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Abstract

Many quantitative trait loci (QTL) are located in non-coding genomic regions. Therefore,
QTL are assumed to affect gene regulation. Gene expression and RNA splicing are primary
steps of transcription so QTL changing gene expression (€QTL) or RNA splicing (sQTL) are
expected to significantly contribute to phenotypic variations. Here, we quantify the
contribution of eQTL and sQTL detected from 16 tissues (N~5,000) to 37 complex traits of
~120k cattle. Using Bayesian methods, we show that including more regulatory variants in
the model explains larger proportions of heritability. Across traits, cis and trans eQTL and
sQTL detected from 16 tissues jointly explain ~70% (SE=0.5%) of heritability, 44% more
than expected from the same number of random variants, where trans e/sQTL contribute 24%
(14% more than expected). Multi-tissue cis and trans e/sQTL also explain 71% (SE=0.3%) of
heritability for the metabolome, demonstrating the essential role of proximal and distal

regulatory variants in shaping mammalian phenotypes.
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Introduction

Understanding how DNA variants shape phenotype is a central goal in genetics and biology.
Most mammalian phenotypes are influenced by the accumulated effects of many quantitative
trait loci (QTL) from non-coding regions. Since non-coding regions are usually involved in
gene regulation, numerous human studies have mapped regulatory loci, including QTL
affecting gene expression (eQTL) '* and RNA splicing (sQTL) 3, in the expectation that they

would explain variation in complex traits.

Significant efforts in mapping regulatory variants in other species have also been initiated
very recently, including large animal species. A Cattle Genotype-Tissue Expression
(CattleGTEx) * consortium, as part of Farm animal GTEx (FarmGTEXx), has been launched
along with new priorities for the Functional Annotation of ANimal Genomes (FAANG) >
consortium. Genome-wide association studies (GWANS) of cattle are now carried out in more
than 100,000 individuals " to identify causal QTL for dozens of traits. Therefore, there are
unique opportunities in non-human species to dissect the impact of regulatory variants on

mammalian complex traits.

Despite being biologically important, regulatory variants have been reported to contribute
only a small part to variation in mammalian complex traits. For example, a recent human
study suggested that around 11% of trait heritability is attributable to eQTL °. In the
evaluation of published human data, Connally et al '° proposed the term ‘missing regulation’
to describe the discordance between eQTL and QTL. In cattle, limited overlaps between
eQTL and QTL has been reported '! and the total contribution of eQTL to the heritability of
cattle traits was also around 10% ', In human studies investigating the contributions to trait

variation eQTL and sQTL have not, to date, been analysed together.
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Herein, we address the contribution of regulatory variants to mammalian complex traits with
a comprehensive analysis of cattle data. We mapped eQTL and sQTL from transcriptomes
across 16 tissues in more than 40 breeds from ~5,000 cattle. In another ~120k Australian
cattle, we use a Bayesian mixture model allowing prior information that a variant affects gene
regulation ', to estimate the genetic variance explained across 37 traits by cis and trans
eQTL and sQTL in single tissues as well as over multiple tissues. We replicate the analysis in
metabolomic traits assayed by liquid chromatography-mass spectrometry and found that

regulatory variants explain a large proportion of genetic variance.

Results

Expression QTL and sQTL were mapped in 16 tissues in either newly generated data or data
obtained from CattleGTEx VO * in tissues with sample size > 100 (Supplementary Table 1)
using a linear mixed model approach '* (see Methods). There were 4,725 independent
samples across 16 tissues and on average 295 samples per tissue. We mapped cis (1Mb of
gene or intron) e/sQTL with p <5 x 10 in the association mapping. More stringent criteria
were applied to the selection of trans e/sQTL (from different chromosomes to the gene or
intron, see Methods). e/sQTL were also categorised as within or outside regions under
Chromatin Immunoprecipitation sequencing (ChIP-seq) peaks ° (see Methods). A meta-
analyses across 16 tissues was conducted to identify multi-tissue eQTL and sQTL (see
Methods). We then classified >1.8 million LD-pruned (+* < 0.9) genome-wide variants in
~120k Australian cattle into 13 classes based on whether they were eQTL, sQTL, or both
eQTL and sQTL (esQTL) that act in cis or trans and whether they were cis/trans e/sQTL

under ChIP-seq peaks at both single-tissue and multi-tissue levels (Supplementary Table 2).
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Each of the 37 complex traits (Supplementary Table 3) was analysed with the BayesRC
method '°. Like BayesR !¢, BayesRC assumes that the effect of a variant on a complex trait
is drawn from a mixture of 4 normal distributions with mean=0 and variances of zero,
0.0001, 0.001, or 0.01 times the genetic variance. However, in Bayes RC, the variants are
placed into classes based on prior information (e.g., with regulatory evidence), and the
proportion of each distribution in the mixture is allowed to vary between classes. This
allowed us to quantify the relative proportion of heritability attributable to classes of cis and
trans eQTL and sQTL. Here the heritability is based on additive genetic variance due to
sequence variants, equivalent to the term “SNP-heritability” in human genetics. In BayesRC,
the proportion of heritability explained was also estimated for a class of ‘remaining variants’
with no regulatory evidence. We used this estimate together with its ratio of genomic size to
other classes of regulatory variants to derive an expected proportion of heritability explained
by each class of variants assuming they explained the same amount per variant as the

remaining class (Table 1 and Methods).


https://doi.org/10.1101/2022.05.30.494093
http://creativecommons.org/licenses/by-nc-nd/4.0/

Table 1. Summary of the proportion (%) of heritability and trait-associated variants (QTL) in expression quantitative trait loci (eQTL), RNA splicing QTL (sQTL), variants that
are both eQTL and sQTL (esQTL) and those e/sQTL under histone marks (“_Histone’). Within each class, the total number of variants (N class) and their genome proportion (%

class), the number of variants with small effects, medium effects and large effects averaged across 16 tissues and 37 traits are given. These numbers are used to estimate the
observed heritability explained (O[% h?]) and the proportion of QTL in each class (O[% QTL]). The number of variants within the remaining class (no regulatory evidence) is
used to estimate the expected proportion of heritability explained (E[% /?]) and proportion of QTL in each class (E[% QTL]).

