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Summary 18 

There are often sudden changes in the state of environment. For a decision maker, accurate 19 

prediction and detection of change points are crucial for optimizing performance. Still unclear, 20 

however, is whether rodents are simply reactive to reinforcements, or if they can be proactive to 21 

estimate future change points during value-based decision making. In this study, we characterize 22 

head-fixed mice performing a two-armed bandit task with probabilistic reward reversals. Choice 23 

behavior deviates from classic reinforcement learning, but instead suggests a strategy involving 24 

belief updating, consistent with the anticipation of change points to exploit the task structure. 25 

Excitotoxic lesion and optogenetic inactivation implicate the anterior cingulate and premotor regions 26 

of medial frontal cortex. Specifically, over-estimation of hazard rate arises from imbalance across 27 

frontal hemispheres during the time window before the choice is made. Collectively, the results 28 

demonstrate that mice can capitalize on their knowledge of task regularities, and this estimation of 29 

future changes in the environment may be a main computational function of the rodent dorsal 30 

medial frontal cortex. 31 

  32 

 33 

  34 
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Introduction 35 

In life, we experience twists and turns – discrete events that abruptly alter the state of environment. 36 

In some cases, the change is a one-time occurrence that is impossible to predict. We must then 37 

adjust by assessing the new situation following the change. However, in other cases, the changes 38 

may occur repeatedly with certain tendencies. For example, a favorite chef in a restaurant may 39 

have a recurring schedule where she cooks throughout the year, except in the summer for 3 – 5 40 

weeks when she would take a vacation and lets a substitute take over. As a patron, it would be 41 

advantageous to learn this pattern, anticipate the impending switches, and maximize the chance of 42 

receiving a delicious outcome. While it is evident that humans can estimate change points and 43 

leverage the information in decision-making, whether animals such as mice have this ability and the 44 

neural substrates supporting the computations remain unclear. 45 

 46 

A classic paradigm to study decision-making in response to repeated changes is the two-armed 47 

bandit task. Each trial, the animal has two options, and each option is associated probabilistically 48 

with a reward. After a certain number of trials, the reward probabilities are switched among the 49 

options. The two-armed bandit task is widely used because it can be tested in different species 50 

including humans (Tsuchida, Doll, and Fellows 2010; Evers et al. 2005; O’Doherty et al. 2001), 51 

monkeys (Costa et al. 2015; Donahue and Lee 2015; Clarke, Robbins, and Roberts 2008), rats 52 

(Groman et al. 2019; Hamid et al. 2016; Sul et al. 2010; Bari et al. 2010; Ito and Doya 2009; 53 

Samejima et al. 2005), and mice (Grossman, Bari, and Cohen 2022; Hattori et al. 2019; Tai et al. 54 

2012). Moreover, the paradigm has translational significance because it can reveal defects from 55 

pharmacological interventions or in animal models for psychiatric disorders (Costa et al. 2015; 56 

Groman et al. 2018; Liao and Kwan 2021). 57 

 58 

Most analyses of rodents performing two-armed bandit and related decision-making tasks have 59 

relied on simple reinforcement learning schemes such as Q-learning algorithms (Wang et al. 2022; 60 

Bari et al. 2019; Hattori et al. 2019; Groman et al. 2019; Ito and Doya 2015; Sul et al. 2010), but 61 

see (Ito and Doya 2015). Q-learning algorithms assume that animals learn from experience, and 62 

therefore choice behavior adapts only after a change point has occurred. By contrast, recent 63 

studies in monkeys and humans have challenged this assumption. Namely, primates can exploit 64 

predictable structure in a task and adjust for an impending change point (Bartolo and Averbeck 65 

2020; Jang et al. 2019; Costa et al. 2015). Indeed, under a few select situations, rodents also seem 66 

to make inferences about hidden states (Liu, Xin, and Xu 2021; Vertechi et al. 2020; Starkweather, 67 
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Gershman, and Uchida 2018). These recent results hint at the possibility that mice may leverage 68 

their knowledge of task structure for probabilistic reward learning. 69 

 70 

To test the possibility that rodents may estimate change points during probabilistic reward learning, 71 

we trained head-fixed mice on a two-armed bandit task. By analyzing a sizable data set totaling 72 

1,007 sessions involving 15,352 reversals, we demonstrate that mice are sensitive to impending 73 

switches in reward probabilities, because they alter their choices prior to the actual change points. 74 

We show that the animals’ choice behavior can be modelled effectively with a Bayesian framework 75 

involving belief updating and choice kernels. Furthermore, we performed unilateral and bilateral 76 

excitotoxic lesions and optogenetic inactivation to demonstrate mechanistically how the anterior 77 

cingulate and premotor regions of medial frontal cortex may be involved in the computation. 78 

Together, the results indicate that mice can take advantage of the task structure to solve a classic 79 

probabilistic reward learning task and implicate the dorsal medial frontal cortex as a locus in the 80 

accurate estimation of future changes in the state of environment. 81 

 82 

Results 83 

Mice use their knowledge of the task structure duri ng a two-armed bandit task 84 

We trained head-fixed C57BL/6J mice on a two-armed bandit task involving probabilistic reward 85 

reversals. On each trial, the mouse could choose left or right by a directional tongue lick. The two 86 

options were associated with different reward probabilities, e.g., “70:10” for 70% and 10% chance 87 

to receive water from the left and right spouts respectively (Figure 1A – B ). The reward 88 

probabilities would flip when the animal reaches the switching condition, which is a performance-89 

dependent number of trials to fulfill a criterion (LCriterion, 10 trials choosing the better option) followed 90 

by a performance-independent random number of trials (LRandom, drawn from a geometric 91 

distribution with p = 0.0909 and truncated at 30). In an example session shown in Figure 1C , the 92 

animal performed more than 500 trials, including 15 reversals of 70:10 and 10:70 blocks. To 93 

visualize how animals adjust to the sudden changes in reward probabilities, we aligned the trials by 94 

the time of block switches. As expected, mice primarily chose the better option pre-switch, and then 95 

quickly adapted their preferred action post-switch (Figure 1D , n = 31 mice, 617 sessions, 9,163 96 

blocks). 97 

 98 
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99 
Figure 1:  Mice were sensitive to block length and leverage this information during the two- armed bandit task100 
(A) The mouse makes a left or right choice via tongue lick after the go cue. Depending on the reward probabilities, the101 
choice might lead to water. (B) Trials were organized into blocks, each with distinct reward probabilities: "70:10" (70%102 
chance to receive water for left choice; 10% for right) or "10:70" (10% for left; 70% for right). The block switches after t103 
animal choose the high-reward-probability side ten times (LCriterion) plus an additional random number of trials (LRandom, 104 
drawn from exponential distribution, up to 30 trials). (C) Performance of a mouse in one example session. The top row105 
shows reward probabilities for left and right options. The bottom row shows the animal's choices and the outcomes. (D106 
Choice behavior around block switches. Thin line, mean values for individual animal. Thick line, mean values and SEM107 
for all animals. (E) Histogram of LRandom. For all blocks with LCriterian �  20. Colors indicate the 4 ranges of LRandom for 108 
subsequent analyses. (F) Choice behavior around block switches, plotted separately for the 4 ranges of LRandom. Mean109 
values and SEM for all animals. (G) The probability of choosing the better option on the trial immediately preceding th110 
switch, as a function of LRandom for the block preceding the switch. Mean values and SEM for all animals. (H) The num111 
of trials to reach midpoint (when animal is equally likely to choose either option) as a function of LRandom for the block 112 
preceding the switch. Mean values and SEM for all animals. n = 31 mice, 617 sessions.  113 

 114 

An important parameter in our task is LRandom, which dictates the frequency of reversals. Although115 

the animals cannot know the exact value of LRandom before each switch because it is drawn 116 

randomly, it is possible for the mice to learn the statistical distribution of LRandom. This knowledge 117 

may then be used to infer that the more trials that an animal stays at the better option, the more 118 

likely that a block switch might have already occurred. To determine if mice were making use of 119 

such knowledge of the task structure, we analyzed the subset of 7,396 blocks in which animals 120 

were performing at expert level (LCriterion �  20). Figure 1E  shows the histogram of LRandom values f121 
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these trial blocks, exhibiting the geometric distribution as the task was designed. We found that if 122 

LRandom was large in the preceding block, the animals tended to choose the better option less 123 

frequently prior to the block switch, and subsequently adapted faster after the block switch (Figure 124 

1F). These results suggest that the mice may anticipate an impending change point and adjust their 125 

behavior prior to the block switch. 126 

 127 

To quantify the observations, we computed P (better option) pre-switch, the probability of selecting the 128 

better option in the trial immediately before the block switch, and trials to reach midpoint, the 129 

number of trials from switch for P (better option) to reach 0.5. These analyses confirmed the 130 

influence of LRandom on choice patterns around a block switch (main effect of LRandom: F (30, 5544) = 131 

6.0743, P < 0.001, one-way ANOVA; Figure 1G ) and their speed to adjust after a block switch 132 

(main effect of LRandom: F (30, 711) = 2.1316, P < 0.001, one-way ANOVA; Figure 1H ). We reiterate 133 

that the animal could not predict the value of LRandom, which was drawn randomly for each block. 134 

However, the tendencies around a block switch are consistent with learning the task structure, 135 

namely aspects of the statistical distribution of LRandom, presumably through repeated training over 136 

dozens of sessions on the two-armed bandit task. As the animal dwells in a block selecting the 137 

same better option for many trials, it becomes more probable that a change point in reward 138 

probabilities has occurred and therefore the animals should explore the alternate option more. 139 

Overall, these results demonstrate that mice were sensitive to the block length – a key feature of 140 

the task structure – and could leverage this information during the two-armed bandit task.  141 

