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ABSTRACT 28 

The ventral visual pathway is well known to be involved in recognizing and categorizing objects (Kanwisher and 29 

Dilks, 2013). Three color-biased areas have also been found between face and place selective areas in the ventral 30 

visual pathway (Lafer-Sousa et al., 2016). To understand the function of these color-biased areas in a region 31 

known for object recognition, we analyzed the Natural Scenes Dataset (NSD; Allen et al., 2022), a large 7T fMRI 32 

dataset from 8 participants who viewed up to 30,000 trials of images of colored natural scenes. In a whole-brain 33 

analysis, we correlated the average color saturation of the images and the voxel responses, revealing color-34 

biased areas that diverge into two streams in the ventral visual pathway, beginning in V4 and extending medially 35 

and laterally of the Fusiform Face Area in both hemispheres. We drew regions of interest (ROIs) for the two 36 

streams and found that the images for each ROI that evoked the largest responses had certain characteristics: 37 

They contained food, contained circular objects, had higher color saturation, contained warmer hues, and had 38 

more luminance entropy. A multiple linear regression showed that the presence of food in images was the 39 

strongest predictor of voxel responses in the medial and lateral color-biased regions for all eight participants, 40 

but that color saturation also contributed independently to voxel responses. Our results show that these areas 41 

are food-selective and color biased. We suggest that these streams might be involved in using color to recognize 42 

and judge the properties of food.   43 
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INTRODUCTION  44 

The ventral visual pathway is specialized for the perception and recognition of visual objects, e.g. faces 45 

(Kanwisher et al., 1997; Kanwisher and Yovel, 2006), places (Epstein et al., 1999; Epstein and Kanwisher, 1998), 46 

bodies (Downing et al., 2001; Peelen and Downing, 2007), and words (Dehaene and Cohen, 2011; Kay and 47 

Yeatman, 2017). Color is an important feature of objects (Gegenfurtner and Rieger, 2000; Witzel and 48 

Gegenfurtner, 2018), but its representation in the ventral visual pathway is not well understood.  49 

The processing of color information begins in the retina with a comparison of the activities of the three 50 

classes of cone sensitive at short (S), medium (M) and long (L) wavelengths of light. Subsequently, different 51 

classes of retinal ganglion cells send luminance and color information to the lateral geniculate nucleus which 52 

projects to V1 (Conway et al., 2018). In the early visual cortices such as V1, V2, V3 and V4v color responsiveness 53 

has been studied using fMRI (Bannert and Bartels, 2018, 2013; Beauchamp et al., 1999; Brouwer and Heeger, 54 

2009; Hadjikhani et al., 1998). V1 to V3 respond to color among other features (Mullen et al., 2007) while V4 and 55 

the ventral occipital region (VO; anterior to V4) are thought to be specialized for processing color (Mullen, 2019). 56 

Voxel activity patterns in V4, VO1 and VO2 can strongly distinguish chromatic from achromatic stimuli (Goddard 57 

and Mullen, 2020), and representational similarity analysis has provided evidence for a perceptual 58 

representation of color in these areas. More cognitive color tasks are also associated with V4, such as mental 59 

imagery for color (Bannert and Bartels, 2018) and color memory (Bannert and Bartels, 2013). As color 60 

information progresses through visual cortical regions, its representation likely becomes transformed to aid 61 

cognitive tasks such as object perception (Vandenbroucke et al., 2014).  62 

Most studies of color perception present simple stimuli such as color patches, rather than color as it 63 

naturally occurs, embedded in natural scenes. However, in daily life our visual system encounters colors as part 64 

of a conjunction of object features integrated in context within natural scenes. With simple stimuli color is 65 

dissociated from its regular context and meaning: These stimuli have basic spatial form, may be selected from a 66 

restricted color gamut, and are typically presented on a uniform surround. The visual responses to carefully 67 

controlled colored stimuli might be quite different to those that occur in response to colors in their complex, 68 

naturalistic settings. For example, for colored patches, decoding accuracy drops between V1 to V4 (Bannert and 69 

Bartels, 2018; Brouwer and Heeger, 2009), while for colored object categories decoding accuracy increases 70 

through the same areas (Vandenbroucke et al., 2014). To understand how the brain represents color in its usual 71 

context, it is therefore crucial to use complex stimuli such as natural scenes.  72 

Only one existing study has addressed human neural color representation using complex stimuli. Lafer-73 

Sousa et al. (2016) presented colored and greyscale videos of faces, bodies, places, objects, and scrambled scenes 74 

and found posterior, central and anterior color-biased regions located between place- (parahippocampal place 75 
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area; PPA) and face- (fusiform face area; FFA and occipital face area; OFA) selective areas. One interpretation of 76 

these color-biased regions is that they are specialized for color irrespective of object category and spatial form. 77 

However, they are located in the ventral visual pathway which is known to be responsive to a range of complex 78 

visual objects (Downing et al., 2001; Epstein et al., 1999; Kanwisher et al., 1997; Kanwisher and Yovel, 2006; Kay 79 

and Yeatman, 2017; Lafer-Sousa et al., 2016; Peelen and Downing, 2007). It is therefore possible that the color 80 

biases observed in these regions are attributable to the color properties of particular preferred object classes.  81 

We aimed to characterize the neural representation of color in the context of objects in natural scenes. 82 

