10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25
26
27

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.25.493425; this version posted May 26, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Title: Color-biased regions in the ventral visual pathway are food-selective
Abbreviated Title: Color NSD
Author Names: lan Morgan Leo Pennock?

Chris Racey?
Emily Allen?

Yihan Wu?
Thomas Naselaris?
Kendrick Kay?
Anna Franklin®

Jenny Bosten?

Author Affiliations:
1 School of Psychology, University of Sussex, Falmer, United Kingdom
2 Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
Corresponding Author: lan Morgan Leo Pennock

ianml.pennock@gmail.com

The Sussex Colour Group

School of Psychology,

University of Sussex,

Brighton, United Kingdom
Conflict of Interests:  The authors declare no competing financial interests.
Keywords: food, color vision, fMRI, ventral visual pathway

Acknowledgements: Collection and pre-processing of MRI data was supported by NSF [1S-1822683 (K.K.),
NSF 11S-1822929 (T.N.), NIH S10 RR026783, the W.M. Keck Foundation, the analyses described here by
European Research Council grants COLOURMIND 772193 (AF) and COLOURCODE 949242 (JB)


https://doi.org/10.1101/2022.05.25.493425
http://creativecommons.org/licenses/by-nd/4.0/

28

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.25.493425; this version posted May 26, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

ABSTRACT

The ventral visual pathway is well known to be involved in recognizing and categorizing objects (Kanwisher and
Dilks, 2013). Three color-biased areas have also been found between face and place selective areas in the ventral
visual pathway (Lafer-Sousa et al., 2016). To understand the function of these color-biased areas in a region
known for object recognition, we analyzed the Natural Scenes Dataset (NSD; Allen et al., 2022), a large 7T fMRI
dataset from 8 participants who viewed up to 30,000 trials of images of colored natural scenes. In a whole-brain
analysis, we correlated the average color saturation of the images and the voxel responses, revealing color-
biased areas that diverge into two streams in the ventral visual pathway, beginning in V4 and extending medially
and laterally of the Fusiform Face Area in both hemispheres. We drew regions of interest (ROIs) for the two
streams and found that the images for each ROI that evoked the largest responses had certain characteristics:
They contained food, contained circular objects, had higher color saturation, contained warmer hues, and had
more luminance entropy. A multiple linear regression showed that the presence of food in images was the
strongest predictor of voxel responses in the medial and lateral color-biased regions for all eight participants,
but that color saturation also contributed independently to voxel responses. Our results show that these areas
are food-selective and color biased. We suggest that these streams might be involved in using color to recognize

and judge the properties of food.
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INTRODUCTION

The ventral visual pathway is specialized for the perception and recognition of visual objects, e.g. faces
(Kanwisher et al., 1997; Kanwisher and Yovel, 2006), places (Epstein et al., 1999; Epstein and Kanwisher, 1998),
bodies (Downing et al., 2001; Peelen and Downing, 2007), and words (Dehaene and Cohen, 2011; Kay and
Yeatman, 2017). Color is an important feature of objects (Gegenfurtner and Rieger, 2000; Witzel and

Gegenfurtner, 2018), but its representation in the ventral visual pathway is not well understood.

The processing of color information begins in the retina with a comparison of the activities of the three
classes of cone sensitive at short (S), medium (M) and long (L) wavelengths of light. Subsequently, different
classes of retinal ganglion cells send luminance and color information to the lateral geniculate nucleus which
projects to V1 (Conway et al., 2018). In the early visual cortices such as V1, V2, V3 and V4v color responsiveness
has been studied using fMRI (Bannert and Bartels, 2018, 2013; Beauchamp et al., 1999; Brouwer and Heeger,
2009; Hadjikhani et al., 1998). V1 to V3 respond to color among other features (Mullen et al., 2007) while V4 and
the ventral occipital region (VO; anterior to V4) are thought to be specialized for processing color (Mullen, 2019).
Voxel activity patterns in V4, VO1 and VO2 can strongly distinguish chromatic from achromatic stimuli (Goddard
and Mullen, 2020), and representational similarity analysis has provided evidence for a perceptual
representation of color in these areas. More cognitive color tasks are also associated with V4, such as mental
imagery for color (Bannert and Bartels, 2018) and color memory (Bannert and Bartels, 2013). As color
information progresses through visual cortical regions, its representation likely becomes transformed to aid

cognitive tasks such as object perception (Vandenbroucke et al., 2014).

Most studies of color perception present simple stimuli such as color patches, rather than color as it
naturally occurs, embedded in natural scenes. However, in daily life our visual system encounters colors as part
of a conjunction of object features integrated in context within natural scenes. With simple stimuli color is
dissociated from its regular context and meaning: These stimuli have basic spatial form, may be selected from a
restricted color gamut, and are typically presented on a uniform surround. The visual responses to carefully
controlled colored stimuli might be quite different to those that occur in response to colors in their complex,
naturalistic settings. For example, for colored patches, decoding accuracy drops between V1 to V4 (Bannert and
Bartels, 2018; Brouwer and Heeger, 2009), while for colored object categories decoding accuracy increases
through the same areas (Vandenbroucke et al., 2014). To understand how the brain represents color in its usual

context, it is therefore crucial to use complex stimuli such as natural scenes.