 142 

Effects of unilateral lesion of ACAd/MOs on choice behavior around switches 143 

Prior studies implicated the anterior cingulate cortex in behavioral flexibility in the face of variability 144 

in the environment (Behrens et al. 2007; Soltani and Izquierdo 2019). The related region in the 145 

mouse is the dorsal aspect of the medial frontal cortex, encompassing the anterior cingulate 146 

(ACAd) and medial secondary motor (MOs) areas (Barthas and Kwan 2017; Laubach et al. 2018). 147 

To determine the role of ACAd/MOs, we trained mice until they reached expert performance, and 148 

then performed unilateral excitotoxic lesion by injecting ibotenic acid into the ACAd/MOs region in 149 

the left or right hemisphere (n = 5 and 4 mice respectively, 200 pre-lesion and 142 post-lesion 150 

sessions in total; Figure 2A ). For clarity, we will collapse the two groups and refer to trial blocks as 151 

‘lesion’, if the lesioned side was the better option, or ‘contra’ if the side contralateral to the lesion 152 

was the better option (Figure 2B ). Post hoc histology with cresyl violet staining confirmed the loss 153 

of cell bodies at the targeted ACAd/MOs location (Figure 2C – D ). After the lesion, animals 154 

performed a similar number of trials and block switches (Supplementary Figure 2.1 ) and had no 155 
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motor deficit in licking (Supplementary Figure 2.2) . Post-lesion mice exhibited block length-156 

dependent choice patterns (Figure 2E ). However, with the unilateral loss of ACAd/MOs, for the 157 

switch from lesion block to contra block, this tendency to choose the worse option pre-switch 158 

exacerbated with increasing LRandom (left panel, Figure 2E ). Summary of the data reaffirmed that 159 

animals with unilateral ACAd/MOs lesion were selecting the worse option at the expense of 160 

exploiting the better option pre-switch, specifically when LRandom was large in the preceding block161 

(main effect of lesion: P < 0.001, main effect of LRandom: P < 0.001, lesion * LRandom interaction: P =162 

0.044, three-way ANOVA; Figure 2F, Supplementary Table 2.1 ). Although they appeared to ad163 

faster after the switch relative to control animals (main effect of lesion: P < 0.001, main effect of 164 

side: P = 0.003, lesion * side interaction: P = 0.038, LRandom * side interaction: P = 0.004, three-wa165 

ANOVA; Figure 2G ), overall the performance suffered after the lesion (main effect of lesion: P = 166 

0.027, main effect of side: P = 0.045, main effect of LRandom: P < 0.001, lesion * LRandom interaction167 

= 0.027, three-way ANOVA; Figure 2H ). The data therefore show that unilateral lesion of the 168 

ACAd/MOs impairs the proper estimate and use of task structure knowledge during probabilistic 169 

reward learning. 170 

 171 

172 
Figure 2: Unilateral lesion of ACAd/MOs altered blo ck-length- dependent choice behavior and impaired overall173 
performance 174 
(A) Schematic representation of the unilateral excitotoxic lesion via injection of ibotenic acid. (B) Lesion blocks refers t175 
blocks in which the lesioned side is the better option. Contra blocks refer to blocks in which the lesioned side is 176 
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contralateral to the better option. (C, D) Post hoc histology with cresyl violet staining to confirm the loss of neurons in 177 
ACAd/MOs. (E) Choice behavior around block switches, plotted separately for the 4 ranges of LRandom. Black, pre-lesion. 178 
Green, post-lesion. Left, switches from lesion block to contra block. Right, switches from contra block to lesion block. 179 
Mean values and SEM for all animals. (F) The probability of choosing the better option on the trial immediately preceding 180 
the switch, as a function of LRandom for the block preceding the switch. Black, pre-lesion. Green, post-lesion. Mean values 181 
and SEM for all animals. (G) Similar to (F) for number of trials to reach midpoint (when animal is equally likely to choose 182 
either option). (H) Similar to (F) for hit rate (probability for animal to choose the better option). For (F) – (H), significant 183 
main effects and interactions from three-way ANOVA were indicated (P < 0.05). n = 9 mice, 200 pre-lesion sessions and 184 
142 post-lesion sessions. 185 

 186 

A hybrid model of belief and choice kernels to expl ain the animals’ behavior 187 

To gain insight into the empirical findings, we fitted different computational models to the data. We 188 

were specifically drawn to two emerging ideas in the field of decision-making. First, the concept of 189 

belief enables an agent to apply their knowledge of the task structure (Jang et al. 2019). Namely, 190 

the two-armed bandit task in this study can be deconstructed as an environment with 2 states 191 

(’70:10’ and ’10:70’), each with their optimal action (choose left and right, respectively). In this 192 

scheme, each trial, the agent maintains a belief, which is a mixture of probabilities that the task is 193 

currently at each of the states, and acts accordingly. After the outcome is presented, the belief is 194 

updated based on the outcome and the agent’s estimate of the likelihood of a change point, i.e., the 195 

reversal of reward probabilities, which is known as the hazard rate � . Second, choice kernels can 196 

be used to capture an agent’s tendency to repeat the previous actions (Wilson and Collins 2019). 197 

The choice kernels are updated based on the prior action, scaled by a learning rate � � . Our belief-198 

CK model contains components for belief and choice kernels, and integrates their outputs for action 199 

selection based on a softmax function with separate inverse temperature parameters for belief, � ��200 

and choice kernel, � �  (Figure 3A, Supplementary Figure 3.1 - 3.4 ). Fit to an example session of 201 

animal data suggests that this 4-parameter belief-CK model can recapitulate the choice behavior of 202 

the mouse in the two-armed bandit task (Figure 3B – E ). 203 

 204 
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 205 
Figure 3: A hybrid model of beliefs and choice kern els to explain the behavior 206 
(A) The schematic representation of the belief with choice kernel model (belief-CK). The model has four parameters: �  207 

(hazard rate), �  (inverse temperature for belief), � �  (learning rate for choice kernel) and � �  (inverse temperature for 208 
choice kernel). (B – E) An example session along with the fits from the belief-CK model, including reward probabilities for 209 
left and right options (B) the running-average of probability of choosing right for the animal (black) and model (purple) (C), 210 
the belief that the left option is associated with reward probability of 10% (pL10, blue) or 70% (pL70, red) (D), and the 211 
choice kernels for left (blue) and right options (red) (E). (F)  Model comparison between the belief-CK model and 7 other 212 
models. Lower log BIC values indicate a better fit. (G) The tally of the best-fitting model for each animal. (H) The 213 
probability of choosing the better option on the trial immediately preceding the switch, as a function of LRandom for the 214 
block preceding the switch. Black, mice. Purple, simulated performance using the belief-CK model with best-fitting 215 
parameters. Mean values and SEM for all animals. (I) Similar to (H) for number of trials to reach midpoint (when animal is 216 
equally likely to choose either option). (J) Similar to (H) for the tendency to win-stay on the 5 trials preceding the switch. 217 
(K) Similar to (H) for the tendency to lose-switch on the 5 trials preceding the switch. n = 31 mice, 617 sessions. 218 

 219 

We compared the belief-CK model against 7 other computational models (see Methods). We 220 

started with the win-stay, lose-switch (WSLS) and 3 classic reinforcement learning algorithms 221 

including Q-learning (Q-RPE), Q-learning with forgetting (F-Q-RPE), and Q-learning with differential 222 

forgetting (DF-Q-RPE) (Ito and Doya 2015, 2015). We then examined effects of adding choice 223 

kernels, by testing DF-Q-RPE with choice kernels (DF-Q-RPE-CK), because DF-Q-RPE was the 224 

best fit in the initial set of 4 algorithms, and F-Q-RPE with choice kernels (F-Q-RPE-CK), because 225 
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this model has the same number of free parameters as the belief-CK model. Finally, we also tested 226 

the belief model alone without choice kernels. Model comparison based on Bayesian information 227 

criterion (BIC) revealed that inclusion of choice kernels improved the fits significantly. Moreover, the 228 

belief-CK model had the lowest BIC values (Figure 3F ; belief-CK versus F-Q-RPE-CK: t60= 2.562, 229 

P = 0.013, paired t-test; belief-CK versus DF-Q-RPE-CK: t60= 2.313, P = 0.024), and was the best 230 

fit for 30 out of 31 animals in this study (Figure 3G ). For each session, we can simulate the belief-231 

CK model using the best-fitting parameters and compare the tendencies of the simulated and 232 

experimental data. This exercise shows that the belief-CK model can capture the LRandom-dependent 233 

choice behavior in the experimental data (Figure 3H – K ), which is not possible with the classic 234 

reinforcement learning algorithm DF-Q-RPE (Supplementary Figure 3.5 ). These analyses 235 

demonstrate that simple models of reward-based learning such as Q-learning algorithms cannot 236 

fully account for the observed choice behavior. Instead, the results support our intuition that mice 237 

were estimating change points, which is formalized as the hazard rate �  in the belief-CK model. 238 

 239 

Unilateral ACAd/MOs lesion led to side-specific inc rease in hazard rate for change points 240 

Next, we applied the computational model to quantify the effect of unilateral ACAd/MOs lesion. To 241 

account for the possibility of side-specific alterations, we modified the 4-parameter belief-CK model 242 

to include 6 parameters to include differential learning for the sides ipsilateral and contralateral to 243 

lesion (see Methods; � ������ , � ���	
� , � �������� , � �����	
� , � ��and � � ). After fitting the expanded 244 

model to animal data, we compared pre- versus post-lesion performance in two ways. First, on a 245 

per-animal basis, sessions before or after the lesion were concatenated for fitting to yield one set of 246 

pre-lesion parameters and one set of post-lesion parameters for each animal. Second, on a per-247 

session basis, each session was analyzed separately and the fitted parameters were summarized.  248 