The Natural Scenes Dataset (NSD; Allen et al., 2022) provides a unique opportunity for this endeavor. It is an 83 

unprecedented large-scale fMRI dataset in which participants viewed thousands of colored (and some greyscale) 84 

natural scenes over 30 to 40 sessions in a 7T fMRI scanner. This dataset therefore has impressively high signal-85 

to-noise which enables excellent statistical power (Naselaris et al., 2021). Images of natural scenes are highly 86 

dimensional and visual features correlate strongly, which makes the contributions of different features difficult 87 

to disentangle. With its huge number of well-characterized and segmented stimulus images, the NSD is one of 88 

the best datasets currently available to uncover the neural representations underlying perception of natural 89 

scenes (Allen et al., 2022; Lin et al., 2014). We found two streams in the ventral visual pathway that showed 90 

responses to the color properties of the NSD images. We found that both streams were primarily responsive to 91 

food objects, implying that color is a key part of the neural representation of food in these ventral visual areas. 92 
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RESULTS 93 

Correlation with saturation 94 

We conducted a whole brain correlation between the average color saturation of each NSD image and 95 

the percentage BOLD signal change (Figure 1), to locate brain areas which respond to color. Since saturation and 96 

luminance (Figure 2A and SI Figure 1) are correlated in natural scenes (Long et al., 2006), we used average 97 

luminance (quantified as L+M) of the pixel values, without a dark filter applied, as a covariate. The correlations 98 

were Bonferroni corrected for each participant based on the number of voxels in participant-native space. We 99 

also conducted an analysis separately for odd and even images to measure split-half reliability.  100 

For all participants there were areas showing positive correlations between saturation and voxel 101 

responses in the ventral visual pathway, beginning in V4, and diverging into two distinct medial and lateral 102 

regions of interest (ROIs; Figure 1). The medial ROI is located between face and place areas (Figure 1; see fLoc-103 

experiment by Allen et al., (2022) for the category-selective regions) and is roughly in agreement with the 104 

location of the color-biased regions identified by Lafer-Sousa et al. (2016) (Figure 1B). The split-half analysis 105 

showed high reliability, with r = 0.82 (range = 0.71 – 0.89 for different participants) when voxel activities were 106 

correlated over the whole brain. 107 

For all 8 participants there were also areas that showed negative correlations between saturation and 108 

voxel responses, in the PPA (Figure 1A) and for the region located between the lateral and medial ROIs that 109 

showed positive correlations (Figure 1A). For seven participants there was an area of negative correlation lateral 110 

of the lateral ROI, roughly corresponding to area MT. For six participants (and one further participant in the left 111 

hemisphere only) there was a positive correlation with saturation in prefrontal regions (Figure 1A).  112 
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 113 

Figure 1: Correlation between average saturation and voxel responses 114 

(A). Eight (top-left is participant 1, bottom-middle is participant 8; going left to right) Pearson correlation maps of the ventral 115 
view in native participant-space. The maps show for each voxel the correlation between the mean saturation of each image and the 116 
corresponding brain responses, with mean luminance as a covariate. Positive correlations are displayed in red and yellow, and negative 117 
correlations in green and blue. Only correlations with significant Bonferroni-corrected p-values are shown. Black contours indicate 118 
face-selective brain regions for each individual participant (FFA-1, FFA-2, OFA, mTL-faces and ATL-faces) and white contours indicate 119 
place-selective areas for each individual participant (PPA and RSC); for a description of how these regions were defined see Allen et al. 120 
(2022). (B). The number of participants showing overlapping significant positive voxels in fsaverage space. On the right hemisphere, 121 
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the medial and lateral ROIs in the ventral visual pathway are indicated (solid black lines) and on the left hemisphere the coordinates 122 
of the color-biased regions identified by Lafer-Sousa et al. (2016) are shown (Ac, Cc, Pc). For both hemispheres hV4 from the brain atlas 123 
by Wang et al. 2015 are indicated by the black contours. 124 

Montages of images producing the highest and lowest voxel responses 125 

Our correlation analysis between BOLD and saturation revealed areas responsive to color in the ventral 126 

visual pathway for all participants. To better understand how the image features these areas respond to we 127 

created montages of the images that evoked the highest and lowest voxel responses for these areas, split into 128 

four ROIs (medial and lateral, left and right hemispheres; Figure 2B for participant 1 and SI figure 2 for other 129 

participants). For a description of how the ROIs were defined, see Methods. 130 

By inspecting the montages, we identified multiple image properties present in images evoking the 131 

highest responses but not in images evoking the lowest responses. These properties were food such as bananas, 132 

donuts, and pizzas; circular objects such as plates, clocks and stop signs; warm colors such as reds and oranges; 133 

and luminance entropy (how well luminance values in one location can predict the values in nearby locations; 134 

Mather, 2020). These image characteristics were consistent across all participants, medial and lateral ROIs, and 135 

hemispheres, suggesting that the four ROIs all process a similar type of visual information. 136 
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 137 

Figure 2: Montages of each image statistic and images evoking the highest and lowest ROI responses. 138 

Montages of the 400 images with lowest (left) and highest (right) of participant 1. (A) Montages of the image statistics 139 
included in the correlation analysis: average saturation (based on the NSD grey background. Each pixel saturation level was measured 140 
comparing the distance between the values in Macleod-Boynton chromaticity diagram and the NSD grey background) and average 141 
luminance. (B) Montages show the images for the lateral and medial ROI for both hemispheres that have the highest and lowest 142 
averaged z-scored voxel responses for participant one. The correlation maps were used to draw Regions of Interest and then the 143 
selected voxels were averaged for each image. The 400 images evoking the highest and lowest voxel responses were selected for each 144 
montage (from top to bottom: right hemisphere-lateral ROI, right hemisphere-medial ROI, left hemisphere-medial ROI, left 145 
hemisphere-lateral ROI, and the left row is the lowest responses and, the right row is the highest responses. (C) For the multiple linear 146 
regression four image statistics were added (together with average saturation and average luminance). Montages of images statistics 147 
that were added to the multiple linear regression: food, circle, warm-cool ratings and luminance entropy in the NSD dataset. The left 148 
row is the lowest responses, and the right row is the highest responses. 149 

