populations over
time, along with some metadata and provenance information. The data model is based on the
ubiquitous JSON (Bray, 2017) standard, and formally defined using JSON Schema (WRIGHT
et al., 2020). Along with the schema, full technical details of the of the model are provided in the
online specification document (https://popsim-consortium.github.io/demes-spec-docs/).

13


https://popsim-consortium.github.io/demes-spec-docs/
https://doi.org/10.1101/2022.05.31.494112
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.31.494112; this version posted August 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

A1 Population genetics model details

In Demes, demographic models consist of one or more interacting populations, or “demes”, un-
derstood to be a collection of individuals that can be conveniently modeled using a defined set of
rules and parameters (GILMOUR and GREGOR, 1939, GILMOUR and HESLOP-HARRISON, 1955). To
avoid confusion with the name of the specification itself we will use the term “population” in this
discussion, with the understanding that the terms are interchangeable. A population is defined as
some collection of individuals that exists for some period of time, and has a well-defined size (i.e.,
number of individuals) during that time period. Individuals can move between populations either
according to their ancestor-descendant relationships or through processes involving migrations. Few
other properties of the populations are specified in the model: we are concerned primarily with
defining the populations, their sizes, and the movement of individuals between those populations.

Al.1 Time units

Population and event times are written as units in the past, so that time zero corresponds to the
final generation or “now”, and event times in the past are values greater than zero with larger values
corresponding to times in the more distant past. By having time values increase into the past, we
avoid the need to choose an arbitrary point in history as “time zero”. A natural specification for
time units is in generations, although other time units are permitted, such as years, accompanied by
the generation time so that downstream software may convert times into generations as required.

There must be at least one population with an infinite start_time. An infinite start time may be
interpreted differently depending on the simulator. In a coalescent setting, there is no upper bound
for the coalescent time of lineages in this population. In a forwards-time setting, the interval of
time between infinity and the oldest non-infinite model time (i.e. the “first event”) is approximated
by the simulator’s burn-in phase—detailed guidance is provided in the online specification.

A1.2 Sizes and epochs

Population sizes are given as numbers of individuals, and details such as ploidy levels are con-
sidered external to the model. We therefore focus on the number of individuals as opposed to
the number of genome copies. Sizes and mating system details are specified for each population
within population-specific epochs. Epochs are contiguous time intervals that define the existence
interval of the population. Each epoch specifies the population size over that interval, which can
be a constant value or a function defined by start and end sizes that must remain positive. Only
exponential population size changes are currently supported, but other functions may be added to
the specification over time.

A1.3 Population dynamics

Within a population, we assume that allele frequency dynamics can be described by the Wright-
Fisher model. Briefly, generations are non-overlapping (all parents reproduce and die simultane-
ously), and for allele i currently at frequency p;, its frequency in the next generation (at birth) is
expected to be p;w;/w, where w; and w are the marginal and mean fitnesses, respectively, properly
weighted according to ancestry proportions. In this framework, a forward-time simulation of finite
populations is equivalent to multinomial sampling of allele frequencies each generation (BURGER
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(2000, pp 29-31), CrROW and KIMURA (1970, pp 179-181)), and a backwards-time (coalescent) sim-
ulation follows the approximations described in TAJiMA (1983), HUDSON (1983) and WAKELEY
(2008, chapter 3). Further, this model assumes “soft” selection (CHRISTIANSEN, 1975), meaning
that the dynamics of population sizes changes are independent of the details of individual fitnesses.
As such, this model excludes scenarios such as “hard selection,” in which population sizes are
dependent on a population’s mean fitness, or stochastic fluctuations in population size, such as
interpreting population sizes as carrying capacities. Many forwards and backwards time simula-
tors currently implement this model (e.g., HUDSON, 2002, GUTENKUNST et al., 2009, EXCOFFIER
and Forr, 2011, KELLEHER et al., 2016, JOUGANOUS et al., 2017, HALLER and MESSER, 2019,
THORNTON, 2019).

Al1l.4 Selfing and cloning

Each population has an assigned selfing rate and cloning rate, where each defines the probability
that offspring are generated from one generation to the next by either self-fertilization or cloning
of an individual. More specifically, for a given epoch within a population denote the clonal rate
by o and the selfing rate by S. S and o can take any value between zero and one and can sum to
more than one. Each generation a proportion of offspring o are expected to be generated through
clonal reproduction, while 1 — ¢ are expected to arise through sexual reproduction. Within the
sexually-reproduced offspring, a proportion S are born via self-fertilization while the rest have
parents drawn at random from the previous generation. Depending on the simulator, this random
drawing of parent may occur either with or without replacement. When drawing occurs with
replacement, a small amount of “residual” selfing is expected, so that the realized selfing probability
is (1—0)(S+(1—.S5)/N) instead of (1 —0)S (so that even with o = 0 and S = 0, selfing may still
occur with probability 1/N), although this effect is negligible in large populations (NORDBORG and
DONNELLY, 1997).