 249 

These analyses revealed a side-specific increase in hazard rate after unilateral ACAd/MOs lesion. 250 

The exaggerated hazard rate for the side contralateral to lesion � ���	
�  was detected on a per-251 

animal basis (Figure 4A ; pre- vs. post-lesion, � ���	
� : P = 0.004; post-lesion, � ���	
�  vs. � ������ : P 252 

= 0.810, Wilcoxon signed-rank test), and on a per-session basis (Figure 4B ; pre- vs. post-lesion, 253 

� ���	
� : P = 0.001; post-lesion, � ���	
�  vs. � ������ : P < 0.001, Wilcoxon rank sum test). Unilateral 254 

ACAd/MOs lesion also led to an increase in choice perseveration for both sides, reflected as higher 255 

choice-kernel learning rates (Figure 4C  – D; per-animal, pre- vs. post-lesion, � �������� : P = 0.012; 256 

� �����	
� : P = 0.004; per-session, pre- vs. post-lesion, � �������� : P < 0.001; � �����	
� : P < 0.001, 257 

Wilcoxon ranked sum test). Action selection depends on the inverse temperature sum, � � � � ��258 
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reflecting the exploration-exploitation balance, and inverse temperature ratio, � reflecting the 259 

relative reliance on belief over choice kernels. There was no detected difference in inverse 260 

temperature sum between pre- and post-lesion animals (Figure 4E  – F, per animal, P = 0.567; p261 

session P = 0.858, Wilcoxon signed-rank test). By contrast, the inverse temperature ratio was 262 

heightened after the lesion (Figure 4G – H , per animal P = 0.038; per session P = 0.001, Wilcox263 

signed-rank test). Collectively, these analyses show that the consequences of unilateral ACAd/M264 

lesion are a contralateral side-specific increase in hazard rate, and broad increases in choice 265 

perseveration and reliance on belief for action selection. 266 

 267 

268 
Figure 4: Effects of unilateral lesion of ACAd/MOs is consistent with a side-specific increase in haza rd rate 269 
(A) The hazard rates, before and after lesion, extracted by fitting the belief-with-choice-kernel model on a per-animal 270 
basis. Square, hazard rate for side ipsilateral to lesion. Cross, hazard rate for side contralateral to lesion. Inset, violin 271 
of the same data. (B) The hazard rates, before and after lesion, on a per-session basis. Mean and SEM. (C – D) Simi272 
to (A – B) for learning rate for choice kernel. (E) The inverse temperature sum, before and after lesion, on a per-anima273 
basis. (F) The inverse temperature sum, before and after lesion, on a per-session basis. (G - H) Similar to (E – F) for 274 
inverse temperature ratio. *, P < 0.05. n.s., not significant. n = 9 mice, 190 pre-lesion sessions and 140 post-lesion 275 
sessions. 276 
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Accurate change point estimation depends on the bal ance between the left and right 278 

hemispheres  279 

The results so far from unilateral lesions suggest two potential mechanisms for change point 280 

estimation. The first possibility is that the computation of change point estimation is lateralized, 281 

such that the left hemisphere is involved in estimation for the right side, and vice versa. If this is the 282 

case, for a bilateral lesion, we would expect aberrant increases of hazard rates for both sides. The 283 

second possibility is that the estimation of change points involves inter-hemispheric coordination, 284 

which was perturbed by disruption of one hemisphere. If true, the lack of medial frontal cortex on 285 

both sides could nullify their respective maladaptive influences on behavior, and we may observe 286 

no or milder deficit after a bilateral lesion of ACAd/MOs. To distinguish between these two 287 

possibilities, we injected ibotenic acid bilaterally to the left and right ACAd/MOs regions in expert 288 

mice. Animals with bilateral lesions performed fewer trials per session, and accordingly fewer block 289 

switches (Figure 5A – B, Supplementary Figure 5.1;  P < 0.001, Wilcoxon signed-rank test), but 290 

had no motor deficit (Supplementary Figure 5.2 ). Surprisingly, and in line with inter-hemispheric 291 

coordination, there was no detectable change in the LRandom-dependent choice behavior (Figure 5C 292 

– D, Supplementary table 5.1 ), and no significant changes in the latent decision parameters 293 

including hazard rates (Figure 5E – H ). Comparison to sham animals in which saline was injected 294 

unilaterally (Figure 5I-P, Supplementary table 5.2 ) highlights again that the only effect of bilateral 295 

lesion was diminished motivation to perform the task. The reduced motivation to perform trials is 296 

consistent with a prior work from the lab (Siniscalchi et al. 2016). More importantly, these results 297 

argue against change point estimation as a lateralized computation in ACAd/MOs, but rather point 298 

to unbalance between the hemispheres as the reason for behavioral deficits. 299 
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300 
Figure 5: Effects of bilateral and sham lesions of ACAd/MOs   301 
(A) The number of trials performed in each session, before and after bilateral lesion, on a per-session basis. Mean and 302 
SEM. (B) Similar to (A) for the number of block switches in each session. (C) The probability of choosing the better option 303 
on the trial immediately preceding the switch, as a function of LRandom for the block preceding the switch, before and after 304 
bilateral lesion, on a per-session basis. Mean and SEM. Significant main effects and interactions from three-way ANOVA 305 
were indicated (P < 0.05). (D) Similar to (C) for number of trials to reach midpoint (when animal is equally likely to choose 306 
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either option). (E) The hazard rates, before and after bilateral lesion, extracted by fitting the belief-CK model on a per-307 
session basis. Mean and SEM. (F) Similar to (E) for learning rate for choice kernel. (G) Similar to (E) for inverse 308 
temperature sum. (H) Similar to (E) for inverse temperature ratio. (I – P) Similar to (A – H) for sham controls with 309 
unilateral saline injection. n.s., not significant. For bilateral lesion, n = 4 mice, 105 pre-lesion sessions and 61 post-lesion 310 
sessions. For saline control, n = 4 mice, 117 pre-lesion sessions and 53 post-lesion sessions.  311 

 312 

Medial frontal cortex impacts the decisions during action selection 313 

Permanent lesions are advantageous because, compared to transient inactivation, they avoid 314 

confounds from potential acute off-target effects (Otchy et al. 2015). However, it is unclear which of 315 

the lesion-induced behavioral changes are due directly to ACAd/MOs disruption, and which other 316 

consequences are compensatory adjustments. For this reason, we performed transient inactivation 317 

experiments using optogenetics. Mice were implanted with a clear-skull cap that has ~50% optical 318 

transmission (Supplementary Figure 6.1A ). For photostimulation, we used a laser-steering system 319 

(Pinto et al. 2019), in which the excitation beam from a 473 nm laser was steered by a set of mirror 320 

galvanometers to specific locations with high spatial and temporal resolutions (Figure 6A ). We 321 

calibrated the linearity of the steered coordinates as a function of galvanometer voltages and the 322 

spatial profile of the laser beam (Supplementary Figure 6.1B – C ). We demonstrated that the 323 

system can effectively manipulate neural activity by showing elevated c-fos immunohistostaining 324 

after unilateral photostimulation of ACAd/MOs in CaMKIIaCre;Ai32 animals (Supplementary Figure 325 

6.1D – F), and inducing biased tongue licks during the two-armed bandit task by inhibiting the 326 

anterolateral motor cortex in PvalbCre;Ai32 animals (Supplementary Figure 6.2) 327 

 328 
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 329 
Figure 6: Optogenetic inactivation in pre-choice, b ut not post-choice, period reproduced the deficit i n change-330 
point estimation 331 
(A) The schematic representation of experimental setup. (B) CCD image of a mouse with a cleared skull cap. The two 332 
blue crosses indicate the locations of the photostimulation, i.e. left and right ACAd/MOs. (C - D) The trial and block 333 
structures, and the timing of the photostimulation. (E) Choice behavior around block switches, plotted separately for the 4 334 
ranges of LRandom. Black, control trials. Green, pre-choice inactivation trials. Left, switches from ipsi block (photostimulated 335 
side was the high-reward-probability option). Right, switches from contra block ((photostimulated side was the low-336 
reward-probability option). Mean values and SEM for all animals. (F) Similar to (E) for post-choice inactivation. (G) The 337 
hazard rates extracted by fitting a modified belief-CK model, for pre- and post-choice inactivation, on a per-animal basis. 338 
(H) Similar to (G) for learning rate for choice kernel. (I) Similar to (G) for inverse temperature sum. (J) Similar to (G) for 339 
inverse temperature ratio. n = 6 animals. 340 

 341 

To suppress excitatory activity in ACAd/MOs during block switches, we used PvalbCre;Ai32 animals 342 

in which the channelrhodopsin ChR2 was selectively expressed in parvalbumin-expressing (PV) 343 

GABAergic interneurons (n = 6). Targeted photostimulation would activate PV interneurons in the 344 

left or right ACAd/MOs (Figure 6B ), which would in turn silence local excitatory spiking activity 345 
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(Guo et al. 2014; Li et al. 2019). These transient inactivations were applied either at the time of 346 

action selection (“pre-choice”, from cue onset to lick response) or after the outcome (“post-choice”, 347 

from lick response for 2 s; Figure 6C ), and on every trials across two consecutive blocks such that 348 

activity was suppressed before and after certain block switches (Figure 6D ). Figures 6E–F  show 349 

the effects of pre- and post-choice inactivation on behavior around block switches, separating the 350 

data based on whether the high-reward-probability side is ipsilateral or contralateral to the 351 

perturbation. Quantification of the behavior showed that pre-choice inactivation, but not post-choice 352 

inactivation, significantly affected the change point estimation (Supplementary Figure 6.3, main 353 

effect of block length: F(3, 1999) = 49.778, P < 0.001; main effect of stimulation type: F (1, 1999) = 354 