Image statistics and their intercorrelations 150 

 We calculated image statistics for the image properties that appear to distinguish the images that evoke 151 

the higher and lower voxel responses in our ROIs. We also included average luminance in the intercorrelation 152 

analysis as it was used as a covariate in the correlation analysis for saturation. Our image statistics were pixel 153 

count for food objects, pixel count for circular objects, warm-cool ratings, average saturation, luminance entropy 154 

and average luminance (see Methods for a detailed description). 155 
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The six image statistics were significantly intercorrelated (see Supplementary Figure 4 for correlation 156 

matrices for each participant and Figure 2A and C for montages). Average luminance and luminance entropy 157 

were strongly positively correlated (group average ρ = 0.68), and circular objects and food images were 158 

moderately correlated (group average ρ = 0.37). All but one other pairs of image statistics had low but significant 159 

correlations (group average ρ < 0.30). Circular object pixel counts and luminance entropy were not significantly 160 

correlated for seven of the eight participants. The relationships between image statistics were highly consistent 161 

between participants who viewed different image sets (0.9991 ≤ ρ ≤ 0.9999 for pairwise correlations between 162 

image statistic correlation matrices between participants). 163 

Image statistics and average ROI responses 164 

To investigate the relationship between each image statistic and average voxel responses for our four 165 

ROIs (medial and lateral areas in both hemispheres), we plotted moving average ROI responses against each the 166 

image statistic (Figure 3A). ROI responses show positive linear relationships with average saturation and warm-167 

cool ratings. ROI responses show a positive non-linear (decelerating) relationship with food pixel count and 168 

circular object pixel count, with a higher gain for food pixel count than for any of the other image statistics. There 169 

is no relationship between ROI responses and luminance entropy, and a small negative relationship between ROI 170 

responses and average luminance. These findings are consistent across hemispheres and ROIs for all eight 171 

participants (see SI Figure 3 for results for individual participants). 172 
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 173 

Figure 3: Average ROI responses for the image statistics and two-way ANOVA 174 

(A) The average z-scored voxel response in the medial and lateral ROI of the left and right hemisphere. The x-axis shows the 175 
z-scored averaged voxel response, and the y-axis shows an image statistic: average saturation per image (distance from the NSD grey 176 
background in MacLeod-Boynton space), number of pixels that contain an image of food, number of pixels that contain an image of a 177 
circular object, summed warm-cool ratings based on individual pixel ratings, luminance (L+M) entropy (Mather, 2020), average 178 
luminance values for each image. The image statistics were sorted from lowest to highest trials based on the image statistic. Then the 179 
average of 500 z-scored voxel responses were sequentially presented: 1-500, 2-501, 3-502. We interpolated the data and then averaged 180 
across all participants. Each participant saw 8,302-9000 unique images and a direct comparison without interpolation could not be 181 
made. Error bars are the 95% confidence intervals within participants. The un-interpolated version of the individual participants can 182 
be found in SI figure 3. (B) A two-way ANOVA with food and saturation as factors was conducted on z-scored voxel response for all 183 
four ROIs (left (lh) and right (rh) hemisphere, and medial and lateral ROI). On the x-axis, the low and high saturation image groups are 184 
displayed. The y-axis displays the z-scored average voxel response. The orange line represents images that contained food and the 185 
green line are images that do not contain images of food based on the COCO categories. Error bars are the 95% confidence intervals 186 
within participants. 187 
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Multiple linear regressions 188 

We included the six image statistics in a multiple linear regression to identify the best predictors for the 189 

average voxel responses for our four ROIs. A regression analysis showed significant relationships in all four ROIs 190 

(Medial ROI LH: mean F (6,9648) over 8 participants = 283, SD = 99.7, p < 5.43 x 10-188, mean R2 = 0.15, SD = 0.04; 191 

Medial ROI LH: mean F (6,9648) = 239, SD = 100.0, p < 3.09 x 10-169, mean R2 = 0.13, SD = 0.04; Lateral ROI LH: 192 

mean F (6,9648) = 218, SD = 94.8, p < 5.60 x 10-115, mean R2 = 0.12, SD = 0.04; Lateral ROI RH: mean F (6,9648) = 193 

210, SD =96.6, p < 3.19 x 10-122, mean R2 = 0.11, SD = 0.04). Summary results in Table 1 show that food is the 194 

strongest predictor for all four ROIs in all eight participants. Individual results for each participant are available 195 

in SI Table 2. 196 

Table 1. Multiple Linear Regression Beta coefficients  

 B0 

Average 

Saturation Food Circles Warm-Cool 

Luminance 

Entropy 

Average 

Luminance 

Medial Left  5.3863 x 10-9 0.0577 0.2060 0.0479 0.0337 0.0440 - 0.0511 

Medial Right  5.4712 x 10-9 0.0568 0.1702 0.0474 0.0310 0.0433 - 0.0468 

Lateral Left  9.9330 x 10-12 0.0350 0.2384 0.0364 0.0288 - 0.0053 - 0.0022 

Lateral Right 1.7063 x 10-9 0.0397 0.2408 0.0233 0.0450 - 0.0093 0.0014 

The average beta coefficients for each image statistic in the multiple linear regressions with average voxel responses for each of the four 197 

