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Abstract

Ventral visual cortex contains regions of selectivity for domains of ecological im-
portance. Food is an ecologically and evolutionarily important category whose high
degree of visual variability may make the identification of selectivity more challenging.
First, we investigated neural responsiveness to food using natural images combined
with large-scale human fMRI. Leveraging the improved sensitivity of modern designs
and statistical analysis methods, we identify two food-selective regions in the ventral
visual cortex. Our results were robust across 8 subjects from the Natural Scenes Dataset
(NSD), multiple independent sets of images and multiple analysis methods. Second,
we tested our findings regarding visual food selectivity by designing and running an
fMRI “localizer” experiment that included grayscale food images. Our independent
localizer results confirm the existence of food selectivity in human ventral visual cortex
and help illuminate why earlier studies may have failed to do so. The identification
of food-selective regions stands alongside prior findings of functional selectivity and
provides an important addition to our understanding of the organization of knowledge
within the human visual system.
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Introduction

The representation of high-level visual information in the human brain has been marked by
the phenomenon of selectivity for visual categories or properties of high ecological importance.
Focusing on ventral visual cortex, there are multiple brain regions that show preferential
responses to categories such as faces1,2, bodies3, places4, and words5, and to broad organiza-
tional principles such as animacy6, real-world size6, and “reach space”7. Independent of any
particular theory on the origins and specificity of these functional brain regions8,9, the prevail-
ing view is that the likely role of these regions is to instantiate processes and representations
for categories and properties that are highly relevant for common and important day-to-day
behaviors. In a similar vein, food is a category that is relevant to evolution – the need to
find nourishment is more ancient than social interaction and, arguably, more fundamental to
survival. It is therefore surprising that food has not been consistently identified as a visual
category for which localized, selective neural responses are observed.

The visual presentation of food images is known to prompt a range of brain responses10–13,
including affective, sensory, and cognitive effects. However, agreement on neuroanatomical
locations of food-related activation across studies using food images has been low to moderate13.
In one meta analysis of relevant studies, only 41% of 17 experiments contributed to food-
related clusters in the bilateral fusiform gyrus and left orbitofrontal cortex13. Another study of
selectivity across a range of proposed categories found no robust selectivity for either fruits or
vegetables in occipitotemporal cortex14. In the cases where statistically significant responses
to food have been observed, they have typically been attributed to increased attention to
food images arising from subjects’ mental states and/or physiological factors11,13,15 rather
than to visual category representations per se. For example, supporting the idea that it is the
value of particular foods that drives responses, Huerta and colleagues11 performed a meta
analysis across 11 studies specifically focused on eating behavior, where they compared high
caloric food pictures (e.g., hamburgers, cake, waffles, fries, etc.) to non-food pictures (e.g.,
rocks, bricks, trees, houses, etc.) and found the most consistent group-average activation
in the right fusiform gyrus11. Additionally, in the study most relevant to our present work,
Adamson and Troiani16 considered the connection between a subject’s body mass index
(BMI) and neural responses to food in a paradigm that compared 80 food images to an equal
number of faces, places, and clocks. Interestingly, independent of any interaction with BMI,
they found evidence for left-lateralized food selectivity, overlapping with the fusiform face
area (FFA), and interpreted this as an indication that fusiform activation may be driven by
motivation and valence factors that are common to both food and faces. This earlier finding
of food selectivity in the FFA was further interpreted as a counter-example to the theory that
FFA selectivity is a consequence of “expertise” – high proficiency at individuating exemplars
within a visually-similar category9 (in that food images are relatively dissimilar from one
another). However, their conclusion was based primarily on group average responses and
focused on establishing overlap between food selectivity and the FFA, rather than parsing the
fine-grained anatomical relationship between food- and face-selective populations. Thus, while
it is known that food images elicit neural responses in a variety of brain regions, including
the fusiform gyrus, it is not yet clear whether selectivity for food images is instantiated as a
distinct category-selective region within ventral visual cortex.

Using more sensitive experimental designs and statistical methods across two experiments,
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we were able to spatially localize food selective regions at a much more fine-grained level within
individuals, thereby providing a strong test of the relationship between food-selective and
other category-selective regions. Notably, two other studies17,18 based on the same Natural
Scenes Dataset (NSD)19 we used in Experiment 1, both identify distinct food-selective regions
consistent with our results (although relying on somewhat different analysis methods). We will
return to these studies in the Discussion. Both our study and these two similar studies depart
somewhat from most prior investigations of food-related neural responses in that, in contrast
to past studies, we do not include any physiological variables (e.g., BMI or hunger level) as
covariates in our analyses, and we do not restrict our image set to high-calorie, appetizing
stimuli. Rather, our study explicitly aimed to identify the brain regions that represent and
process the visual properties of food in a more general context; that is, without explicitly or
implicitly attempting to recruit circuits involved in reward, motivation, or valence.

A variety of factors may have impacted the results (or lack of results) in many prior studies
investigating food-selectivity in visual cortex (e.g., P. Downing and N. Kanwisher, 1999, Cogn.
Neurosci. Soc., poster). One possibility is that some of the apparent inconsistency in detecting
food-selective responses is, in part, due to relying on isolated, somewhat unrealistic food and
non-food images (e.g., Downing et al.14). However, as we discuss below, our Experiment 2
identifies food selectivity using grayscale images of food. As such, while the naturalness of
the COCO images used in NSD may enhance food-selective responses, it seems unlikely that
naturalness alone (nor the absence of color) can account for prior failures. At the same time,
it is worth noting that both Adamson and Troiani16 and Tsourides et al.20 used naturalistic
food images and were able to successfully identify food-related neural responses as measured
by functional MRI (fMRI) and magnetoencephalography (MEG), respectively.

A second factor contributing to earlier null results may be that prior studies used an
insufficient number of food images, thereby failing to capture the large variety of visual
properties of food or of the natural contexts in which food appears. Unlike faces, bodies,
or word stimuli, food images vary widely in low- to mid-level visual characteristics such as
curvature, shape, texture, color or the organization of the parts into a whole. Thus, greater
numbers of food stimuli not only increase experimental power in and of itself, but lead to
better coverage of “food appearance space” as it may be mentally and neurally represented.

A third factor which may have made identifying food-selective regions more challenging is
potential variability across individuals in the neural localization of food-related responses –
a prediction supported by the individual variability seen in the results of our Experiment
2 (and in 16). One possible reason for this variability may be that voxels processing food
are interleaved with voxels processing other object related properties.18 Another possible
reason for individual variability is the complexity of building a food processing area due
to the visual heterogeneity of food. Indeed, this latter point has been raised as one reason
why a food-selective visual region seemed unlikely – in contrast to visually-homogeneous
categories such as faces and written words, foods vary dramatically in shape, texture, and
color. Consequently, it is unclear how a single visual mechanism might learn across this
appearance diversity. One possible solution has been articulated in modern machine learning
where building a classifier for a complex class comprised of multiple sub-classes with an
inherent organization (such as food) is a problem referred to as hierarchical classification21,22.
One way of the common ways this problem is solved is by combining the predictions of
specialized classifiers for each of the different sub-classes into a single prediction23. Thus, one
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can conceive of food-selective responses as a set of specialized classifiers for different food
sub-types. Given the complexity of such representations, as well as their potential interactions
with culture, taste,16 and experience,11 spatial variability in food-selective responses would
not be surprising.

