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Summary

There are often sudden changes in the state of environment. For a decision maker, accurate
prediction and detection of change points are crucial for optimizing performance. Still unclear,
however, is whether rodents are simply reactive to reinforcements, or if they can be proactive to
estimate future change points during value-based decision making. In this study, we characterize
head-fixed mice performing a two-armed bandit task with probabilistic reward reversals. Choice
behavior deviates from classic reinforcement learning, but instead suggests a strategy involving
belief updating, consistent with the anticipation of change points to exploit the task structure.
Excitotoxic lesion and optogenetic inactivation implicate the anterior cingulate and premotor regions
of medial frontal cortex. Specifically, over-estimation of hazard rate arises from imbalance across
frontal hemispheres during the time window before the choice is made. Collectively, the results
demonstrate that mice can capitalize on their knowledge of task regularities, and this estimation of
future changes in the environment may be a main computational function of the rodent dorsal

medial frontal cortex.
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Introduction

In life, we experience twists and turns — discrete events that abruptly alter the state of environment.
In some cases, the change is a one-time occurrence that is impossible to predict. We must then
adjust by assessing the new situation following the change. However, in other cases, the changes
may occur repeatedly with certain tendencies. For example, a favorite chef in a restaurant may
have a recurring schedule where she cooks throughout the year, except in the summer for 3 — 5
weeks when she would take a vacation and lets a substitute take over. As a patron, it would be
advantageous to learn this pattern, anticipate the impending switches, and maximize the chance of
receiving a delicious outcome. While it is evident that humans can estimate change points and
leverage the information in decision-making, whether animals such as mice have this ability and the

neural substrates supporting the computations remain unclear.

A classic paradigm to study decision-making in response to repeated changes is the two-armed
bandit task. Each trial, the animal has two options, and each option is associated probabilistically
with a reward. After a certain number of trials, the reward probabilities are switched among the
options. The two-armed bandit task is widely used because it can be tested in different species
including humans (Tsuchida, Doll, and Fellows 2010; Evers et al. 2005; O’'Doherty et al. 2001),
monkeys (Costa et al. 2015; Donahue and Lee 2015; Clarke, Robbins, and Roberts 2008), rats
(Groman et al. 2019; Hamid et al. 2016; Sul et al. 2010; Bari et al. 2010; Ito and Doya 2009;
Samejima et al. 2005), and mice (Grossman, Bari, and Cohen 2022; Hattori et al. 2019; Tai et al.
2012). Moreover, the paradigm has translational significance because it can reveal defects from
pharmacological interventions or in animal models for psychiatric disorders (Costa et al. 2015;
Groman et al. 2018; Liao and Kwan 2021).

Most analyses of rodents performing two-armed bandit and related decision-making tasks have
relied on simple reinforcement learning schemes such as Q-learning algorithms (Wang et al. 2022;
Bari et al. 2019; Hattori et al. 2019; Groman et al. 2019; Ito and Doya 2015; Sul et al. 2010), but
see (Ito and Doya 2015). Q-learning algorithms assume that animals learn from experience, and
therefore choice behavior adapts only after a change point has occurred. By contrast, recent
studies in monkeys and humans have challenged this assumption. Namely, primates can exploit
predictable structure in a task and adjust for an impending change point (Bartolo and Averbeck
2020; Jang et al. 2019; Costa et al. 2015). Indeed, under a few select situations, rodents also seem

to make inferences about hidden states (Liu, Xin, and Xu 2021; Vertechi et al. 2020; Starkweather,
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Gershman, and Uchida 2018). These recent results hint at the possibility that mice may leverage

their knowledge of task structure for probabilistic reward learning.

To test the possibility that rodents may estimate change points during probabilistic reward learning,
we trained head-fixed mice on a two-armed bandit task. By analyzing a sizable data set totaling
1,007 sessions involving 15,352 reversals, we demonstrate that mice are sensitive to impending
switches in reward probabilities, because they alter their choices prior to the actual change points.
We show that the animals’ choice behavior can be modelled effectively with a Bayesian framework
involving belief updating and choice kernels. Furthermore, we performed unilateral and bilateral
excitotoxic lesions and optogenetic inactivation to demonstrate mechanistically how the anterior
cingulate and premotor regions of medial frontal cortex may be involved in the computation.
Together, the results indicate that mice can take advantage of the task structure to solve a classic
probabilistic reward learning task and implicate the dorsal medial frontal cortex as a locus in the

accurate estimation of future changes in the state of environment.

Results

Mice use their knowledge of the task structure duri ng a two-armed bandit task

We trained head-fixed C57BL/6J mice on a two-armed bandit task involving probabilistic reward
reversals. On each trial, the mouse could choose left or right by a directional tongue lick. The two
options were associated with different reward probabilities, e.g., “70:10” for 70% and 10% chance
to receive water from the left and right spouts respectively (Figure 1A — B ). The reward
probabilities would flip when the animal reaches the switching condition, which is a performance-
dependent number of trials to fulfill a criterion (Lcrieerion, 10 trials choosing the better option) followed
by a performance-independent random number of trials (Lrandom, drawn from a geometric
distribution with p = 0.0909 and truncated at 30). In an example session shown in Figure 1C, the
animal performed more than 500 trials, including 15 reversals of 70:10 and 10:70 blocks. To
visualize how animals adjust to the sudden changes in reward probabilities, we aligned the trials by
the time of block switches. As expected, mice primarily chose the better option pre-switch, and then
quickly adapted their preferred action post-switch (Figure 1D, n = 31 mice, 617 sessions, 9,163
blocks).
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99
100 Figure 1: Mice were sensitive to block length and leverage this information during the two-  armed bandit task
101 (A) The mouse makes a left or right choice via tongue lick after the go cue. Depending on the reward probabilities, the
102 choice might lead to water. (B) Trials were organized into blocks, each with distinct reward probabilities: "70:10" (70%
103 chance to receive water for left choice; 10% for right) or "10:70" (10% for left; 70% for right). The block switches after the
104 animal choose the high-reward-probability side ten times (Lcriterion) Plus an additional random number of trials (Lrandom,
105 drawn from exponential distribution, up to 30 trials). (C) Performance of a mouse in one example session. The top row
106 shows reward probabilities for left and right options. The bottom row shows the animal's choices and the outcomes. (D)
107 Choice behavior around block switches. Thin line, mean values for individual animal. Thick line, mean values and SEM
108 for all animals. (E) Histogram of Lrandgom. FOr all blocks with Leiterian 20. Colors indicate the 4 ranges of Lrandom for
109 subsequent analyses. (F) Choice behavior around block switches, plotted separately for the 4 ranges of Lrandom. Mean
110 values and SEM for all animals. (G) The probability of choosing the better option on the trial immediately preceding the
111 switch, as a function of Lrandom for the block preceding the switch. Mean values and SEM for all animals. (H) The number
112 of trials to reach midpoint (when animal is equally likely to choose either option) as a function of Lrandom for the block

113 preceding the switch. Mean values and SEM for all animals. n = 31 mice, 617 sessions.

114

115 Animportant parameter in our task is Lrandom, Which dictates the frequency of reversals. Although
116 the animals cannot know the exact value of Lrangom DEfOre each switch because it is drawn

117 randomly, it is possible for the mice to learn the statistical distribution of Lrangom. This knowledge
118 may then be used to infer that the more trials that an animal stays at the better option, the more
119 likely that a block switch might have already occurred. To determine if mice were making use of
120  such knowledge of the task structure, we analyzed the subset of 7,396 blocks in which animals

121 were performing at expert level (Lcrierion  20). Figure 1E shows the histogram of Lrangom Values for
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these trial blocks, exhibiting the geometric distribution as the task was designed. We found that if
Lrandom Was large in the preceding block, the animals tended to choose the better option less
frequently prior to the block switch, and subsequently adapted faster after the block switch (Figure
1F). These results suggest that the mice may anticipate an impending change point and adjust their

behavior prior to the block switch.

To quantify the observations, we computed P (better option) pre-switch, the probability of selecting the
better option in the trial immediately before the block switch, and trials to reach midpoint, the
number of trials from switch for P (better option) to reach 0.5. These analyses confirmed the
influence of Lrangom ON choice patterns around a block switch (main effect of Lrangom: F (30, 5544) =
6.0743, P < 0.001, one-way ANOVA; Figure 1G) and their speed to adjust after a block switch
(main effect of Lrangom: F (30, 711) = 2.1316, P < 0.001, one-way ANOVA; Figure 1H ). We reiterate
that the animal could not predict the value of Lrandom, Which was drawn randomly for each block.
However, the tendencies around a block switch are consistent with learning the task structure,
namely aspects of the statistical distribution of Lrangom, presumably through repeated training over
dozens of sessions on the two-armed bandit task. As the animal dwells in a block selecting the
same better option for many trials, it becomes more probable that a change point in reward
probabilities has occurred and therefore the animals should explore the alternate option more.
Overall, these results demonstrate that mice were sensitive to the block length — a key feature of

the task structure — and could leverage this information during the two-armed bandit task.

Effects of unilateral lesion of ACAd/MOs on choice behavior around switches

Prior studies implicated the anterior cingulate cortex in behavioral flexibility in the face of variability
in the environment (Behrens et al. 2007; Soltani and Izquierdo 2019). The related region in the
mouse is the dorsal aspect of the medial frontal cortex, encompassing the anterior cingulate
(ACAd) and medial secondary motor (MOs) areas (Barthas and Kwan 2017; Laubach et al. 2018).
To determine the role of ACAd/MOs, we trained mice until they reached expert performance, and
then performed unilateral excitotoxic lesion by injecting ibotenic acid into the ACAd/MOs region in
the left or right hemisphere (n =5 and 4 mice respectively, 200 pre-lesion and 142 post-lesion
sessions in total; Figure 2A). For clarity, we will collapse the two groups and refer to trial blocks as
‘lesion’, if the lesioned side was the better option, or ‘contra’ if the side contralateral to the lesion
was the better option (Figure 2B ). Post hoc histology with cresyl violet staining confirmed the loss
of cell bodies at the targeted ACAd/MOs location (Figure 2C — D). After the lesion, animals

performed a similar number of trials and block switches (Supplementary Figure 2.1 ) and had no
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motor deficit in licking (Supplementary Figure 2.2) . Post-lesion mice exhibited block length-
dependent choice patterns (Figure 2E ). However, with the unilateral loss of ACAd/MOs, for the
switch from lesion block to contra block, this tendency to choose the worse option pre-switch
exacerbated with increasing Lrandom (I€ft panel, Figure 2E ). Summary of the data reaffirmed that
animals with unilateral ACAd/MOs lesion were selecting the worse option at the expense of
exploiting the better option pre-switch, specifically when Lrangom Was large in the preceding block
(main effect of lesion: P < 0.001, main effect of Lrangom: P < 0.001, lesion * Lrandom interaction: P =
0.044, three-way ANOVA,; Figure 2F, Supplementary Table 2.1 ). Although they appeared to adapt
faster after the switch relative to control animals (main effect of lesion: P < 0.001, main effect of
side: P = 0.003, lesion * side interaction: P = 0.038, Lrandom * Side interaction: P = 0.004, three-way
ANOVA,; Figure 2G ), overall the performance suffered after the lesion (main effect of lesion: P =
0.027, main effect of side: P = 0.045, main effect of Lrandom: P < 0.001, lesion * Lrandom interaction: P
=0.027, three-way ANOVA,; Figure 2H). The data therefore show that unilateral lesion of the
ACAd/MOs impairs the proper estimate and use of task structure knowledge during probabilistic

reward learning.