ROIs. 198 

Multiple linear regressions on individual voxels  199 

We also ran the multiple linear regression on all the voxels that showed a significant positive correlation 200 

with saturation (all voxels were significant, p < 0.01). For each voxel we ranked the highest image statistic based 201 

on its beta coefficient. Figure 4 shows the first ranked imaged statistic for each voxel. Food pixel count produced 202 

the first ranked beta coefficient in the single-voxel multiple regressions for almost all voxels, suggesting that food 203 

is the strongest predictor for all four ROIs even at an individual voxel level. For the left medial, left lateral, right 204 

medial and right lateral ROIs respectively, 81%, 93%, 73% and 93% of voxels had food as the strongest predictor, 205 

and only 4%, 0.6%, 6% and 2% had saturation as the strongest predictor. For the other image statistics there was 206 

no consistent pattern. Voxels activity in early visual areas was strongly predicted by luminance entropy. For V1 207 

voxels defined by the HCPMMP 1.0 atlas (Glasser et al., 2016) 80% of voxels in V1 that had a significantly positive 208 

relationship with luminance entropy for the first ranked beta coefficient, 9% had food and 3% had saturation.  209 
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 210 

Figure 4. Multiple linear regression on individual voxels 211 

For each of the eight participants are shown flattened whole-brain cortical maps in fsaverage space, in which each voxel that 212 
showed a significantly positive correlation with saturation is colored. For each voxel, the color is according to the image statistic that 213 
had the largest beta coefficient in the multiple regression for that voxel.  214 

ANOVA with saturation and food  215 

The multiple linear regressions for the ROIs showed that food pixel count had the highest beta 216 

coefficients of the six image statistics. The results of our whole-brain correlation with saturation and previous 217 

literature (Lafer-Sousa et al., 2016) imply that these area are responsive to color. We therefore sought to further 218 

investigate the contributions of saturation and food to ROI responses by conducting a two-way ANOVA (Figure 219 

3B). For all four ROIs the ANOVA revealed a significant main effect for food for all 8 participants (medial area LH: 220 

mean F (1, 9651) = 596, p < 1 x 10-323; medial area RH: mean F (1, 9651) = 464, p < 1 x 10-323; lateral area LH: mean 221 
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F (1, 9651) = 540, p < 1 x 10-323; lateral area RH: mean F (1, 9651) = 493, p < 1 x 10-323). All four ROIs also showed 222 

a significant main effect of saturation for all 8 participants (medial are LH: mean F (1, 9651) = 60.1, p < 1.78 x 10-223 

8; medial area RH: mean F (1, 9651) = 55.2, p < 4.01 x 10-8; lateral area LH: mean F (1, 9651) = 32.5, p < 1.73 x 10-224 

4; lateral area RH: mean F (1, 9651) < 34.9, p < 5.41 x 10-7). There were significant interactions for some 225 

participants in some ROIs (5 for the medial area in the LH, 4 for the medial area in the RH, 3 for the lateral area 226 

in the LH, and 6 for the lateral area in the RH). For ANOVA results for all participants, see SI Figure 5 and SI Table 227 

1. For a heatmap between food and saturation see SI Figure 6. 228 

Food versus non-food 229 

Our results showed food images to be a strong predictor of responses in our ROIs, but since they were 230 

defined by responses to saturation rather than food, the analyses reported so far could miss voxels that respond 231 

to food but not to saturation. We therefore conducted an analysis of the differences between responses to 232 

stimuli that contain images of food and responses to images that do not contain food. Each participant (1 to 8) 233 

saw 1284, 1284, 1176, 1237, 1303, 1240, 1309, 1127 images of food respectively. All other images were 234 

considered non-food images based on the Microsoft’s Common Objects in Context (COCO; Lin et al., 2014) food 235 

categories. Figure 5 shows results plotted for the whole brain, also including the peak activation coordinates of 236 

a fMRI meta-analysis of food images (van der Laan et al., 2011) in the right hemisphere. We converted the 237 

Bonferroni-corrected threshold for the saturation correlation analysis (Figure 1) to T-values and applied the same 238 

threshold to Figure 5 to make a comparison possible.  239 

Our results show that food images significantly activate similar areas to the ROIs we identified for their 240 

correlated activity with saturation (see white contours superimposed on the RH in Figure 5). The Activation 241 

Likelihood Estimation (ALE) meta-analysis by van der Laan et al., (2011) identified locations in the Fusiform Gyrus 242 

and Posterior Fusiform Gyrus that are responsive to food, which are located in the medial and lateral ROIs. 243 

According to the Human Connectome Project atlas (HCP-MMP 1.0 atlas; Glasser et al., 2016; see black contours 244 

superimposed on the LH in Figure 5), the medial ROI ends in the perirhinal ectorhinal cortex (PeEC) and the lateral 245 

ROI ends in area Ph. 246 

There is also activation in the early visual areas (V1, V2, V3 and V4) which is unlikely to be driven by food 247 

itself but by luminance entropy (Figure 4) correlated with the presence of food in the NSD stimulus set. There is 248 

activation in dorsal areas of the visual cortex (V1, V2, V3 and V4) to V3CD, LO1 and V3B. Another cluster of 249 

activation is found in IPS1, IP1 and IP0 and MIP, VIP, LIPv, the latter cluster was also identified in the ALE meta-250 

analysis. Two more areas of activation are found in PFt and PFop and part of AIP in both hemispheres, which the 251 

ALE meta analysis identified in the left hemisphere only (Inferior Parietal Gyrus). Another area of activation is 252 

found in Pol2, Ig, MI, AAIC, Pir, FOP2 for both hemispheres and a part of FOP3 for the left hemisphere, which 253 
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corresponds to the Insular cortex in both hemispheres. Some smaller clusters of activation are found in PEF in 254 

both hemispheres, in the left hemisphere also spanning parts of IFJp and 6r. Responses to non-food images are 255 

significantly higher than to food images in areas MT, MST, TPOJ1, TPOJ2, TPOJ3, PGi, PGp, PGs, IP0, STV, PSL, and 256 