Fourth, as just discussed, the visual heterogeneity of food may lead to food-selective
regions that are more spatially distributed as compared to other category-selectivity responses,
possibly including multiple sub-regions. However, to boost statistical power, standard
neuroimaging analyses often forgo individual-level statistical tests in favor of across-subject
tests that are biased to “blur” localized responses.16,24 These analyses are more likely to
identify regions that are well aligned across subjects25. In contrast, in both of our experiments,
we rely on within-subject analyses that are better able to pull out category-specific neural
responses for individual brains. Moreover, in Experiment 1, our fine-grained analyses reveal
that the top images in food regions overwhelmingly depict food. Thus, while it is possible
that the neural representations of other categories are intermingled with the representation
of food, our results favor distinct, but perhaps distributed, food-selective regions within
ventral visual cortex. As a coda to reliance on more sensitive data analysis tools, we also note
that modern fMRI measurements are much improved over earlier experiments. For example,
Experiment 1 used NSD which was collected using a 7T scanner and high resolution temporal
and spatial sampling, while Experiment 2 used a state-of-the-art 3T scanner and 64 channel
head coil.

Our study addresses these issues across two experiments relying on very different designs.
Experiment 1 uses a large-scale, “hypothesis-free” approach in which fMRI data was collected
at a massive scale as part of NSD19, thereby improving our ability to detect effects across post-
hoc defined conditions. Real-world images, drawn from the the Microsoft COCO dataset26,
were used for both the food and non-food conditions. To preview our most important
result, we reliably identify two distinct regions in ventral high-level visual cortex that are
preferentially responsive to food images. These two strips surround the Fusiform Face Area
(FFA) and are aligned on the anterior to posterior axis. We replicate these regions across
subjects while controlling for other aspects of images that are thought to be coded in the
ventral visual system, such as image perspective. We also provide exploratory analyses that
probe the more fine-grained structure of conceptual representations within food-selective
cortex.

Experiment 2 validates the finding of food-selective regions in a hypothesis-driven manner
by collecting new fMRI data. We designed a visual “food localizer” by adding a food condition
to the existing fLoc localizer by Stigliani et al.27 As in the other conditions of the fLoc
localizer, we composited grayscale food images on scrambled backgrounds. Our analysis
identified food-selective regions in each subject, with the location being consistently adjacent
to the FFA. The results of Experiment 2 provide direct evidence supporting the hypothesis
that food-selective regions in the ventral visual system represent a new domain of category
selectivity similar to faces, places, bodies, and words. Our results also directly exclude color
and image context from being the major drivers of the visual responses to food observed in
Experiment 1. Of particular note, the localization of the food region was consistent across
individuals when defined according to a functional landmark (e.g., proximity to the FFA),
but when averaging spatially across individuals (e.g., when their brains were aligned), the
neuroanatomical overlap of the food region across subjects was less pronounced than other
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Figure 1: Experiment 1. The images that could have been potentially viewed by all

8 subjects in NSD were manually relabeled to investigate responsiveness to naturalistic food
images. (A) Example images labeled as (clockwise, from upper left): {outdoor, food, food-related,
reach} {indoor, human face, human body, object, large-scale}, {indoor, object, large-scale}, {outdoor,
animal face, animal body, object, zoom}. (B) The labeling taxonomy, including attributes of location
(top), content (middle), and image perspective (bottom). (C) Flattened, semi-inflated lateral, and
semi-inflated bottom views of the MNI surface indicating voxels with higher activity for food than
all non-food labels for the shared images. The subject count for a significant contrast was obtained
at each MNI voxel. Voxels more responsive to food are found in the frontal, insular, and dorsal
visual cortex, with the highest concentration across subjects occurring in the fusiform visual cortex.
Both hemispheres show two strips within the fusiform that are separated by a gap that lies on the
posterior-to-anterior axis. (D) Top 10 images per subject (S1-S8) leading to the largest responses in
the food area. These images, which overwhelmingly depict food, were unique for each subject and
were not in the set used to localize the food-selective region.
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functional ROIs (and closely replicated the results reported in,16 thereby accounting for
the differences between the results of Experiment 1 and earlier studies). This leads us to
consider the third and fourth factors – the spatial heterogenity of food-selective regions and
the impact such heterogenity has on traditional localizer designs – as the leading causes for
the elusiveness of food selectivity. We release the food localizer code and stimuli as part of
this paper.

Naturalistic and hypothesis-driven experimental approaches can be used in a complemen-
tary manner that leverages their unique strengths. Here we were able to identify and validate
a food-selective region of the human ventral cortex using a naturalistic experiment with
complex stimuli to formulate our hypothesis and then use a hypothesis-driven experiment to
test that hypothesis. We believe such a combination is a valuable tool in neuroscience that
can help advanced the field in the coming years.

From a theoretical standpoint, in that food is incontrovertibly an ecologically critical
category, our finding of a food-selective region (confirmed in17,18) is consistent with earlier
findings of selectivity in the perception of faces, bodies, places, and words. Building on this
result, principal component analyses across food-selective voxels provides a finer-grained view
into the rich organization of food-relevant information within visual cortex, possibly reflecting
gradients along which food is combined with other ecologically relevant categories.

Results

Experiment 1: Large-scale analyses of food representations in a

naturalistic setting

To investigate responsiveness to food in a large-scale natural setting, we used the Natural
Scenes Dataset (NSD)19, which consists of high-resolution fMRI responses to naturalistic
scenes. NSD contains fMRI data from 8 screened subjects (S1-S8) who each viewed 9,000-
10,000 scene images.Of the 70,566 total unique images viewed across subjects, for purposes of
consistency we focused on the 1000 images that were shared among subjects (see Methods for
more details) .

Though COCO images already include labels for many categories, including some types of
food, there is important information not captured by these labels, such as whether an image
contains human faces. We methodologically relabeled by hand the 1,000 images shared across
subjects, based on 3 main attributes: location, content, and image perspective. We used the
hierarchical structure shown in Fig. 1B (refer to Methods for labeling details, and Fig. 1A
for examples). Image perspective was included because there is evidence that objects shown
at human-reachable distances have a distinct representational signature in the brain7,28 and
food is often viewed at reachable distances.