Tissue Class N class % class Small Medium Large O[ % h?] (se) E[% K] (se) O[% QTL](se) E[% QTL] (se)

Single-tissue cis.eQTL_Histone 3011 0.16 73.4(2) 7.6(0.2)  0.3(0.0) 1.70(0.04) 0.12(0.00) 5.19(0.18) 0.001(0.000)
cis.eQTL 4910 0.26 93.1(3) 9.2(0.3)  0.3(0.0) 2.08(0.05) 0.20(0.01) 3.93(0.14) 0.001(0.000)
cis.sQTL_Histone 9835 0.52 127.7(4) 11.1(0.3)  0.4(0.0) 2.66(0.07) 0.40(0.02) 2.52(0.12) 0.002(0.000)
cis.sQTL 16386 0.87 197.2(8) 13.9(0.5) 0.4(0.0) 3.57(0.12) 0.66(0.03) 2.07(0.09) 0.003(0.000)
cis.esQTL_Histone 1928 0.10 50.0(2) 5.4(0.2)  0.3(0.0) 1.29(0.04) 0.08(0.01) 11.20(0.54) 0.000(0.000)
cis.esQTL 2669 0.14 56.4(2) 5.8(0.2)  0.3(0.0) 1.38(0.04) 0.11(0.01) 9.66(0.53) 0.001(0.000)
trans.eQTL_Histone 939 0.05 53.9(1) 5.8(0.2)  0.2(0.0) 1.30(0.03) 0.04(0.00) 11.46(0.45) 0.000(0.000)
trans.eQTL 2064 0.11 74.5(2) 8.1(0.3)  0.3(0.0) 1.74(0.04) 0.09(0.00) 7.57(0.33) 0.000(0.000)
trans.sQTL_Histone 9891 0.53 115.7(2) 12.3(0.4)  0.3(0.0) 2.60(0.06) 0.41(0.01) 1.60(0.06) 0.002(0.000)
trans.sQTL 22191 1.18 181.2(3) 16.6(0.5)  0.4(0.0) 3.67(0.07) 0.93(0.01) 1.01(0.02) 0.005(0.000)
trans.esQTL_Histone 847 0.04 46.8(1) 5.2(0.2)  0.2(0.0) 1.16(0.03) 0.04(0.00) 10.13(0.50) 0.000(0.000)
trans.esQTL 1893 0.10 63.1(2) 6.8(0.2)  0.3(0.0) 1.49(0.04) 0.08(0.00) 7.12(0.46) 0.000(0.000)

remaining 1805933 95.9 6726.8(54) 98.1(2.1) 1.7(0.1) 75.38(0.41) 75.38(0.41) 0.38(0.00) 0.38(0.00)
Multi-tissue cis.eQTL_Histone 343 0.02 33.1(4) 4.000.4)  0.2(0.0) 0.87(0.08) 0.01(0.00) 10.88(1.12) 0.000(0.000)
cis.eQTL 1576 0.08 51.8(6) 5.5(0.6)  0.2(0.0) 1.22(0.11) 0.05(0.00) 3.65(0.42) 0.000(0.000)
cis.sQTL_Histone 67720 3.60 385.520)  22.8(2.3) 0.5(0.1) 6.30(0.26) 2.03(0.10) 0.60(0.03) 0.018(0.001)
cis.sQTL 184798 9.82 1225.7(62) 32.8(3.9) 0.5(0.0) 15.16(0.66) 5.54(0.29) 0.68(0.03) 0.048(0.002)
cis.esQTL_Histone 105956 5.63 557.227) 23.824) 0.7(0.1) 8.26(0.38) 3.18(0.16) 0.55(0.02) 0.028(0.001)
cis.esQTL 169434 9.00 1036.6(47) 29.7(3.1) 0.8(0.2) 13.50(0.77) 5.08(0.26) 0.63(0.03) 0.044(0.002)
trans.eQTL_Histone 53187 2.83 243.9(13) 14.9(1.9) 0.4(0.0) 4.09(0.19) 1.59(0.08) 0.49(0.02) 0.014(0.001)
trans.eQTL 173939 9.24 743.933) 17.4(1.6)  0.4(0.0) 9.04(0.29) 5.22(0.27) 0.44(0.02) 0.045(0.002)
trans.sQTL_Histone 7076 0.38 106.8(10) 8.9(0.9)  0.3(0.0) 2.10(0.16) 0.21(0.01) 1.64(0.14) 0.002(0.000)
trans.sQTL 40618 2.16 258.5(22)  14.2(1.3)  0.4(0.0) 4.11(0.26) 1.22(0.06) 0.67(0.05) 0.011(0.001)
trans.esQTL_Histone 5603 0.30 76.2(7) 6.8(0.5)  0.3(0.0) 1.60(0.11) 0.17(0.01) 1.49(0.14) 0.001(0.000)
trans.esQTL 44089 2.34 168.4(14)  11.0(1.2) 0.3(0.0) 2.91(0.20) 1.32(0.07) 0.41(0.03) 0.011(0.001)

remaining 1028161 54.6 2708.2(138) 44.1(9.5) 0.9(0.2) 30.83(1.59) 30.83(1.59) 0.27(0.01) 0.27(0.01)
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The BayesRC analysis was performed when the regulatory classes were defined based on
each tissue one at a time (e.g., eQTL called from single-tissue) and when the classes were
defined based on all tissues together (e.g., e€QTL called from 16 tissues). Table 1 gives the
BayesRC results for the 13 prior classes (fitted jointly) averaged across the 37 traits for both
the single-tissue analyses and the multiple-tissue analysis (the single-tissue results are
averaged across all single-tissue analyses). In single-tissue and multiple-tissue analyses, for
all 12 regulatory classes, the proportion of variants that had an effect on phenotypes (small,
medium, or large) was greater than for the remaining class that were not regulatory variants.
Also, within the variants that affected phenotype, the proportion of variants with medium or
large effect was greater for the 12 regulatory classes than for the remaining class.
Consequently, the variance explained by the 12 regulatory classes was higher than expected if

they explained the same amount per variant as the remaining classes.