7.974, P = 0.004; interaction between block length and stimulation: F(3, 1999) = 2.674, P = 0.046; 355 

interaction between block length, stimulation and stimulation type: F(3, 1999) = 2.625, P  = 0.049). 356 

Fitting to the belief-CK model, expanded to account for the optogenetic stimulation (see Methods; 357 

� ���	
�� , � �
����	�� , � ���	
���	�� , � �����	
�� ,�� ���
����	�� � � �����	
���	�� , � ���	
�� , � �	�� , � �����	
��  and 358 

� ���	�� ), highlights the strongest effect is an acute change to hazard rate contralateral to the 359 

transient inactivation, although there were variations across individual animals and effect was not 360 

statistically significant (Figure 6G ; pre-choice inactivation, � ���	
���	��  vs. � �
����	�� : P = 0.156; 361 

post-choice inactivation, � ���	
���	��  vs. � �
����	�� : P = 0.687; pre-choice inactivation, � ���	
���	��  vs. 362 

� ���	
�� : P = 0.094; post-choice inactivation, � ���	
���	��  vs. � ���	
�� : P = 0.562, Wilcoxon signed-363 

rank test). There were no detectable effects of transient inactivation on � � , 
�

��� �
�  and � � � �  364 

(Figure 6H – J) . Together with the results from unilateral lesions, we interpret these findings from 365 

acute inactivation to indicate that ACAd/MOs is involved specifically in the change point estimation 366 

process, which occurs during the pre-choice period. 367 

 368 

Discussion 369 

This study provides evidence that mice anticipate impending change points by altering their choices 370 

prior to switches in a classic probabilistic reward learning task. Computational analyses indicate 371 

that the animals’ choice behavior is consistent with a model of belief updating and choice 372 

perseveration. Causal perturbation experiments emphasize the role of the ACAd/MOs region of the 373 

medial frontal cortex. Crucially, as discussed below, the collective results from the range of 374 

manipulations employed – unilateral and bilateral lesions, as well as pre- and post-choice 375 

optogenetic inactivation – provide important insights that can constrain the potential neural 376 

mechanisms underlying change-point estimation during decision-making. 377 

 378 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 29, 2022. ; https://doi.org/10.1101/2022.05.26.493245doi: bioRxiv preprint 



Although many studies of decision-making in rodents relied on analyses involving Q-learning 379 

algorithms (Wang et al. 2022; Bari et al. 2019; Hattori et al. 2019; Groman et al. 2019; Ito and Doya 380 

2015; Sul et al. 2010), there are other reports suggesting deviations from simple reinforcement 381 

learning. For instance, a pioneering study demonstrated that rats are exceedingly sensitive to 382 

changes in reward rates, approximating an ideal observer (Gallistel et al. 2001). Moreover, several 383 

studies using a variety of timing, operant conditioning, decision, and sensory categorization tasks 384 

have found neural and behavioral data consistent with the use of belief in rodents (Karlsson, Tervo, 385 

and Karpova 2012; Li and Dudman 2013; Liu et al. 2021; Starkweather et al. 2017; Vertechi et al. 386 

2020). However, these prior studies are different because in some cases, the use of belief did not 387 

necessarily confer better performance over other strategies for the task (Starkweather et al. 2017). 388 

In other cases, the task employs a series of deterministic outcomes (Vertechi et al. 2020), which 389 

strongly favors switching behaviors. Our study therefore extends these past results by showing 390 

decisions consistent with belief updating in one of the most popular value-based decision-making 391 

tasks used for human and animal studies (Sutton and Barto 2018). 392 

 393 

To quantify the animals’ behavior, we proposed a model involving belief updating with a fixed 394 

hazard rate, which was motivated by a prior study (Jang et al. 2019) and adapted to fit our task 395 

design. In this model, the agent understands that each action is associated with one of two reward 396 

probabilities. Given information from its choice and reward history as well as knowledge of the 397 

probability of a switch in reward probabilities, the agent infers the likelihood of the current states 398 

associated with the actions. This is in sharp contrast to the Q-learning algorithms, where the agent 399 

is implicitly ignorant of the task structure, and simply updates action values based on the last trial’s 400 

action and outcome. For belief updating, one limitation for our model is that the hazard rate is a 401 

constant value within a session. This assumption seems reasonable because mice were trained on 402 

the task extensively and probably accrue knowledge of the hazard rate based on experience of 403 

multiple switches across many sessions. That said, in principle, it is possible for an agent to infer 404 

the hazard rate as the task proceeds (Wilson, Nassar, and Gold 2010), which could be a 405 

refinement for future analyses. 406 

 407 

To determine the role of the medial frontal cortex, we started with excitotoxic lesions because the 408 

approach has numerous merits (Vaidya et al. 2019). Specifically, lesions can mitigate diaschisis, 409 

where the sudden loss of cortical excitations can be a confounding factor (Otchy et al. 2015). 410 

Moreover, we employed unilateral lesions, such that we can compare effects between sides 411 

ipsilateral and contralateral to the lesion in the same animal, serving as a rigorous internal control. 412 
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Results from these experiments demonstrated lateralized deficits from lesions of the medial frontal 413 

cortex. This finding may be surprising, because although sensory and motor functions are typically 414 

expected to be lateralized, it is less obvious that cognitive function may also be side-dependent. 415 

However, we note that a few prior studies have also found side-specific decision-making deficits 416 

from unilateral manipulations, such as effects of dorsal striatum on action values (Tai et al. 2012) 417 

and effects of MOs on lapses in a multisensory task (Pisupati et al. 2021). The exact reason for 418 

side-specific effects is unclear, although one possibility is that when decisions are intimately tied to 419 

responses associated with lateralized motor actions, then there is embodiment and motor and 420 

premotor cortical regions become involved in the neural computation (Bennur and Gold 2011). 421 

 422 

The various deficits arising from lesion and optogenetic manipulations are useful for thinking about 423 

the potential mechanisms for how the medial frontal cortex contributes to belief updating and more 424 

specifically change-point estimation. An inaccurate estimate, which would reflect as altered hazard 425 

rate in our computational model, can occur for several reasons: (1) error in estimating the value of 426 

hazard rate, (2) error when using the hazard rate to update belief, and (3) error when using the 427 

prior choice and reward to update belief. Reason (3) was not explicitly tested in our model fits but 428 

could manifest as an apparent change in hazard rate. Among these possibilities, the first option 429 

seems unlikely. In our task, an accurate value for hazard rate cannot be determined quickly but 430 

must be calibrated by experiencing many switches across multiple sessions. This is difficult to 431 

reconcile with the immediate deficit observed with pre-choice optogenetic inactivation. The third 432 

option is also unlikely. Previous studies have shown that choice- and outcome-related signals arise 433 

in the medial frontal cortex shortly after the outcome (Siniscalchi, Wang, and Kwan 2019; Sul et al. 434 

2011), whereas optogenetic inactivation during this post-choice period was ineffective. Therefore, it 435 

may be the case that the medial frontal cortex is involved in incorporating the likelihood of an 436 

impending change point for estimating the current task state.  437 

 438 

Furthermore, rather than computing using a probability such as the hazard rate, the animal may 439 

instead approximate the process by employing simpler heuristics to predict the impending 440 

occurrence of a change point. One intuitive heuristic, consistent with the reason for lateralized 441 

deficits, is that the animals may rely on the recent choice history of the number of better options 442 

chosen, which would indicate a higher likelihood of an impending switch. Here, the lack of effect 443 

from bilateral lesions can shed light on the form of the heuristic. For example, one heuristic that can 444 

work is a ratio of the number of recent left choices divided by the number of recent right choices, 445 

and if the unilateral lesion effectively adds a multiplier to the side’s choice history, then a bilateral 446 
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perturbation would lead to a null effect. Heuristics based on choice history are plausible because 447 

the medial frontal cortex has long-lasting, persistent representation of past choices (Bari et al. 448 

2019; Hattori et al. 2019; Siniscalchi et al. 2016; Sul et al. 2011). One caveat for this line of logic is 449 

that it is based on a specific belief updating model. However, we discuss the implications to 450 

illustrate how the results can inform the underlying neural basis. 451 

 452 

To sum, the two-armed bandit task has gained widespread use in neuroscience and artificial 453 

intelligence research because of its simplicity, translational significance, and amenability to 454 

computational modeling. Our results show that mice may perform the task by not only updating 455 

based on choices and outcomes, but also leverage knowledge of the environment to estimate 456 

change points. The diminished or exaggerated use of this prior knowledge represents suboptimal 457 

decision-making, which may underlie pathological behaviors in neuropsychiatric disorders that 458 

involve dysfunctions of the medial frontal cortex. 459 

 460 

 461 

METHODS 462 

Lead Contact 463 

Further information and requests for resources and reagents should be directed to and will be 464 

fulfilled by the Lead Contact, Alex Kwan (alex.kwan@yale.edu) 465 

  466 

Materials Availability 467 

All published reagents and mouse lines will be shared upon request within the limits of the 468 

respective material transfer agreements. Detailed plans including parts list for constructing the 469 

behavioral training apparatus is available at https://github.com/Kwan-Lab/behavioral-rigs. 470 

  471 

Data and Code Availability 472 

Data and analysis software for this paper will be available at Github (https://github.com/Kwan-Lab).  473 

 474 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 475 

Mouse lines 476 

In this study, we used a total of 30 adult male mice (Table 1 ; 2 - 8 months old), including 24 477 