Figure 2: Unilateral lesion of ACAd/MOs altered blo  ck-length- dependent choice behavior and impaired overall |
performance
(A) Schematic representation of the unilateral excitotoxic lesion via injection of ibotenic acid. (B) Lesion blocks refers to

blocks in which the lesioned side is the better option. Contra blocks refer to blocks in which the lesioned side is
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contralateral to the better option. (C, D) Post hoc histology with cresyl violet staining to confirm the loss of neurons in
ACAd/MOs. (E) Choice behavior around block switches, plotted separately for the 4 ranges of Lrandom- Black, pre-lesion.
Green, post-lesion. Left, switches from lesion block to contra block. Right, switches from contra block to lesion block.
Mean values and SEM for all animals. (F) The probability of choosing the better option on the trial immediately preceding
the switch, as a function of Lrandom fOr the block preceding the switch. Black, pre-lesion. Green, post-lesion. Mean values
and SEM for all animals. (G) Similar to (F) for number of trials to reach midpoint (when animal is equally likely to choose
either option). (H) Similar to (F) for hit rate (probability for animal to choose the better option). For (F) — (H), significant
main effects and interactions from three-way ANOVA were indicated (P < 0.05). n = 9 mice, 200 pre-lesion sessions and

142 post-lesion sessions.

A hybrid model of belief and choice kernels to expl ain the animals’ behavior

To gain insight into the empirical findings, we fitted different computational models to the data. We
were specifically drawn to two emerging ideas in the field of decision-making. First, the concept of
belief enables an agent to apply their knowledge of the task structure (Jang et al. 2019). Namely,
the two-armed bandit task in this study can be deconstructed as an environment with 2 states
('70:10’ and '10:70"), each with their optimal action (choose left and right, respectively). In this
scheme, each trial, the agent maintains a belief, which is a mixture of probabilities that the task is
currently at each of the states, and acts accordingly. After the outcome is presented, the belief is
updated based on the outcome and the agent’s estimate of the likelihood of a change point, i.e., the
reversal of reward probabilities, which is known as the hazard rate . Second, choice kernels can
be used to capture an agent’s tendency to repeat the previous actions (Wilson and Collins 2019).
The choice kernels are updated based on the prior action, scaled by a learning rate . Our belief-
CK model contains components for belief and choice kernels, and integrates their outputs for action
selection based on a softmax function with separate inverse temperature parameters for belief,

and choice kernel,  (Figure 3A, Supplementary Figure 3.1 - 3.4 ). Fit to an example session of
animal data suggests that this 4-parameter belief-CK model can recapitulate the choice behavior of

the mouse in the two-armed bandit task (Figure 3B — E ).
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205

206 Figure 3: A hybrid model of beliefs and choice kern  els to explain the behavior

207 (A) The schematic representation of the belief with choice kernel model (belief-CK). The model has four parameters:
208 (hazard rate), (inverse temperature for belief), (learning rate for choice kernel) and  (inverse temperature for

209 choice kernel). (B — E) An example session along with the fits from the belief-CK model, including reward probabilities for
210 left and right options (B) the running-average of probability of choosing right for the animal (black) and model (purple) (C),
211  the belief that the left option is associated with reward probability of 10% (pL10, blue) or 70% (pL70, red) (D), and the
212 choice kernels for left (blue) and right options (red) (E). (F) Model comparison between the belief-CK model and 7 other
213 models. Lower log BIC values indicate a better fit. (G) The tally of the best-fitting model for each animal. (H) The

214 probability of choosing the better option on the trial immediately preceding the switch, as a function of Lrandom for the

215 block preceding the switch. Black, mice. Purple, simulated performance using the belief-CK model with best-fitting

216 parameters. Mean values and SEM for all animals. (I) Similar to (H) for number of trials to reach midpoint (when animal is
217 equally likely to choose either option). (J) Similar to (H) for the tendency to win-stay on the 5 trials preceding the switch.

218 (K) Similar to (H) for the tendency to lose-switch on the 5 trials preceding the switch. n = 31 mice, 617 sessions.

219

220 We compared the belief-CK model against 7 other computational models (see Methods). We

221  started with the win-stay, lose-switch (WSLS) and 3 classic reinforcement learning algorithms

222  including Q-learning (Q-RPE), Q-learning with forgetting (F-Q-RPE), and Q-learning with differential
223  forgetting (DF-Q-RPE) (Ito and Doya 2015, 2015). We then examined effects of adding choice

224 kernels, by testing DF-Q-RPE with choice kernels (DF-Q-RPE-CK), because DF-Q-RPE was the
225  best fit in the initial set of 4 algorithms, and F-Q-RPE with choice kernels (F-Q-RPE-CK), because
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this model has the same number of free parameters as the belief-CK model. Finally, we also tested
the belief model alone without choice kernels. Model comparison based on Bayesian information
criterion (BIC) revealed that inclusion of choice kernels improved the fits significantly. Moreover, the
belief-CK model had the lowest BIC values (Figure 3F ; belief-CK versus F-Q-RPE-CK: tgo= 2.562,
P = 0.013, paired t-test; belief-CK versus DF-Q-RPE-CK: t5o= 2.313, P = 0.024), and was the best
fit for 30 out of 31 animals in this study (Figure 3G ). For each session, we can simulate the belief-
CK model using the best-fitting parameters and compare the tendencies of the simulated and
experimental data. This exercise shows that the belief-CK model can capture the Lrangsom-dependent
choice behavior in the experimental data (Figure 3H — K ), which is not possible with the classic
reinforcement learning algorithm DF-Q-RPE (Supplementary Figure 3.5 ). These analyses
demonstrate that simple models of reward-based learning such as Q-learning algorithms cannot
fully account for the observed choice behavior. Instead, the results support our intuition that mice

were estimating change points, which is formalized as the hazard rate in the belief-CK model.

Unilateral ACAd/MOs lesion led to side-specific inc ~ rease in hazard rate for change points

Next, we applied the computational model to quantify the effect of unilateral ACAd/MOs lesion. To
account for the possibility of side-specific alterations, we modified the 4-parameter belief-CK model
to include 6 parameters to include differential learning for the sides ipsilateral and contralateral to
lesion (see Methods; , , , , and ). After fitting the expanded
model to animal data, we compared pre- versus post-lesion performance in two ways. First, on a
per-animal basis, sessions before or after the lesion were concatenated for fitting to yield one set of
pre-lesion parameters and one set of post-lesion parameters for each animal. Second, on a per-

session basis, each session was analyzed separately and the fitted parameters were summarized.

These analyses revealed a side-specific increase in hazard rate after unilateral ACAd/MOs lesion.
The exaggerated hazard rate for the side contralateral to lesion was detected on a per-
animal basis (Figure 4A ; pre- vs. post-lesion, : P =0.004; post-lesion, VS. P
= 0.810, Wilcoxon signed-rank test), and on a per-session basis (Figure 4B ; pre- vs. post-lesion,

: P =0.001; post-lesion, VS. : P <0.001, Wilcoxon rank sum test). Unilateral
ACAd/MOs lesion also led to an increase in choice perseveration for both sides, reflected as higher
choice-kernel learning rates (Figure 4C — D; per-animal, pre- vs. post-lesion, :P=0.012;

: P =0.004; per-session, pre- vs. post-lesion, : P <0.001; : P <0.001,

Wilcoxon ranked sum test). Action selection depends on the inverse temperature sum,
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reflecting the exploration-exploitation balance, and inverse temperature ratio—— reflecting the

relative reliance on belief over choice kernels. There was no detected difference in inverse
temperature sum between pre- and post-lesion animals (Figure 4E — F, per animal, P = 0.567; per
session P = 0.858, Wilcoxon signed-rank test). By contrast, the inverse temperature ratio was
heightened after the lesion (Figure 4G — H, per animal P = 0.038; per session P = 0.001, Wilcoxon
signed-rank test). Collectively, these analyses show that the consequences of unilateral ACAd/MOs
lesion are a contralateral side-specific increase in hazard rate, and broad increases in choice

perseveration and reliance on belief for action selection.