Using these labeled images, we constructed a standard linear model that expresses brain
activity as a combination of the attributes assigned to each image. This model identified
voxels that are more responsive to food than other categories, based on a t-test comparing
the weights for food versus all other labels (Fig. 1C). Across the cortex, there are several
regions showing significantly higher activation for food than non-food categories (p <0.05,
false discovery rate (FDR) corrected), including some areas in parietal and frontal cortex,
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as well as on the ventral surface of the occipital lobe. We focus on ventral visual cortex
due to the long history of mapping category-selective responses in this brain region. Across
all subjects, we consistently find two food-selective strips in the ventral visual cortex that
surround the FFA on the lateral and medial sides. (Fig. 1C shows the count of subjects
for whom these contrasts are significant at each MNI voxel (montreal neurological institute
coordinate system), and the contrast strength is shown for individual subjects in Figs. 2A
and S1A). Note that these identified regions persist even when removing all images with
the “reach” (Fig. S3) or “zoom” (Fig. S4) annotations – demonstrating that food-selective
responses are not dependent on food being shown at a particular distance7.

Since this paper focuses on visual food selectivity, we isolated fusiform food-selective
voxels using a mask of the ventral visual cortex based on corresponding ROIs from the
HCP atlas29 (see Methods). The resulting “food relevant” voxel masks, which were used for
the following analyses, are shown in Figures 2B and S1B. We then look at which images
maximize the activity in those areas, using a completely separate dataset (the non-shared
NSD images). Considering only unique images that were viewed by a given subject, Figure 1D
shows the top 10 activating images for the food-selective voxels for that subject. These
images overwhelmingly depict food. These images were not used to identify the food regions,
and thus reinforce the generality of food selectivity across independent image sets.

Given that food-selective regions appear adjacent to the FFA, we focused on the spatial
relationship between food-selective and face-selective populations on the ventral surface. We
compared the t-statistics for a contrast of food vs. non-food and t-statistics from a contrast
of faces vs. non-faces for S1-S8 individually (Figs. 2A and S1A). The faces vs. non-faces
contrast reveals a voxel cluster overlapping with the FFA1,2 (Figs. 2A and S1A). The FFA
was localized for each subject through a separate visual category localizer experiment. (The
faces vs. non-faces comparison also makes the methodological point that established category-
selective regions can be reliably localized in a large-scale event-related design using stimuli
embedded in complex, real-world scenes. This generalizes findings from typical localizer
designs and decontextualized images30). The regions with higher activity for food are spatially
distinct from the ones with higher activity for faces. This pattern persists when comparing
food or faces to non-face and non-food images only (Fig. S5), indicating that the regions
that have high activity for food and faces have highly independent or non-overlapping spatial
extents.

We further investigated how food representations might be distributed across multiple
voxels, using searchlight classification31 (Fig.S2). Training a decoder to classify food versus
other categories revealed that food was decodable across a wide area of the ventral surface.
The regions from which food information was decodable are a union of the regions that are
high for food vs. all and the regions that are high for faces vs. all. This finding is consistent
with the idea that voxels primarily selective for other categories, such as faces, may contain
information that distinguishes food from other categories32.

We have focused on identifying food-selective regions through responses to the shared
images and our hand-labeled annotations. For the approximately 9,000 remaining images per
subject that were not manually labeled, we can still take advantage of COCO annotations26

(including specific types of food) to further investigate brain responses to food and validate
our findings on an independent set of images. We built an encoding model using the 80 object
labels provided by COCO and obtained the resulting voxel-wise weights for food labels. We
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Figure 2: Experiment 1. Food-selective regions at the individual subject level. (A)
Comparing the spatial localization of food- and face-selective neural populations on the ventral
surface, for S1-S4 (see Fig. S1 for S5-S8). Voxels’ t-statistics from two 1-sided t-tests comparing food
vs. non-food (red) and face vs. non-face (blue). The regions identified by each contrast are largely
non-overlapping. This pattern is maintained for food vs. non-(food and face) and face vs. non-(face
and food) (Fig. S5). (B) Spatial mask for food-selective regions used in subsequent analyses for
S1-S4 (highlighting ventral visual responses). The mask is the overlap between the region that is
identified from the t-test for food vs. non-food (panel A, red) at p <0.05 (FDR corrected) and
relevant neuroanatomically localized regions using the HCP atlas29 (see Methods).
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Figure 3: Experiment 1. A consistent set of food-selective regions can be identified

across independent image sets with different labeling schemes. We used the set of images
for each subject that were not included in previous analyses, and an encoding model built from the
80 COCO object labels. (A) Voxel-wise encoding model weights for four food sub-categories from
the original COCO dataset, shown for S1. We see variability in the weights, such as (perhaps, not
surprisingly) pizza yielding higher weights in some areas than broccoli. (B) We compared predictive
accuracy of an encoding model with all COCO labels (including 13 food and 67 non-food labels)
to an encoding model with only the 67 non-food COCO labels. On S1’s native surface, there is an
improvement in validation set R2 values when including the food labels (R2 for the full model; R2

for the model with food removed), with S1-S8 results in Fig. S6. Weights corresponding to individual
food labels (A) and the pattern of improvement in R2 (B) highlight similar food-selective regions.
Such consistent results lend further support for these regions being robustly food selective.

find that the voxels having the highest weights for several individual food sub-categories (i.e.,
cake, sandwich, pizza, and broccoli) fall within previously identified food-selective regions
(weights for S1 in Fig. 3A). Next, we investigated the specific contribution of food images
to these voxel responses by comparing two encoding models: one including the 67 non-food
COCO labels, and the other including both food and non-food labels. We compared the R2

values of the two models on held-out data (Fig. 3B and Fig. S6). Many voxels on the ventral
surface show improved prediction performance due to the inclusion of food labels, suggesting
that modeling the presence of food beyond other categories was required to accurately predict
the voxel responses. These voxels are distributed in roughly the same spatial pattern as the
voxels with high-valued weights for individual food categories and our previously identified
food regions, further supporting the generality of our results.

To understand the representational structure of these regions, we ran a principal compo-
nents analysis (PCA) on the responses from all subjects to the shared food images. The PCA
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Figure 4: Experiment 1. PCA of responses from food-selective regions provides insight