Only one existing study has addressed human neural color representation using complex stimuli. Lafer-
Sousa et al. (2016) presented colored and greyscale videos of faces, bodies, places, objects, and scrambled scenes

and found posterior, central and anterior color-biased regions located between place- (parahippocampal place
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area; PPA) and face- (fusiform face area; FFA and occipital face area; OFA) selective areas. One interpretation of
these color-biased regions is that they are specialized for color irrespective of object category and spatial form.
However, they are located in the ventral visual pathway which is known to be responsive to a range of complex
visual objects (Downing et al., 2001; Epstein et al., 1999; Kanwisher et al., 1997; Kanwisher and Yovel, 2006; Kay
and Yeatman, 2017; Lafer-Sousa et al., 2016; Peelen and Downing, 2007). It is therefore possible that the color

biases observed in these regions are attributable to the color properties of particular preferred object classes.

We aimed to characterize the neural representation of color in the context of objects in natural scenes.
The Natural Scenes Dataset (NSD; Allen et al., 2022) provides a unique opportunity for this endeavor. It is an
unprecedented large-scale fMRI dataset in which participants viewed thousands of colored (and some greyscale)
natural scenes over 30 to 40 sessions in a 7T fMRI scanner. This dataset therefore has impressively high signal-
to-noise which enables excellent statistical power (Naselaris et al., 2021). Images of natural scenes are highly
dimensional and visual features correlate strongly, which makes the contributions of different features difficult
to disentangle. With its huge number of well-characterized and segmented stimulus images, the NSD is one of
the best datasets currently available to uncover the neural representations underlying perception of natural
scenes (Allen et al., 2022; Lin et al., 2014). We found two streams in the ventral visual pathway that showed
responses to the color properties of the NSD images. We found that both streams were primarily responsive to

food objects, implying that color is a key part of the neural representation of food in these ventral visual areas.
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RESULTS

Correlation with saturation

We conducted a whole brain correlation between the average color saturation of each NSD image and
the percentage BOLD signal change (Figure 1), to locate brain areas which respond to color. Since saturation and
luminance (Figure 2A and Sl Figure 1) are correlated in natural scenes (Long et al., 2006), we used average
luminance (quantified as L+M) of the pixel values, without a dark filter applied, as a covariate. The correlations
were Bonferroni corrected for each participant based on the number of voxels in participant-native space. We
also conducted an analysis separately for odd and even images to measure split-half reliability.

For all participants there were areas showing positive correlations between saturation and voxel
responses in the ventral visual pathway, beginning in V4, and diverging into two distinct medial and lateral
regions of interest (ROls; Figure 1). The medial ROl is located between face and place areas (Figure 1; see flLoc-
experiment by Allen et al., (2022) for the category-selective regions) and is roughly in agreement with the
location of the color-biased regions identified by Lafer-Sousa et al. (2016) (Figure 1B). The split-half analysis
showed high reliability, with r = 0.82 (range = 0.71 — 0.89 for different participants) when voxel activities were

correlated over the whole brain.

For all 8 participants there were also areas that showed negative correlations between saturation and
voxel responses, in the PPA (Figure 1A) and for the region located between the lateral and medial ROIs that
showed positive correlations (Figure 1A). For seven participants there was an area of negative correlation lateral
of the lateral ROI, roughly corresponding to area MT. For six participants (and one further participant in the left

hemisphere only) there was a positive correlation with saturation in prefrontal regions (Figure 1A).
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B Overlapping Sig. Pos. Voxels for N. Participants

BEECOCOEEN

Figure 1: Correlation between average saturation and voxel responses

(A). Eight (top-left is participant 1, bottom-middle is participant 8; going left to right) Pearson correlation maps of the ventral
view in native participant-space. The maps show for each voxel the correlation between the mean saturation of each image and the
corresponding brain responses, with mean luminance as a covariate. Positive correlations are displayed in red and yellow, and negative
correlations in green and blue. Only correlations with significant Bonferroni-corrected p-values are shown. Black contours indicate
face-selective brain regions for each individual participant (FFA-1, FFA-2, OFA, mTL-faces and ATL-faces) and white contours indicate
place-selective areas for each individual participant (PPA and RSC); for a description of how these regions were defined see Allen et al.
(2022). (B). The number of participants showing overlapping significant positive voxels in fsaverage space. On the right hemisphere,
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the medial and lateral ROIs in the ventral visual pathway are indicated (solid black lines) and on the left hemisphere the coordinates
of the color-biased regions identified by Lafer-Sousa et al. (2016) are shown (Ac, Cc, Pc). For both hemispheres hv4 from the brain atlas
by Wang et al. 2015 are indicated by the black contours.

Montages of images producing the highest and lowest voxel responses

Our correlation analysis between BOLD and saturation revealed areas responsive to color in the ventral
visual pathway for all participants. To better understand how the image features these areas respond to we
created montages of the images that evoked the highest and lowest voxel responses for these areas, split into
four ROIs (medial and lateral, left and right hemispheres; Figure 2B for participant 1 and Sl figure 2 for other

participants). For a description of how the ROls were defined, see Methods.

By inspecting the montages, we identified multiple image properties present in images evoking the
highest responses but not in images evoking the lowest responses. These properties were food such as bananas,
donuts, and pizzas; circular objects such as plates, clocks and stop signs; warm colors such as reds and oranges;
and luminance entropy (how well luminance values in one location can predict the values in nearby locations;
Mather, 2020). These image characteristics were consistent across all participants, medial and lateral ROIs, and

hemispheres, suggesting that the four ROlIs all process a similar type of visual information.
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Figure 2: Montages of each image statistic and images evoking the highest and lowest ROI responses.