In the multiple tissue analysis, when all tissues were used to define regulatory variants, more
variants were classified as regulatory and fewer variants remain in the ‘remaining’ class.
Also, within the regulatory classes, more variants affected both gene expression and RNA
splicing and so the esQTL class had more variants and the eQTL and sQTL classes had fewer
variants (Table 1). As a result of the larger number of regulatory variants discovered, the
multiple-tissue analysis found that 70% of the genetic variance was explained by regulatory
variants (44% more than expected by the same number of random variants) whereas the
average of the single-tissue analyses was 25% (22% more than expected). As the multi-tissue
analysis had more than a 16-fold increase in sample size compared to each single-tissue
analysis (4725 VS 295), our results suggest that the higher information content in the multi-

tissue e/sQTL was likely due to the greater power in their mapping.
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Including more regulatory variants in the model increased the heritability explained by them,
with the largest proportions of heritability explained by eQTL and sQTL detected from all
tissues analysed jointly (Figure 1a-c). To further illustrate this, as well as the 13 classes
defined by both eQTL and sQTL, we performed BayesRC analyses using 5 classes defined
only by eQTL or sQTL (Supplementary Table 4). Based on e/sQTL detected from single
tissues averaged across tissues and traits, when eQTL and sQTL were analysed separately, cis
and trans eQTL explained 5.6% (SE=0.1%) and 4.1% (0.1%) of heritability respectively, and
cis and trans sQTL explained 8.3% (0.2%) and 7.6% (0.1%) of heritability respectively
(Supplementary Table 4). When eQTL and sQTL were analysed jointly in the single-tissue
scenarios, cis and trans esQTL explained 12.6% (0.1%,) and 11.9% (0.1%) of heritability
respectively (Table 1). Based on e/sQTL detected from multiple tissues across traits, when
eQTL and sQTL were analysed separately, cis and trans eQTL explained 29% (1%) and 21%
(0.5%) of heritability respectively, and cis and trans sQTL explained 58% (1%) and 8%
(0.4%) of heritability respectively (Supplementary Table 4). When eQTL and sQTL were
analysed jointly in the multi-tissue scenarios, cis and trans esQTL explained 45% (0.5%) and
24% (0.3%) of heritability respectively (Table 1). A full list of partitioned heritability across

tissues and traits can be found in Supplementary Data 1.
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Figure 1. Proportions of genetic variance or heritability explained by regulatory variants. a:

when only eQTL variants were considered. b: when only sQTL were considered. ¢: eQTL

and sQTL were considered jointly. Where ‘e’ is the expected proportion of heritability

explained by the genomic size, ‘0’ is the observed proportion of heritability and Multi.tissue

is the regulatory variants detected from 16 tissues. Means and standard error bars across 37

traits are presented. d: Enrichment of heritability across fitted classes in the joint model (12

regulatory classes). The enrichment was calculated as the difference between the observed

proportion of heritability explained and the expected proportion of heritability explained from

the number of variants in each class. The label ‘_Histone’ means that eQTL or sQTL were

also under histone marks tagged by ChIP-seq peaks.
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By ranking classes of variants based on the difference between the observed and expected
proportion of heritability explained (Figure 1d), multi-tissue cis SQTL and cis esQTL
(variants are both eQTL and sQTL) explained the most additional variance. Multi-tissue trans
eQTL, sQTL and esQTL also explained more heritability than expected from the number of
variants in each class. At the single-tissue level, cis and trans sQTL had the greatest
additional variance explained. Across all scenarios, e/sQTL under histone marks tagged by
ChIP-seq peaks explained more heritability than expected, but not necessarily more than

e/sQTL outside of histone marks (Figure 1d).

BayesRC estimated the number of trait-associated variants, i.e., QTL, with small-, medium-
and large-effect within each regulatory class. We then compared the proportion of variants
within each class that fell into the small, medium and large-effect QTL distributions. By
comparing each regulatory class to the remaining class (no regulatory evidence) we estimated
the additional proportion of QTL in each class than expected by the number of variants of
that class (Figure 2a). Across analysed traits, multi-tissue cis €QTL had the most additional
proportion of QTL than expected. Driven by the relatively small number of variants identified
(e.g., Table 1), trans e/sQTL also had a high additional proportion of QTL than expected in
both single-tissue and multi-tissue analyses. Regulatory variants that were either eQTL or
sQTL and under histone marks had the greatest additional proportion of QTL than expected,

suggesting combining regulatory classes improves the mapping of potentially causal variants.
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Figure 2. Amount of trait-associated variants (QTL) included in regulatory variants. a: For
each class, the difference between the observed proportion (or concentration) of QTL and the
expected proportion of QTL by genome size in the BayesRC analysis is the additional
proportion of QTL included. The label ‘_Histone” means that eQTL or sQTL were also under
histone marks tagged by ChIP-seq peaks. b: The enrichment of QTL in regulatory variants
was determined as the difference (t value) of variant effects in GWAS between a set of
e/sQTL and a set of random variants with matched LD and MAF to the e/sQTL set. The blue
dashed line indicates t value = log(2) which is equivalent to the p-value threshold of 0.05.

Each violin bar represents the results across 37 traits. “Conditional. GWAS”: GWAS results


https://doi.org/10.1101/2022.05.30.494093
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.30.494093; this version posted May 31, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

conditioned on the top-2 QTL per chromosome from the results of the ordinary GWAS

(“Ordinary. GWAS”, no top QTL was fitted).