By allowing the definition of selfing and cloning probabilities, we allow many standard models
to be defined. However, by parameterizing selfing and cloning as we have, we assume that these
properties of populations can be specified independently from the genetics. In other words, muta-
tions that cause selfing probabilities to fluctuate within an epoch are not considered. More details
of the mathematical properties of selfing and cloning rates in a coalescent context can be found in
NORDBORG and DONNELLY (1997), HARTFIELD et al. (2016).

A1l.5 Relationships between populations

A population may have one or more ancestors, which are other populations that exist at the pop-
ulation’s start time. If one ancestor is specified, the first generation is constructed by randomly
sampling parents from the ancestral population to contribute to offspring in the newly generated
population. If more than one ancestor is specified, the proportions of ancestry from each contribut-
ing population must be provided, and those proportions must sum to one. In this case, parents are
chosen randomly from each ancestral population with probability given by those proportions.
Individuals in a population may have parents from a different population through migrations.
These can be defined as continuous migration rates over time intervals for which populations co-
exist or through instantaneous (or pulse) migration events at a given time. Continuous migration
rates are defined as the probability that parents in the “destination” population are chosen from
the “source” population. On the other hand, pulse migration events specify the instantaneous re-
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placement of a given fraction of individuals in a destination population by individuals with parents
from a source population.

A2 Rationale for YAML

We have adopted the widely used YAML format (BEN-KIKI et al., 2009) as the recommended
means of interchanging Demes models (e.g., Figures 1 and A2). YAML is a data serialization
language with an emphasis on simplicity and which interoperates well with JSON (indeed, YAML
1.2 is a superset of JSON). We chose YAML over JSON because although JSON is an excellent
format for data interchange, it is ill-suited for human understanding and manipulation. We also
considered other declarative data exchange formats such as TOML, but chose YAML because of
its equivalence with JSON, popularity, and good software support. Since the Demes data model is
defined in JSON Schema, however, there is no formal dependency on YAML and implementations
may choose to use JSON directly if they wish (e.g., for greater efficiency).

A3 Rationale for static models

The Demes specification is designed to describe demographic models defined by a fixed set of
model parameters. As described in the main text, it does not include information about estimated
confidence intervals or the joint distribution of parameter values. In this section we describe the
rationale for this design decision.

The parameters of demographic models are typically tightly coupled, and cases in which distri-
butions for different parameters can be simply described are rare. In this situation, the simplest
way to describe an estimated distribution is to list a large number of samples from the posterior.
While writing out a large number of Demes models in YAML format may seem inefficient, it can
in fact be a compact way to describe these distributions. For example, consider a one-population
model with piecewise-constant sizes over 20 epochs which has ~ 40 free parameters: the start_size
and end_time values for each epoch. If we sample 50,000 models from the posterior distribution,
the resulting multi-document YAML file is 45 MiB. This format compresses down to 8.4 MiB when
gzipped or 6.2 MiB when compressed with LZMAZ2, which is on par with an equivalent binary
representation of the free parameters (40 x 50000 x 4 bytes ~ 7.6 MiB).

Similarly, one might be interested in running simulations in which the demographic model
parameters are drawn from a distribution, e.g., in ABC inference (BEAUMONT et al., 2002). Other
inference procedures based on optimizing a loss function (GUTENKUNST et al., 2009, KAMM et al.,
2017, JOUGANOUS et al., 2017, RAGSDALE and GRAVEL, 2019, EXCOFFIER et al., 2021) need users to
specify parameter bounds, and possibly non-linear or conditional constraints between parameters.
Indeed, the choice of how to parameterize a model could be important for some inference methods
(e.g. absolute times versus relative times between events).

Implementing the many distributions of interest and supporting a general way to describe a
model’s free parameters would greatly increase the complexity of parsers, with relatively limited
benefit to most users. It is unlikely that Demes could be made sufficiently flexible without imple-
menting many features of general-purpose programming languages, such as variables, arithmetic,
and flow control. Such use cases are therefore better served by writing model-generating functions
in an existing programming language, for example using the Demes Python API (e.g., as imple-
mented in moments (JOUGANOUS et al., 2017, RAGSDALE and GRAVEL, 2019)). As an intriguing
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possibility for developments in this direction, there exist many templating solutions for YAML and

JSON that are specifically designed for extending static data in arbitrarily complex ways (e.g., YTT,
Jsonnet, CUE, and Dhall).