Montages of the 400 images with lowest (left) and highest (right) of participant 1. (A) Montages of the image statistics
included in the correlation analysis: average saturation (based on the NSD grey background. Each pixel saturation level was measured
comparing the distance between the values in Macleod-Boynton chromaticity diagram and the NSD grey background) and average
luminance. (B) Montages show the images for the lateral and medial ROI for both hemispheres that have the highest and lowest
averaged z-scored voxel responses for participant one. The correlation maps were used to draw Regions of Interest and then the
selected voxels were averaged for each image. The 400 images evoking the highest and lowest voxel responses were selected for each
montage (from top to bottom: right hemisphere-lateral ROI, right hemisphere-medial ROI, left hemisphere-medial ROI, left
hemisphere-lateral ROI, and the left row is the lowest responses and, the right row is the highest responses. (C) For the multiple linear
regression four image statistics were added (together with average saturation and average luminance). Montages of images statistics
that were added to the multiple linear regression: food, circle, warm-cool ratings and luminance entropy in the NSD dataset. The left
row is the lowest responses, and the right row is the highest responses.

Image statistics and their intercorrelations

We calculated image statistics for the image properties that appear to distinguish the images that evoke
the higher and lower voxel responses in our ROls. We also included average luminance in the intercorrelation
analysis as it was used as a covariate in the correlation analysis for saturation. Our image statistics were pixel
count for food objects, pixel count for circular objects, warm-cool ratings, average saturation, luminance entropy

and average luminance (see Methods for a detailed description).
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The six image statistics were significantly intercorrelated (see Supplementary Figure 4 for correlation
matrices for each participant and Figure 2A and C for montages). Average luminance and luminance entropy
were strongly positively correlated (group average p = 0.68), and circular objects and food images were
moderately correlated (group average p = 0.37). All but one other pairs of image statistics had low but significant
correlations (group average p < 0.30). Circular object pixel counts and luminance entropy were not significantly
correlated for seven of the eight participants. The relationships between image statistics were highly consistent
between participants who viewed different image sets (0.9991 < p < 0.9999 for pairwise correlations between

image statistic correlation matrices between participants).
Image statistics and average ROI responses

To investigate the relationship between each image statistic and average voxel responses for our four
ROIs (medial and lateral areas in both hemispheres), we plotted moving average ROl responses against each the
image statistic (Figure 3A). ROI responses show positive linear relationships with average saturation and warm-
cool ratings. ROI responses show a positive non-linear (decelerating) relationship with food pixel count and
circular object pixel count, with a higher gain for food pixel count than for any of the other image statistics. There
is no relationship between ROl responses and luminance entropy, and a small negative relationship between ROI
responses and average luminance. These findings are consistent across hemispheres and ROIs for all eight

participants (see Sl Figure 3 for results for individual participants).
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Figure 3: Average ROI responses for the image statistics and two-way ANOVA

(A) The average z-scored voxel response in the medial and lateral ROI of the left and right hemisphere. The x-axis shows the
z-scored averaged voxel response, and the y-axis shows an image statistic: average saturation per image (distance from the NSD grey
background in MacLeod-Boynton space), number of pixels that contain an image of food, number of pixels that contain an image of a
circular object, summed warm-cool ratings based on individual pixel ratings, luminance (L+M) entropy (Mather, 2020), average
luminance values for each image. The image statistics were sorted from lowest to highest trials based on the image statistic. Then the
average of 500 z-scored voxel responses were sequentially presented: 1-500, 2-501, 3-502. We interpolated the data and then averaged
across all participants. Each participant saw 8,302-9000 unique images and a direct comparison without interpolation could not be
made. Error bars are the 95% confidence intervals within participants. The un-interpolated version of the individual participants can
be found in Sl figure 3. (B) A two-way ANOVA with food and saturation as factors was conducted on z-scored voxel response for all
four ROIs (left (Ih) and right (rh) hemisphere, and medial and lateral ROI). On the x-axis, the low and high saturation image groups are
displayed. The y-axis displays the z-scored average voxel response. The orange line represents images that contained food and the
green line are images that do not contain images of food based on the COCO categories. Error bars are the 95% confidence intervals
within participants.
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Multiple linear regressions

We included the six image statistics in a multiple linear regression to identify the best predictors for the
average voxel responses for our four ROIs. A regression analysis showed significant relationships in all four ROls
(Medial ROI LH: mean F (6,9648) over 8 participants = 283, SD =99.7, p < 5.43 x 10'*% mean R?=0.15, SD = 0.04;
Medial ROI LH: mean F (6,9648) = 239, SD = 100.0, p < 3.09 x 10''%®°, mean R? = 0.13, SD = 0.04; Lateral ROI LH:
mean F (6,9648) = 218, SD = 94.8, p < 5.60 x 10*>, mean R?=0.12, SD = 0.04; Lateral ROl RH: mean F (6,9648) =
210, SD =96.6, p < 3.19 x 10122, mean R?= 0.11, SD = 0.04). Summary results in Table 1 show that food is the
strongest predictor for all four ROIs in all eight participants. Individual results for each participant are available

in Sl Table 2.