It is possible that the classes of regulatory variants differ in minor allele frequency (MAF) or
LD and that this explains the enrichment of QTL and genetic variance within regulatory
classes. To test this possibility, we implemented a MAF-LD matched enrichment test (see
Methods) using GWAS results of 37 traits on 16 million sequence variants 8. For each class
of regulatory variants, e.g., cis e€QTL, we sampled a random set of variants (repeated 1000
times) with matched MAF and LD, then we compared the GWAS effects between the set of
regulatory variants and the set of random variants with matched MAF and LD. To ensure that
the results are not driven by a few large-effect QTL, we carried out another set of GWAS of
the 37 traits conditional on the effects of the top 2 variants per chromosome at least 1Mb
apart (i.e. we fitted the top 2 variants per chromosome in the statistical model as fixed effects,
see Methods). We then applied the MAF-LD matched enrichment test to the conditional
GWAS. As shown in Figure 2b, across traits and tissues, both proximal and distal regulatory
variants were significantly enriched with QTL compared to random variants with matched
MAF and LD using both the original or conditional GWAS. The strongest enrichment of
QTL was found in e/sQTL from multiple tissues. Therefore, these results confirmed that the

enrichment of QTL in regulatory variants was not driven by MAF or LD.

We next examined whether the contribution of regulatory variants to trait heritability was
consistent between different populations and could be reproduced using external datasets. As
there are 37 phenotypic records on both 110k cows and 9k bulls, we conducted BayesRC
fitting the 13 classes of regulatory variants separately in bulls and cows to check the

variability of the enrichment of heritability between different cattle datasets. We found that
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the Pearson correlation of partitioned heritability across 12 regulatory classes from different
tissues for 37 traits was 0.85, with the correlation for results from single and multiple tissues

being 0.846 and 0.824, respectively (Figure 3a).
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Figure 3. Consistency and metabolic analysis of heritability explained by regulatory variants.
a: A scatter plot of the heritability explained by 12 classes of regulatory variants across
tissues and traits between bulls and cows. The black and blue lines are the regressions for
heritability partitioned using multi-tissue and single-tissue regulatory variants, respectively.
b: The proportion of heritability explained by multi-tissue regulatory variants more than

expected by genomic size averaged across 56 metabolic traits and different classes.

To further verify the large proportion of heritability explained by regulatory variants, we used
multi-tissue e/sQTL to define classes for BayesRC to partition heritability in the metabolome,
including 56 metabolomic (polar lipid) traits assayed by liquid chromatography-mass

spectrometry (LCMS) on 320 cattle (see Methods). Across these 56 metabolic traits, on
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average cis and trans e/sQTL together explained 71.5% (SE=0.3%) of the heritability, 36.6%
(0.6%) more than expected if the regulatory variants explained as much genetic variance per
variant as the variants that are neither eQTL nor sQTL. Both cis and trans e/sQTL contribute
substantially to the heritability of metabolic profiles (Figure 3b). A full list of partitioned

heritability for the metabolic phenotypes can be found in Supplementary Data 2.

In Figure 4 we provide examples where cis or trans-regulatory variants significantly affect
complex traits and are also supported by external functional information. If a causal variant is
in very high LD with 3 other non-causal variants (not unlikely among 1.8 M variants), then
the BayesRC analysis is likely to estimate the posterior inclusion probability (PIP) of all 4
variants to be 0.25. Therefore, we considered variants with PIP>0.25 as potentially causal.
For instance, we highlight a cis eQTL from blood at Chr15:42044576 (rs137255300) which
affected both the birth size and the concentration of lactosylceramide in cattle (Figure 4a left
and middle panels). Chr15:42044576 is a missense mutation'’ for IRAGI and conserved
across 100 vertebrates (PhastCon score = 0.999), but this mutation affects the expression of
CTR9 (right panel), which is a transcription factor. Another example is a multi-tissue trans
eQTL (Chr5:105773809, rs109676906) which significantly affects cattle height (Figure 4b).
This single mutation explained ~0.6% of the phenotypic variance of stature in an additional
133,306 cattle across more than 19 populations/breeds 7!8. A list of cis and trans e/sQTL
affecting different complex and metabolic traits with their functional annotation is provided

in Supplementary Data 3.
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Figure 4. Examples of cis and trans eQTL affecting complex traits. a: A candidate causal
mutation (Chr15:42044576, rs137255300) within JRAG1 for birth size (left panel) and the
concentration of lactosylceramide (middle panel) is a cis eQTL for CTR9 in blood (right
panel). Chr15:42044576 is also a missense mutation for [RAGI at a site conserved across 100
vertebrates. The y-axis of the left and middle panels are posterior inclusion probability (PIP)
of BayesRC and the -log10(p) of eQTL mapping in blood in the right panel. b: A candidate
causal mutation (Chr5:105773809, rs109676906) within Cyclin D2 (CCND?2) for stature
(black point in left and middle panels) is a trans eQTL across multiple genes and tissues
(right panel). Chr5:105773809 is also a lead variant in a meta GWAS of cattle stature across
18 global populations '®. The y-axis of the left panel is the PIP of BayesRC and the y-axis of
the middle panel is the -log10(p) of meta-analysis GWAS of 120k Australian and New
Zealand cattle. The right panel is the heatmap of effects of the trans eQTL on the expression

of genes averaged within each tissue, where ‘mean t’ is the average t value across genes for
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each tissue and ‘mean ItI’ is the geometric mean of the magnitude of t values across genes for

each tissue.

Discussion

Our analysis of large datasets in cattle demonstrates that both cis and trans-regulatory
variants significantly contribute to variation in complex traits. Such contribution is not due to
the LD or MAF of regulatory variants and increases when more regulatory variants of
different types (e.g., €QTL and sQTL) and a large number of tissues are included in the
analysis. When cis and trans eQTL and sQTL from multiple tissues are jointly analysed, they
accumulatively explain the majority (~70%) of heritability. Therefore, we expect that as more
regulatory variants are discovered from more assays, tissues and individuals they will explain

an even larger proportion of the heritability of complex traits.