Figure 4: Effects of unilateral lesion of ACAd/MOs is consistent with a side-specific increase in haza rd rate

(A) The hazard rates, before and after lesion, extracted by fitting the belief-with-choice-kernel model on a per-animal
basis. Square, hazard rate for side ipsilateral to lesion. Cross, hazard rate for side contralateral to lesion. Inset, violin plot
of the same data. (B) The hazard rates, before and after lesion, on a per-session basis. Mean and SEM. (C — D) Similar
to (A — B) for learning rate for choice kernel. (E) The inverse temperature sum, before and after lesion, on a per-animal
basis. (F) The inverse temperature sum, before and after lesion, on a per-session basis. (G - H) Similar to (E — F) for
inverse temperature ratio. *, P < 0.05. n.s., not significant. n = 9 mice, 190 pre-lesion sessions and 140 post-lesion

sessions.
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Accurate change point estimation depends on the bal ance between the left and right
hemispheres

The results so far from unilateral lesions suggest two potential mechanisms for change point
estimation. The first possibility is that the computation of change point estimation is lateralized,
such that the left hemisphere is involved in estimation for the right side, and vice versa. If this is the
case, for a bilateral lesion, we would expect aberrant increases of hazard rates for both sides. The
second possibility is that the estimation of change points involves inter-hemispheric coordination,
which was perturbed by disruption of one hemisphere. If true, the lack of medial frontal cortex on
both sides could nullify their respective maladaptive influences on behavior, and we may observe
no or milder deficit after a bilateral lesion of ACAd/MOs. To distinguish between these two
possibilities, we injected ibotenic acid bilaterally to the left and right ACAd/MOs regions in expert
mice. Animals with bilateral lesions performed fewer trials per session, and accordingly fewer block
switches (Figure 5A — B, Supplementary Figure 5.1; P < 0.001, Wilcoxon signed-rank test), but
had no motor deficit (Supplementary Figure 5.2 ). Surprisingly, and in line with inter-hemispheric
coordination, there was no detectable change in the Lrangom-dependent choice behavior (Figure 5C
— D, Supplementary table 5.1 ), and no significant changes in the latent decision parameters
including hazard rates (Figure 5E — H ). Comparison to sham animals in which saline was injected
unilaterally (Figure 5I-P, Supplementary table 5.2 ) highlights again that the only effect of bilateral
lesion was diminished motivation to perform the task. The reduced motivation to perform trials is
consistent with a prior work from the lab (Siniscalchi et al. 2016). More importantly, these results
argue against change point estimation as a lateralized computation in ACAd/MOs, but rather point

to unbalance between the hemispheres as the reason for behavioral deficits.
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Figure 5: Effects of bilateral and sham lesions of ACAd/MOs

(A) The number of trials performed in each session, before and after bilateral lesion, on a per-session basis. Mean and
SEM. (B) Similar to (A) for the number of block switches in each session. (C) The probability of choosing the better option
on the trial immediately preceding the switch, as a function of Lrandom for the block preceding the switch, before and after
bilateral lesion, on a per-session basis. Mean and SEM. Significant main effects and interactions from three-way ANOVA
were indicated (P < 0.05). (D) Similar to (C) for number of trials to reach midpoint (when animal is equally likely to choose
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either option). (E) The hazard rates, before and after bilateral lesion, extracted by fitting the belief-CK model on a per-
session basis. Mean and SEM. (F) Similar to (E) for learning rate for choice kernel. (G) Similar to (E) for inverse
temperature sum. (H) Similar to (E) for inverse temperature ratio. (I — P) Similar to (A — H) for sham controls with
unilateral saline injection. n.s., not significant. For bilateral lesion, n = 4 mice, 105 pre-lesion sessions and 61 post-lesion

sessions. For saline control, n = 4 mice, 117 pre-lesion sessions and 53 post-lesion sessions.

Medial frontal cortex impacts the decisions during action selection

Permanent lesions are advantageous because, compared to transient inactivation, they avoid
confounds from potential acute off-target effects (Otchy et al. 2015). However, it is unclear which of
the lesion-induced behavioral changes are due directly to ACAd/MOs disruption, and which other
consequences are compensatory adjustments. For this reason, we performed transient inactivation
experiments using optogenetics. Mice were implanted with a clear-skull cap that has ~50% optical
transmission (Supplementary Figure 6.1A ). For photostimulation, we used a laser-steering system
(Pinto et al. 2019), in which the excitation beam from a 473 nm laser was steered by a set of mirror
galvanometers to specific locations with high spatial and temporal resolutions (Figure 6A ). We
calibrated the linearity of the steered coordinates as a function of galvanometer voltages and the
spatial profile of the laser beam (Supplementary Figure 6.1B — C ). We demonstrated that the
system can effectively manipulate neural activity by showing elevated c-fos immunohistostaining
after unilateral photostimulation of ACAd/MOs in CaMKI11a®®;Ai32 animals (Supplementary Figure
6.1D — F), and inducing biased tongue licks during the two-armed bandit task by inhibiting the

anterolateral motor cortex in Pvalb®™;Ai32 animals (Supplementary Figure 6.2)
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329

330 Figure 6: Optogenetic inactivation in pre-choice, b ut not post-choice, period reproduced the deficit i n change-
331  point estimation

332 (A) The schematic representation of experimental setup. (B) CCD image of a mouse with a cleared skull cap. The two
333 blue crosses indicate the locations of the photostimulation, i.e. left and right ACAd/MOs. (C - D) The trial and block

334 structures, and the timing of the photostimulation. (E) Choice behavior around block switches, plotted separately for the 4
335 ranges of Lrandom- Black, control trials. Green, pre-choice inactivation trials. Left, switches from ipsi block (photostimulated
336 side was the high-reward-probability option). Right, switches from contra block ((photostimulated side was the low-

337 reward-probability option). Mean values and SEM for all animals. (F) Similar to (E) for post-choice inactivation. (G) The
338 hazard rates extracted by fitting a modified belief-CK model, for pre- and post-choice inactivation, on a per-animal basis.
339  (H) Similar to (G) for learning rate for choice kernel. (I) Similar to (G) for inverse temperature sum. (J) Similar to (G) for
340 inverse temperature ratio. n = 6 animals.

341

342  To suppress excitatory activity in ACAd/MOs during block switches, we used Pvalb®®;Ai32 animals
343  in which the channelrhodopsin ChR2 was selectively expressed in parvalbumin-expressing (PV)
344  GABAergic interneurons (n = 6). Targeted photostimulation would activate PV interneurons in the

345  left or right ACAd/MOs (Figure 6B ), which would in turn silence local excitatory spiking activity



bioRxiv preprint doi: https://doi.org/10.1101/2022.05.26.493245; this version posted May 29, 2022. The copyright holder for this preprint (which

346
347
348
349
350
351
352
353
354
355
356
357
358

359
360
361
362
363

364

365
366
367
368
369
370
371
372
373
374
375
376
377
378

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

(Guo et al. 2014; Li et al. 2019). These transient inactivations were applied either at the time of
action selection (“pre-choice”, from cue onset to lick response) or after the outcome (“post-choice”,
from lick response for 2 s; Figure 6C ), and on every trials across two consecutive blocks such that
activity was suppressed before and after certain block switches (Figure 6D ). Figures 6E—F show
the effects of pre- and post-choice inactivation on behavior around block switches, separating the
data based on whether the high-reward-probability side is ipsilateral or contralateral to the
perturbation. Quantification of the behavior showed that pre-choice inactivation, but not post-choice
inactivation, significantly affected the change point estimation (Supplementary Figure 6.3, main
effect of block length: F(3, 1999) = 49.778, P < 0.001; main effect of stimulation type: F (1, 1999) =
7.974, P = 0.004; interaction between block length and stimulation: F(3, 1999) = 2.674, P = 0.046;
interaction between block length, stimulation and stimulation type: F(3, 1999) = 2.625, P = 0.049).
Fitting to the belief-CK model, expanded to account for the optogenetic stimulation (see Methods;

, , , , , , , and

), highlights the strongest effect is an acute change to hazard rate contralateral to the

transient inactivation, although there were variations across individual animals and effect was not

statistically significant (Figure 6G ; pre-choice inactivation, VS. : P =0.156;
post-choice inactivation, VS. : P = 0.687; pre-choice inactivation, VS.

: P = 0.094; post-choice inactivation, VS. : P =0.562, Wilcoxon signed-
rank test). There were no detectable effects of transient inactivationon ,—— and

(Figure 6H — J) . Together with the results from unilateral lesions, we interpret these findings from
acute inactivation to indicate that ACAd/MOs is involved specifically in the change point estimation

process, which occurs during the pre-choice period.

Discussion

This study provides evidence that mice anticipate impending change points by altering their choices
prior to switches in a classic probabilistic reward learning task. Computational analyses indicate
that the animals’ choice behavior is consistent with a model of belief updating and choice
perseveration. Causal perturbation experiments emphasize the role of the ACAd/MOs region of the
medial frontal cortex. Crucially, as discussed below, the collective results from the range of
manipulations employed — unilateral and bilateral lesions, as well as pre- and post-choice
optogenetic inactivation — provide important insights that can constrain the potential neural

mechanisms underlying change-point estimation during decision-making.
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379  Although many studies of decision-making in rodents relied on analyses involving Q-learning

380 algorithms (Wang et al. 2022; Bari et al. 2019; Hattori et al. 2019; Groman et al. 2019; Ito and Doya
381  2015; Sul et al. 2010), there are other reports suggesting deviations from simple reinforcement
382 learning. For instance, a pioneering study demonstrated that rats are exceedingly sensitive to

383 changes in reward rates, approximating an ideal observer (Gallistel et al. 2001). Moreover, several
384  studies using a variety of timing, operant conditioning, decision, and sensory categorization tasks
385 have found neural and behavioral data consistent with the use of belief in rodents (Karlsson, Tervo,
386 and Karpova 2012; Li and Dudman 2013; Liu et al. 2021; Starkweather et al. 2017; Vertechi et al.
387 2020). However, these prior studies are different because in some cases, the use of belief did not
388 necessarily confer better performance over other strategies for the task (Starkweather et al. 2017).
389 In other cases, the task employs a series of deterministic outcomes (Vertechi et al. 2020), which
390 strongly favors switching behaviors. Our study therefore extends these past results by showing
391 decisions consistent with belief updating in one of the most popular value-based decision-making
392  tasks used for human and animal studies (Sutton and Barto 2018).

393

394  To quantify the animals’ behavior, we proposed a model involving belief updating with a fixed

395 hazard rate, which was motivated by a prior study (Jang et al. 2019) and adapted to fit our task
396 design. In this model, the agent understands that each action is associated with one of two reward
397 probabilities. Given information from its choice and reward history as well as knowledge of the

398 probability of a switch in reward probabilities, the agent infers the likelihood of the current states
399 associated with the actions. This is in sharp contrast to the Q-learning algorithms, where the agent
400 is implicitly ignorant of the task structure, and simply updates action values based on the last trial's
401  action and outcome. For belief updating, one limitation for our model is that the hazard rate is a
402  constant value within a session. This assumption seems reasonable because mice were trained on
403 the task extensively and probably accrue knowledge of the hazard rate based on experience of
404  multiple switches across many sessions. That said, in principle, it is possible for an agent to infer
405 the hazard rate as the task proceeds (Wilson, Nassar, and Gold 2010), which could be a

406 refinement for future analyses.

407

408 To determine the role of the medial frontal cortex, we started with excitotoxic lesions because the
409 approach has numerous merits (Vaidya et al. 2019). Specifically, lesions can mitigate diaschisis,
410 where the sudden loss of cortical excitations can be a confounding factor (Otchy et al. 2015).

411  Moreover, we employed unilateral lesions, such that we can compare effects between sides

412  ipsilateral and contralateral to the lesion in the same animal, serving as a rigorous internal control.
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Results from these experiments demonstrated lateralized deficits from lesions of the medial frontal
cortex. This finding may be surprising, because although sensory and motor functions are typically
expected to be lateralized, it is less obvious that cognitive function may also be side-dependent.
However, we note that a few prior studies have also found side-specific decision-making deficits
from unilateral manipulations, such as effects of dorsal striatum on action values (Tai et al. 2012)
and effects of MOs on lapses in a multisensory task (Pisupati et al. 2021). The exact reason for
side-specific effects is unclear, although one possibility is that when decisions are intimately tied to
responses associated with lateralized motor actions, then there is embodiment and motor and

premotor cortical regions become involved in the neural computation (Bennur and Gold 2011).