Table 1. Multiple Linear Regression Beta coefficients

Average Luminance Average
BO Saturation Food Circles Warm-Cool Entropy Luminance
Medial Left 5.3863 x 10 0.0577 0.2060 0.0479 0.0337 0.0440 -0.0511
Medial Right 5.4712 x 10 0.0568 0.1702 0.0474 0.0310 0.0433 -0.0468
Lateral Left 9.9330 x 1012 0.0350 0.2384 0.0364 0.0288 -0.0053 -0.0022
Lateral Right 1.7063 x 10° 0.0397 0.2408 0.0233 0.0450 -0.0093 0.0014

The average beta coefficients for each image statistic in the multiple linear regressions with average voxel responses for each of the four

ROIs.
Multiple linear regressions on individual voxels

We also ran the multiple linear regression on all the voxels that showed a significant positive correlation
with saturation (all voxels were significant, p < 0.01). For each voxel we ranked the highest image statistic based
on its beta coefficient. Figure 4 shows the first ranked imaged statistic for each voxel. Food pixel count produced
the first ranked beta coefficient in the single-voxel multiple regressions for almost all voxels, suggesting that food
is the strongest predictor for all four ROIs even at an individual voxel level. For the left medial, left lateral, right
medial and right lateral ROIs respectively, 81%, 93%, 73% and 93% of voxels had food as the strongest predictor,
and only 4%, 0.6%, 6% and 2% had saturation as the strongest predictor. For the other image statistics there was
no consistent pattern. Voxels activity in early visual areas was strongly predicted by luminance entropy. For V1
voxels defined by the HCPMMP 1.0 atlas (Glasser et al., 2016) 80% of voxels in V1 that had a significantly positive

relationship with luminance entropy for the first ranked beta coefficient, 9% had food and 3% had saturation.
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Figure 4. Multiple linear regression on individual voxels

For each of the eight participants are shown flattened whole-brain cortical maps in fsaverage space, in which each voxel that
showed a significantly positive correlation with saturation is colored. For each voxel, the color is according to the image statistic that
had the largest beta coefficient in the multiple regression for that voxel.

ANOVA with saturation and food

The multiple linear regressions for the ROIs showed that food pixel count had the highest beta
coefficients of the six image statistics. The results of our whole-brain correlation with saturation and previous
literature (Lafer-Sousa et al., 2016) imply that these area are responsive to color. We therefore sought to further
investigate the contributions of saturation and food to ROl responses by conducting a two-way ANOVA (Figure
3B). For all four ROIs the ANOVA revealed a significant main effect for food for all 8 participants (medial area LH:
mean F (1,9651) =596, p < 1 x 103%3; medial area RH: mean F (1, 9651) = 464, p < 1 x 103%; lateral area LH: mean
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F(1,9651) = 540, p < 1 x 103%; lateral area RH: mean F (1, 9651) = 493, p < 1 x 1032%). All four ROIs also showed
a significant main effect of saturation for all 8 participants (medial are LH: mean F (1, 9651) =60.1, p < 1.78 x 10°
8 medial area RH: mean F (1, 9651) = 55.2, p <4.01 x 10%; lateral area LH: mean F (1, 9651) =32.5, p< 1.73 x 10°
4 lateral area RH: mean F (1, 9651) < 34.9, p < 5.41 x 107). There were significant interactions for some
participants in some ROIs (5 for the medial area in the LH, 4 for the medial area in the RH, 3 for the lateral area
in the LH, and 6 for the lateral area in the RH). For ANOVA results for all participants, see Sl Figure 5 and S| Table

1. For a heatmap between food and saturation see Sl Figure 6.
Food versus non-food

Our results showed food images to be a strong predictor of responses in our ROls, but since they were
defined by responses to saturation rather than food, the analyses reported so far could miss voxels that respond
to food but not to saturation. We therefore conducted an analysis of the differences between responses to
stimuli that contain images of food and responses to images that do not contain food. Each participant (1 to 8)
saw 1284, 1284, 1176, 1237, 1303, 1240, 1309, 1127 images of food respectively. All other images were
considered non-food images based on the Microsoft’s Common Objects in Context (COCO; Lin et al., 2014) food
categories. Figure 5 shows results plotted for the whole brain, also including the peak activation coordinates of
a fMRI meta-analysis of food images (van der Laan et al.,, 2011) in the right hemisphere. We converted the
Bonferroni-corrected threshold for the saturation correlation analysis (Figure 1) to T-values and applied the same

threshold to Figure 5 to make a comparison possible.

Our results show that food images significantly activate similar areas to the ROls we identified for their
correlated activity with saturation (see white contours superimposed on the RH in Figure 5). The Activation
Likelihood Estimation (ALE) meta-analysis by van der Laan et al., (2011) identified locations in the Fusiform Gyrus
and Posterior Fusiform Gyrus that are responsive to food, which are located in the medial and lateral ROls.
According to the Human Connectome Project atlas (HCP-MMP 1.0 atlas; Glasser et al., 2016; see black contours
superimposed on the LH in Figure 5), the medial ROl ends in the perirhinal ectorhinal cortex (PeEC) and the lateral

ROl ends in area Ph.