Our study highlights the importance of sample size in the e/sQTL mapping and the detection
of their overlaps with QTL. Compared to the previous cattle study '* where cis eQTL
contributed around 10% of heritability, the current study had increased the sample sizes for
the mapping of e/sQTL by up to 20-fold (N~205 VS N~4725). The current study also
increased the sample size of the mapping of complex traits by 2.5-fold which increases the

power of BayesRC analysis.

Our findings contrast with several recent studies on humans where regulatory variants such as
eQTL contribute a small part to phenotypic variation *'*!°, Our analysis supporting the direct
role of regulatory variants in shaping complex traits has several differences from previous

studies which may have led to our different conclusions. One obvious distinction is that cattle

are a different species from humans, although previous studies showed high similarities in
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genomic features between these two species %%, It is also worth noting that there are usually

many more disease-related traits that underwent purifying selection in humans than in cattle.

The second distinction of our study is that when analysing variant-trait associations, we used
Bayesian methods. Our BayesRC'? analysis used raw data that fits all variants simultaneously
while most human studies use GWAS or summary statistics of GWAS (e.g., Yao et al °)
which associates one variant at a time with the phenotype. BayesRC '° selects the variants to
include in the model and estimates their effects jointly. It also allows the distribution of
effects to vary between classes and fits the different class annotations jointly in the model.

When similar Bayesian methods were used in human datasets !>

they showed better
performances in training genomic predictors than using GWAS results. However, these
Bayesian analyses did not fit different distributions of variant effect to different classes of

regulatory variants. In addition, raw data is more powerful than summary statistics, where

they are available.

The third distinction is that we jointly modelled multiple categories of regulatory variants,
including eQTL and sQTL and variants under histone marks from multiple tissues. Although
sQTL were first discovered to be important to complex traits in humans ?, they have not
always been analysed together with eQTL in human studies of the phenotypic effects of
regulatory variants *'%%3*, The current study observed that at the same p-value threshold, a
lot more sQTL (3 times more in single-tissue analysis) were called than eQTL and therefore,
they alone or in combination with eQTL explained more heritability than eQTL alone. In fact,
multi-tissue sQTL alone explained a similarly large proportion (66%) of heritability to the
proportion of heritability explained jointly by eQTL and sQTL (70%). This again validates

the important role of sQTL in shaping mammalian complex traits.
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The fourth difference between this study and most others is that we included frans eQTL and
sQTL whereas most only included cis. In the human GTEXx analysis *° only a few trans eQTL
were identified and this may have limited their use in the downstream analysis. Due to the
small effect size, trans eQTL mapping requires a large sample size but the accumulated
phenotypic effects of them may be more estimable. The CattleGTEx had different individuals
per tissue which means the total sample size approaches 5000 in the multi-tissue analysis.
Discovered from the CattleGTEx population and tested in the Australian population, on
average single-tissue trans e/sQTL explained 12% of heritability and multi-tissue trans e/s
QTL explained 24% of heritability. These findings demonstrate the important role of distal

regulatory variants in shaping complex traits.

To further validate the contribution of regulatory variants to phenotypes we applied the same
BayesRC methods fitting the multi-tissue e/sQTL data as biological priors to a set of
metabolic phenotypes. These traits, where large effect QTL exist, are genetically simpler than
traits like milk production or body size '>?°. We found that more than 70% of heritability in
the metabolic phenotypes could be explained by both cis and trans-regulatory variants. One
highlighted example is cis eQTL Chr15:42044576 (rs137255300) which affected both the
birth size and the concentration of lactosylceramide (Figure 5a). It’s causal candidacy for
these two traits is supported by external functional annotation as it is also a missense
mutation and at conserved sites across 100 vertebrates. It is worth noting that
Chr15:42044576 is a missense mutation for JRAG]I but affected the expression of the nearby
transcription factor gene CTRY, which appears to show bystander effects like FTO *’%, This
implies complex consequences of large-effect mutations on both activities of protein-coding
and transcription. We also highlight a multi-tissue trans eQTL Chr5:105773809
(rs109676906) within CCND?2 affecting cattle stature. This mutation is not at a conserved site

but had a large and replicable effect on stature in ~200,000 cattle across 19 populations
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across the globe '8, Its effect on gene expression in different tissues tended to have different
directions (Figure 5b) which is consistent with the expectation of effect patterns of trans

eQTL .

Taken together, using cattle as a model, we demonstrate the significant and direct role of cis
and trans-regulatory variants in shaping mammalian complex traits. Our findings suggest that
many QTL have an impact on the regulation of transcription. Therefore, with proper analysis
and sufficient power, regulatory variants not only provide etiology behind the genome-to-
phenome map but also are a powerful resource to directly map causal variants for mammalian

complex traits.

Methods

RNA-seq data. The RNA-seq and genotype data analysed included those generated by
Agriculture Victoria Research (AVR) in Victoria, Australia, and those provided by the cattle
CattleGTEx consortium * (Supplementary Table 1). The animal ethics was approved by the
DJPR Animal Ethics Committee (application numbers 2013-14 and 2018-2019), Australia.
Blood samples were taken from 390 lactating cows from 2 breeds, and milk samples from
281 lactating cows from 2 breeds. The processing of samples, RNA extractions, and library
preparation followed that previously described 2°2°. RNA sequencing (RNA-seq) was
performed on a HiSeq3000 (Illumina Inc) or NovaSeq6000 (Illumina Inc) genome analyzer in
a paired-end, 150-cycle run. Only RNA-seq data of 356 Holstein and 26 Jersey with > 50
million reads for milk cells or > 25 million reads for white blood cells and had concordant
alignment rate *' > 80% were used. QualityTrim (https://bitbucket.org/arobinson/qualitytrim)
was used to trim and filter poor-quality bases and sequence reads. Adaptor sequences and

bases with a quality score of <20 were removed. Reads with a mean quality score less than
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20, greater than 3 N, greater than three consecutive bases with a quality score less than 15, or
a final length of fewer than 50 bases were discarded. High-quality raw reads were aligned to
the ARS-UCD1.2 bovine genome > with STAR 3! using the 2-pass method. The gene counts

t33

were extracted by FeatureCount **. Leafcutter ** was used to generate junction files which

were then used to create the RNA splicing phenotype matrix, i.e., intron excision ratio 3,