into their functional structure. (A) Average principal component score across subjects for PC1,
PC2, and PC3, shown on the MNI surface. Blue-green indicates high, brown indicates low PC scores.
These top three PCs explain, respectively, 34.31%, 12.68%, and 11.16% of the variance. In (B) and
(C), we show the images that lead to the highest and lowest activations in each PC. We include
the 4 top and bottom images for ease of visualization. Top images for PC1 and PC2 are plotted in
a 2D space (B), with the points connected to each image indicating its position in the space. In
(C), we plot the top and bottom images for PC3 along a linear axis. Several patterns emerge here:
PC1 scores yield small positive patches around the center of each food-preferring strip with more
negative values close to the edges of each strip, and may capture the prominence of food in an image,
separating images with focus on food in the foreground from those with food in the background. PC2
scores are higher medially (closer to PPA) and lower laterally, and seem to distinguish large-scale
images of food-related places from close-by images of food and people eating food. PC3 scores in the
right hemisphere food regions are lower at the center of the two strips, in the areas that border the
FFA, while the left hemisphere does not show a clear pattern. PC3 appears to distinguish non-social
food settings from social food settings. These results highlight that the combination of food with
other ecologically important categories, including people (both faces and bodies) and places, creates
a richer co-organization that reveals itself as gradients across cortex.
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produces for each voxel a set of principal component scores that capture the projection of its
high-dimensional response profile across all images onto a lower dimensional subspace. The
axes of this subspace – shared semantic axes – should correspond to the dimensions in food
image space that are most strongly reflected in the voxel responses (Fig. 4A). In Figure 4B
and C, we visualize the top and bottom images for each PC. The first three PCs are each
associated with distinct groups of voxels. PC1 is characterized by small positive patches
around the center of each food-preferring strip on the ventral surface, with more negative
values close to the edges of each strip. Negative and positive scores for PC2 differentiate
the lateral and medial strips of the food-selective region. PC3 scores are generally more
spatially diffuse, but in the right hemisphere, PC3 scores are more negative near the FFA
(i.e., medial side of the lateral strip, lateral side of the medial strip). Based on inspection
of the top and bottom images associated with each PC, PC1 captures the prominence of
food in an image, distinguishing images with food as a key focus in the foreground versus
those with food as a background element. PC2 distinguishes food images based on overall
scale, differentiating close-up images that focus on a few food objects from larger-scale images
of food-related scenes (Fig. 4B). This is consistent with the pattern of positive scores for
this PC on the medial side of the food-selective area, close to the PPA. PC3 distinguishes
food images based on social attributes, separating food images that include few people from
images of multiple people eating or preparing food, with social settings being at the end of
the spectrum (Fig. 4C). Some amount of person or animacy-related information also appears
to be reflected in the first two PCs (top right vs. bottom left images in Fig. 4B). Such results
highlight the ecological importance of food as a category, as well as how high-level knowledge
structures arise from the interaction between food and other ecologically important categories
within the ventral visual cortex.

To further explore what features drive the brain organization of food representations, we
clustered food images according to their voxel responses in our food-selective regions. This
analysis produces image clusters that are not easily characterized in terms of visual features,
viewpoints or semantic attributes (Fig. S7A). We also constructed image clusters using two
neural-network models – CLIP33 and ResNet-1834 – from which we derived semantic and
visual embeddings that did not include the associated brain activity for the images. CLIP is
trained on both images and text captions, enabling us to extract features that capture the
high-level semantics of the images. ResNet-18, trained solely on images and their associated
object labels, yields features with less emphasis on scene semantics. As shown in Figure S7,
the clusters arising from CLIP capture semantic classes of food (e.g., fruits, deserts or meals;
Fig. S7B) while the clusters arising from ResNet-18 appear more visually organized and more
focused on individual elements (e.g., broccoli, pizza; Fig. S7C). Comparing the similarity of
the cluster assignments of images for each of the three clustering procedures, neither CLIP or
ResNet-18 clusters show any clear correspondence with our voxel-based clusters. The lack of
correspondence in our clustering results suggests that the responses in food-selective areas do
not organize easily into clusters based on scene semantics or object semantics.

11

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 8, 2022. ; https://doi.org/10.1101/2022.05.22.492983doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.22.492983
http://creativecommons.org/licenses/by-nd/4.0/


Figure 5: Experiment 2. Food-selective regions identified in an independent set of

subjects using a visual localizer that includes grayscale images. The fLoc localizer by
Stigliani et al.27 was adapted to include a food condition that was constructed by identifying images
of food items from different categories and with different shapes, converting them to grayscale and
superposing them on the scrambled images from the fLoc localizer (see Methods). Other conditions
included faces, bodies, places and written words. (A) t-value of the food vs. other contrast shown
on the cortical surface (viewed from the bottom) of each localizer subject (LS1-LS4). For each
subject, the PPA, FFA and EBA was traced using the corresponding conditions in the localizer.
Food-selective regions with a high value for the food vs. other contrast sit between the FFA and
PPA of different subjects, with some subjects having high values on both sides of the FFA. See
Suppl. Fig. S8 for the significance thresholds. (B) Examples of the stimulus images used in the food
condition. (C) A cut-out of the flattened brain of each subject providing a different view of the food
regions. There exists some spatial variability between subjects, but the relationship between the
ROIs is more stable. (D) Semi-inflated lateral and semi-inflated bottom views of the MNI surface
indicating voxels the subject count for a significant food vs. all contrast. Voxels more responsive to
food are found in the dorsal visual cortex, with the highest concentration across subjects occurring
in the fusiform visual cortex. This result replicates our initial finding with NSD (compare with
Fig. 1C). As predicted, the location of the food region is spatially variable across subjects (see Suppl.
Fig. S9 to compare with the variability of other classical localizers).
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Experiment 2: Hypothesis-driven analyses of food selectivity with

controlled stimuli

Our analyses using the NSD dataset allowed us to form a strong hypothesis on the presence
of food-selective areas within the fusiform gyrus neighboring the FFA. Next, we designed a
standard food “localizer” and collected new fMRI data to test whether we could replicate
our results in a controlled experiment. We selected 82 images of different types of food with
transparent backgrounds from the https://www.stickpng.com/ website. We converted
the images to grayscale and superimposed them on images from the scrambled condition
in the fLoc localizer27 (Fig. 5B illustrates some examples). All images are shared in the
supplementary materials folder. We included four additional conditions from the fLoc
localizers: face (adults), body, place (houses) and words. We used the face vs. others, body
vs. others and place vs. others contrasts to trace the FFA, EBA and PPA of each subject.
In Figure 5, we show the contrast of food vs. others for each subject on both their inflated
and flatted surface (see Suppl. Fig. S8 for maps that include statistical significance).

The results of the localizer replicate the findings of Experiment 1 (and17,18) and support
the hypothesis that food-selective regions fall within the fusiform gyrus adjacent to the FFA.
Our new results also indicate that factors such as color or food appearing in a natural scene
are not essential for obtaining selective activation for food. While some spatial variability in
food-selectivity exists across subjects, regions with high values for the food vs. other contrast
lie between the FFA and PPA of different subjects, with some subjects having high value
voxels on both sides of the FFA. After converting the subjects’ results to MNI space and
counting the number of significant voxels in each MNI location, we see less spatial agreement
among subjects in the food vs. other contrast as compared to the face, body, and place
contrasts (face vs. all, body vs. all, place vs. all, and words vs. all; see Suppl. Fig. S9).
More specifically, for each of these other contrasts there exists a region in which all subjects
show a significant effect. However, for the food contrast, we find greater spatial variability:
at most 3 subjects have a significant contrast in the same region of the left fusiform, and
only a small number of voxels show a significant contrast across all subjects. This result is
aligned with our findings using NSD in Experiment 1, where the most consistent region is
one in which only 5-6 of the 8 subjects showed a significant contrast (Fig. 1). As discussed
above, such spatial variability may be one important reason why earlier studies – particularly
those relying on group analyses – may have failed to identify regions selective for food.