There is also activation in the early visual areas (V1, V2, V3 and V4) which is unlikely to be driven by food
itself but by luminance entropy (Figure 4) correlated with the presence of food in the NSD stimulus set. There is
activation in dorsal areas of the visual cortex (V1, V2, V3 and V4) to V3CD, LO1 and V3B. Another cluster of
activation is found in IPS1, IP1 and IPO and MIP, VIP, LIPv, the latter cluster was also identified in the ALE meta-
analysis. Two more areas of activation are found in PFt and PFop and part of AIP in both hemispheres, which the
ALE meta analysis identified in the left hemisphere only (Inferior Parietal Gyrus). Another area of activation is

found in Pol2, Ig, MI, AAIC, Pir, FOP2 for both hemispheres and a part of FOP3 for the left hemisphere, which
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corresponds to the Insular cortex in both hemispheres. Some smaller clusters of activation are found in PEF in
both hemispheres, in the left hemisphere also spanning parts of IFJp and 6r. Responses to non-food images are
significantly higher than to food images in areas MT, MST, TPOJ1, TPOJ2, TPOJ3, PGi, PGp, PGs, IPO, STV, PSL, and
PF which cluster together. This is also the case in POS1, POS2, DV, PCV, 5mv, 23c, and another in VMV1, PH1 and

ProS.

AT f} ‘: \,;"‘ ; D A 4 2 [/ '
?ﬁ Q%‘ { " ”;"": YA 4] e i Lo 10

% '~ o : ; : -15
- P _ ' :

Figure 5. Analysis of responses to food versus non-food images

A flattened cortical map in fsaverage space showing t-statistics for the differences between average voxel responses for food
versus non-food images. The Human Connectome Project Atlas (HCP_MMP1; Glasser et al., 2016) is overlayed for left hemisphere
(black contours), with regions labelled where they contained voxels with significant t-statistics. On the right hemisphere are plotted
coordinates identified by van der Laan et al. (2011) in a meta-analysis of brain areas responsive to food indicated by a white dot (see
their Table 2) and contours of the medial and lateral ROIs of Figure 1B in white.

ROI responses to object categories

We investigated the average voxel responses for each ROI to each object category in the COCO dataset.
We found that on average all food objects provoke the highest voxel responses (Figure 6 and Sl Figure 7 for
individual participants). Objects involved in food preparation and consumption such as spoons, knives, forks and
dining tables also provoked high voxel responses. Results suggest a variety of food objects and food-associated

objects drive our results.
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Figure 6. Average voxel responses in the four ROIs for each COCO object category
The four panels show average voxel response to each object category, with one panel for each ROI. The x-axis displays the

average Z-scored voxel response and the y-axis shows the object name and the average number of images across 8 participants that
contained this object, rounded. The 80 object categories are those identified and segmented in the COCO dataset. The object categories

are ordered from those provoking the strongest response (top) to those provoking the weakest response (bottom). There may be

multiple objects in one image. Error bars are between-subject standard errors of the mean.
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DISCUSSION

Our results show that color-biased regions in the ventral visual pathway are food-selective. We identified
four ROIs in the ventral visual pathway responsive to the average color saturation of images, one located medially
and the other laterally of the FFA in each hemisphere. The NSD dataset enabled an in-depth analysis of the
responsiveness of these color-biased regions because of the large number and variety of images of natural scenes
presented in the scanner. When we investigated a variety of image characteristics we found the color-biased
areas to be most strongly activated by food, with a smaller independent response to saturation. Our results lead
us to reinterpret the regions as food-selective but color-biased, implying that color is important in the neural
representation of food. Our results uncover a visual stream for food and food associated objects in the ventral
visual pathway not previously identified in the visual neuroscience literature, although some regions within this
stream have been identified in a meta-analysis on fMRI studies of food (van der Laan et al., 2011). The ventral
visual pathway is known to contain sub-streams for processing faces, places, bodies, and words: our results

suggest a prominent role for food selectivity as well.
Reliability and consistency of results

We conducted a split half reliability analysis over odd and even images for our correlation between
saturation and voxel responses which showed strong reliability over the whole brain (mean r=0.82, range =0.71
— 0.89 for different participants). The montages of the images evoking the highest responses in our ROIs
contained similar image features for all eight participants (Figure 2B and Sl Figure 2), which were absent in the
montages of images that evoked the lowest responses. The intercorrelations between image statistics were
similar for all participants, suggesting that there were no major differences between the unique images shown
to each participant to take into account when interpreting the results. Multiple analyses: plots of the
relationships between image statistics and voxel responses (Figure 3A), and the multiple linear regresions for the
ROIs (Table 1) and for the individual voxels (Figure 4) all showed that food was the strongest predictor of voxel

responses in the ROIs. We therefore interpret these regions as food-selective.
Color-biased regions in the ventral visual pathway

We found that the medial and lateral food-selective streams are still biased to color even in the absence
of food. This is in line with the results of Lafer-Sousa et al. (2016), who showed no food stimuli in their fMRI
experiment but found color-biased anterior, central, and posterior areas medial in the ventral visual pathway.
Their findings also hinted at a lateral color-biased area for a few of their participants. Our results for all eight
participants show two approximately continuous streams, diverging medially and laterally beginning in V4. We
found that the medial stream extends further anteriorly from the anterior color-biased region identified by Lafer-