The RNA-seq gene counts of 15 tissues (Supplementary Table 1) where the sample size >

100 were downloaded from CattleGTEx website http://cotex.roslin.ed.ac.uk/. The blood

counts generated by AVR and CattleGTEx were combined. All gene counts were normalised
by voom * and then underwent quantile normalisation for the following analyses. Junction
files from CattleGTEX tissues were also downloaded and data from each tissue were
processed by leafcutter ** to generate RNA splicing phenotype. Milk cell data used in this

study was only from AVR.

Genotype data. The genotype data for Australian animals including those used for e/sQTL
mapping (blood and milk cells) and association analysis of phenotypes (described later) were
16,251,453 sequence variants imputed using Run7 of the 1000 Bull Genomes Project **’.
The details of the imputation were described previously *®. Briefly, the imputation of bi-

3 3940 and those variants with

allelic sequence variants was performed with Minimac
imputation accuracy R? > 0.4 and minor allele frequency (MAF) > 0.005 in both bulls and
cows were kept. Bulls were genotyped with either a medium-density SNP array (50K:
BovineSNP50 Beadchip, [llumina Inc) or a high-density SNP array (HD: BovineHD
BeadChip, Illumina Inc) and cows were genotyped with the BovineSNP50 Beadchip
(Illumina Inc). The genotype data for CattleGTEx animals were generated previously * and
included a total of more than 6 million sequence variants imputed also using Run7 of the

1000 Bull Genomes Project. Those variants with the imputation dosage R-squared > 0.8 and

MAF > 0.001 were kept.
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Phenotype data. Data were collected by farmers and processed by DataGene Australia

(http://www.datagene.com.au/) for the official May 2020 release of National breeding values.

No live animal experimentation was required. DataGene provided the bull and cow
phenotypes as de-regressed breeding values or trait deviations for cows, and daughter trait
deviations for bulls (ie. progeny test data for bulls). DataGene corrected the phenotypes for
herd, year, season and lactation following the procedures used for routine genetic evaluations
in Australian dairy cattle. Phenotype data included a total of 8,949 bulls and 103,350 cows,
including Holstein (6,886 / 87,0039), Jersey (15627 / 13,353%), cross-breed (363 /
5,0379) and Australian Red (26573 / 3,379%) dairy breeds. In total, 37 traits were studied that
related to milk production, mastitis, fertility, temperament and body conformation and the
details of these traits can be found in *®. For AVR blood samples breed and days in milk
(DIM) were fitted as fixed effects in the model. For the milk samples, experiment, DIM and
the first and second principal components, extracted from the expression count matrix, were
fitted as fixed effects. This aimed at adjusting the high expression of casein genes in milk

cells based on previous experiences »°.

Mapping and selection of eQTL and sQTL. A GWAS approach that fits random effects of
a relationship matrix '* can control false correlations and that was used in the current study to

map eQTL and sQTL:
Ya = XB + Zgall +Wv+e (1)

Where yq, is an n x 1 vector of omics values such as gene expression or RNA splicing, X was
the design matrix allocating phenotypes to fixed effects; 8 is a vector of fixed effects like
breeds, different experiments, or PEER *! factors derived by the CattleGTEx consortium #, Z

is a matrix allocating records to individuals; gq ,, is an n x 1 vector of the total genetic

effects of the individuals with g ~ N(O, Ga”a;) where G;; is the genomic relationship matrix
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(GRM) built by all the variants; W is the design matrix of variant genotypes (0, 1, 2) and v is

the variant additive effect; e is the error term.

cis e/sQTL were defined as those variants within £1Mb of the transcription start site of a gene
or down/upstream of an intron with p < 5e-6 in GWAS. This threshold resulted in that, on
average across tissues, the false discovery rate (FDR) was 0.0158(6e-5) for eQTL mapping
and 0.0164(2e-5) for sQTL mapping (see equation 2 described in the following). Trans
e/sQTL were defined as those not on the same chromosome of the omics feature with p < Se-
6 in GWAS. Only the top 3 trans e/sQTL per chromosome were selected. In addition, we

impose (FDR) of:

p(l_PTOPSig)

FDRQ - Propsig(1-p)

2

where p is the GWAS p-value cutoff, e.g., 5e-6, Props; is the proportion of variants
significant given the GWAS p-value cutoff to the total number of variants analysed. If
FDRq >=0.05 for an omics feature, no trans e/sQTL were selected. Also, those e/sQTL

6,42,43

under at least two ChIP-seq peaks identified from multiple studies were used in the

Bayesian analysis described below.