C57BL/6J wild-type mice (#000664, Jackson Laboratory) for the lesion experiments, and 6 478 

PvalbCre;ROSACAG-ChR2-EYFP(Ai32) mice for the photostimulation experiments. The PvalbCre;ROSACAG-479 
ChR2-EYFP(Ai32) mice were generated by crossing the PvalbCre (B6.129P2-Pvalbtm1(cre)Arbr/J; #017320, 480 
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Jackson laboratory) and ROSACAG-ChR2-EYFP(Ai32) (B6.Cg-Gt(ROSA)26Sortm32 (CAG-481 
COP4*H134R/EYFP)Hze/J; #024109, Jackson laboratory) strains. Mice were housed in groups of 2 – 5 per 482 

cage in a 12h:12h light:dark cycle with ad libitum access to food. All of the experiments were 483 

completed during the light cycle. Experimental procedures were approved by the Yale University 484 

Institutional Animal Care and Use Committee. 485 

  486 

METHOD DETAILS  487 

Surgery for lesion experiments 488 

All of the mice in the lesion study underwent two surgeries. In the first surgery, a stainless steel 489 

headplate was attached to the skull to facilitate behavioral training. After collecting baseline 490 

behavioral data, a second surgery consisting of either an excitotoxic or sham lesion was performed. 491 

Before each surgery, the animal was treated pre-operatively with carprofen (5 mg/kg, i.p.; 024751, 492 

Butler Animal Health) and dexamethasone (3 mg/kg, i.p.; Dexaject SP, #002459, Henry Schein 493 

Animal Health). At the start of each surgery, anesthesia was induced with 2% isoflurane in oxygen, 494 

and the animal was placed on a water-circulating heating pad (TP-700, Gaymar Stryker). The head 495 

was secured in a stereotaxic frame with ear bars (David Kopf Instruments). Following induction, 496 

isoflurane concentration was lowered to 1 – 1.5% based on the animal’s weight and breathing 497 

pattern.  498 

 499 

For the first surgery, the scalp was shaved using scissors and cleaned with povidone-iodine 500 

(Betadine, Perdue Products L.P.). A narrow portion of the scalp was removed along the midline 501 

from the interaural line to a line visualized just posterior to the eyes. The scalp was retracted to 502 

expose the dorsal aspect of the skull and washed thoroughly with artificial cerebrospinal fluid 503 

(ACSF; in mM: 5 KCl, 5 HEPES, 135 NaCl, 1 MgCl2, and 1.8 CaCl2; pH 7.3). A scalpel and a 504 

ballpoint pen were used to scratch and paint marks onto the skull at the secondary motor and 505 

anterior cingulate cortices (MOs/ACAd; +1.5 mm AP, +0.3 mm ML from bregma), to be used as a 506 

landmark for the second surgery. A custom-made stainless-steel head plate (eMachineShop) was 507 

then bonded to the skull with cyanoacrylate glue (Loctite 454, Henkel) and transparent dental 508 

acrylic (C&B Metabond, Parkell Inc.), with care taken to cover any remaining exposed skull. The 509 

post-operative care was provided immediately, and for three consecutive days following surgery, 510 

consisting of carprofen (5 mg/kg, i.p.) for analgesia and preservative-free 0.9% NaCl (0.5 mL, i.p.) 511 

for fluid support. The animal had at least one week for post-operative recovery prior to the onset of 512 

behavioral training. 513 

 514 
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For the second surgery, a 1-mm-diameter circular craniotomy was made over the marked spot 515 

using a high-speed rotary drill (K.1070, Foredom). A total of ~300 nL of ibotenic acid (5 mg/mL in 516 

saline; 505024, Abcam) was injected into two locations (+1.5 mm and +1.7mm AP, +0.3 mm ML 517 

from bregma; 0.4 mm DV) through a glass micropipette attached to a microinjection unit (Nanoject 518 

II, Drummond). More specifically, each location would receive 15 pulses of 9.6 nL of the prepared 519 

solution. To minimize backflow of the injected solution, there was a 1 min gap between each pulse, 520 

and the micropipette was left in place for 20 min after the last pulse. Sham animals underwent the 521 

same surgical procedure, but saline was delivered instead of ibotenic acid. The exposed skull was 522 

covered with dental cement. The animal had two weeks of post-operative recovery prior to 523 

resuming behavioral testing. 524 

 525 

Surgery for photostimulation experiments 526 

All of the mice in the photostimulation study underwent one surgery. The animal was anesthetized 527 

in the same way as described above. Procedures to prepare the skull were nearly identical to those 528 

described in (Pinto et al. 2019). Briefly, the scalp covering the dorsal skull surface was 529 

excised and the periosteum over the skull was removed using a micro-curette (VWR Buck Micro 530 

Curette, 10806-346). The skull was washed thoroughly with ACSF. A custom stainless-steel head-531 

plate (eMachineShop) was affixed at points above the cerebellum and olfactory bulbs with 532 

cyanoacrylate glue (Loctite 454, Henkel) and transparent dental acrylic (C&B Metabond, Parkell 533 

Inc.). The exposed skull was covered with a thin layer of cyanoacrylate glue (Apollo 2000, 534 

Cyberbond) and transparent dental acrylic, then polished with an acrylic polishing kit (0321, 535 

PearsonDental), and finally covered with transparent nail polish (72180, Electron Microscopy 536 

Services). The animal had at least one week of post-operative recovery prior to the onset of 537 

behavioral training. 538 

 539 

Behavioral training apparatus 540 

The apparatus for training head-fixed mice was adapted from (Siniscalchi et al. 2016). Detailed 541 

plans including parts list for constructing the behavioral training apparatus is available at 542 

https://github.com/Kwan-Lab/behavioral-rigs. Briefly, the behavioral box was constructed using a 543 

closed compartment of an audio-visual cart (4731T74, McMaster-Carr) that was soundproofed with 544 

acoustic foam (5692T49, McMaster-Carr). The mouse was placed in an acrylic tube (8486K433, 545 

McMaster-Carr), which allowed for postural adjustments but restricted large body movements. Two 546 

metal screws were used to attach the head plate of the mouse onto a custom stainless-steel mount 547 

(eMachineShop). The lickometer was based on a 3D-printed part that held two lick ports 548 
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constructed from 20-gauge needles, and was placed in front of the mouse such that the lick ports 549 

are on the left and right of the animal’s mouth. The position of the lick ports relative to the mouse 550 

could induce considerable side bias and influence response time. To mitigate variations across 551 

sessions, the lickometer was attached to an XYZ translation stage (MT3, Thorlabs) for precise 552 

positioning, and the same set of coordinates were used for the same mouse between sessions. 553 

Water was supplied to the lick ports via Tygon tubing (EW- 95666-01, Cole-Parmer). A touch 554 

detector circuit was used for detecting tongue licks onto each lick port. Water was delivered at the 555 

lick ports by gravity feed and controlled by solenoid valves (EV-2-24; Clippard or MB202-V-A-3-0-L-556 

204, Gems Sensor Solenoid). The water amount is controlled by the duration of a TTL pulse, and 557 

we calibrated the solenoid to deliver ~2 µL per pulse. All of the electrical circuits for water delivery 558 

and lick detection were connected to a desktop computer via a data acquisition board (USB-201, 559 

Measurement Computing). A pair of speakers (S120, Logitech) were positioned in front of the 560 

animal for auditory stimuli (calibrated to 80 dB). The tasks were programmed in scripts using the 561 

Presentation software (Neurobehavioral Systems), which controlled the entire behavioral apparatus 562 

including stimulus presentation. A table lamp (LT-T6, Aukey) was placed in each box, behind the 563 

mouse, to provide dim ambient light in the box. A camera (SV-USBFHD01M-BFV, Svpro) was used 564 

to optimize the lick port position at the beginning of each session and monitor the animal’s behavior 565 

throughout the session.  566 

 567 

Two-armed bandit task 568 

Mice were fluid-restricted. On training days, animals received all of their water intake from 569 

behavioral training that occurred 1 session per day, 5 days per week. On non-training days and 570 

days when weight measurements fell below 85% of their pre-restriction weight, water was provided 571 

ad libitum in the home cage for 5 minutes. 572 

 573 

Prior to any behavioral training, the animal was handled and habituated to head fixation for 574 

increasing durations over three days. Water was manually provided via the lick ports to familiarize 575 

mice with receiving fluid from the lickometer. After 1 – 2 days of habituation, the animal underwent 576 

two phases of shaping. 577 

 578 

In the first phase, the animal was trained to alternate between the two lick ports to receive water 579 

rewards. More specifically, on each trial, there would be an auditory cue (duration = 0.2 s, tone with 580 

5 kHz carrier frequency). The onset of the auditory cue is the start of a 5-s long response window, 581 

during which the first lick detected is the animal’s response. The playback of the auditory cue was 582 
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terminated early if the response was recorded before the entire stimulus was played. The animal 583 

was required to alternate between left and right responses to earn water rewards: if the last 584 

rewarded response was left, then the mouse must make a right response to receive water, and vice 585 

versa. The inter-trial interval had a fixed duration, such that the auditory cue for the next trial would 586 

occur 3.1 s after the animal’s response. A session would end when the animal did not lick during 587 

the response window (‘miss’) for 20 consecutive trials. When the animal could attain at least ~60 588 

rewards in a session, the shaping would proceed to the second phase. 589 

  590 

In the second phase, the animal still had to alternate, but was trained to the trial structure including 591 

withholding licks between trials. The second phase was similar to the first phase, with two 592 

exceptions. First, the onset of the auditory cue is the start of a 2-s long response window, during 593 

which the first lick detected is the animal’s response. Second, the addition of a no-lick period 594 

between trials. The no-lick period began 3 s after the animal’s response. Initially, the duration of the 595 

no-lick period was drawn from a truncated exponential distribution (�  = 0.33333, minimum = 1, 596 

maximum = 5). If any lick was detected during the no-lick period, then another duration drawn from 597 

the same truncated exponential distribution would be added onto the end of the first no-lick period. 598 