PF which cluster together. This is also the case in POS1, POS2, DV, PCV, 5mv, 23c, and another in VMV1, PH1 and 257 

ProS. 258 

 259 

Figure 5. Analysis of responses to food versus non-food images 260 

A flattened cortical map in fsaverage space showing t-statistics for the differences between average voxel responses for food 261 
versus non-food images. The Human Connectome Project Atlas (HCP_MMP1; Glasser et al., 2016) is overlayed for left hemisphere 262 
(black contours), with regions labelled where they contained voxels with significant t-statistics. On the right hemisphere are plotted 263 
coordinates identified by van der Laan et al. (2011) in a meta-analysis of brain areas responsive to food indicated by a white dot (see 264 
their Table 2) and contours of the medial and lateral ROIs of Figure 1B in white. 265 

ROI responses to object categories 266 

We investigated the average voxel responses for each ROI to each object category in the COCO dataset. 267 

We found that on average all food objects provoke the highest voxel responses (Figure 6 and SI Figure 7 for 268 

individual participants). Objects involved in food preparation and consumption such as spoons, knives, forks and 269 

dining tables also provoked high voxel responses. Results suggest a variety of food objects and food-associated 270 

objects drive our results.   271 
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 272 

Figure 6. Average voxel responses in the four ROIs for each COCO object category 273 

The four panels show average voxel response to each object category, with one panel for each ROI. The x-axis displays the 274 
average Z-scored voxel response and the y-axis shows the object name and the average number of images across 8 participants that 275 
contained this object, rounded. The 80 object categories are those identified and segmented in the COCO dataset. The object categories 276 
are ordered from those provoking the strongest response (top) to those provoking the weakest response (bottom). There may be 277 
multiple objects in one image. Error bars are between-subject standard errors of the mean.  278 
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DISCUSSION 279 

Our results show that color-biased regions in the ventral visual pathway are food-selective. We identified 280 

four ROIs in the ventral visual pathway responsive to the average color saturation of images, one located medially 281 

and the other laterally of the FFA in each hemisphere. The NSD dataset enabled an in-depth analysis of the 282 

responsiveness of these color-biased regions because of the large number and variety of images of natural scenes 283 

presented in the scanner. When we investigated a variety of image characteristics we found the color-biased 284 

areas to be most strongly activated by food, with a smaller independent response to saturation. Our results lead 285 

us to reinterpret the regions as food-selective but color-biased, implying that color is important in the neural 286 

representation of food. Our results uncover a visual stream for food and food associated objects in the ventral 287 

visual pathway not previously identified in the visual neuroscience literature, although some regions within this 288 

stream have been identified in a meta-analysis on fMRI studies of food (van der Laan et al., 2011). The ventral 289 

visual pathway is known to contain sub-streams for processing faces, places, bodies, and words: our results 290 

suggest a prominent role for food selectivity as well. 291 

Reliability and consistency of results 292 

 We conducted a split half reliability analysis over odd and even images for our correlation between 293 

saturation and voxel responses which showed strong reliability over the whole brain (mean r = 0.82, range = 0.71 294 

– 0.89 for different participants). The montages of the images evoking the highest responses in our ROIs 295 

contained similar image features for all eight participants (Figure 2B and SI Figure 2), which were absent in the 296 

montages of images that evoked the lowest responses. The intercorrelations between image statistics were 297 

similar for all participants, suggesting that there were no major differences between the unique images shown 298 

to each participant to take into account when interpreting the results. Multiple analyses: plots of the 299 

relationships between image statistics and voxel responses (Figure 3A), and the multiple linear regresions for the 300 

ROIs (Table 1) and for the individual voxels (Figure 4) all showed that food was the strongest predictor of voxel 301 

responses in the ROIs. We therefore interpret these regions as food-selective. 302 

Color-biased regions in the ventral visual pathway 303 

We found that the medial and lateral food-selective streams are still biased to color even in the absence 304 

of food. This is in line with the results of Lafer-Sousa et al. (2016), who showed no food stimuli in their fMRI 305 

experiment but found color-biased anterior, central, and posterior areas medial in the ventral visual pathway. 306 

Their findings also hinted at a lateral color-biased area for a few of their participants. Our results for all eight 307 

participants show two approximately continuous streams, diverging medially and laterally beginning in V4. We 308 

found that the medial stream extends further anteriorly from the anterior color-biased region identified by Lafer-309 

Sousa et al. Our finding that the color-biased regions are selective for food, changes the existing interpretation 310 
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of what these streams are functionally specialized for. Lafer-Sousa et al. proposed that the color-biased regions 311 

are specialized for color and are anatomically segregated from neighboring regions specialized for object 312 

processing, but we find instead that the color-biased areas are specialized for processing images of food. The 313 

smaller independent responses we find for these regions to saturation may have several different 314 

interpretations, which we discuss further below. In addition, we found negative correlations between saturation 315 

and the voxel responses (Figure 1A), mostly in areas that respond to faces, places, and motion; one possible 316 

explanation is that these image features tend to be associated with lower saturation. 317 