Sousa et al. Our finding that the color-biased regions are selective for food, changes the existing interpretation
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of what these streams are functionally specialized for. Lafer-Sousa et al. proposed that the color-biased regions
are specialized for color and are anatomically segregated from neighboring regions specialized for object
processing, but we find instead that the color-biased areas are specialized for processing images of food. The
smaller independent responses we find for these regions to saturation may have several different
interpretations, which we discuss further below. In addition, we found negative correlations between saturation
and the voxel responses (Figure 1A), mostly in areas that respond to faces, places, and motion; one possible

explanation is that these image features tend to be associated with lower saturation.
Food-Selective Streams in the Ventral Visual Pathway

Our results show lateral and medial food-selective streams in the ventral visual pathway. Previous
studies have also found responsiveness to food in these areas, summarized in a meta-analysis by van der Laan
et al. (2011). Although the meta-analysis of visual processing of food images shows an area of concordance
between studies in the fusiform gyrus, some studies have looked for food-selective areas in the ventral visual
pathway but did not find them (Downing et al., 2006; Pinsk et al., 2009), and Adamson and Troiani (2018) found
that the left fusiform cortex responds equally well to faces and food. Our results imply that substantial neural

resources in the ventral visual pathway are allocated to the important task of visually processing food.

Numerous studies have demonstrated a distinction between the processing of animate versus inanimate
objects in the ventral visual pathway (Grill-Spector and Weiner, 2014; Martin et al., 1996), specifically that areas
medial of the FFA respond preferentially to animate objects but lateral areas to inanimate objects (Grill-Spector
and Weiner, 2014; Martin et al., 1996). At first glance, the existence of two food-selective streams separated by
the FFA might appear to contradict this theory. However, the placement of food in the category distinction
between animate and inanimate objects is ambiguous. For example, fruit and vegetables are living entities and
foods, but pizzas and hot dogs are non-living foods processed from ingredients derived from living entities
(Crutch and Warrington, 2003). However, when we calculated the average BOLD percentage signal change for
images containing each object from each COCO category we found no clear distinction between the food
categories (Figure 6). Further research is needed to understand the functional differences (or lack thereof)
between the lateral and medial food-selective streams and whether they support a distinction between animate

and inanimate objects.

The streams in the ventral visual pathway that we have identified as food-selective respond to all
categories of food in the COCO image set (Figure 6), including fruits and vegetables as well as processed foods
that were not available in the evolutionary past. We therefore speculate that the food-selective streams are
tuned by exposure to food during a person’s lifetime. This would be analogous to within-lifetime tuning of the

visual word form area, which, owing to the relatively recent development of written language, is unlikely to be
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innately specified (Baker et al., 2007; Kravitz et al.,, 2013). However, as the visual word form area is highly
consistent across individuals, it also seems unlikely that it is formed solely through experience (Kravitz et al.,

2013).

The results of our analysis of the responsiveness of the streams to different object categories (Figure 6)
does not support a clear-cut distinction by the streams for the boundary between food and non-food objects,
but instead supports more graded responses to food. This is suggested by the relatively high responses of the

streams to food-associated objects such as spoons, forks, knives, and dining tables.

We must also consider the possibility that our results may be influenced by attention or expertise (Bilalic
et al., 2016; Bukach et al., 2006; Gauthier et al., 1999; O’Craven et al., 1999; Xu, 2005). Participants may have
been more attentive to images containing food than they were to images containing other objects. Figure 6
shows responses of the medial and lateral streams to images containing objects that could be considered
attention-grabbing such as bears, baseball bats, and stop signs. However, these objects are not among those
causing the greatest responses. Therefore, we consider it unlikely that these streams are driven by attention
rather than food. Alternatively, food images may strongly activate these areas if they are general object
processing areas but people have particular expertise for food. Again, we believe that the preponderance of food
but also food-associated objects among those provoking the highest voxel responses renders this account

unlikely.
Food and Color in the Ventral Visual Pathway

We refer to the streams as ‘food-selective’ as they respond to food more strongly than they respond to
color. However, our saturation findings suggest that they also respond to color. Why are these food-selective
areas also color-biased? One possibility is that the medial and lateral streams may have two distinct specialisms
unrelated to a common visual function, for both food and color. An alternative possibility, which we favor, is that
these areas respond to collections of visual features common to food objects and also to these features even in
the absence of explicit food objects, e.g., colors that are normally predictive of the presence of food. Humans
use color as a heuristic for evaluating food (Foroni et al., 2016), and there is strong evidence that trichromatic
vision helps animals to detect food (Osorio and Vorobyev, 1996; Regan et al., 2001; Sumner and Mollon, 2000a)
and to judge its ripeness (Sumner and Mollon, 2000b). Visual information in the color domain is therefore central
to detecting and recognizing food, so it seems plausible that food-selective regions would also respond to color

as a relevant visual feature.

Conway (2018) proposed a tripartite organization of the ventral visual pathway, consisting of parallel
streams for faces, places, and color, based on the results of studies in both humans and macaques (Lafer-Sousa

et al., 2016; Lafer-Sousa and Conway, 2013; Verhoef et al.,, 2015). Humans share a common ancestor with
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macaques 25 million years ago (Conway, 2018) and as the human brain is a product of evolution, it is important
to consider these systems from an evolutionary perspective as this might inform key principles of cortical
organization (Cisek and Hayden, 2021). Our present findings for humans do not change the proposed
organization of the ventral visual pathway but rather replace the idea of color specialization with specialization

for food.
Conclusion

The NSD is a one-of-a-kind dataset which allowed us to apply techniques that would not be informative
for datasets with lower signal to noise. The high resolution and large number of trials provide strong evidence
that color-biased regions in the ventral visual pathway are food-selective and that there are two distinct medial
and lateral food-selective streams in both hemispheres which diverge from V4 and surround the FFA. Our results
also suggest that these food-selective streams also respond to color but to a lesser degree. This finding redefines
our understanding of color-biased regions in the ventral visual pathway and elaborates on its function and

complexity in responding to both to food and to color.
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POSTSCRIPT