Discussion

How are knowledge representations organized in the human brain? Within the visual system,
one of the hallmarks of the past several decades has been category selectivity for faces, bodies,
places, and words1–5. Consistent with the ecological importance of these categories, we
identified selectivity for another ecologically relevant category, food, within the ventral visual
stream. In our present study, we used both data- and hypothesis-driven fMRI methods. Two
related studies17,18 also used data-driven methods applied to the same large-scale natural
scenes dataset 19 and confirmed our finding of food selectivity in Experiment 1. Our study
also provides a range of analyses not included in these other studies, as well as new and
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informative data from a second, hypothesis-driven experiment. First, using NSD, we show
that the identified food regions are maximally activated by food images. Second, we establish
that food-selective responses do not appear to be confounded with image viewpoint (zoom,
reach or large-scale). Third, we find that the inclusion of food-related category features in an
encoding model leads to improved prediction accuracy in food-selective regions. Fourth, we
demonstrate that PCA can be used to uncover both the large-scale topography within food-
selective areas and the interaction of food coding with other semantic dimensions. Namely, we
find that the representation of food in the food regions appears to be organized in gradients
across cortex that relate food to other important information processed nearby (social and
place-related information). Fifth, we verify the robustness of food-selectivity by showing
consistent food-selective responses across independent sets of NSD images, and we provide
the first characterizations of the fine-grained structure of representations within the food
category itself. Finally and uniquely, we directly validate these results using hypothesis-driven
methods in the form of a standard “localizer” that included grayscale images of food. The
results of Experiment 2 replicate our results with NSD and provide direct evidence that
color is not a confound in food-selectivity. Equally important, these results also suggest
that food-responsive regions are more spatially variable across individuals than other visual
functional ROIs, thereby helping us reconcile current findings of food selectivity with previous
failures and with claims of overlap between food- and face-selective regions.

Although our focus was on selectivity in the ventral visual system, we note that we
also observed food selectivity in the parietal and frontal cortices in Experiment 1; however,
the localization of these regions was less consistent over subjects (Fig. 1C) and did not
replicate when we used our context-free localizer images (Fig. 5). Other brain regions may
also play a role in processing food information, particularly during visually-guided behavior.
The dorsal visual areas in particular may process the actions or affordances associated with
food (i.e., cooking/eating), as suggested by past work showing that object representations
in dorsal visual cortex tend to be action-oriented35,36. Activation in frontal cortex appears
to overlap roughly with orbitofrontal regions (semi-inflated bottom view map in Fig. 1C),
which may reflect the involvement of these areas in processing reward information associated
with certain foods13,16,37,38. Food selectivity was also observed in a number of subjects in
the insular cortex, which has previously been implicated in taste processing13,38. While
our paper focuses on visual selectivity for food in the fusiform cortex, future work should
investigate the interaction of the visual food selective area with these other areas, perhaps
using manipulations that vary reward or action representations evoked by food stimuli.

Our approach and results allow us to rule out several alternative explanations for the
finding of food selectivity. It is not likely that food selectivity reflects preferential responses
to “reachspaces”7, rather than food per se. This is ruled out on the basis that our labeling
taxonomy allowed us to control for image perspective (i.e., including reach as a label).
Specifically, we found that food-selectivity remained stable even after removing the reach
labeled images. Another possible alternative is that food-selectivity reflects preferential
responses to small vs. big real-world object size6, again, rather than food per se. However,
the representation of real-world object size manifests as big flanking the medial side of the
FFA and small flanking the lateral side of the FFA. Thus, this explanation can be ruled out
in that our observed food selective responses co-locate more with big, as opposed to small,
regions, yet food categories, particularly prepared foods, have small real-world size. Another
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possibility we can reject is that food selectivity can be solely attributed to greater attention or
higher intrinsic visual salience for food relative to non-food39. Both human faces and bodies
are subject to the same kinds of saliency effects40, yet attentional/saliency differences are not
the preferred explanation for face or body selectivity41. Moreover, within our study, faces and
bodies comprised a reasonable proportion of the non-food contrast images, yet food selectivity
was robust across these comparison categories (as is also the case in16). Finally, it is not likely
that low- or mid-level visual features (i.e., spatial frequency, curvature, texture) underlie our
pattern of results. This is supported by the fact that food selectivity was primarily found in
higher visual areas, rather than early visual areas (Fig. 2). As discussed previously, the visual
variability of food makes it unlikely that there is a set of low- or mid-level visual features
or high-level shape structures that consistently correspond to food (in contrast, see42–44).
Finally, as discussed below, another explanation that we can reject is that our food selective
responses are mostly driven by color.

These conclusions are also consistent with a recent MEG study which excluded low-level
visual features as an explanation for food selectivity20. Similarly, the two recent papers
that likewise identified food selectivity using the same dataset we used here included several
analyses that help to rule out a variety of low- or mid-level features as the basis for the
observed selectivity.17,18 Of note, both papers reported an intriguing overlap between food
selectivity and color-biased brain regions. While Pennock et. al.17 favor an account in which
color is a feature common to food and, as such, food-selective regions may respond to color
even in the absence of food inputs, Khosla et. al.18 explicitly include color in their analyses
and conclude that food selectivity cannot be explained by color alone. They do, however,
acknowledge that selectivity for food and color-biased responses are “linked”. As in Pennock et.
al.,17 they suggest that color is important for the identification,45 evaluation,46 and selection
of food.18 Our new data sheds conclusive light on this question. While color may be an
important part of learning new food categories, the results of Experiment 2 demonstrate
that food-selective responses can arise in the absence of color (Fig. 5). What remains to be
determined in future work is whether the functional role of color in food-related behaviors
leads to the instantiation of color biases in food-selective regions or whether color biases
are present absent food selectivity and, as such, may help facilitate the acquisition of food
representations in these regions.

Past work has presented conflicting accounts of the degree of overlap between food-selective
and other category-selective visual regions.16 However, claims of overlap are questionable
in that they were based on group-level analyses and any overlap may have been an artifact
of the variability in the localization of food-selective regions within individuals (which may
arise in part from the high visual variability of food as a category). In particular, Adamson
and Troiani16 claimed that “there is overlap in face and food activation within the fusiform
and that this is spatially consistent at the group level.” This inference is puzzling in light of
the fact that the same study presents a visualization of peak coordinates for both face and
food clusters in individual subjects that appears to show separation between the two regions
of selectivity (Fig. 2 of16). However, Adamson and Troiani focus on across-subject tests in
order to support the claim that food selectivity co-localizes with face selectivity. This leads
them to conclude, we believe incorrectly, that food and face recognition share a common
neural substrate and, presumably, common underlying computational mechanisms.