Food-Selective Streams in the Ventral Visual Pathway 318 

Our results show lateral and medial food-selective streams in the ventral visual pathway. Previous 319 

studies have also found responsiveness to food in these areas, summarized in a meta-analysis by van der Laan 320 

et al. (2011). Although the meta-analysis of visual processing of food images shows an area of concordance 321 

between studies in the fusiform gyrus, some studies have looked for food-selective areas in the ventral visual 322 

pathway but did not find them (Downing et al., 2006; Pinsk et al., 2009), and Adamson and Troiani (2018) found 323 

that the left fusiform cortex responds equally well to faces and food. Our results imply that substantial neural 324 

resources in the ventral visual pathway are allocated to the important task of visually processing food.  325 

Numerous studies have demonstrated a distinction between the processing of animate versus inanimate 326 

objects in the ventral visual pathway (Grill-Spector and Weiner, 2014; Martin et al., 1996), specifically that areas 327 

medial of the FFA respond preferentially to animate objects but lateral areas to inanimate objects (Grill-Spector 328 

and Weiner, 2014; Martin et al., 1996). At first glance, the existence of two food-selective streams separated by 329 

the FFA might appear to contradict this theory. However, the placement of food in the category distinction 330 

between animate and inanimate objects is ambiguous. For example, fruit and vegetables are living entities and 331 

foods, but pizzas and hot dogs are non-living foods processed from ingredients derived from living entities 332 

(Crutch and Warrington, 2003). However, when we calculated the average BOLD percentage signal change for 333 

images containing each object from each COCO category we found no clear distinction between the food 334 

categories (Figure 6). Further research is needed to understand the functional differences (or lack thereof) 335 

between the lateral and medial food-selective streams and whether they support a distinction between animate 336 

and inanimate objects.  337 

The streams in the ventral visual pathway that we have identified as food-selective respond to all 338 

categories of food in the COCO image set (Figure 6), including fruits and vegetables as well as processed foods 339 

that were not available in the evolutionary past. We therefore speculate that the food-selective streams are 340 

tuned by exposure to food during a person’s lifetime. This would be analogous to within-lifetime tuning of the 341 

visual word form area, which, owing to the relatively recent development of written language, is unlikely to be 342 
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innately specified (Baker et al., 2007; Kravitz et al., 2013). However, as the visual word form area is highly 343 

consistent across individuals, it also seems unlikely that it is formed solely through experience (Kravitz et al., 344 

2013). 345 

The results of our analysis of the responsiveness of the streams to different object categories (Figure 6) 346 

does not support a clear-cut distinction by the streams for the boundary between food and non-food objects, 347 

but instead supports more graded responses to food. This is suggested by the relatively high responses of the 348 

streams to food-associated objects such as spoons, forks, knives, and dining tables.  349 

We must also consider the possibility that our results may be influenced by attention or expertise (Bilalic 350 

et al., 2016; Bukach et al., 2006; Gauthier et al., 1999; O’Craven et al., 1999; Xu, 2005). Participants may have 351 

been more attentive to images containing food than they were to images containing other objects. Figure 6 352 

shows responses of the medial and lateral streams to images containing objects that could be considered 353 

attention-grabbing such as bears, baseball bats, and stop signs. However, these objects are not among those 354 

causing the greatest responses. Therefore, we consider it unlikely that these streams are driven by attention 355 

rather than food. Alternatively, food images may strongly activate these areas if they are general object 356 

processing areas but people have particular expertise for food. Again, we believe that the preponderance of food 357 

but also food-associated objects among those provoking the highest voxel responses renders this account 358 

unlikely.  359 

Food and Color in the Ventral Visual Pathway 360 

We refer to the streams as ‘food-selective’ as they respond to food more strongly than they respond to 361 

color. However, our saturation findings suggest that they also respond to color. Why are these food-selective 362 

areas also color-biased? One possibility is that the medial and lateral streams may have two distinct specialisms 363 

unrelated to a common visual function, for both food and color. An alternative possibility, which we favor, is that 364 

these areas respond to collections of visual features common to food objects and also to these features even in 365 

the absence of explicit food objects, e.g., colors that are normally predictive of the presence of food. Humans 366 

use color as a heuristic for evaluating food (Foroni et al., 2016), and there is strong evidence that trichromatic 367 

vision helps animals to detect food (Osorio and Vorobyev, 1996; Regan et al., 2001; Sumner and Mollon, 2000a) 368 

and to judge its ripeness (Sumner and Mollon, 2000b). Visual information in the color domain is therefore central 369 

to detecting and recognizing food, so it seems plausible that food-selective regions would also respond to color 370 

as a relevant visual feature.  371 

Conway (2018) proposed a tripartite organization of the ventral visual pathway, consisting of parallel 372 

streams for faces, places, and color, based on the results of studies in both humans and macaques (Lafer-Sousa 373 

et al., 2016; Lafer-Sousa and Conway, 2013; Verhoef et al., 2015). Humans share a common ancestor with 374 
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macaques 25 million years ago (Conway, 2018) and as the human brain is a product of evolution, it is important 375 

to consider these systems from an evolutionary perspective as this might inform key principles of cortical 376 

organization (Cisek and Hayden, 2021). Our present findings for humans do not change the proposed 377 

organization of the ventral visual pathway but rather replace the idea of color specialization with specialization 378 

for food. 379 

Conclusion 380 

The NSD is a one-of-a-kind dataset which allowed us to apply techniques that would not be informative 381 

for datasets with lower signal to noise. The high resolution and large number of trials provide strong evidence 382 

that color-biased regions in the ventral visual pathway are food-selective and that there are two distinct medial 383 

and lateral food-selective streams in both hemispheres which diverge from V4 and surround the FFA. Our results 384 

also suggest that these food-selective streams also respond to color but to a lesser degree. This finding redefines 385 

our understanding of color-biased regions in the ventral visual pathway and elaborates on its function and 386 

complexity in responding to both to food and to color.  387 
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POSTSCRIPT 388 