At the time of uploading on Biorxiv, we were made aware of a pre-print posted the day before by Jain et
al. (2022) also using the NSD to explore food selectivity in the ventral visual pathway. Their findings about food
selectivity are largely in agreement with our own. In distinction, our paper explores the relationship between
color and food representation in the ventral visual pathway and shows that food-associated tools are also
represented preferentially by the food-selective areas identified in both papers. Therefore, aside from food

selectivity, our paper provides unique insight into color representation in the ventral visual pathway.
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MATERIALS AND METHODS
NSD methods

Here we will provide an outline of the methods used to gather the NSD that are relevant for our analyses.

Further detailed methods for the NSD can be found in Allen et al. (2022).
Participants and MRI data acquisition

Eight participants were included in the study (six females; age range 19-32). All participants had normal
or corrected-to-normal vision. Informed consent was obtained, and the University of Minnesota Institutional
Review Board approved the experimental protocol. The participants were scanned using a 7T Siemens
Magnetom passively shielded scanner at the University of Minnesota. A single channel transmit 32 channel
receive RF head coil was used. The procedure gathered a gradient-echo EPI sequence at 1.8 mm isotropic
resolution (whole brain; 84 axial slices, slice thickness 1.8mm, slice gap 0 mm, field-of-view 216 mm (FE) x 216
mm (PE), phase-encode direction anterior-to-posterior, matrix size 120 x 120, TR 1600 ms, TE 22.0 ms, flip angle
62°, echo spacing 0.66 ms, bandwidth 1736 Hz/pixel, partial Fourier 7/8, in-plane acceleration factor 2, and

multiband slice acceleration factor 3).
Stimulus presentation

A BOLDscreen 32 LCD monitor (Cambridge Research Systems, Rochester, UK) was positioned at the head
of the scanner bed. The spatial resolution was 1920 pixels x 1080 pixels and the temporal resolution 120 Hz. The
participants saw the monitor via a mirror mounted on the RF coil. There was a 5 cm distance between the
participants’ eyes and the mirror and a 171.5 cm distance from the mirror to image of the monitor. A PR-655
spectroradiometer (PhotoResearch, Chatsworth, CA) was used to measure the spectral power distributions of
the display primaries. The BOLDscreen was calibrated to behave as a linear display device which allowed us to
calculate the transformation from RGB to LMS tristimulus cone activities. A gamma of 2 was applied to the

natural scene images to approximate the viewing conditions of standard computer displays.
Experimental task

The participants performed a long-term recognition task in which they had to press a button stating
whether the scene presented on each trial had been shown before or not. On every trial a distinct image was
shown for 3s with a semi-transparent red fixation dot (0.2° x 0.2°; 50% opacity) on a grey background (RGB:
127,127,127; S/(L+M) = 1.1154, L/(L+M) = 0.6852). After the 3s stimulus presentation the same fixation dot and
the grey background were shown alone for 1s. Participants could respond any time during the 4s trial. Each run

contained 75 trials (some of these were blank trials) and lasted 300s. There were twelve runs per session.
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Images displayed

73,000 distinct images were used which were a subsample (the train/val 2017 subsections) of COCO
image dataset (Lin et al., 2014), which contains complex natural scenes with everyday objects in their usual
contexts. The COCO dataset contains 80 object categories ranging from faces and cars, to food and stop signs
(for examples see Figure 2). The images were 425 x 425 pixels x 3 RGB channels which were resized to fill 8.4 by
8.4 degrees on the BOLDscreen 32 display using linear interpolation. Participants had up to 40 scan sessions
(range 30-40) and saw up to 10,000 images 3 times across these sessions: 8,302 — 9,000 of these were unique

images and 907 — 1,000 images were seen by all participants.
Preprocessing

The preprocessing of the functional data included temporal resampling, which corrected for slice time
acquisition differences and upsampled the data to 1.000s. Field maps were acquired and the resampled volumes
were undistorted using the field estimates. These volumes were used to estimate rigid-body motion parameters
using SPM5 spm_realign. To correct for the head motion and spatial distortion, a single cubic interpolation was
performed on the temporally resampled volumes. The mean fMRI volume was calculated and was corrected for
gradient nonlinearities. Then the volume was co-registered to the gradient-corrected volume from the first scan
session, so the first scan session was used as the target space for preparing fMRI data from the different scan

sessions.