The difference in our Experiment 1 results versus those of Adamson and Troiani16 may
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be due to our use of a more sensitive within-subject, voxel-wise analyses. Across multiple
methods and within 8 individual subjects, our results indicate that food and face selectivity
do not co-locate (Fig. 2A, Suppl. Fig. S1 and Suppl. Fig. S5). Reinforcing this separation
between regions, in our Experiment 2, there is almost no overlap between food- and face-
selective areas in individual subjects (Fig. 5A and C). In this same experiment, the cluster of
voxels with the greatest consistency across subjects is in the left fusiform directly adjacent to
the FFA (Fig. 5D). We note that group averaging – as used in16 – could potentially blur these
significant food- and face-selective areas so as to create the appearance of overlap at the group
level within left fusiform (as reported in16). Consistent with this interpretation and the results
of our Experiment 2, as previously mentioned, Adamson and Troiani16 report separation in
the peak coordinates for face and food clusters for individual subjects. Consequently, there
is little evidence to support a claim that food and face representations arise from the same
fine-grained principles of visual processing. Rather, for reasons we have already discussed,
there is variability in the localization of food-selective regions across subjects; as such, it is
critical to assess selectivity on an individual basis.

More generally, why have most previous efforts to localize a food-selective region of ventral
cortex failed (e.g., P. Downing and N. Kanwisher, 1999, Cogn. Neurosci. Soc., poster; based
also on multiple anecdotal reports of similar failures)? As already discussed, the visual
heterogeneity of food, the wide variety of factors that influence food behaviors, and the
distributed and interleaved nature of neural representations of food all lead us to expect
higher individual variability in the localization of food-related responses as compared to other
categories of selectivity. As a result, group-average analyses (Fig. 5D) are unlikely to reveal
a consistent, significant cluster of separable food-selective voxels across subjects. However,
when one considers individual subject responses, not only do significant food-selective voxel
clusters emerge, but we observe spatially relative consistency between these clusters and
other functionally-localized ROIs (Fig. 5C). For this purpose, we make our food localizer
available for the community, along with the code to process it and generate visualization
using the pycortex software47. Based on this logic we are exploring whether other visually
heterogeneous categories with high reward or social significance may, like food, come to be
selectively represented – possibly intermixed with food representations – in ventral visual
cortex.

Finally, while a finding of food selectivity naturally emerges from considering ecologically
important visual categories, this leaves open the question as to how such selectivity arises in
the human brain. We speculate that, similar to human language, domain-relevant perceptual
inputs related to food can vary widely depending on the cultural and physical environment.
Learned representations for food are only loosely constrained at the surface level, but still
reflect common underlying mechanisms that have emerged over the course of evolution due
to reward and the selection for learning abilities that flexibly responded to variations in
inputs (the “Baldwin Effect”48,49). Thus, as a core property of knowledge organization,
food selectivity is likely to have emerged as a neural preference shaped heavily by semantic
associations, context, and reward.
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Materials and Methods

Experiment 1

fMRI data We used the Natural Scenes Dataset (NSD)19, consisting of high-resolution
fMRI responses to natural scenes. The detailed experimental procedure are described by Allen
et al.19. The naturalistic scene images were pulled from the annotated Microsoft Common
Objects in Context (COCO) dataset26. 8 subjects each viewed between 9,000-10,000 natural
scene images over the course of a year, each repeated 3 times. Of the 70,566 total images
presented, 1,000 were intended to be viewed by all subjects. However, because some subjects
dropped early, they didn’t all see the 1000 images 3 times. For the purposes of this paper, we
use any of the 1000 images for a subject if it was viewed at least once (515 were seen three
times by each subject, 766 were seen at least two times and 907 at least one time). Thus,
for subjects S1-S8 we use respectively 1000, 1000, 930, 907, 1000, 930, 1000, and 907 shared
images.

The data were collected during 30-40 scan sessions. Images were square cropped, presented
at a size of 8.4° × 8.4° and for 3 s with 1-s gaps in between images. The subjects were
instructed to fixate on a central point and to press a button after each image if they had
seen it previously.

The functional MRI data were acquired at 7T using whole-brain gradient-echo EPI at
1.8-mm resolution and 1.6-s repetition time. The preprocessing steps included a temporal
interpolation (correcting for slice time differences) and a spatial interpolation (correcting
for head motion). Single-trial beta weights were estimated with a general linear model.
FreeSurfer50,51 was used to generate cortical surface reconstructions to which the beta weights
were mapped. The beta weights corresponding to each image were averaged across repetitions
of the image, resulting in one averaged fMRI response to each image per voxel, in each
subject.

The dataset also included several visual ROIs that were identified using separate functional
localization experiments. We drew the boundaries of those ROIs for each subject on their
native surface for better visualization and interpretation of the results. All brain visualization
were produced using the pycortex software52. We create flattened, inflated and semi-inflated
maps by setting the ‘unfold’ parameter to 1, 0 and 0.25 respectively. Fig. 1 and Fig. 2 show
the left and right hemisphere for each type of view we show (flatmaps and semi-inflated or
inflated bottom and lateral views). These conventions are maintained across all brain plots
in the manuscript and supplemental materials.

Image labeling The authors and a graduate student in our labs (n=8) performed manual
image labeling for the 1,000 potentially shared images based on each image’s depicted location,
image perspective and content. Location refers to whether the image is indoor or outdoor (or
ambiguous), content refers to the categories of objects in the image (including the binary
existence of food), and image perspective refers to the approximate scale of the image,
discretized into zoom, reach or large-scale. Zoom refers to a very close shot, thereby likely
concentrated on one object and excluding surrounding information. Reach images display
objects at a human-reachable distance, and may activate representations related to object
affordances7,28. Large-scale images encompass the remaining images, which include an image
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of a typical scene as opposed to one or more close-up objects. Images could only be assigned
one label for location and perspective, but could be assigned multiple content labels. More
details about this image labeling are described in the Figure 1A and B. Labeling was
performed using the Computer Vision Annotation Tool53. In order to avoid variation in
labels and ensure consistency, we performed several rounds of labeling and verification across
multiple raters; each image was seen by a least two raters. Disagreements were discussed in
the group of raters until unified labeling assignments were reached.

Encoding models We constructed two different encoding models. The first was based on
our hand-labeled annotations of the 1,000 potentially shared images (Fig. 2). Encoding all
16 hand-labels into a single binary vector per image, we utilized voxel-wise ordinary least
squares (OLS) encoding models to predict each individual voxel response to a given stimulus.
Identifying voxels more responsive to category A over other category was done using a 1-sided
t-test between the respective learned model coefficients for category A vs. the coefficients for
the other categories, as is done in a typical generalized linear model (GLM) analysis. Note
that this analysis collapses across the three "attributes" used in our labeling taxonomy (i.e.,
food is compared against object categories like faces, as well as against location labels like
indoor). We used these methods to identify voxels that are more responsive to food than
other labels, as well as for face versus other labels. We obtained a p-value from the t-value,
then corrected for multiple comparisons across all voxels using the Benjamini-Hochberg
False Discovery Rate procedure (FDR)54, which is appropriate for fMRI results due to the
assumption that they show positive dependence55,56. The significance of the contrast was
computed at the subject level, the results were converted to MNI space, and the sum across
subjects was plotted in Fig. 1C. Pycortex was used for transformation to MNI space of each
subject’s result. It relies on the Flirt tool57–59 from FSL.60