The various deficits arising from lesion and optogenetic manipulations are useful for thinking about
the potential mechanisms for how the medial frontal cortex contributes to belief updating and more
specifically change-point estimation. An inaccurate estimate, which would reflect as altered hazard
rate in our computational model, can occur for several reasons: (1) error in estimating the value of
hazard rate, (2) error when using the hazard rate to update belief, and (3) error when using the
prior choice and reward to update belief. Reason (3) was not explicitly tested in our model fits but
could manifest as an apparent change in hazard rate. Among these possibilities, the first option
seems unlikely. In our task, an accurate value for hazard rate cannot be determined quickly but
must be calibrated by experiencing many switches across multiple sessions. This is difficult to
reconcile with the immediate deficit observed with pre-choice optogenetic inactivation. The third
option is also unlikely. Previous studies have shown that choice- and outcome-related signals arise
in the medial frontal cortex shortly after the outcome (Siniscalchi, Wang, and Kwan 2019; Sul et al.
2011), whereas optogenetic inactivation during this post-choice period was ineffective. Therefore, it
may be the case that the medial frontal cortex is involved in incorporating the likelihood of an

impending change point for estimating the current task state.

Furthermore, rather than computing using a probability such as the hazard rate, the animal may
instead approximate the process by employing simpler heuristics to predict the impending
occurrence of a change point. One intuitive heuristic, consistent with the reason for lateralized
deficits, is that the animals may rely on the recent choice history of the number of better options
chosen, which would indicate a higher likelihood of an impending switch. Here, the lack of effect
from bilateral lesions can shed light on the form of the heuristic. For example, one heuristic that can
work is a ratio of the number of recent left choices divided by the number of recent right choices,

and if the unilateral lesion effectively adds a multiplier to the side’s choice history, then a bilateral
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447  perturbation would lead to a null effect. Heuristics based on choice history are plausible because
448 the medial frontal cortex has long-lasting, persistent representation of past choices (Bari et al.
449 2019; Hattori et al. 2019; Siniscalchi et al. 2016; Sul et al. 2011). One caveat for this line of logic is
450 that it is based on a specific belief updating model. However, we discuss the implications to

451  illustrate how the results can inform the underlying neural basis.

452

453  To sum, the two-armed bandit task has gained widespread use in neuroscience and artificial
454  intelligence research because of its simplicity, translational significance, and amenability to

455  computational modeling. Our results show that mice may perform the task by not only updating
456  based on choices and outcomes, but also leverage knowledge of the environment to estimate
457  change points. The diminished or exaggerated use of this prior knowledge represents suboptimal
458  decision-making, which may underlie pathological behaviors in neuropsychiatric disorders that
459 involve dysfunctions of the medial frontal cortex.

460

461

462 METHODS

463 Lead Contact

464  Further information and requests for resources and reagents should be directed to and will be
465  fulfilled by the Lead Contact, Alex Kwan (alex.kwan@yale.edu)

466

467  Materials Availability

468  All published reagents and mouse lines will be shared upon request within the limits of the

469 respective material transfer agreements. Detailed plans including parts list for constructing the
470  behavioral training apparatus is available at https://github.com/Kwan-Lab/behavioral-rigs.

471

472  Data and Code Availability

473  Data and analysis software for this paper will be available at Github (https://github.com/Kwan-Lab).
474
475 EXPERIMENTAL MODEL AND SUBJECT DETAILS

476 Mouse lines

477  In this study, we used a total of 30 adult male mice (Table 1; 2 - 8 months old), including 24

478  C57BL/6J wild-type mice (#000664, Jackson Laboratory) for the lesion experiments, and 6

479  Pvalb®®;ROSACACCRZEYFP(Aj32) mice for the photostimulation experiments. The Pvalb®™®;ROSAA®
480  C"R¥EYFP(Ai32) mice were generated by crossing the Pvalb®® (B6.129P2-Pvalb™ A" 3: #017320,



bioRxiv preprint doi: https://doi.org/10.1101/2022.05.26.493245; this version posted May 29, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

481  Jackson laboratory) and ROSASACCNRZEYFP(A(32) (B6.Cg-Gt(ROSA)26S0r™3? (A

482  COPHHIMRIEYFPMze; 3. 4024109, Jackson laboratory) strains. Mice were housed in groups of 2 — 5 per
483 cage in a 12h:12h light:dark cycle with ad libitum access to food. All of the experiments were

484  completed during the light cycle. Experimental procedures were approved by the Yale University
485 Institutional Animal Care and Use Committee.

486

487 METHOD DETAILS

488  Surgery for lesion experiments

489  All of the mice in the lesion study underwent two surgeries. In the first surgery, a stainless steel
490 headplate was attached to the skull to facilitate behavioral training. After collecting baseline

491  behavioral data, a second surgery consisting of either an excitotoxic or sham lesion was performed.
492  Before each surgery, the animal was treated pre-operatively with carprofen (5 mg/kg, i.p.; 024751,
493  Butler Animal Health) and dexamethasone (3 mg/kg, i.p.; Dexaject SP, #002459, Henry Schein
494  Animal Health). At the start of each surgery, anesthesia was induced with 2% isoflurane in oxygen,
495 and the animal was placed on a water-circulating heating pad (TP-700, Gaymar Stryker). The head
496  was secured in a stereotaxic frame with ear bars (David Kopf Instruments). Following induction,
497  isoflurane concentration was lowered to 1 — 1.5% based on the animal’s weight and breathing

498  pattern.

499

500 For the first surgery, the scalp was shaved using scissors and cleaned with povidone-iodine

501 (Betadine, Perdue Products L.P.). A narrow portion of the scalp was removed along the midline
502 from the interaural line to a line visualized just posterior to the eyes. The scalp was retracted to
503  expose the dorsal aspect of the skull and washed thoroughly with artificial cerebrospinal fluid

504 (ACSF; in mM: 5 KCI, 5 HEPES, 135 NaCl, 1 MgClI2, and 1.8 CaCl2; pH 7.3). A scalpel and a

505 ballpoint pen were used to scratch and paint marks onto the skull at the secondary motor and

506  anterior cingulate cortices (MOs/ACAd; +1.5 mm AP, +0.3 mm ML from bregma), to be used as a
507 landmark for the second surgery. A custom-made stainless-steel head plate (eMachineShop) was
508 then bonded to the skull with cyanoacrylate glue (Loctite 454, Henkel) and transparent dental

509 acrylic (C&B Metabond, Parkell Inc.), with care taken to cover any remaining exposed skull. The
510 post-operative care was provided immediately, and for three consecutive days following surgery,
511  consisting of carprofen (5 mg/kg, i.p.) for analgesia and preservative-free 0.9% NaCl (0.5 mL, i.p.)
512  for fluid support. The animal had at least one week for post-operative recovery prior to the onset of
513  behavioral training.

514
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For the second surgery, a 1-mm-diameter circular craniotomy was made over the marked spot
using a high-speed rotary drill (K.1070, Foredom). A total of ~300 nL of ibotenic acid (5 mg/mL in
saline; 505024, Abcam) was injected into two locations (+1.5 mm and +1.7mm AP, +0.3 mm ML
from bregma; 0.4 mm DV) through a glass micropipette attached to a microinjection unit (Nanoject
II, Drummond). More specifically, each location would receive 15 pulses of 9.6 nL of the prepared
solution. To minimize backflow of the injected solution, there was a 1 min gap between each pulse,
and the micropipette was left in place for 20 min after the last pulse. Sham animals underwent the
same surgical procedure, but saline was delivered instead of ibotenic acid. The exposed skull was
covered with dental cement. The animal had two weeks of post-operative recovery prior to

resuming behavioral testing.

Surgery for photostimulation experiments

All of the mice in the photostimulation study underwent one surgery. The animal was anesthetized
in the same way as described above. Procedures to prepare the skull were nearly identical to those
described in (Pinto et al. 2019). Briefly, the scalp covering the dorsal skull surface was

excised and the periosteum over the skull was removed using a micro-curette (VWR Buck Micro
Curette, 10806-346). The skull was washed thoroughly with ACSF. A custom stainless-steel head-
plate (eMachineShop) was affixed at points above the cerebellum and olfactory bulbs with
cyanoacrylate glue (Loctite 454, Henkel) and transparent dental acrylic (C&B Metabond, Parkell
Inc.). The exposed skull was covered with a thin layer of cyanoacrylate glue (Apollo 2000,
Cyberbond) and transparent dental acrylic, then polished with an acrylic polishing kit (0321,
PearsonDental), and finally covered with transparent nail polish (72180, Electron Microscopy
Services). The animal had at least one week of post-operative recovery prior to the onset of

behavioral training.

Behavioral training apparatus
The apparatus for training head-fixed mice was adapted from (Siniscalchi et al. 2016). Detailed
plans including parts list for constructing the behavioral training apparatus is available at

https://github.com/Kwan-Lab/behavioral-rigs. Briefly, the behavioral box was constructed using a

closed compartment of an audio-visual cart (4731T74, McMaster-Carr) that was soundproofed with
acoustic foam (5692T49, McMaster-Carr). The mouse was placed in an acrylic tube (8486K433,

McMaster-Carr), which allowed for postural adjustments but restricted large body movements. Two
metal screws were used to attach the head plate of the mouse onto a custom stainless-steel mount

(eMachineShop). The lickometer was based on a 3D-printed part that held two lick ports
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constructed from 20-gauge needles, and was placed in front of the mouse such that the lick ports
are on the left and right of the animal’s mouth. The position of the lick ports relative to the mouse
could induce considerable side bias and influence response time. To mitigate variations across
sessions, the lickometer was attached to an XYZ translation stage (MT3, Thorlabs) for precise
positioning, and the same set of coordinates were used for the same mouse between sessions.
Water was supplied to the lick ports via Tygon tubing (EW- 95666-01, Cole-Parmer). A touch
detector circuit was used for detecting tongue licks onto each lick port. Water was delivered at the
lick ports by gravity feed and controlled by solenoid valves (EV-2-24; Clippard or MB202-V-A-3-0-L-
204, Gems Sensor Solenoid). The water amount is controlled by the duration of a TTL pulse, and
we calibrated the solenoid to deliver ~2 uL per pulse. All of the electrical circuits for water delivery
and lick detection were connected to a desktop computer via a data acquisition board (USB-201,
Measurement Computing). A pair of speakers (S120, Logitech) were positioned in front of the
animal for auditory stimuli (calibrated to 80 dB). The tasks were programmed in scripts using the
Presentation software (Neurobehavioral Systems), which controlled the entire behavioral apparatus
including stimulus presentation. A table lamp (LT-T6, Aukey) was placed in each box, behind the
mouse, to provide dim ambient light in the box. A camera (SV-USBFHDO1M-BFV, Svpro) was used
to optimize the lick port position at the beginning of each session and monitor the animal’s behavior

throughout the session.