At the time of uploading on Biorxiv, we were made aware of a pre-print posted the day before by Jain et 389 

al. (2022) also using the NSD to explore food selectivity in the ventral visual pathway. Their findings about food 390 

selectivity are largely in agreement with our own. In distinction, our paper explores the relationship between 391 

color and food representation in the ventral visual pathway and shows that food-associated tools are also 392 

represented preferentially by the food-selective areas identified in both papers. Therefore, aside from food 393 

selectivity, our paper provides unique insight into color representation in the ventral visual pathway. 394 
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MATERIALS AND METHODS 395 

NSD methods 396 

 Here we will provide an outline of the methods used to gather the NSD that are relevant for our analyses. 397 

Further detailed methods for the NSD can be found in Allen et al. (2022).  398 

Participants and MRI data acquisition  399 

Eight participants were included in the study (six females; age range 19-32). All participants had normal 400 

or corrected-to-normal vision. Informed consent was obtained, and the University of Minnesota Institutional 401 

Review Board approved the experimental protocol. The participants were scanned using a 7T Siemens 402 

Magnetom passively shielded scanner at the University of Minnesota. A single channel transmit 32 channel 403 

receive RF head coil was used. The procedure gathered a gradient-echo EPI sequence at 1.8 mm isotropic 404 

resolution (whole brain; 84 axial slices, slice thickness 1.8mm, slice gap 0 mm, field-of-view 216 mm (FE) x 216 405 

mm (PE), phase-encode direction anterior-to-posterior, matrix size 120 x 120, TR 1600 ms, TE 22.0 ms, flip angle 406 

62°, echo spacing 0.66 ms, bandwidth 1736 Hz/pixel, partial Fourier 7/8, in-plane acceleration factor 2, and 407 

multiband slice acceleration factor 3). 408 

Stimulus presentation  409 

A BOLDscreen 32 LCD monitor (Cambridge Research Systems, Rochester, UK) was positioned at the head 410 

of the scanner bed. The spatial resolution was 1920 pixels x 1080 pixels and the temporal resolution 120 Hz. The 411 

participants saw the monitor via a mirror mounted on the RF coil. There was a 5 cm distance between the 412 

participants’ eyes and the mirror and a 171.5 cm distance from the mirror to image of the monitor. A PR-655 413 

spectroradiometer (PhotoResearch, Chatsworth, CA) was used to measure the spectral power distributions of 414 

the display primaries. The BOLDscreen was calibrated to behave as a linear display device which allowed us to 415 

calculate the transformation from RGB to LMS tristimulus cone activities. A gamma of 2 was applied to the 416 

natural scene images to approximate the viewing conditions of standard computer displays.  417 

Experimental task 418 

The participants performed a long-term recognition task in which they had to press a button stating 419 

whether the scene presented on each trial had been shown before or not. On every trial a distinct image was 420 

shown for 3s with a semi-transparent red fixation dot (0.2° x 0.2°; 50% opacity) on a grey background (RGB: 421 

127,127,127; S/(L+M) = 1.1154, L/(L+M) = 0.6852). After the 3s stimulus presentation the same fixation dot and 422 

the grey background were shown alone for 1s. Participants could respond any time during the 4s trial. Each run 423 

contained 75 trials (some of these were blank trials) and lasted 300s. There were twelve runs per session.  424 
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Images displayed 425 

73,000 distinct images were used which were a subsample (the train/val 2017 subsections) of COCO 426 

image dataset (Lin et al., 2014), which contains complex natural scenes with everyday objects in their usual 427 

contexts. The COCO dataset contains 80 object categories ranging from faces and cars, to food and stop signs 428 

(for examples see Figure 2). The images were 425 x 425 pixels x 3 RGB channels which were resized to fill 8.4 by 429 

8.4 degrees on the BOLDscreen 32 display using linear interpolation. Participants had up to 40 scan sessions 430 

(range 30-40) and saw up to 10,000 images 3 times across these sessions: 8,302 – 9,000 of these were unique 431 

images and 907 – 1,000 images were seen by all participants.  432 

Preprocessing 433 

 The preprocessing of the functional data included temporal resampling, which corrected for slice time 434 

acquisition differences and upsampled the data to 1.000s. Field maps were acquired and the resampled volumes 435 

were undistorted using the field estimates. These volumes were used to estimate rigid-body motion parameters 436 

using SPM5 spm_realign. To correct for the head motion and spatial distortion, a single cubic interpolation was 437 

performed on the temporally resampled volumes. The mean fMRI volume was calculated and was corrected for 438 

gradient nonlinearities. Then the volume was co-registered to the gradient-corrected volume from the first scan 439 

session, so the first scan session was used as the target space for preparing fMRI data from the different scan 440 

sessions. 441 

A GLM analysis was applied to the fMRI time-series data to estimate single-trial beta responses. The third 442 

beta version (b3, ‘betas_fithrf_GLMdenoise_RR’; native surface space) was used, and no alterations were made 443 

to this beta version’s preprocessing steps described in Allen et al. (2022). In brief, the GLMsingle algorithm (Allen 444 

et al., 2022; Kay et al., 2013; Rokem and Kay, 2020) was used to derive nuisance regressors and to choose the 445 

optimum ridge regularization shrinkage fraction for each voxel. The extracted betas for each voxel represent 446 

estimates of the trial-wise BOLD response amplitudes to each stimulus trial, and these are relative to the BOLD 447 

signal observed during the absence of a stimulus (when only the grey screen was shown). Trials showing the 448 

same image were averaged to improve signal estimates and reduce the amount of data. All analyses were done 449 

in MATLAB 2019a (MathWorks Inc., Natick, USA). 450 

Color image statistics  451 

The RGB images were converted to LMS cone tristimulus values using the 10 degree Stockman, MacLeod, 452 