Meta-analysis of e/sQTL. Because data from different tissues of CattleGTEx were from
different individuals, combining results from each tissue can increase the chance of detecting
causal regulatory variants. The human GTEx ', showed that cis e/sQTL to a large extent
showed consistent effects across tissues. Although, the ranking of the effects of the same
variant across tissues may be different. For trans e/sQTL, it is not expected that their effects
will be consistent across tissues. Considering these factors, we implemented the following 2

formulae in meta-analyses of e/sQTL:
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sznean(l) = (ﬂz X ngt (3)

Tlgt

stquare(ngt) = Z t? 4)

In equation 3, it is assumed that the effects of a variant across genes and tissues were largely
consistent; the chi-square is based on the mean of the t value (beta/se) of variants; t is the
mean of the t-value of a variant across all genes that it affected across all tissues the effects

were measured; ng, is the number of genes and tissues where the effect of this variant was

estimated; y2,.,n, Was tested against a chi-square distribution with 1 degree of freedom. In
equation 4, it is not assumed that the effects of a variant across genes and tissues were largely
consistent; the chi-square is based on the sum of the square of t values of variants across all

genes and tissues; )(quuare was tested against a chi-square distribution with ng, degree of

freedom. For cis e/sQTL, both sznean(l) and )(quuare () were calculated and variants with a
gt

p < Se-8 for either sznean(l) or )(quuare were called significant. For trans e/sQTL,

(ngt)

variants with p< Se-8 for )(quuare () and effects estimated in at least two tissues were called
gt

significant.

BayesRC using cis and trans e¢/sQTL. BayesRC '* extends the classic BayesR algorithm
1516 to incorporate independent classes of variants (‘c’) to model informative biological
priors. Similar to the classic BayesR, BayesRC models the prior of variant effects which is a
mixture distribution of four normal distributions including a null distribution, zero-effect

[N(0,0.002%,)], and three others: small-effect [N (0,0.000102 )], medium-effect
[N(0,0.00102,)] and large-effect [N (0,0.0152% )], where o is the additive genetic

variance for the trait. The BayesRC '*> model used here for association analysis of phenotypes

was:
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yp,, = Wv+Xb+e(5)
where yp, was a vector of traits, W was the design matrix of marker genotypes; centered and

standardised to have a unit variance; v was the vector of variant effects; X was the design
matrix allocating phenotypes to fixed effects; b was the vector of fixed effects of breeds.
BayesRC was conducted for 37 traits on cows and bulls separately. As a result of 50,000
iterations with 25,000 burn-ins of Markov chain Monte Carlo (MCMC), the effect v for each
variant jointly estimated with other variants was obtained. This mixture of distributions is
modelled independently in each class of variants to allow for different mixture models per
class (‘c’).

To better understand the contribution of regulatory variants to complex traits, we used
different classifications to jointly or separately model eQTL and/or sQTL. When eQTL and
sQTL were modelled jointly, 13 classes of variants were created (Supplementary Table 2)
with the 13" class being the remaining variants neither eQTL nor sQTL. When eQTL and
sQTL were modelled separately, 5 classes of variants were created for eQTL and sQTL
separately and the 5" class was the remaining variants neither eQTL nor sQTL. Such
classification, i.e., one 13-category classification and two 5-category classifications (eQTL
and sQTL separately) was created for each tissue and the results of multi-tissue e/sQTL
mapping. When creating these classes, variants detected as both cis e/sQTL and trans e/sQTL
were set to cis e/sQTL. For better computational efficiency, we LD pruned (* < 0.9) those 16

million variants using plink ** and used the resultant 1,882,504 variants for BayesRC.

Partitioning heritability across functional classes. MCMC in BayesRC estimated additive

genetic variance (Va) based on sequence variants and the total error variance (Ve) and this

can be used to calculate the heritability of each trait [h? = Va / V. +V (6) ]. Results from
e

a

BayesRC from cows and bulls were both analysed and the average between the two estimates
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was presented. MCMC in BayesRC also estimated the number of variants in each class (e.g.,

cis eQTL, trans eQTL) that fell into the 4 distributions of effects: zero-effect [N (0, 0.002 IB
small-effect [N (0,0.00010? )], medium-effect [N (0,0.00102,)] and large-effect

[N(0,0.010%,)], where g%, was the additive genetic variance for the trait. This can be used

)

to partition Va and thus, h?, into each class:

=V, XN

Sclass;

x0.01% +V, XN X01%+V, XNy, X1% (7)

Aclass Mclass;

Where N, . Was the number of small-effect variants in class i (e.g., cis eQTL), N,,

class;

was the number of medium-effect variants in cis ¢/sQTL and N, was the number of large-
L

effect variants in cis e/sQTL. Then for each class, we used equation 6 to calculate h? for each

class (hZ;4s5,)> and then the proportion of h? explained by each class as: hZj,s5, % =

h2,.ss. . . .
class; S.class 2 (equation 8) where N. class was the total number of classes fitted in
1 class;
the model.

We derive an expected hZj4s5,%. or E(hZ;455,%) using the hZ;,5,% and the proportion of

variants for the remaining class (variants were neither eQTL nor sQTL):

2 %

heiass ini
remainin, .
E(h35s.%) = — g X Variantsgqss. % (9)
i Va”antsdassremaining % t

2
classremaining

where h % was the proportion of heritability explained by the class of remaining

variants, Variants % was the proportion of the class of remaining variants to

classremaining
the total number of variants analysed and Variantsqss,% was the proportion of the class i
of variants (e.g., cis €QTL) to the total number of variants analysed. When E (h?lassi%) was

derived, hZj4ss,% — E (hZ 1455, %) can be used to estimate the amount of heritability explained

by each class as a deviation from that expected by the size of class i.
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Applying the same mechanism as above, we estimated the expected proportion of trait-

associated variants (QTL) for each class:

0,
QTL /OclaSSremainiTLg

E(QTL%ciass,) =

" Vvariants -
classremaining

X Variants qs5,% (10),

%

where QTL%Classremaining was the proportion of QTL in the class of remaining variants. Then

QTL%ciass; — E (QTL%classi) can be used to estimate the proportion of QTL included in

each class as a deviation from that expected by the size of class i.