Two-armed bandit task

Mice were fluid-restricted. On training days, animals received all of their water intake from
behavioral training that occurred 1 session per day, 5 days per week. On non-training days and
days when weight measurements fell below 85% of their pre-restriction weight, water was provided

ad libitum in the home cage for 5 minutes.

Prior to any behavioral training, the animal was handled and habituated to head fixation for
increasing durations over three days. Water was manually provided via the lick ports to familiarize
mice with receiving fluid from the lickometer. After 1 — 2 days of habituation, the animal underwent

two phases of shaping.

In the first phase, the animal was trained to alternate between the two lick ports to receive water
rewards. More specifically, on each trial, there would be an auditory cue (duration = 0.2 s, tone with
5 kHz carrier frequency). The onset of the auditory cue is the start of a 5-s long response window,

during which the first lick detected is the animal’s response. The playback of the auditory cue was
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terminated early if the response was recorded before the entire stimulus was played. The animal
was required to alternate between left and right responses to earn water rewards: if the last
rewarded response was left, then the mouse must make a right response to receive water, and vice
versa. The inter-trial interval had a fixed duration, such that the auditory cue for the next trial would
occur 3.1 s after the animal’s response. A session would end when the animal did not lick during
the response window (‘miss’) for 20 consecutive trials. When the animal could attain at least ~60

rewards in a session, the shaping would proceed to the second phase.

In the second phase, the animal still had to alternate, but was trained to the trial structure including
withholding licks between trials. The second phase was similar to the first phase, with two
exceptions. First, the onset of the auditory cue is the start of a 2-s long response window, during
which the first lick detected is the animal’s response. Second, the addition of a no-lick period
between trials. The no-lick period began 3 s after the animal’s response. Initially, the duration of the
no-lick period was drawn from a truncated exponential distribution ( = 0.33333, minimum =1,
maximum = 5). If any lick was detected during the no-lick period, then another duration drawn from
the same truncated exponential distribution would be added onto the end of the first no-lick period.
The addition could repeat for up to 5 times if the animal could not withhold licking. Therefore, the
possible duration for the entire no-lick period ranged between 1 and 25 s, and was dependent on
whether the animal could withhold licking. Subsequently, the auditory cue for the next trial would
occur 0.1 s after the end of the no-lick period. When the animal could receive rewards in at least
~40% of all trials, it would be advanced to the two-armed bandit task. Typically, the animal would

proceed through each shaping phase in 3 or fewer sessions.

In the two-armed bandit task, the auditory stimulus, response timing, and inter-trial interval
including no-lick period were exactly the same as the second shaping phase. However, the
outcome of each trial was probabilistically determined. In a 10:70 block of trials, the left lick port had
a 10% chance of delivering water if chosen and the right lick port had a 70% chance of delivering
water if chosen. By contrast, in a 70:10 block of trials, the reward probabilities associated with the
left and right ports were reversed. Hence, the better option is right in a 10:70 block, but left in a
70:10 block. At the start of each session, the block type (10:70 or 70:10) was randomly chosen.
The block type would switch when the mouse fulfilled the switching condition: perform trials
(Lcriterion) until the animal accumulated 10 choices selecting the side with high reward probability,
and then perform additional trials (Lrandom) that were drawn from a truncated geometric distribution

(p = 0.0909, no minimum = 0, maximum = 30). Notably, Lcitrion depended on the animal’s
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performance, whereas Lrandom Was random and independent of performance. The block type would
continue to switch, as long as the animal was fulfilling the switching condition of each block. In the
lesion experiments, they would be tested on the two-armed bandit task in daily sessions until at

least 150 switches were collected for each of the pre- and post-lesion conditions.

Photostimulation

The photostimulation rig allowed for rapid adjustment of the position of the laser. The rig was
constructed based on the design in (Pinto et al. 2019). Briefly, a 473 nm laser beam (Obis LX 473
nm, 75 mW,; 1193830, Coherent) was steered by a set of XY galvo mirrors (6210H, Cambridge
Technologies) mounted in a ThorLabs 60 mm cage system. The laser was sent through a F-theta
scan lens (f = 160 mm; FTH160-1064-M39, ThorLabs) and directed onto the animal’'s head. A
monochromatic camera (Grasshopper3; GS3-U3-23S6M-C, Point Grey) equipped with a telecentric
lens (TEC-55, Computar) was used to visualize the cortical surface and to calibrate the position of
the laser beam relative to bregma. The laser, mirrors, and camera were controlled via a data
acquisition board (PCle-6343, National Instruments) by custom software written in MATLAB on a
desktop computer. The laser was calibrated to yield a time-averaged power of 1.5 mW at the
sample. Light transmission through the clear-skull cap (dental cement and skull) was measured by

placing the cap at the sample plane, and positioning a laser power meter underneath the cap.

Animals underwent the same shaping phases and task training. For the photostimulation
experiments, the animal was tested on the two-armed bandit task in a behavioral setup within the
photostimulation rig. Temporally, the photostimulation could occur either before or after the animal’s
response. For pre-choice photostimulation, the laser was turned on at the onset of the auditory cue
and turned off immediately when a response was detected. For post-choice photostimulation, the
laser was turned on immediately when a response was detected and turned off 2 s later. Spatially,
the photostimulation was targeted to one of two possible locations: left MOs/ACAd (+1.5 mm AP, -
0.3 mm ML from bregma) or right MOs/ACAd (+1.5 mm AP, +0.3 mm ML from bregma).

At the start of each session, the timing of the photostimulation (pre-choice or post-choice) was
randomly chosen and stayed the same for the entire session. The initial 3 — 5 blocks were always
control blocks, i.e., no photostimulation. The rationale was to make sure the animal was performing
the task well that day before any perturbation. Subsequently, the next 2 blocks would be
photostimulation blocks targeting the same spatial location, followed by 2 control blocks, followed

by 2 photostimulation blocks targeting the same spatial location, and so on. For the
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photostimulation blocks, the spatial location was randomly selected to be left or right MOs/ACAd
each time. In other words, in the same session, the animal may receive perturbation of both left and
right MOs/ACAd, albeit in different trial blocks.

To prevent the animal from using stray laser light to distinguish photostimulation from control
blocks, we implemented a masking stimulus by shining a blue LED at the eyes. The masking
stimulus had the same onset timing and duration as the photostimulation used for the session, and

was applied for every trial in both control and photostimulation blocks.

Histology

To determine the extent of the lesions, following behavioral experiments, the mouse was deeply
anaesthetized with an overdose of isoflurane and transcardially perfused with chilled formaldehyde
solution (4%, in phosphate-buffered saline (PBS)) at a rate of 5 mL/min. The brain was quickly
removed, stored overnight in the formaldehyde solution at 4 °C, and then switched to PBS for long-
term storage. Coronal sections with a thickness of 100 um were cut using a vibratome (VT1000 S,

Leica).

For cresyl violet staining, cresyl violet (1 g/L; 10510-54-0, Sigma Aldrich) was added to filtered H,O
and stirred overnight. The next day, glacial acetic acid (2.5 mL/L; 64-19-7, Sigma Aldrich) was
added to the solution. The tissue sections were washed with filtered H,O before mounting on glass
slides and stained with a pre-warmed (50°C) cresyl violet solution. The sections were dehydrated
with ascending grades of alcohol (95% for 10 minutes, 100% twice for 10 minutes each), cleared
with xylene (twice for 5 minutes each), and mounted with DPX mounting medium (06522,

MilliporeSigma).

For NeuN staining, tissue sections were washed three times with PBS and then incubated with a
blocking solution (5% normal goat serum, 0.3% Triton X-100, in PBS) for 1 hour at room
temperature. Subsequently, sections were incubated with rabbit monoclonal primary antibody
against NeuN (1:500 dilution; ab177487, Abcam Inc,) overnight at 4 °C on the shaker. After
washing three times with PBS, tissue sections were incubated with goat anti-rabbit secondary
antibody with conjugated Alexa 488 (1:500 dilution; ab150077, Abcam Inc,) for 2.5 hours at room
temperature. After washing with PBS, nuclear staining was performed by incubating with a 4 ,6-
diamidino-2-phenylindole (DAPI) staining solution (ab228549, Abcam Inc.) for 10 minutes. Finally,

sections were washed three times with PBS and then with filtered H,O, before mounting on slides
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with DPX mounting medium (06522, MilliporeSigma). A motorized upright fluorescence microscope

(Olympus BX61, Olympus) was used to image the sections.

QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis of behavioral data

Timestamps of the behavioral events, including cue onsets, outcome onsets, licks, and reward
probabilities were logged to a text file by the NBS Presentation software. The text files were parsed
and analyzed using scripts written in MATLAB (MathWorks, Inc.). For all of the analyses, we
excluded the session if the animal had fewer than 4 block switches. We analyzed all of the trials up
to the last switch, and ignored the trials in the last incomplete block where by definition had many

miss trials.

When analyzing the consequences of unilateral lesions, for simplicity, we used the term lesion

blocks and contra blocks. This is because unilateral lesions were randomly assigned to the left or

right hemisphere for each animal. Lesion blocks refer to those blocks where the lesioned side is the
same as the better option. In other words, if the animal had a unilateral lesion on the right
hemisphere, then the lesion blocks correspond to 10:70 blocks. If the animal had a unilateral lesion
on the left hemisphere, then the lesion blocks correspond to the 70:10 blocks. The remainder was

referred to as the contra blocks.
Analysis of behavioral data — effects of block leng th
For analyses involving block lengths, we used the subset of data in which Lcierion 20 trials for the

pre-switch block, in order to restrict the analyses to situations where the performance was similar.