The addition could repeat for up to 5 times if the animal could not withhold licking. Therefore, the 599 

possible duration for the entire no-lick period ranged between 1 and 25 s, and was dependent on 600 

whether the animal could withhold licking. Subsequently, the auditory cue for the next trial would 601 

occur 0.1 s after the end of the no-lick period. When the animal could receive rewards in at least 602 

~40% of all trials, it would be advanced to the two-armed bandit task. Typically, the animal would 603 

proceed through each shaping phase in 3 or fewer sessions. 604 

  605 

In the two-armed bandit task, the auditory stimulus, response timing, and inter-trial interval 606 

including no-lick period were exactly the same as the second shaping phase. However, the 607 

outcome of each trial was probabilistically determined. In a 10:70 block of trials, the left lick port had 608 

a 10% chance of delivering water if chosen and the right lick port had a 70% chance of delivering 609 

water if chosen. By contrast, in a 70:10 block of trials, the reward probabilities associated with the 610 

left and right ports were reversed. Hence, the better option is right in a 10:70 block, but left in a 611 

70:10 block. At the start of each session, the block type (10:70 or 70:10) was randomly chosen. 612 

The block type would switch when the mouse fulfilled the switching condition: perform trials 613 

(LCriterion) until the animal accumulated 10 choices selecting the side with high reward probability, 614 

and then perform additional trials (LRandom) that were drawn from a truncated geometric distribution 615 

(p = 0.0909, no minimum = 0, maximum = 30). Notably, LCriterion depended on the animal’s 616 
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performance, whereas LRandom was random and independent of performance. The block type would 617 

continue to switch, as long as the animal was fulfilling the switching condition of each block. In the 618 

lesion experiments, they would be tested on the two-armed bandit task in daily sessions until at 619 

least 150 switches were collected for each of the pre- and post-lesion conditions. 620 

 621 

Photostimulation 622 

The photostimulation rig allowed for rapid adjustment of the position of the laser. The rig was 623 

constructed based on the design in (Pinto et al. 2019). Briefly, a 473 nm laser beam (Obis LX 473 624 

nm, 75 mW; 1193830, Coherent) was steered by a set of XY galvo mirrors (6210H, Cambridge 625 

Technologies) mounted in a ThorLabs 60 mm cage system. The laser was sent through a F-theta 626 

scan lens (f = 160 mm; FTH160-1064-M39, ThorLabs) and directed onto the animal’s head. A 627 

monochromatic camera (Grasshopper3; GS3-U3-23S6M-C, Point Grey) equipped with a telecentric 628 

lens (TEC-55, Computar) was used to visualize the cortical surface and to calibrate the position of 629 

the laser beam relative to bregma. The laser, mirrors, and camera were controlled via a data 630 

acquisition board (PCIe-6343, National Instruments) by custom software written in MATLAB on a 631 

desktop computer. The laser was calibrated to yield a time-averaged power of 1.5 mW at the 632 

sample. Light transmission through the clear-skull cap (dental cement and skull) was measured by 633 

placing the cap at the sample plane, and positioning a laser power meter underneath the cap. 634 

  635 

Animals underwent the same shaping phases and task training. For the photostimulation 636 

experiments, the animal was tested on the two-armed bandit task in a behavioral setup within the 637 

photostimulation rig. Temporally, the photostimulation could occur either before or after the animal’s 638 

response. For pre-choice photostimulation, the laser was turned on at the onset of the auditory cue 639 

and turned off immediately when a response was detected. For post-choice photostimulation, the 640 

laser was turned on immediately when a response was detected and turned off 2 s later. Spatially, 641 

the photostimulation was targeted to one of two possible locations: left MOs/ACAd (+1.5 mm AP, -642 

0.3 mm ML from bregma) or right MOs/ACAd (+1.5 mm AP, +0.3 mm ML from bregma). 643 

  644 

At the start of each session, the timing of the photostimulation (pre-choice or post-choice) was 645 

randomly chosen and stayed the same for the entire session. The initial 3 – 5 blocks were always 646 

control blocks, i.e., no photostimulation. The rationale was to make sure the animal was performing 647 

the task well that day before any perturbation. Subsequently, the next 2 blocks would be 648 

photostimulation blocks targeting the same spatial location, followed by 2 control blocks, followed 649 

by 2 photostimulation blocks targeting the same spatial location, and so on. For the 650 
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photostimulation blocks, the spatial location was randomly selected to be left or right MOs/ACAd 651 

each time. In other words, in the same session, the animal may receive perturbation of both left and 652 

right MOs/ACAd, albeit in different trial blocks. 653 

  654 

To prevent the animal from using stray laser light to distinguish photostimulation from control 655 

blocks, we implemented a masking stimulus by shining a blue LED at the eyes. The masking 656 

stimulus had the same onset timing and duration as the photostimulation used for the session, and 657 

was applied for every trial in both control and photostimulation blocks. 658 

  659 

Histology 660 

To determine the extent of the lesions, following behavioral experiments, the mouse was deeply 661 

anaesthetized with an overdose of isoflurane and transcardially perfused with chilled formaldehyde 662 

solution (4%, in phosphate-buffered saline (PBS)) at a rate of 5 mL/min. The brain was quickly 663 

removed, stored overnight in the formaldehyde solution at 4 °C, and then switched to PBS for long-664 

term storage. Coronal sections with a thickness of 100 µm were cut using a vibratome (VT1000 S, 665 

Leica). 666 

  667 

For cresyl violet staining, cresyl violet (1 g/L; 10510-54-0, Sigma Aldrich) was added to filtered H2O 668 

and stirred overnight. The next day, glacial acetic acid (2.5 mL/L; 64-19-7, Sigma Aldrich) was 669 

added to the solution. The tissue sections were washed with filtered H2O before mounting on glass 670 

slides and stained with a pre-warmed (50°C) cresyl violet solution. The sections were dehydrated 671 

with ascending grades of alcohol (95% for 10 minutes, 100% twice for 10 minutes each), cleared 672 

with xylene (twice for 5 minutes each), and mounted with DPX mounting medium (06522, 673 

MilliporeSigma). 674 

  675 

For NeuN staining, tissue sections were washed three times with PBS and then incubated with a 676 

blocking solution (5% normal goat serum, 0.3% Triton X-100, in PBS) for 1 hour at room 677 

temperature. Subsequently, sections were incubated with rabbit monoclonal primary antibody 678 

against NeuN (1:500 dilution; ab177487, Abcam Inc,) overnight at 4� °C on the shaker. After 679 

washing three times with PBS, tissue sections were incubated with goat anti-rabbit secondary 680 

antibody with conjugated Alexa 488 (1:500 dilution; ab150077, Abcam Inc,) for 2.5 hours at room 681 

temperature. After washing with PBS, nuclear staining was performed by incubating with a 4�,6-682 

diamidino-2-phenylindole (DAPI) staining solution (ab228549, Abcam Inc.) for 10 minutes. Finally, 683 

sections were washed three times with PBS and then with filtered H2O, before mounting on slides 684 
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with DPX mounting medium (06522, MilliporeSigma). A motorized upright fluorescence microscope 685 

(Olympus BX61, Olympus) was used to image the sections. 686 

 687 

QUANTIFICATION AND STATISTICAL ANALYSIS  688 

Analysis of behavioral data 689 

Timestamps of the behavioral events, including cue onsets, outcome onsets, licks, and reward 690 

probabilities were logged to a text file by the NBS Presentation software. The text files were parsed 691 

and analyzed using scripts written in MATLAB (MathWorks, Inc.). For all of the analyses, we 692 

excluded the session if the animal had fewer than 4 block switches. We analyzed all of the trials up 693 

to the last switch, and ignored the trials in the last incomplete block where by definition had many 694 

miss trials. 695 

  696 

When analyzing the consequences of unilateral lesions, for simplicity, we used the term lesion 697 

blocks and contra blocks. This is because unilateral lesions were randomly assigned to the left or 698 

right hemisphere for each animal. Lesion blocks refer to those blocks where the lesioned side is the 699 

same as the better option. In other words, if the animal had a unilateral lesion on the right 700 

hemisphere, then the lesion blocks correspond to 10:70 blocks. If the animal had a unilateral lesion 701 

on the left hemisphere, then the lesion blocks correspond to the 70:10 blocks. The remainder was 702 

referred to as the contra blocks. 703 

 704 

Analysis of behavioral data – effects of block leng th 705 

For analyses involving block lengths, we used the subset of data in which LCriterion �  20 trials for the 706 

pre-switch block, in order to restrict the analyses to situations where the performance was similar. 707 

  708 

The probability of choosing the better option pre-switch, P (better option) pre-switch, was determined 709 

for each animal by examining the last five trials before each block switch, dividing the number of 710 

times in which the animal chose the initial better option (i.e., the side with 70% reward probability 711 

before switch) by the number of switches. Hit rate was the proportion of trials in which the animal 712 

selected the better option. The win-stay probability, P (stay | win), was the fraction of trials in which 713 

animals repeated a choice after a rewarded trial. The lose-switch probability, P (switch | lose), was 714 

the fraction of trials in which an animal switched its choice after an unrewarded trial. For all of these 715 

performance metrics, we computed the metric on a session-by-session basis, then averaged 716 

across sessions to obtain per-animal value. In the lesion data, P (better option) pre-switch, P (stay | 717 

win) and P (switch | lose) was calculated in the last five trials before each block switch 718 
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 719 