Johnson cone fundamentals (Stockman et al., 1993) interpolated to 1nm. Chromaticity coordinates in a version 453 

of the MacLeod-Boynton chromaticity diagram (MacLeod and Boynton, 1979) based on the cone fundamentals 454 

were extracted for each pixel. In this color diagram, the cardinal mechanisms of color vision are represented by 455 
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the axes L/(L+M) (roughly teal and red colors) and S/(L+M) (roughly chartreuse to violet), which correspond to 456 

the two main retinogeniculate color pathways (Mollon and Cavonius, 1987). Saturation was defined as the 457 

distance between the values of the pixel in Macleod-Boynton color space and the NSD grey background. To do 458 

this the chromaticity coordinates in the MacLeod-Boynton chromaticity diagram were transformed to polar 459 

coordinates (Bosten and Lawrance-Owen, 2014). The scaling factor applied to the L/(L+M) axis was 0.045. If the 460 

luminance of a pixel value fell below a dark filtering criterion of L+M = 0.0002, the saturation value was set to 461 

zero because at low luminance there is a high level of chromatic noise which would be perceptually very dark or 462 

black. The saturation values for each pixel were then averaged over the image to find the average saturation of 463 

each image. We used the 425 x 425 images for all analyses of image statistics. 464 

Definition of ROIs 465 

We created Regions of Interest for the medial and lateral ROIs for both hemispheres. Using the map of 466 

the number of participants that showed a whole-brain Bonferroni-corrected significant correlation between 467 

voxel response and average saturation for each voxel in fsaverage space (Fig. 1B). For both hemispheres we drew 468 

large ROIs around each stream (medial and lateral) of voxel responses that correlated significantly (following a 469 

whole-brain Bonferroni correction) with average saturation in at least one participant, beginning at the boundary 470 

of Kastner-defined hV4 (Fig. 1B). We applied the four ROIs to each participant but only included voxels in an ROI 471 

for a particular participant if the voxels responses showed significant positive correlations with average 472 

saturation (again, Bonferroni-corrected over the whole brain).  473 

Creation of montages 474 

We Z-scored voxel responses to all images for each voxel and then averaged the Z-scored voxel responses 475 

across voxels in each ROI for each image. Using the average voxel responses for each ROI we created montages 476 

of images that evoked the highest and lowest average voxel responses. We plotted four hundred images in each 477 

montage out of the 9,209 - 10,000 images each participant saw. A part of each montage is shown in Figure 2B.  478 

Other image statistics 479 

For pixel counts of food and circular objects, we summed the number of pixels containing food or circular 480 

objects for each image. To do this we used the COCO dataset object segmentation data which has 80 object 481 

categories. We converted the segmentation data to a binary pixel mask for each image which included the object, 482 

then the total number of pixels was summed. The food image categories were banana, apple, sandwich, orange, 483 

broccoli, carrot, hot dog, pizza, donut and cake. Circular object categories were sport ball, pizza, donut, clock, 484 

tennis racket, frisbee, wine glass, stop sign, and cup. It is possible that there are other food and/or circular objects 485 

in the dataset that were not segmented. For the warm-cool image statistic, we used warm-cool color ratings 486 
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collected by our group for another project (Maule, Racey, Tang, Richter, Bird & Franklin, unpublished), where 487 

participants were shown a set of 24 isoluminant and iso-saturated hues and asked to rate how warm-cool they 488 

appeared using sliding scale. We used these warm-cool ratings to interpolate the warm-cool value for the hue of 489 

each pixel that had a luminance higher than the dark filter criterion described previously. Warm ratings had 490 

positive values and cool ratings had negative values. We summed the warm-cool values of all pixels in the image 491 

to get an overall warm-cool statistic for each image. 492 

Relationships between image statistics and voxel responses 493 

To create Figure 3A, we ranked the images for each image statistic and then averaged over the lowest 494 

ranking 500 images (images ranked 1 to 500). We also averaged over the Z-scored voxel responses to the same 495 

500 images. We repeated this procedure but selected images ranking between 2 and 501 and the corresponding 496 

voxel responses. We continued moving one image up until reaching the highest ranking 500 images. Afterwards, 497 

we extrapolated the resulting “moving-average” curves to the highest and lowest image statistic values seen by 498 

any of the 8 participants. We then averaged across the eight subjects at interpolated points along the image 499 

statistic. The interpolation was necessary because each subject saw different images (other than the roughly 10% 500 

common images). In SI Figure 3, plots for individual participants are shown.  501 

Multiple linear regression 502 

We applied a rank inverse normal transform (Blom constant) to all image statistics before conducting 503 

the multiple regression. Responses for each individual voxel were Z-scored across images and then average voxel 504 

responses for each image were calculated for each of the four ROIs.  505 

ANOVA with saturation and food  506 

The median image average saturation was used to split the saturation variable into high and low 507 

saturation individually for each participant. We categorized images that contained food based on the COCO 508 

categories and all other images were categorized as non-food images. From these we created four groups of 509 

images: high food/low saturation, low food/low saturation, high food/high saturation, and low food/ high 510 

saturation. On average, the food group of images was more saturated (M = 0.7462, SD = 0.0437) than the non-511 

food group (M = 0.4793, SD = 0.0382). A Welch’s t-test showed there was a significant difference between the 512 

groups for all eight participants (24.74 ≤ t(1541.5) ≤ 26.40, 2.78 x 10-113 ≥ p ≥ 1.16 x 10-127 across 8 participants).  513 
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