The probability of choosing the better option pre-switch, P _(better option) pre.switch, Was determined

for each animal by examining the last five trials before each block switch, dividing the number of
times in which the animal chose the initial better option (i.e., the side with 70% reward probability
before switch) by the number of switches. Hit rate was the proportion of trials in which the animal
selected the better option. The win-stay probability, P (stay | win), was the fraction of trials in which

animals repeated a choice after a rewarded trial. The lose-switch probability, P (switch | lose), was

the fraction of trials in which an animal switched its choice after an unrewarded trial. For all of these
performance metrics, we computed the metric on a session-by-session basis, then averaged

across sessions to obtain per-animal value. In the lesion data, P _(better option) pre-switch, P_(Stay |

win) and P _(switch | lose) was calculated in the last five trials before each block switch
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719

720  Trials to reach midpoint was determined by first calculating the fraction of trials for choosing the

721  initial better option around the block switch for the animal, and then identifying the trial from the
722  switch where the fraction of trials choosing the initial better option was closest to 0.5. To compute
723  the trials to reach the midpoint metric, we would first concatenate data across sessions including
724  inserting 20 NaN in the gaps, then compute the metric to obtain the per-animal value. We did this
725  because the per-session values for trials to reach midpoint can be quite variable.

726

727  Analysis of behavioral data — reinforcement learnin g models

728  The response-by-response behavior of the animal was fitted with eight models: (1) win-stay lose-
729  switch (WSLS); (2) Q-learning (Q-RPE); (3) Q-learning with forgetting (F-Q-RPE); (4) Q-learning
730 with differential forgetting (DF-Q-RPE); (5) F-Q-RPE with choice kernel (F-Q-RPE-CK), which
731  captured the tendency to repeat the same option; (6) DF-Q-RPE with choice kernel (DF-Q-RPE-
732  CK); (7) belief model that uses the prior knowledge of a change point in reward probabilities to
733  make a decision (7) belief model with choice kernel (belief-CK). We will describe these models in
734  detail in the following paragraphs.

735

736 For win-stay lose-switch (WSLS), if the last trial was rewarded, the agent would repeat to choose

737  the same option with probability . Else, if the last trial was unrewarded, the agent would switch to
738  choose the other option with probability . This model has 1 free parameter:

739

740  For the three simple Q-learning models (Q-RPE, F-Q-RPE, DF-Q-RPE), the updating rules are as
741  follows. On trial , for a choice that leads to an outcome |, the reward prediction error is:
742 Q)

743

744  where is the action value associated with the chosen action . In our task, there are two options,

745 so . For the outcome, =1 for reward, O for no reward. The action value for each action
746  is then updated accordingly:
747

748 2)

749
750 where isthe learning rate, are the forgetting terms for the unchosen action. Then on the next

751 trial, the probability of choosing each action was determined by a softmax rule:
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752

753 e (3)

754

755 where is the inverse temperature parameter.

756

757  The model as stated with 3 free parameters — , ,and — is referred to as Q-learning with

758  differential forgetting (DF-Q-RPE). A special case of this model is when , which is referred to
759 as Q-learning with forgetting (F-Q-RPE). Another special case is when , Which is referred to
760  as Q-learning (Q-RPE).

761

762 For two_Q-learning models with choice kernel (F-O-RPE-CK, DF-Q-RPE-CK), choice kernel was

763  implemented to capture the tendency of choosing the previous choice. We adapted the formulation

764  from (Wilson and Collins 2019). The choice kernel  on trial ! associated with action is updated
765 in a manner analogous to the action values:
766

767 4

768

769 where s the choice-kernel learning rate. For action selection with both action values and choice
770  kernels, the probability of choosing each action was determined by a softmax rule:

771

772 (5)

773

774 where and are the inverse temperature parameters for the action values and choice kernels
775  respectively. Note that the term within the numerator on the right-hand side can be re-arranged:
776

777 "o—_— —_— # (6)

778

779  Where is the effective inverse temperature parameter reflecting the exploration-

780 exploitation balance, and —— is a ratio indicating the relative reliance on expected reward rather

781 than perseveration in action selection.
782
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Analysis of behavioral data — belief models

In the belief model, the agent knows two aspects about the task structure. First, the left option can
have reward probabilities of either 10% or 70%. It follows that the right option would have the other
reward probability. These are the two possible hidden states of the environment. Second, the
reward probabilities will reverse with a certain frequency characterized by a hazard rate, H. In each
trial, the animal has a belief, which consists of the likelihood that the left option has a reward
probability of 10%, $ , and the likelihood that the left option has a reward probability of 70%, $
The constraints are that $ $ , $ and $ $ . At the start of a

session, we set the prior as a uniform distribution, so the $ $ $ %4©&. At the end of

each trial, the belief is updated. The possibility of a reward probability switch is considered:

s 0 (3 ( ()

Similarly, pL7o is updated and then p_ip and p.70 are normalized to sum to 1. Next, inference is made

based on the outcome following Bayes’ rule, which states that P (belief | observation) = P(belief) *

P (observation | belief):

$ $ % if left and rewarded  (8)
$ $ " %) if left and rewarded

$ $ % if left and unrewarded

$ $ ' %) if left and unrewarded

or if the animal chooses right, then$ and$  would be updated instead. Again, the probabilities
for the belief are normalized to sum to 1. With the updated belief, the expected rewards for the left

and right options can be calculated directly, for example:

8 % $ %) (9)

Action selection then proceeds using the same softmax equation as Equations 3 or 5, with the
expected rewards replacing the action value terms, for the belief and belief with choice kernels
models respectively. The belief model has two free parameters, and . The belief model with

choice kernel model has four free parameters , , ,and
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Parameter fitting and model evaluation
For each animal, trials across sessions were concatenated. The values for the free parameters
were determined by fitting each model to the concatenated data using the Bayesian adaptive direct
search (BADS) algorithm with default settings (Acerbi and Ma 2017). The initial values for , , ,

, and were setto 0.3, 0.3, 0.1, 0.2, 5 and 5 respectively. The lower bound of parameters
were set to 0 and the upper bound was set to 100 for inverse temperatures and 1 for the rest of the

parameters. To evaluate the models, we calculated the Bayes information criterion (BIC).

+- . /012 3 (10)

where Ny, is the number of parameters in model m. T is the number of trials used to estimate the
parameters and LL is the negative log-likelihood value at the best fitting parameter settings. The
model that best fits the data should have the smallest BIC score as the positive effect of the

number of parameters, N, has an explicit penalty for free parameters.

The parameters used for the simulated data for the belief model with choice kernel was the best-
fitting parameters of one animal ( =0.320, =1.387, =0.468, = 2.543 with 300,000 trials,
approximately 9000 switches as in the experiment data). The belief model with choice kernel was

used to analyze the latent variables for lesion and photostimulation data.

To fit the lesion data, we modified the belief-CK model. Different parameters for hazard rate and
choice kernel learning rate were used depending on if the animal’s choice in the current trial is
ipsilateral or contralateral to the lesion side. This yields an expanded model with 6 parameters:

, , , , ,and . Tofit the data on a per-animal basis, trials across
sessions before lesion were concatenated, and trials across sessions after lesion were
concatenated. To fit the data on a per-session basis, we estimated the parameters for each

session.

To fit the optogenetics data, we modified the belief-CK model. Different parameters for hazard rate
and choice kernel learning rate were used depending on if the animal’s choice in the current trial is
ipsilateral or contralateral to the photostimulated side, or if the animal’s choice occurred in a control
trial with no photostimulation. Different parameters for inverse temperatures were used depending

on if the current trial was photostimulation or control. This yields an expanded model with 10

parameters: ) ) ) ) ) ) )
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851 , and . Per each animal fittings, trials across sessions for pre-choice stimulation and
852  post-choice stimulation were concatenated. Per session fittings was not used for this dataset as
853  total number of trials within a session did not give a reliable estimate for the ten parameters fittings.
854

855  Statistical Analyses

856  All statistical analyses were completed using MATLAB (version 2019b, MathWorks). Three-way
857  ANOVA was used to examine the effect of the lesion on behavioral performance. For datasets with
858 a matched number of data points, Wilcoxon signed-rank test was used; otherwise, Wilcoxon ranked
859  sum test was used. Unless otherwise specified, we used an alpha level of 0.05 for all statistical

860 tests.
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881  Supplementary Information

882
P(better option) | Trials to reach Hit rates
pre-switch midpoint
df F p F p F p
Lesion 1 32.71 .000 33.36 .000 4.87 .027
Side 1 0.63 I .857 8.68 I .003 4.02 I .045
Lrandom 3 57.67 I .000 0.52 I .666 21.46 I .000
Lesion*Side 1 142 233 |430 038 |086  .355
Lesion*Lrandom 3 2.71 I .044 0.57 I .635 3.06 I .027
Lrandgom*Side 3 0.18 ' 910 430 004 |049 688
Lesion*Lgandom*Side 3 240 066 |160  .187 |1.07  .361
883

884  Supplementary Table 2.1 : The results of three-way between-subjects ANOVA with factors of
885 lesion (pre- and post-lesion), side (lesion blocks and Contra blocks), and Lrandom (4 Lrandom ranges)
886  for P(better option)yre-switch, trials to reach midpoint and hit rates. p < 0.05 in bold. All dependent
887  variables calculated for each block across sessions. (Error = 3285; 2399; 3285; 3285; 2816;3187

888  for P (better option) yre-switch, trials to reach midpoint and hit rates respectively
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889
890  Supplementary Figure 2.1: No decrease in overall pe  rformance after unilateral lesion of

891 ACAd/MOs

892  The total number of trials and block switches per session before (pre) and after (post) the unilateral
893 lesion.

894
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895
896  Supplementary Figure 2.2: No motor deficits after u  nilateral lesion of ACAd/MOs

897  Mean left and right lick density for each possible combination for choice (left or right) and outcome
898 (reward or no reward). No significant difference was detected between pre- and post-unilateral
899 lesion.
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900
901  Supplementary Figure 3.1: Belief-CK model: effect o f varying the hazard rate

902 The belief-CK model was used to simulate an agent’s choice behavior in the two-armed bandit task
903  with probabilistic reward reversal. Parameters were selected based on the best fitting values from
904 an animal. Each column shows the results using a different hazard rate ( = 0.01, 0.25, 0.5, 0.75,
905 1) while all other parameters were kept constant (n = 300,000 trials, =1.387, =0.468, =
906  2.543). Top row shows the mean fraction of trials choosing the better and worse options for 4

907  different Lrangom ranges for 10 trials before and after the block switch. Middle row shows the P
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908 (better option) pre-swich @S a function of Lrangom. Mean and SEM. Bottom row shows the mean number
909 of trials to reach midpoint as a function of Lrandom-
910
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911
912  Supplementary Figure 3.2: Belief-CK model: effect o f varying choice kernel learning rate

913  Similar to Supplementary Figure 3.1, with different choice kernel learning rates (= 0.01, 0.25,
914 0.5, 0.75, 1) while all other parameters were kept constant (n = 300,000 trials, =0.320, =
915 1.387, =2.543).
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916
917  Supplementary Figure 3.3: Belief-CK model: effect of varying beta sum

918  Similar to Supplementary Figure 3.1, with different beta sum ( =0, 1, 3, 5, 10) while all other
919 parameters were kept constant (n = 300,000 trials, =0.320, =0.468). was setto equal to
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920
921  Supplementary Figure 3.4: Belief-CK model: effect o f varying beta ratio.