Trials to reach midpoint was determined by first calculating the fraction of trials for choosing the 720 

initial better option around the block switch for the animal, and then identifying the trial from the 721 

switch where the fraction of trials choosing the initial better option was closest to 0.5. To compute 722 

the trials to reach the midpoint metric, we would first concatenate data across sessions including 723 

inserting 20 NaN in the gaps, then compute the metric to obtain the per-animal value. We did this 724 

because the per-session values for trials to reach midpoint can be quite variable. 725 

 726 

Analysis of behavioral data – reinforcement learnin g models 727 

The response-by-response behavior of the animal was fitted with eight models: (1) win-stay lose-728 

switch (WSLS); (2) Q-learning (Q-RPE); (3) Q-learning with forgetting (F-Q-RPE); (4) Q-learning 729 

with differential forgetting (DF-Q-RPE); (5) F-Q-RPE with choice kernel (F-Q-RPE-CK), which 730 

captured the tendency to repeat the same option; (6) DF-Q-RPE with choice kernel (DF-Q-RPE-731 

CK); (7) belief model that uses the prior knowledge of a change point in reward probabilities to 732 

make a decision (7) belief model with choice kernel (belief-CK). We will describe these models in 733 

detail in the following paragraphs. 734 

 735 

For win-stay lose-switch (WSLS), if the last trial was rewarded, the agent would repeat to choose 736 

the same option with probability � . Else, if the last trial was unrewarded, the agent would switch to 737 

choose the other option with probability � . This model has 1 free parameter: � . 738 

 739 

For the three simple Q-learning models (Q-RPE, F-Q-RPE, DF-Q-RPE), the updating rules are as 740 

follows. On trial � , for a choice � �  that leads to an outcome 	 � , the reward prediction error � �  is: 741 

� � 
 	 � � � �
� 
                                  (1) 742 

 743 

where � �
�  is the action value associated with the chosen action � . In our task, there are two options, 744 

so �
 � 
 � �� � � . For the outcome, 	 �  = 1 for reward, 0 for no reward. The action value for each action 745 

is then updated accordingly: 746 

 747 

� ���
� 
 

 �

� �
� 
 � �
� � 





















��
�� 
 �

� � � � � � �
� 






















��
�� � �

�             (2) 748 

      749 

where �  is the learning rate, �  are the forgetting terms for the unchosen action. Then on the next 750 

trial, the probability of choosing each action was determined by a softmax rule: 751 
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 752 

� � � ��� 
 � � 

��
���� ���

� �

� ��
���� ���
� ��

              (3) 753 

 754 

where �  is the inverse temperature parameter. 755 

 756 

The model as stated with 3 free parameters — � , � , and �  — is referred to as Q-learning with 757 

differential forgetting (DF-Q-RPE). A special case of this model is when �
 
 � , which is referred to 758 

as Q-learning with forgetting (F-Q-RPE). Another special case is when � 
 � , which is referred to 759 

as Q-learning (Q-RPE). 760 

 761 

For two Q-learning models with choice kernel (F-Q-RPE-CK, DF-Q-RPE-CK), choice kernel was 762 

implemented to capture the tendency of choosing the previous choice. We adapted the formulation 763 

from (Wilson and Collins 2019). The choice kernel  	
�  on trial !  associated with action �  is updated 764 

in a manner analogous to the action values: 765 

 766 

 ���
� 
 �

 �
� � � � � � �  �

� � 







��
�� 
 �
� � � � � �  �

� 


















��
�� � �
�                     (4) 767 

 768 

where � �  is the choice-kernel learning rate. For action selection with both action values and choice 769 

kernels, the probability of choosing each action was determined by a softmax rule: 770 

 771 

� � � ��� 
 � � 

��
���� ���

� �� � � ���
� �

� ��
���� ���
� �� � � ���

� ��
           (5) 772 

 773 

where �  and � �  are the inverse temperature parameters for the action values and choice kernels 774 

respectively. Note that the term within the numerator on the right-hand side can be re-arranged: 775 

 776 

�� ���
� � � �  ���

� 
 
 "
�

��� �
� ���

� �
� �

��� �
 ���

� #� (6) 777 

 778 

Where �� � � � �  is the effective inverse temperature parameter reflecting the exploration-779 

exploitation balance, and 
�

��� �
 is a ratio indicating the relative reliance on expected reward rather 780 

than perseveration in action selection. 781 

 782 
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Analysis of behavioral data – belief models 783 

In the belief model, the agent knows two aspects about the task structure. First, the left option can 784 

have reward probabilities of either 10% or 70%. It follows that the right option would have the other 785 

reward probability. These are the two possible hidden states of the environment. Second, the 786 

reward probabilities will reverse with a certain frequency characterized by a hazard rate, H. In each 787 

trial, the animal has a belief, which consists of the likelihood that the left option has a reward 788 

probability of 10%, $��� , and the likelihood that the left option has a reward probability of 70%, $��� . 789 

The constraints are that $��� � $ ��� 
 � , $��� 
 � � 
$ ���  and $��� 
 � � 
$ ��� . At the start of a 790 

session, we set the prior as a uniform distribution, so the $��� 
 
 $ ��� 
 $ 

��
 
 �%&. At the end of 791 

each trial, the belief is updated. The possibility of a reward probability switch is considered: 792 

 793 

$��� 
 
 $ ��� ' � � � 
( � � 
$ 

��
 ' (    (7) 794 

 795 

Similarly, pL70 is updated and then pL10 and pL70 are normalized to sum to 1. Next, inference is made 796 

based on the outcome following Bayes’ rule, which states that P (belief | observation) = P(belief) * 797 

P (observation | belief): 798 

 799 

$��� 
 
 $ ��� ' �%�   if left and rewarded  (8) 800 

$��� 
 
 $ ��� ' �%)   if left and rewarded     801 

   802 

$��� 
 
 $ ��� ' �� � �%��  if left and unrewarded 803 

$��� 
 
 $ ��� ' �� � �%)�  if left and unrewarded 804 

 805 

or if the animal chooses right, then $���  and $���  would be updated instead. Again, the probabilities 806 

for the belief are normalized to sum to 1. With the updated belief, the expected rewards for the left 807 

and right options can be calculated directly, for example: 808 

 809 

* � 
 
 $ ��� ' �%� � 
 $ ��� ' �%)     (9) 810 

 811 

Action selection then proceeds using the same softmax equation as Equations 3 or 5, with the 812 

expected rewards replacing the action value terms, for the belief and belief with choice kernels 813 

models respectively. The belief model has two free parameters, �  and � . The belief model with 814 

choice kernel model has four free parameters � , � , � � , and � � . 815 

 816 
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Parameter fitting and model evaluation 817 

For each animal, trials across sessions were concatenated. The values for the free parameters 818 

were determined by fitting each model to the concatenated data using the Bayesian adaptive direct 819 

search (BADS) algorithm with default settings (Acerbi and Ma 2017). The initial values for � , � , � , 820 

� � , � and � � were set to 0.3, 0.3, 0.1, 0.2, 5 and 5 respectively. The lower bound of parameters 821 

were set to 0 and the upper bound was set to 100 for inverse temperatures and 1 for the rest of the 822 

parameters. To evaluate the models, we calculated the Bayes information criterion (BIC). 823 

 824 

+,- 
 . � /01 2 � 3��
                    (10) 825 

 826 

where Nm is the number of parameters in model m. T is the number of trials used to estimate the 827 

parameters and LL is the negative log-likelihood value at the best fitting parameter settings. The 828 

model that best fits the data should have the smallest BIC score as the positive effect of the 829 

number of parameters, Nm, has an explicit penalty for free parameters. 830 

 831 

The parameters used for the simulated data for the belief model with choice kernel was the best-832 

fitting parameters of one animal (�  = 0.320, �  = 1.387, � � =0.468, � �   = 2.543 with 300,000 trials, 833 

approximately 9000 switches as in the experiment data). The belief model with choice kernel was 834 

used to analyze the latent variables for lesion and photostimulation data.  835 

 836 

To fit the lesion data, we modified the belief-CK model. Different parameters for hazard rate and 837 

choice kernel learning rate were used depending on if the animal’s choice in the current trial is 838 

ipsilateral or contralateral to the lesion side. This yields an expanded model with 6 parameters: 839 

� ������ , � ���	
� , � �������� , � �����	
�� , � , and � � . To fit the data on a per-animal basis, trials across 840 

sessions before lesion were concatenated, and trials across sessions after lesion were 841 

concatenated. To fit the data on a per-session basis, we estimated the parameters for each 842 

session.  843 

 844 

To fit the optogenetics data, we modified the belief-CK model. Different parameters for hazard rate 845 

and choice kernel learning rate were used depending on if the animal’s choice in the current trial is 846 

ipsilateral or contralateral to the photostimulated side, or if the animal’s choice occurred in a control 847 

trial with no photostimulation. Different parameters for inverse temperatures were used depending 848 

on if the current trial was photostimulation or control. This yields an expanded model with 10 849 

parameters: � �
����	�� , � ���	
���	�� , � ���	
�� , � ���
����	�� � � �����	
���	�� ,�� �����	
�� , � ���	
�� , � �	�� , 850 
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� �����	
�� , and � ���	�� . Per each animal fittings, trials across sessions for pre-choice stimulation and 851 

post-choice stimulation were concatenated. Per session fittings was not used for this dataset as 852 

total number of trials within a session did not give a reliable estimate for the ten parameters fittings. 853 

 854 

Statistical Analyses 855 

All statistical analyses were completed using MATLAB (version 2019b, MathWorks). Three-way 856 