A GLM analysis was applied to the fMRI time-series data to estimate single-trial beta responses. The third
beta version (b3, ‘betas_fithrf_GLMdenoise_RR’; native surface space) was used, and no alterations were made
to this beta version’s preprocessing steps described in Allen et al. (2022). In brief, the GLMsingle algorithm (Allen
et al., 2022; Kay et al., 2013; Rokem and Kay, 2020) was used to derive nuisance regressors and to choose the
optimum ridge regularization shrinkage fraction for each voxel. The extracted betas for each voxel represent
estimates of the trial-wise BOLD response amplitudes to each stimulus trial, and these are relative to the BOLD
signal observed during the absence of a stimulus (when only the grey screen was shown). Trials showing the
same image were averaged to improve signal estimates and reduce the amount of data. All analyses were done

in MATLAB 2019a (MathWorks Inc., Natick, USA).
Color image statistics

The RGB images were converted to LMS cone tristimulus values using the 10 degree Stockman, MaclLeod,
Johnson cone fundamentals (Stockman et al., 1993) interpolated to 1nm. Chromaticity coordinates in a version
of the MacLeod-Boynton chromaticity diagram (MaclLeod and Boynton, 1979) based on the cone fundamentals

were extracted for each pixel. In this color diagram, the cardinal mechanisms of color vision are represented by
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the axes L/(L+M) (roughly teal and red colors) and S/(L+M) (roughly chartreuse to violet), which correspond to
the two main retinogeniculate color pathways (Mollon and Cavonius, 1987). Saturation was defined as the
distance between the values of the pixel in Macleod-Boynton color space and the NSD grey background. To do
this the chromaticity coordinates in the MaclLeod-Boynton chromaticity diagram were transformed to polar
coordinates (Bosten and Lawrance-Owen, 2014). The scaling factor applied to the L/(L+M) axis was 0.045. If the
luminance of a pixel value fell below a dark filtering criterion of L+M = 0.0002, the saturation value was set to
zero because at low luminance there is a high level of chromatic noise which would be perceptually very dark or
black. The saturation values for each pixel were then averaged over the image to find the average saturation of

each image. We used the 425 x 425 images for all analyses of image statistics.

Definition of ROIs

We created Regions of Interest for the medial and lateral ROIs for both hemispheres. Using the map of
the number of participants that showed a whole-brain Bonferroni-corrected significant correlation between
voxel response and average saturation for each voxel in fsaverage space (Fig. 1B). For both hemispheres we drew
large ROIs around each stream (medial and lateral) of voxel responses that correlated significantly (following a
whole-brain Bonferroni correction) with average saturation in at least one participant, beginning at the boundary
of Kastner-defined hV4 (Fig. 1B). We applied the four ROIs to each participant but only included voxels in an ROI
for a particular participant if the voxels responses showed significant positive correlations with average

saturation (again, Bonferroni-corrected over the whole brain).

Creation of montages

We Z-scored voxel responses to all images for each voxel and then averaged the Z-scored voxel responses
across voxels in each ROl for each image. Using the average voxel responses for each ROl we created montages
of images that evoked the highest and lowest average voxel responses. We plotted four hundred images in each

montage out of the 9,209 - 10,000 images each participant saw. A part of each montage is shown in Figure 2B.
Other image statistics

For pixel counts of food and circular objects, we summed the number of pixels containing food or circular
objects for each image. To do this we used the COCO dataset object segmentation data which has 80 object
categories. We converted the segmentation data to a binary pixel mask for each image which included the object,
then the total number of pixels was summed. The food image categories were banana, apple, sandwich, orange,
broccoli, carrot, hot dog, pizza, donut and cake. Circular object categories were sport ball, pizza, donut, clock,
tennis racket, frisbee, wine glass, stop sign, and cup. It is possible that there are other food and/or circular objects
in the dataset that were not segmented. For the warm-cool image statistic, we used warm-cool color ratings
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collected by our group for another project (Maule, Racey, Tang, Richter, Bird & Franklin, unpublished), where
participants were shown a set of 24 isoluminant and iso-saturated hues and asked to rate how warm-cool they
appeared using sliding scale. We used these warm-cool ratings to interpolate the warm-cool value for the hue of
each pixel that had a luminance higher than the dark filter criterion described previously. Warm ratings had
positive values and cool ratings had negative values. We summed the warm-cool values of all pixels in the image

to get an overall warm-cool statistic for each image.
Relationships between image statistics and voxel responses

To create Figure 3A, we ranked the images for each image statistic and then averaged over the lowest
ranking 500 images (images ranked 1 to 500). We also averaged over the Z-scored voxel responses to the same
500 images. We repeated this procedure but selected images ranking between 2 and 501 and the corresponding
voxel responses. We continued moving one image up until reaching the highest ranking 500 images. Afterwards,
we extrapolated the resulting “moving-average” curves to the highest and lowest image statistic values seen by
any of the 8 participants. We then averaged across the eight subjects at interpolated points along the image
statistic. The interpolation was necessary because each subject saw different images (other than the roughly 10%

common images). In Sl Figure 3, plots for individual participants are shown.
Multiple linear regression

We applied a rank inverse normal transform (Blom constant) to all image statistics before conducting
the multiple regression. Responses for each individual voxel were Z-scored across images and then average voxel

responses for each image were calculated for each of the four ROlIs.
ANOVA with saturation and food

The median image average saturation was used to split the saturation variable into high and low
saturation individually for each participant. We categorized images that contained food based on the COCO
categories and all other images were categorized as non-food images. From these we created four groups of
images: high food/low saturation, low food/low saturation, high food/high saturation, and low food/ high
saturation. On average, the food group of images was more saturated (M = 0.7462, SD = 0.0437) than the non-
food group (M = 0.4793, SD = 0.0382). A Welch’s t-test showed there was a significant difference between the
groups for all eight participants (24.74 < t(1541.5) < 26.40, 2.78 x 1013 > p > 1.16 x 10'%” across 8 participants).
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