922  Similar to Supplementary Figure 3.1, with different beta ratios (0.01, 0.25, 0.5, 0.75, 1) while all
923  other parameters were kept constant (n = 300,000 trials, =0.320, =0.468, =2.543). was

924 fixed and was calculated based on the beta ratio values.
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925
926  Supplementary Figure 3.5: DF-Q-RPE algorithm cannot  reproduce the L random-dependent

927  trends in the experimental data.

928 (A) The probability of choosing the better option on the trial immediately preceding the switch, as a
929  function of Lrandom fOr the block preceding the switch. Black, mice. Purple, simulated performance
930 using the DF-Q-RPE model with best-fitting parameters. Mean values and SEM for all animals. (B)
931  Similar to (A) for number of trials to reach midpoint (when animal is equally likely to choose either
932  option). (C) Similar to (A) for the tendency to win-stay on the 5 trials preceding the switch. (D)

933  Similar to (A) for the tendency to lose-switch on the 5 trials preceding the switch. Mean and SEM. n
934 =31 mice, 617 sessions.

935
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936
937  Supplementary Figure 5.1: Fewer trials but similar performance after bilateral lesion of

938 ACAd/MOs

939 The total number of left- and right-responding trials, reward rates, and hit rates before (pre) and
940 after (post) the lesion.

941
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942
943  Supplementary Figure 5.2: No motor deficits after b ilateral lesion of ACAd/MOs

944  Mean left and right lick density for each possible combination for choice (left or right) and outcome
945  (reward or no reward). No significant difference was detected between pre- and post-bilateral

946  lesion.

947

948
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P(better option) Trials to reach Hit rates
pre-switch midpoint
df | F p F p F p
Lesion 1 1.968 .161 0.001 974 1.0814 0.2986
Lrandom 3 20.179 | .000 1.525 I .206 1.8643 I 0.1337
Lesion*Lrandom 3 |1285 @ 278 0202  .895 0.4492  0.7179

Supplementary Table 5.1 : The results of two-way between-subjects ANOVA for bilaterally injected
animals with factors of lesion (pre- and post-lesion and Lrangom (4 Lrandom ranges) for P(better
option) pre-switch, trials to reach midpoint and hit rates. p < 0.05 in bold. All dependent variables
calculated for each block across sessions. (Error = 1356;911;1356; for P (better option) pre-switchs

trials to reach midpoint and hit rates respectively

P(better option) Trials to reach Hit rates
pre-switch midpoint
df |F p F p F p
Lesion 1 0.0167 .897 9.7782 .002 0.0325 0.857
Lrandom 3 20.430 I .000 1.0813 I .356 9.624 I 0.000
Lesion*Lrandom 3 |o0o082 0969 |00594 981 0.190  0.903

Supplementary Table 5.2 : The results of two-way between-subjects ANOVA for saline injected
animals with factors of lesion (pre- and post-lesion and Lrandom (4 Lrandom ranges) for P (better
option) pre-switch, trials to reach midpoint, hit rates, P(lose | switch), P(win | stay). p < 0.05 in bold. All
dependent variables calculated for each block across sessions. (Error = 1871;1217; 1871 for P

(better option) pre-switch, trials to reach midpoint and hit rates respectively.
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962
963  Supplementary Figure 6.1: Validation of th e laser steering syst em for optogenetic

964  manipulation: characterization and c-Fos staining

965  (A) Optical transmission of the clear skull cap preparation was measured by illuminating with a
966 laser and recording intensity using a power meter. Mean and SEM. n = 5. (B) Linearity of the

967 galvanometers in the x and y directions. (C) Beam profile was measured at the sample plane by
968 inserting and moving a razor blade across the plane using a micromanipulator. (D - F) In

969 CaMKIlla®"™:Ai32 animals, cortical excitatory neurons express ChR2. After unilateral

970 photostimulation of the left ACAd/MOs region (40 Hz, 1.5 mW, 1 min on then 1 min off repeatedly

971  for 20 min), immunohistostaining with a c-Fos antibody showed elevated signals.
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972
973  Supplementary Figure 6.2: Inactivating left and rig  ht ALM during two-armed bandit task
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974  (A) In Pvalb®™®;Ai32 animals, parvalbumin-expressing neurons including fast-spiking interneurons in
975 the neocortex express ChR2. Photostimulation of a brain region drives spiking in the interneurons,
976  which in turn suppresses excitatory activity. Lick raster recorded in an example session, in which
977 trials were sorted based on the photostimulation (None: no stimulation; ALM-L: left anterior lateral
978 motor cortex, AP=2.5 mm, ML=-1.5 mm; ALM-R: right anterior lateral motor cortex, AP=2.5 mm,
979  ML=1.5 mm; V1-L: left primary visual cortex, AP=-2.7 mm, ML=-2.5 mm; V1-R: right primary visual
980 cortex, AP=-2.7 mm, ML=2.5 mm). (B) The number of trials of each type per session. (C) Percent
981  of trials resulted in a miss, as a function of trial type. (D) Percent of trials resulted in a left response,
982  as a function of trial type. (E) Percent of trials resulted in a right response, as a function of trial type.
983  These results show that transient inactivation of ALM increased ipsilateral responses at the

984  expense of contralateral responses. 9 sessions from 3 animals.

985

986



bioRxiv preprint doi: https://doi.org/10.1101/2022.05.26.493245; this version posted May 29, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

987
988

989  Supplementary Figure 6.3: Pre-choice inacti  vation, but not post-choice inactivation,

990 significantly affected the change point estimation. (A) Schematic of stimulation scheme. (B)
991  The probability of choosing the better option on the trial immediately preceding the switch, as a
992  function of Lrangom fOr the block preceding the switch, for pre-choice inactivation. Mean values and
993 SEM for all animals (n = 6 mice). (C) Similar to (B) for post-choice inactivation.

994



bioRxiv preprint doi: https://doi.org/10.1101/2022.05.26.493245; this version posted May 29, 2022. The copyright holder for this preprint (which

995

996
997

998
999
1000
1001

1002
1003
1004

1005
1006

1007
1008

1009
1010
1011

1012
1013
1014

1015
1016
1017
1018

1019
1020
1021

1022
1023
1024

1025
1026
1027
1028

1029
1030
1031

1032
1033

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Reference

Acerbi, Luigi, and Wei Ji Ma. 2017. “Practical Bayesian Optimization for Model Fitting with Bayesian
Adaptive Direct Search.” ArXiv Preprint ArXiv:1705.04405.

Bari, Andrea, David E. Theobald, Daniele Caprioli, Adam C. Mar, Alex Aidoo-Micah, Jeffrey W.
Dalley, and Trevor W. Robbins. 2010. “Serotonin Modulates Sensitivity to Reward and
Negative Feedback in a Probabilistic Reversal Learning Task in Rats.”
Neuropsychopharmacology 35(6):1290-1301. doi: 10.1038/npp.2009.233.

Bari, Bilal A., Cooper D. Grossman, Emily E. Lubin, Adithya E. Rajagopalan, Jianna I. Cressy, and
Jeremiah Y. Cohen. 2019. “Stable Representations of Decision Variables for Flexible
Behavior.” Neuron 103(5):922-933.e7. doi: 10.1016/j.neuron.2019.06.001.

Barthas, Florent, and Alex C. Kwan. 2017. “Secondary Motor Cortex: Where ‘Sensory’Meets
‘Motor’in the Rodent Frontal Cortex.” Trends in Neurosciences 40(3):181-93.

Bartolo, Ramon, and Bruno B. Averbeck. 2020. “Prefrontal Cortex Predicts State Switches during
Reversal Learning.” Neuron 106(6):1044-1054.e4. doi: 10.1016/j.neuron.2020.03.024.

Behrens, Timothy E. J., Mark W. Woolrich, Mark E. Walton, and Matthew F. S. Rushwaorth. 2007.
“Learning the Value of Information in an Uncertain World.” Nature Neuroscience
10(9):1214-21. doi: 10.1038/nn1954.

Bennur, Sharath, and Joshua I. Gold. 2011. “Distinct Representations of a Perceptual Decision and
the Associated Oculomotor Plan in the Monkey Lateral Intraparietal Area.” Journal of
Neuroscience 31(3):913-21.

Clarke, Hannah F., Trevor W. Robbins, and Angela C. Roberts. 2008. “Lesions of the Medial
Striatum in Monkeys Produce Perseverative Impairments during Reversal Learning Similar
to Those Produced by Lesions of the Orbitofrontal Cortex.” Journal of Neuroscience
28(43):10972-82.

Costa, Vincent D., Valery L. Tran, Janita Turchi, and Bruno B. Averbeck. 2015. “Reversal Learning
and Dopamine: A Bayesian Perspective.” The Journal of Neuroscience 35(6):2407. doi:
10.1523/INEUROSCI.1989-14.2015.

Donahue, Christopher H., and Daeyeol Lee. 2015. “Dynamic Routing of Task-Relevant Signals for
Decision Making in Dorsolateral Prefrontal Cortex.” Nature Neuroscience 18(2):295-301.
doi: 10.1038/nn.3918.

Evers, Elizabeth A. T., Roshan Cools, Luke Clark, Frederik M. van der Veen, Jelle Jolles, Barbara
J. Sahakian, and Trevor W. Robbins. 2005. “Serotonergic Modulation of Prefrontal Cortex
during Negative Feedback in Probabilistic Reversal Learning.” Neuropsychopharmacology
30(6):1138—47. doi: 10.1038/sj.npp.1300663.

Gallistel, C. R., Terence A. Mark, Adam Philip King, and P. E. Latham. 2001. “The Rat
Approximates an ldeal Detector of Changes in Rates of Reward: Implications for the Law of
Effect.” Journal of Experimental Psychology: Animal Behavior Processes 27(4):354.