ANOVA was used to examine the effect of the lesion on behavioral performance. For datasets with 857 

a matched number of data points, Wilcoxon signed-rank test was used; otherwise, Wilcoxon ranked 858 

sum test was used. Unless otherwise specified, we used an alpha level of 0.05 for all statistical 859 

tests.  860 
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Supplementary Information 881 

 882 

   P(better option)  
pre-switch 

Trials to reach 
midpoint 

Hit rates  

  df F p F p F p 

Lesion 1 32.71 .000 33.36 .000 4.87 .027 

Side 1 0.63 .857 8.68 .003 4.02 .045 

LRandom 3 57.67 .000 0.52 .666 21.46 .000 

Lesion*Side  1 1.42 .233 4.30 .038 0.86 .355 

Lesion*LRandom 3 2.71 .044 0.57 .635 3.06 .027 

LRandom*Side 3 0.18 .910 4.30 .004 0.49 .688 

Lesion*LRandom*Side 3 2.40 .066 1.60 .187 1.07 .361 

 883 

Supplementary Table 2.1 : The results of three-way between-subjects ANOVA with factors of 884 

lesion (pre- and post-lesion), side (lesion blocks and Contra blocks), and LRandom (4 LRandom ranges) 885 

for P(better option)pre-switch, trials to reach midpoint and hit rates. p < 0.05 in bold. All dependent 886 

variables calculated for each block across sessions. (Error = 3285; 2399; 3285; 3285; 2816;3187 887 

for P (better option) pre-switch, trials to reach midpoint and hit rates respectively  888 
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 889 

Supplementary Figure 2.1: No decrease in overall pe rformance after unilateral lesion of 890 

ACAd/MOs 891 

The total number of trials and block switches per session before (pre) and after (post) the unilate892 

lesion. 893 

  894 

teral 
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 895 

Supplementary Figure 2.2: No motor deficits after u nilateral lesion of ACAd/MOs 896 

Mean left and right lick density for each possible combination for choice (left or right) and outcom897 

(reward or no reward). No significant difference was detected between pre- and post-unilateral 898 

lesion. 899 

ome 
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900 

Supplementary Figure 3.1: Belief-CK model: effect o f varying the hazard rate  901 

The belief-CK model was used to simulate an agent’s choice behavior in the two-armed bandit ta902 

with probabilistic reward reversal. Parameters were selected based on the best fitting values from903 

an animal. Each column shows the results using a different hazard rate (  = 0.01, 0.25, 0.5, 0.75904 

1) while all other parameters were kept constant (n = 300,000 trials,  = 1.387, =0.468,   = 905 

2.543). Top row shows the mean fraction of trials choosing the better and worse options for 4 906 

different LRandom ranges for 10 trials before and after the block switch. Middle row shows the P 907 

 

t task 

om 

.75, 
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(better option) pre-switch as a function of LRandom. Mean and SEM. Bottom row shows the mean number 908 

of trials to reach midpoint as a function of LRandom. 909 
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911 

Supplementary Figure 3.2: Belief-CK model: effect o f varying choice kernel learning rate . 912 

Similar to Supplementary Figure 3.1, with different choice kernel learning rates (  = 0.01, 0.25, 913 

0.5, 0.75, 1) while all other parameters were kept constant (n = 300,000 trials,  = 0.320,  = 914 

1.387,   = 2.543). 915 
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916 

Supplementary Figure 3.3:  Belief-CK model: effect of varying beta sum . 917 

Similar to Supplementary Figure 3.1, with different beta sum (  = 0, 1, 3, 5, 10) while all oth918 

parameters were kept constant (n = 300,000 trials,  = 0.320, = 0.468).  was set to equal to919 

 

other 
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920 

Supplementary Figure 3.4: Belief-CK model: effect o f varying beta ratio.  921 

Similar to Supplementary Figure 3.1, with different beta ratios (0.01, 0.25, 0.5, 0.75, 1) while all 922 

other parameters were kept constant (n = 300,000 trials,  = 0.320, =0.468,   = 2.543).  w923 

fixed and  was calculated based on the beta ratio values. 924 
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 925 

Supplementary Figure 3.5: DF-Q-RPE algorithm cannot  reproduce the L Random -dependent 926 

trends in the experimental data. 927 

(A) The probability of choosing the better option on the trial immediately preceding the switch, as928 

function of LRandom for the block preceding the switch. Black, mice. Purple, simulated performance929 

using the DF-Q-RPE model with best-fitting parameters. Mean values and SEM for all animals. (B930 

Similar to (A) for number of trials to reach midpoint (when animal is equally likely to choose eithe931 

option). (C) Similar to (A) for the tendency to win-stay on the 5 trials preceding the switch. (D) 932 

Similar to (A) for the tendency to lose-switch on the 5 trials preceding the switch. Mean and SEM933 

= 31 mice, 617 sessions. 934 
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936 

Supplementary Figure 5.1: Fewer trials but similar performance after bilateral lesion of  937 

ACAd/MOs   938 

The total number of left- and right-responding trials, reward rates, and hit rates before (pre) and 939 

after (post) the lesion. 940 
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942 

Supplementary Figure 5.2: No motor deficits after b ilateral lesion of ACAd/MOs 943 

Mean left and right lick density for each possible combination for choice (left or right) and outcom944 

(reward or no reward). No significant difference was detected between pre- and post-bilateral 945 

lesion. 946 

 947 
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   P(better option)  
pre-switch 

Trials to reach 
midpoint 

Hit rates  

  df F p F p F p 

Lesion 1 1.968 .161 0.001 .974 1.0814 0.2986 

LRandom 3 20.179 .000 1.525 .206 1.8643 0.1337 

Lesion*LRandom 3 1.285 .278 0.202 .895 0.4492 0.7179 

 949 

Supplementary Table 5.1 : The results of two-way between-subjects ANOVA for bilaterally injected 950 

animals with factors of lesion (pre- and post-lesion and LRandom (4 LRandom ranges) for P(better 951 

option) pre-switch, trials to reach midpoint and hit rates. p < 0.05 in bold. All dependent variables 952 

calculated for each block across sessions. (Error = 1356;911;1356; for P (better option) pre-switch, 953 

trials to reach midpoint and hit rates respectively 954 

 955 

  P(better option)  
pre-switch 

Trials to reach 
midpoint 

Hit rates  

  df F p F p F p 

Lesion 1 0.0167 .897 9.7782 .002 0.0325 0.857 

LRandom 3 20.430 .000 1.0813 .356 9.624 0.000 

Lesion*LRandom 3 0.082 0.969 0.0594 .981 0.190 0.903 

 956 

Supplementary Table 5.2 : The results of two-way between-subjects ANOVA for saline injected 957 

animals with factors of lesion (pre- and post-lesion and LRandom (4 LRandom ranges) for P (better 958 

option) pre-switch, trials to reach midpoint, hit rates, P(lose | switch), P(win | stay). p < 0.05 in bold. All 959 

dependent variables calculated for each block across sessions. (Error = 1871;1217; 1871 for P 960 

(better option) pre-switch, trials to reach midpoint and hit rates respectively. 961 
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962 

Supplementary Figure 6.1: Validation of th e laser steering syst em for optogenetic 963 

manipulation: characterization and c-Fos staining 964 

(A) Optical transmission of the clear skull cap preparation was measured by illuminating with a 965 

laser and recording intensity using a power meter. Mean and SEM. n = 5. (B) Linearity of the 966 

galvanometers in the x and y directions. (C) Beam profile was measured at the sample plane by 967 

inserting and moving a razor blade across the plane using a micromanipulator. (D - F) In 968 

CaMKIIaCre;Ai32 animals, cortical excitatory neurons express ChR2. After unilateral 969 

photostimulation of the left ACAd/MOs region (40 Hz, 1.5 mW, 1 min on then 1 min off repeatedl970 

for 20 min), immunohistostaining with a c-Fos antibody showed elevated signals. 971 
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972 

Supplementary Figure 6.2: Inactivating left and rig ht ALM during two-armed bandit task 973 
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(A) In PvalbCre;Ai32 animals, parvalbumin-expressing neurons including fast-spiking interneurons in 974 

the neocortex express ChR2. Photostimulation of a brain region drives spiking in the interneurons, 975 

which in turn suppresses excitatory activity. Lick raster recorded in an example session, in which 976 

trials were sorted based on the photostimulation (None: no stimulation; ALM-L: left anterior lateral 977 

motor cortex, AP=2.5 mm, ML=-1.5 mm; ALM-R: right anterior lateral motor cortex, AP=2.5 mm, 978 

ML=1.5 mm; V1-L: left primary visual cortex, AP=-2.7 mm, ML=-2.5 mm; V1-R: right primary visual 979 

cortex, AP=-2.7 mm, ML=2.5 mm). (B) The number of trials of each type per session. (C) Percent 980 

of trials resulted in a miss, as a function of trial type. (D) Percent of trials resulted in a left response, 981 

as a function of trial type. (E) Percent of trials resulted in a right response, as a function of trial type. 982 

These results show that transient inactivation of ALM increased ipsilateral responses at the 983 

expense of contralateral responses. 9 sessions from 3 animals. 984 

 985 
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987 

 988 

Supplementary Figure 6.3: Pre-choice inacti vation, but not post-choice inactivation, 989 

significantly affected the change point estimation.  (A) Schematic of stimulation scheme. (B) 990 

The probability of choosing the better option on the trial immediately preceding the switch, as a 991 

function of LRandom for the block preceding the switch, for pre-choice inactivation. Mean values an992 

SEM for all animals (n = 6 mice). (C) Similar to (B) for post-choice inactivation. 993 

  994 
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