MAF-LD matched enrichment test. Using the Australian cattle genotype data the 16
million sequence variants were first divided into 20 bins using LD score (50kb window size)
calculated using GCTA ', Within each of these LD bins, we then divided variants into 20
bins of MAF. This divided the 16 million variants into 400 LD-MAF bins. Then, for a given
set of regulatory variants, e.g., cis €QTL from blood, we laid them over 400 LD-MAF bins to
identify LD-MAF bins associated with this set of regulatory variants and the number of

regulatory variants falling into each bin (N, ). Within each of these LD-MAF bins

€Jdbin

associated with the regulatory variants, we sampled a random set of N, ‘variants. This

€9bin;

random sampling was repeated 1000 times. For the set of regulatory variants, we used the
significance from the GWAS and conditional GWAS (detailed in next paragraph), i.e., -
log(GWAS p), to indicate the effect size which was averaged across all regulatory variants.

Then, for each of 1000 sets of LD-MAF matched random variants, the average -log(GWAS

p) was also calculated. We then used a t-test to quantify the difference of —log(GWAS p)
between regulatory variants and LD-MAF matched random variants, where we used the t
value to indicate the enrichment of GWAS hits in regulatory variatnts compared to that

expected by random variants with matched LD and MAF.
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GWAS and conditional GWAS were used for the enrichment test. The original GWAS of
37 traits in cows had been conducted previously ®. Briefly, the following linear mixed model

was used:
y = mean + breed + bx +a + error (11)

where y = vector of phenotypes for bulls or cows, breed = four breeds for cows (Holstein,
Jersey, Australian Red and MIX); bx =regression coefficient b on variant genotypes X;

a = random polygenic effects ~N(0, Gog*) where G = genomic relatedness matrix based on
all variants and c,> = random polygenic variance; error = the vector of random residual
effects ~N(0, Ioe?), where I = the identity matrix and c. the residual variance. The

construction of GRM followed the default setting (--make-grm) in GCTA'.

The above described MAF-LD matched enrichment test used both the original and
conditional GWAS. The purpose of using conditional GWAS to conduct the enrichment test
was to make sure that the enrichment was not driven by a few large-effect QTL on each
chromosome. We first selected the top 2 variants based on the p-value of the original GWAS
on each chromosome which were at least 1Mb apart. Then we fit these ~2 x 30 top variants in
the COJO analysis implemented in GCTA * to obtain GWAS results conditioned on these
top variants for 37 traits. Then the MAF-LD matched enrichment test was applied to the

results of conditional GWAS of 37 traits.

Metabolomics QTL. The discovery of milk fat polar lipid metabolite QTLs (mQTLs) was
based on the mass-spectrometry quantified concentration of 59 polar lipids in milk from 338
Holstein cows (Supplementary Table 5). The bovine milk was collected as described
previously # and polar lipids were extracted from bovine milk following the previously
developed protocols *°. The chromatographic separation of polar lipids used a Luna HILIC

column (250x4.6 mm, 5 um, Phenomenex) maintained at 30 °C. The lipids were detected by
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the LTQ-Orbitrap mass spectrometer (Thermo Scientific) operated in electrospray ionization
positive (for most polar lipid classes) or negative (for analysis of PI) Fourier transform mode.
The identification of lipid species present in milk was performed as previously reported 4.
Quantification of selected polar lipid species was based on the peak area of parent ions after
normalization by the internal standard. After a quality check, data from 56 metabolites from

320 cows were used for further analysis.

We applied the same BayesRC model in equation 5 to analyse each of these metabolites, with
additional fixed effects of year and batch. The biological prior for the analysis of metabolites
used the 13 classes of regulatory variants detected from multiple tissues as this set explained
the largest proportion of heritability for conventional traits. Then we applied equations 6-8 to
partition the heritability of metabolic traits. We raised the MAF cutoff to >0.025 in the

analysis of metabolic traits as the sample size is relatively small.

Conserved variants. Conserved genome sites in cattle were based on the lifted over
(https://genome.ucsc.edu/cgi-bin/hgLiftOver) human sites with PhastCon score 4’ >0.8
computed across 30 mammals and 100 vertebrate species. The human PhastCon data was
downloaded from UCSC genome database

(http://hgdownload.cse.ucsc.edu/goldenpath/hg38/phastCons30way/ and

http://hgdownload.cse.ucsc.edu/goldenpath/hg38/phastCons100way/). The downloaded

Wiggle files were converted to bed files which were used by the LiftOver tool as an input.

Another input for LiftOver was the chain file between hg38 and cattle ARS-UCD1.2.

Meta-analysis of GWAS. For variants that appeared in multiple studies, we used the formula
based on the inversed variance from METAL “® to conduct meta-analysis. When combined
betameta and semeta Were obtained we calculated the tmet = betameta / S€meta and the phenotypic

variance explained by a variant was determined by the formula:
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b2
2 J—
W = X /N = tZ/N = (53) /N (equation 12)

where where 1, was the proportion of phenotypic variance explained by a variant, y? was the

p

chi-square value of the effect of the variant which is equal to the square of t value (b/se), t2,
of the effect of the variant from GWAS; N was the sample size of the GWAS; b was the

GWAS beta of the variant and se is the standard error of b.

Data and code availability

The newly generated RNA-seq data (356 blood and 268 milk cells) will be made public via
NCBI SRA (accession available upon manuscript publication). Other RNA-seq data can be

accessed via the CattleGTEx consortium (http://cgtex.roslin.ed.ac.uk/). Linear mixed model-

based summary statistics of mapped eQTL and sQTL from each of the 16 tissue and the

multi-tissue analysis is available at https:/figshare.com/s/d6582f654a8a25160946. The DNA

49,50

sequence data as part of the 1000 Bull Genomes Consortium™ " are available to consortium

members and the membership is open. Sequence data of 1832 samples from the 1000 Bull

Genome Project have been made publicly available at https://www.ebi.ac.uk/eva/?eva-

study=PRJEB42783. DataGene Australia (http://www.datagene.com.au/) are custodians of

the raw phenotype and genotype data of Australian farm animals. Access to these data for
research requires permission from DataGene under a Data Use Agreement. Other supporting
data are shown in the Supplementary Materials of the manuscript. The linear mixed model

analysis used GCTA '“. The Bayesian analysis used BayesRC'.
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