Groman, Stephanie M., Colby Keistler, Alex J. Keip, Emma Hammarlund, Ralph J. DiLeone,
Christopher Pittenger, Daeyeol Lee, and Jane R. Taylor. 2019. “Orbitofrontal Circuits



bioRxiv preprint doi: https://doi.org/10.1101/2022.05.26.493245; this version posted May 29, 2022. The copyright holder for this preprint (which

1034
1035

1036
1037
1038

1039
1040

1041
1042
1043

1044
1045
1046
1047

1048
1049
1050

1051
1052

1053
1054
1055

1056
1057
1058

1059
1060
1061

1062
1063

1064
1065
1066

1067
1068
1069

1070
1071

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Control Multiple Reinforcement-Learning Processes.” Neuron 103(4):734-746.e3. doi:
10.1016/j.neuron.2019.05.042.

Groman, Stephanie M., Katherine M. Rich, Nathaniel J. Smith, Daeyeol Lee, and Jane R. Taylor.
2018. “Chronic Exposure to Methamphetamine Disrupts Reinforcement-Based Decision
Making in Rats.” Neuropsychopharmacology 43(4):770-80.

Grossman, Cooper D., Bilal A. Bari, and Jeremiah Y. Cohen. 2022. “Serotonin Neurons Modulate
Learning Rate through Uncertainty.” Current Biology 32(3):586-599. e7.

Guo, Zengcai V., Nuo Li, Daniel Huber, Eran Ophir, Diego Gutnisky, Jonathan T. Ting, Guoping
Feng, and Karel Svoboda. 2014. “Flow of Cortical Activity Underlying a Tactile Decision in
Mice.” Neuron 81(1):179-94.

Hamid, Arif A., Jeffrey R. Pettibone, Omar S. Mabrouk, Vaughn L. Hetrick, Robert Schmidt, Caitlin
M. Vander Weele, Robert T. Kennedy, Brandon J. Aragona, and Joshua D. Berke. 2016.
“Mesolimbic Dopamine Signals the Value of Work.” Nature Neuroscience 19(1):117-26. doi:
10.1038/nn.4173.

Hattori, Ryoma, Bethanny Danskin, Zeljana Babic, Nicole Mlynaryk, and Takaki Komiyama. 2019.
“Area-Specificity and Plasticity of History-Dependent Value Coding During Learning.” Cell
177(7):1858-1872.e15. doi: 10.1016/j.cell.2019.04.027.

Ito, Makoto, and Kenji Doya. 2009. “Validation of Decision-Making Models and Analysis of Decision
Variables in the Rat Basal Ganglia.” Journal of Neuroscience 29(31):9861-74.

Ito, Makoto, and Kenji Doya. 2015. “Distinct Neural Representation in the Dorsolateral,
Dorsomedial, and Ventral Parts of the Striatum during Fixed- and Free-Choice Tasks.” The
Journal of Neuroscience 35(8):3499. doi: 10.1523/JNEUROSCI.1962-14.2015.

Ito, Makoto, and Kenji Doya. 2015. “Parallel Representation of Value-Based and Finite State-Based
Strategies in the Ventral and Dorsal Striatum.” PLoS Computational Biology
11(11):e1004540.

Jang, Anthony I., Matthew R. Nassar, Daniel G. Dillon, and Michael J. Frank. 2019. “Positive
Reward Prediction Errors during Decision-Making Strengthen Memory Encoding.” Nature
Human Behaviour 3(7):719-32. doi: 10.1038/s41562-019-0597-3.

Karlsson, Mattias P., Dougal GR Tervo, and Alla Y. Karpova. 2012. “Network Resets in Medial
Prefrontal Cortex Mark the Onset of Behavioral Uncertainty.” Science 338(6103):135-39.

Laubach, Mark, Linda M. Amarante, Kyra Swanson, and Samantha R. White. 2018. “What, If
Anything, Is Rodent Prefrontal Cortex?” Eneuro 5(5):ENEURO.0315-18.2018. doi:
10.1523/ENEURO.0315-18.2018.

Li, Nuo, Susu Chen, Zengcai V. Guo, Han Chen, Yan Huo, Hidehiko K. Inagaki, Guang Chen,
Courtney Davis, David Hansel, and Caiying Guo. 2019. “Spatiotemporal Constraints on
Optogenetic Inactivation in Cortical Circuits.” Elife 8:e48622.

Li, Yi, and Joshua Tate Dudman. 2013. “Mice Infer Probabilistic Models for Timing.” Proceedings of
the National Academy of Sciences 110(42):17154-59.



bioRxiv preprint doi: https://doi.org/10.1101/2022.05.26.493245; this version posted May 29, 2022. The copyright holder for this preprint (which

1072
1073

1074
1075

1076
1077
1078

1079
1080
1081

1082
1083
1084

1085
1086

1087
1088
1089

1090
1091
1092

1093
1094
1095

1096
1097
1098

1099
1100
1101

1102
1103
1104

1105
1106

1107
1108
1109

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Liao, Clara, and Alex C. Kwan. 2021. “Applying Reinforcement Learning to Rodent Stress
Research.” Chronic Stress 5:2470547020984732.

Liu, Yanhe, Yu Xin, and Ning-long Xu. 2021. “A Cortical Circuit Mechanism for Structural
Knowledge-Based Flexible Sensorimotor Decision-Making.” Neuron.

O’Doherty, J., M. L. Kringelbach, E. T. Rolls, J. Hornak, and C. Andrews. 2001. “Abstract Reward
and Punishment Representations in the Human Orbitofrontal Cortex.” Nature Neuroscience
4(1):95-102. doi: 10.1038/82959.

Otchy, Timothy M., Steffen BE Wolff, Juliana Y. R_hee, Cengiz Pehlevan, Risa Kawai, Alexandre
Kempf, Sharon MH Gobes, and Bence P. Olveczky. 2015. “Acute Off-Target Effects of
Neural Circuit Manipulations.” Nature 528(7582):358-63.

Pinto, Lucas, Kanaka Rajan, Brian DePasquale, Stephan Y. Thiberge, David W. Tank, and Carlos
D. Brody. 2019. “Task-Dependent Changes in the Large-Scale Dynamics and Necessity of
Cortical Regions.” Neuron 104(4):810-24.

Pisupati, Sashank, Lital Chartarifsky-Lynn, Anup Khanal, and Anne K. Churchland. 2021. “Lapses
in Perceptual Decisions Reflect Exploration.” Elife 10:e55490.

Samejima, Kazuyuki, Yasumasa Ueda, Kenji Doya, and Minoru Kimura. 2005. “Representation of
Action-Specific Reward Values in the Striatum.” Science 310(5752):1337. doi:
10.1126/science.1115270.

Siniscalchi, Michael J., Victoria Phoumthipphavong, Farhan Ali, Marc Lozano, and Alex C. Kwan.
2016. “Fast and Slow Transitions in Frontal Ensemble Activity during Flexible Sensorimotor
Behavior.” Nature Neuroscience 19(9):1234-42.

Siniscalchi, Michael J., Hongli Wang, and Alex C. Kwan. 2019. “Enhanced Population Coding for
Rewarded Choices in the Medial Frontal Cortex of the Mouse.” Cerebral Cortex
29(10):4090-4106.

Soltani, Alireza, and Alicia Izquierdo. 2019. “Adaptive Learning under Expected and Unexpected
Uncertainty.” Nature Reviews Neuroscience 20(10):635-44. doi: 10.1038/s41583-019-0180-

Y.

Starkweather, Clara Kwon, Benedicte M. Babayan, Naoshige Uchida, and Samuel J. Gershman.
2017. “Dopamine Reward Prediction Errors Reflect Hidden-State Inference across Time.”
Nature Neuroscience 20(4):581-89.

Starkweather, Clara Kwon, Samuel J. Gershman, and Naoshige Uchida. 2018. “The Medial
Prefrontal Cortex Shapes Dopamine Reward Prediction Errors under State Uncertainty.”
Neuron 98(3):616-629. e6.

Sul, Jung Hoon, Suhyun Jo, Daeyeol Lee, and Min Whan Jung. 2011. “Role of Rodent Secondary
Motor Cortex in Value-Based Action Selection.” Nature Neuroscience 14(9):1202-8.

Sul, Jung Hoon, Hoseok Kim, Namjung Huh, Daeyeol Lee, and Min Whan Jung. 2010. “Distinct
Roles of Rodent Orbitofrontal and Medial Prefrontal Cortex in Decision Making.” Neuron
66(3):449-60. doi: 10.1016/j.neuron.2010.03.033.



bioRxiv preprint doi: https://doi.org/10.1101/2022.05.26.493245; this version posted May 29, 2022. The copyright holder for this preprint (which

1110
1111

1112
1113
1114

1115
1116
1117

1118
1119
1120

1121
1122
1123
1124

1125
1126
1127

1128
1129

1130
1131

1132

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Sutton, Richard S., and Andrew G. Barto. 2018. Reinforcement Learning: An Introduction. MIT
press.

Tai, Lung-Hao, A. Moses Lee, Nora Benavidez, Antonello Bonci, and Linda Wilbrecht. 2012.
“Transient Stimulation of Distinct Subpopulations of Striatal Neurons Mimics Changes in
Action Value.” Nature Neuroscience 15(9):1281-89.

Tsuchida, Ami, Bradley B. Doll, and Lesley K. Fellows. 2010. “Beyond Reversal: A Critical Role for
Human Orbitofrontal Cortex in Flexible Learning from Probabilistic Feedback.” The Journal
of Neuroscience 30(50):16868. doi: 10.1523/JNEUROSCI.1958-10.2010.

Vaidya, Avinash R., Maia S. Pujara, Michael Petrides, Elisabeth A. Murray, and Lesley K. Fellows.
2019. “Lesion Studies in Contemporary Neuroscience.” Trends in Cognitive Sciences
23(8):653-71.

Vertechi, Pietro, Eran Lottem, Dario Sarra, Beatriz Godinho, Isaac Treves, Tiago Quendera,
Matthijs Nicolai Oude Lohuis, and Zachary F. Mainen. 2020. “Inference-Based Decisions in
a Hidden State Foraging Task: Differential Contributions of Prefrontal Cortical Areas.”
Neuron 106(1):166-176. e6.

Wang, Hongli, Heather K. Ortega, Huriye Atilgan, Cayla E. Murphy, and Alex C. Kwan. 2022. “Pupil
Correlates of Decision Variables in Mice Playing a Competitive Mixed-Strategy Game.”
Eneuro 9(2).

Wilson, Robert C., and Anne GE Collins. 2019. “Ten Simple Rules for the Computational Modeling
of Behavioral Data.” Elife 8:e49547.

Wilson, Robert C., Matthew R. Nassar, and Joshua I. Gold. 2010. “Bayesian Online Learning of the
Hazard Rate in Change-Point Problems.” Neural Computation 22(9):2452-76.