A4 Extended data and figures
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description: Two-deme isolation-with-migration model.
time_units: generations
generation_time: 1
doi: []
demes:
- name: A

description: The ancestral deme

start_time: .inf

ancestors: []

proportions: []

epochs:

- end_time: 100
start_size: 1000
end_size: 1000
size_function: constant
selfing _rate: 0
cloning_rate: 0

- name: X
description: First descendant deme.
start_time: 100
ancestors: [A]
proportions: [1]
epochs:

- end_time: O
start_size: 1000
end_size: 1000
size_function: constant
selfing_rate: 0O
cloning_rate: 0

- name: Y
description: Second descendant deme.
start_time: 100
ancestors: [A]
proportions: [1]
epochs:

- end_time: 50
start_size: 1000
end_size: 1000
size_function: constant
selfing_rate: 0O
cloning_rate: O

- end_time: O
start_size: 1000
end_size: 3000
size_function: exponential
selfing _rate: 0
cloning_rate: 0

migrations:
- source: X
dest: Y
start_time: 100
end_time: O

rate: 0.0001
- source: Y
dest: X

start_time: 100

end_time: 0O

rate: 0.0001
pulses: []

Figure A1: Isolation-with-migration example model from Figure 1 in Machine Data Model (MDM)
form. The MDM form of the model is complete and explicit, but contains much redundant infor-
mation that is omitted in the Human Data Model (HDM) form.
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description: The two-population model inferred in Tennessen et al (2012).
doi: ["https://doi.org/10.1038/nature11690"]
time_units: years
generation_time: 25
demes:
- name: ancestral
description: Population that splits into EUR and AFR
epochs:
- start_size: 7310
end_time: 148000
- start_size: 14474
end_time: 51000
- name: AFR
description: African Americans
ancestors: [ancestrall
epochs:
- start_size: 14474
end_time: 5115
- end_time: O
end_size: 432125
- name: EUR
description: European Americans
ancestors: [ancestrall
epochs:
- start_size: 1861
end_time: 23000
- start_size: 1032
end_time: 5115
end_size: 9279
- end_time: O
end_size: 501436
migrations:
- demes: [AFR, EUR]
rate: 1.5e-4
end_time: 5115
- demes: [AFR, EUR]
rate: 2.5e-5
start_time: 5115

Figure A2: The TENNESSEN et al. (2012) two-population demographic model in Demes
format. This model includes a single ancestral population that expands in size in the past, followed
by divergence between AFR- and EUR-labeled populations. The two-population phase of the model
includes multiple epochs of varying size, and rapid exponential growth over the past five thousand
years in each population.
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import demes
import msprime
import moments

####
#### Import the demographic model using demes, set up samples
###H

graph = demes.load("tennessen.yaml")
samples = {"AFR": 20, "EUR": 20}

#H###

#### Simulate genomic data using msprime
#H###

msprime_samples = [

msprime.SampleSet(n, ploidy=1, population=p) for p, n in samples.items()
]
demog = msprime.Demography.from_demes(graph) # load the demes model as msprime demography
L = 1e7 # sequence length of 10 Mb
r = 2e-8 # with constant recombination rate of 2e-8
u = 2.36e-8 # mutation rate used in Tennessen et al (2012)

ts = msprime.sim_ancestry(
msprime_samples,
demography=demog,
sequence_length=L,
recombination_rate=r,
random_seed=1234567,

ts = msprime.sim_mutations(ts, rate=u, random_seed=1234567)

# compute the SFS from the msprime simulation using tskit
msprime_afr = ts.allele_frequency_spectrum(
[range (samples["AFR"])], mode="site", polarised=True, span_normalise=False
)
msprime_eur = ts.allele_frequency_spectrum(
[range (samples["AFR"], samples["AFR"] + samples["EUR"])],
mode="gsite",
polarised=True,
span_normalise=False,

#HH#H
#### Compute expected SFS for sampled populations using moments
####

Ne = graph["ancestral"].epochs[0].start_size
theta = 4 *x Ne * u * L

fs = moments.Spectrum.from_demes(graph, samples=samples)
fs *= theta # rescale to match the total mutation rate in the msprime simulation

moments_afr = fs.marginalize([1])
moments_eur = fs.marginalize([0])

Figure A3: Simulation of SFS for the Tennessen model. We first load the demographic model
using demes (as graph), which can then be used by msprime to create the demographic model used
in msprime.sim ancestry(). The same loaded graph can also be passed to moments to compute
the expected joint SFS. To compare the SFS in Figure 2, we marginalize the joint SFS to obtain
the single-population SFS for both AFR and EUR populations. Lines interfacing demes and other

software are highlighted.
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