Our second encoding model was based on COCO object category labels, and made use
of the set of images that were unique to each subject (Fig. 3). The purpose of this model
was to verify that our proposed food region derived from the shared images is consistent
across the larger set of images that also includes images not used in the first analysis. We
used the 80 COCO object category annotations provided in the dataset, specifically each
COCO label’s corresponding bounding box proportion relative to the image (i.e., proportion
of the image covered by the category of interest), as input to a ridge regression encoding
model. We built and tested the model via 10-fold cross-validation, where R2 was computed
on a tenth of the data not used for training at each fold, and the 10 resulting R2 values were
averaged. The penalty parameter for each voxel was chosen independently by nested 10−fold
cross-validation. When determining which images were used to fit the encoding model, we
create a set of images that contained half food and half non-food images. We considered
images to include food if their maximum food label proportion exceeded a threshold of 0.15.
We identified 940 such images, and randomly selected 940 non-food images, together creating
a total input set of 1880 images. We built two models, one with all the labels, and one
with all the labels that were not food (67 in total). We then computed the voxel-wise R2

improvement from including food labels in the regression. In addition to helping identify
voxels that responded most to inclusion of food, this encoding model also helped us visualize
food sub-category activations. We observed the voxel-wise learned weights corresponding
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to specific COCO food labels (i.e. cake, sandwich) to uncover potential food sub-category
patterns.

Decoding models While an encoding model is able to provide some insight into single-
voxel selectivity through response predictions, a decoding model can uncover distributed
pattern-level representations of visual features. To observe representations at the population
level, we used a searchlight decoding method31. Specifically, for each voxel in the cortical
sheet, we defined a searchlight sphere that consisted of 27 nearby voxels, and we trained a
decoder to classify the existence of food based on the pattern of activation across these voxels.
We used 5-fold cross validation via Support Vector Classification, with our input image set
consisting of 108 food images and 108 randomly selected non-food images from the shared
images. High decoding accuracy from this method suggests that an area encodes food-related
information at the pattern level, which our model is able to exploit in order to classify the
existence of food.

Determining the ventral visual food selective regions To generate a mask that only
included the ventral visual food selective region, we first manually selected apparent relevant
ROIs via the Glasser HCP Atlas29. We use the concatenation of sub-areas TE2p, PH, VVC,
v8, PIT, FFC, and VMV3 to create our mask. After converting the mask for this anatomical
area into each subject’s native space, we identified the intersection of this mask with the
identified food region from a food vs non-food significance test (Fig. 2 shows the final mask
definition).

Principal Component Analysis (PCA) We ran PCA to better understand possible
structure and/or correspondence in these food-selective regions. Using the food mask above
that consists only of our proposed food region, we selected ’food-relevant’ voxels for each
subject. Then, we ran PCA on a matrix of concatenated ’food-relevant’ voxels for all subjects
(rows) by the activity related to shared food images (columns), reducing along the image
dimension (the columns). We extracted the top principal axes of this matrix, and projected
our initial data matrix onto the calculated lower-dimensional space to obtain the voxel-wise
PC scores on the brain. To compare the voxel-wise PC scores across subjects, we converted
the scores for each subject to the MNI template and average the scores across subjects for
each MNI voxel. We identified the most positive and negative contributing images to each
axis by computing the dot-product between the PC score and the activity related to an image,
to assess whether the representations of each principal axis were cohesive or semantically
interpretable.

Clustering analyses We ran a K-means clustering analysis to better investigate visual
and semantic patterns in the food selective regions. As a point of comparison with the voxel
clustering results, we also clustered visual and semantic embeddings of these images derived
from deep neural networks. To compute the clusters for one subject, we picked 940 food
images. Voxel embeddings were calculated for each individual subject, using responses from
voxels within the ventral food mask. To obtain visual and semantic embeddings for these
same 940 images we used two trained deep neural networks: CLIP and ResNet-1833,34. CLIP,
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trained on both images and text, allows us to extract features arising from a contrastive
learning paradigm with dual semantic and visual constraints. We used the pretrained ViTB32
model, which was trained to align image and text embeddings within a shared space. Within
this model, we extracted the features given an input image from the vision module of the
model. Given an image, we call these corresponding CLIP features the CLIP embedding.

ResNet-18, trained on solely images, provides a visual feature-based embedding with no
language component. Given an image, we ran a ResNet-18 model pretrained on ImageNet
to extract the features from the average pool layer immediately preceding the final fully-
connected layer61. We refer to these extracted features for a given image as the corresponding
ResNet embedding of that image.

To cluster embeddings, we used K-means clustering algorithm with Euclidian distance.
We consider a range of K values and for each, observe the average Euclidian distance from
each data point to their corresponding cluster centroid. Next, we selected the first K value
that led to the drop in the average distance for voxel embeddings beyond which the decrease
plateaus (the elbow method). This value was 4. We use this same K = 4 for all three
embedding clusterings.

To compare different clustering assignments, we constructed for each clustering procedure
a 940 × 940 matrix where the rows and columns correspond to the 940 images. Each cell
in this matrix is an indicator value where matrixi,j is 1 if the two images i and j are in the
same cluster, and 0 otherwise. We then used Pearson correlation to compute the correlations
between two clustering assignments. To visualize each cluster, we chose the closest images to
the centroid of that cluster.

Experiment 2

MRI data collection MRI data were acquired on a 3T Siemens Prisma MR scanner at
the BRIDGE center at the Carnegie Mellon University campus using a 64-channel phased
array head coil.
Functional Images. Functional images were collected using a T2*-weighted gradient recalled
echoplanar imaging multi-band pulse sequence (cmrr_mbep2d_bold) from the University of
Minnesota Center for Magnetic Resonance Research (CMRR).62,63 Parameters: 68 oblique
axial slices co-planar with the AC/PC; in-plane resolution=2×2mm; 106×106 matrix size;
2mm slice thickness, no gap; interleaved acquisition; field of view=212mm; phase partial
Fourier scheme of 6/8; TR=1500 ms; TE=30ms; flip angle=79 degrees; bandwidth=1814
Hz/Px; echo spacing=0.68ms; excite pulse duration=8200 microseconds; multi-band factor=4;
phase encoding direction=A to P; fat saturation on; advanced shim mode on. During
functional scans, eyetracking was acquired using an EyeLink eye tracker.

Anatomical Images. A T1 weighted MPRAGE scan was collected for each participant.
MPRAGE parameters: 208 sagittal slices; 1mm isovoxel resolution; field of view=256mm;
TR=2300ms; TE=2.03ms; TI=900ms: flip angle=9 degrees; GRAPPA acceleration factor=2;
bandwidth=240Hz/Px.

Subjects Functional data were collected from four subjects (3 female/1 male) aged 21-29.
All subjects were healthy and had corrected to normal vision. Written informed consent was
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obtained from all subjects and the study was approved by the Carnegie Mellon University
Institutional Review Board.

Paradigm The data was collected in runs of length 4 minutes. Subject LS1 underwent 4
runs of the localizers, while subjects LS2-LS4 underwent 9 runs. We did not see a difference
that appeared to be driven by the amount of data.

We selected 82 images of different types of food with transparent backgrounds from
the https://www.stickpng.com/ website. We converted the images to grayscale and
superimposed them on images from the scrambled condition in the fLoc localizer27 (Fig. 5B
illustrates some examples). All images can be found at this link:

https://www.cs.cmu.edu/~lwehbe/files/food_images.zip

We used the mini-block design (duration = 6s) proposed by Stigliani et al.30 Along with
the food condition, we also use the adult condition (to define faces), the house condition (to
define places), the word condition and the body condition. We use the first 82 images from
each condition provided in the localizer to have the same number as the food images. We
adapted the Stigliani et al.30 code to present our stimuli. The code uses Psychtoolbox-364–66

and runs on Matlab.
Images were square, presented on a gray background at a size of 11.4◦

× 11.4◦ visual
angle on a BOLDscreen32 LCD Display and for 0.5 s each. The subjects were instructed to
fixate on a central point and to press a button if they see a repeated image (1-back task).

Data preprocessing Each subject’s native surface was reconstructed using Freesurfer.67

Functional scans were motion corrected using SPM12.68 Through pycortex, alignment of the
functional data to the structural data was obtained (using bbregister from Freesurfer). Our
code pipeline includes detrending and lightly smoothed with a Gaussian kernel of standard
deviation 1mm, using standard functions part of the scipy package.69 Pycortex was used to
mask the cortical data (by relying on maps estimated by Freesurfer). Pycortex was also used
for transformation to MNI space. It relies on the Flirt tool57–59 from FSL.60

Encoding models We followed the same procedure used with the shared NSD images to
compute a contrast between condition A and other conditions after estimating voxel-wise
ordinary least squares (OLS) encoding models. We computed a t-value for each of the “food vs.
other", “face vs. other", “body vs. other", “place vs. other" and “word vs. other" contrasts.
We used the Benjamini-Hochberg False Discovery Rate procedure (FDR)54 and α = 0.05 to
identify significant voxels for each contrast of each subject at each voxel.

We drew the boundaries of the FFA, EBA and PPA for each subject using the “face vs.
other", “body vs. other" and “place vs. other" significance maps, respectively. This enables
us to better understand the “food vs. other" contrast results. Note that unlike in NSD where
the ROIs labeled using separate data, here the data from the “food vs. other" contrast is the
same as the one used to draw the other ROIs. The significance of the contrast was computed
at the subject level, the results were converted to MNI space, and the sum across subjects
was plotted in Fig. 5. The same was repeated for the other contrasts which can be seen in S9.
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Supplementary Materials

label count
indoor 251
outdoor 693

ambiguous-location 54
plant 45

human-face 180
human-body 367
animal-face 142
animal-body 246

food 108
drink 25

food-related 130
faux-food 0

zoom 82
reach 80

large-scale-scene 833
object 551

Supplementary Table S1: Experiment 1. Count of the occurrence of each label across the
1,000 potentially shared images.
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Supplementary Figure S1: Experiment 1. Voxels identified as selective for food for subjects
S5-S8 shown on each subject’s native surface with an inflated, bottom view (similar to Figure
2, but for different subjects) (A) Voxels’ corresponding t-statistics from two 1-sided t-tests
comparing food vs. non-food (red) and face vs. non-face (blue). Each t-test was performed on
the weights from a trained OLS model, for example comparing the food label’s learned weight
against non-food labels’ learned weights. The two sets of regions identified by each contrast
are largely non-overlapping. This pattern is maintained when looking at food vs. non-(food
and face) and face vs. non-(face and food) (Fig. S5). These results indicate that the two
sets of regions have distinct activity for food and faces. (B) Spatial mask for food-selective
regions used in subsequent analyses for S5-S8 (highlighting ventral visual responses). The
mask is the overlap between the region that is identified from the t-test for food vs. non-food
and relevant functionally localized regions using the HCP atlas29 (see Methods).
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Supplementary Figure S2: Experiment 1. Classification accuracy for multivariate searchlight
decoding food vs. non-food images for S1-S8, with darker voxels signifying higher accuracy.
These regions encompass the two sets of regions corresponding to high values for the food vs.
non-food and the face vs. non-face contrasts.

Supplementary Figure S3: Experiment 1. Semi-inflated bottom view of voxels, summed
across S1-S8, that have significantly higher activity for the food than non-food categories, on
the MNI surface, considering only the non-reach images. Significant voxels were identified
similarly to Figure 1C.
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Supplementary Figure S4: Experiment 1. Semi-inflated bottom view of voxels, summed
across S1-S8, that have significantly higher activity for the food than non-food categories, on
the MNI surface, considering only the non-zoom images. Significant voxels were identified
similarly to Figure 1C.
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Supplementary Figure S5: Experiment 1. Voxels identified as selective for food from
comparisons between food or faces vs. a baseline with both food and face removed for S1-S8.
As described in Figure 2A, significant voxels were identified using two 1-sided t-tests. Despite
a lower-N comparison arising from removing both faces and food from the baseline, there is
still clear separability and little overlap between food-selective and face-selective regions.
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Supplementary Figure S6: Experiment 1. We compared predictive accuracy of an encoding
model with all the COCO labels (including 13 food and 67 non-food labels) to an encoding
model with only the 67 non-food COCO labels. The figure shows, for S1-S8, the improvement
in validation set R2 values when including the food labels (R2 for the full model - R2 for the
model with food removed).
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Supplementary Figure S7: Experiment 1. (A) Image clusters based on voxel-response
embeddings for S1. (B) Image clusters based on CLIP embeddings. The clusters appear
to capture semantic properties such as fruit or baked goods. (C) Image clusters based on
ResNet-18 embeddings. The clusters appear to capture visual properties such as color (e.g.,
green and orange), global shape (e.g., round), or image complexity. The two neural-network-
derived clustering patterns show little to no correlation with the brain-derived clusters (the
Voxel-CLIP correlation being 0.030; the Voxel-Resnet-18 correlation being 0.026 – both being
lower than the CLIP-Resnet-18 correlation of 0.256). This suggests that food-selective regions
are organized on the basis of features absent from deep layers of typical high-performing
neural networks.
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Supplementary Figure S8: Experiment 2. Voxels identified as selective for food for subjects
LS1-LS4 shown on each subject’s native surface with a semi-inflated, bottom view. Voxels
were identified as selective by testing for the significance of the contrast (p <0.05, FDR
corrected).

35

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 8, 2022. ; https://doi.org/10.1101/2022.05.22.492983doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.22.492983
http://creativecommons.org/licenses/by-nd/4.0/


Supplementary Figure S9: Experiment 2. Semi-inflated bottom view of voxels, summed
across LS1-LS4, that have significantly higher activity for the different contrasts in experiment
2, on the MNI surface. Significant voxels were identified similarly to Fig. 5.
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