

1 **Translocator protein is a marker of activated microglia in rodent**

2 **models but not human neurodegenerative diseases**

3 Erik Nutma^{1,†}, Nurun Fancy^{2,3,†}, Maria Weinert^{2,†}, Manuel C. Marzin¹, Stergios
4 Tsartsalis^{2,3,4}, Robert C.J. Muirhead^{2,3}, Irene Falk^{5,6}, Joy de Bruin¹, David Hollaus¹, Robin
5 Pieterman¹, Jasper Anink⁷, David Story⁸, Siddharthan Chandran⁸, Jiabin Tang^{2,3}, Maria C.
6 Trolese⁹, Takashi Saito¹⁰, Takaomi C. Saido¹¹, Katie Wiltshire², Paula Beltran-Lobo¹²,
7 Alexandra Philips², Jack Antel¹³, Luke Healy¹³, Craig S. Moore¹⁴, Caterina Bendotti⁹,
8 Eleonora Aronica⁷, Carola I. Radulescu^{2,3}, Samuel J. Barnes^{2,3}, David W. Hampton⁸, Paul
9 van der Valk¹, Steven Jacobson⁵, Paul M. Matthews^{2,3}, Sandra Amor^{1,15,*}, David R. Owen^{2,*}

10 ¹Department of Pathology, Amsterdam UMC – Location VUmc, Amsterdam, the Netherlands

11 ²Department of Brain Sciences, Imperial College London, UK

12 ³UK Dementia Research Institute at Imperial College London, UK

13 ⁴Department of Psychiatry, University of Geneva, Switzerland

14 ⁵Viral Immunology Section, NIH, Bethesda, Maryland, USA

15 ⁶Flow and Imaging Cytometry Core Facility, NIH, Bethesda, Maryland, USA

16 ⁷Department of Pathology, Amsterdam UMC – Location AMC, Amsterdam, the Netherlands

17 ⁸Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom

18 ⁹Department of Neuroscience, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy

19 ¹⁰Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako-shi, Saitama, Japan

20 ¹¹Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University, Japan

21 ¹²Department of Basic and Clinical Neuroscience, Institute of Psychiatry, King's College, London, UK

22 ¹³Montreal Neurological Institute, McGill University, Montreal, Canada

23 ¹⁴Division of Biomedical Sciences, Memorial University of Newfoundland, Canada

24 ¹⁵Department of Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine &
25 Dentistry, Queen Mary University of London, London, UK

26 [†] shared first authorship

27 ^{*}shared senior authorship

28 **Running title: TSPO expression in neurodegenerative diseases**

29 Addresses of corresponding authors:

30 Professor Sandra Amor

31 Department of Pathology

32 Amsterdam UMC, location VUmc

33 1081 HV Amsterdam, the Netherlands

34 s.amor@amsterdamumc.nl

35 Tel: +31 20 44 42 898

36 Dr. David Owen

37 Department of Brain Sciences

38 Du Cane Road

39 Hammersmith Hospital

40 Imperial College London

41 London W12 0HS

42 d.owen@imperial.ac.uk

43 Tel: +44 203 313 6195

44 **Abstract**

45 Microglial activation plays central roles in neuro-inflammatory and neurodegenerative
46 diseases. Positron emission tomography (PET) targeting 18kDa Translocator Protein
47 (TSPO) is widely used for localising inflammation *in vivo*, but its quantitative
48 interpretation remains uncertain. We show that TSPO expression increases in activated
49 microglia in mouse brain disease models but does not change in a non-human primate
50 disease model or in common neurodegenerative and neuroinflammatory human
51 diseases. We describe genetic divergence in the TSPO gene promoter, consistent with the
52 hypothesis that the increase in TSPO expression in activated myeloid cells is unique to a
53 subset of species within the *Muroidea* superfamily of rodents. We show that TSPO is
54 mechanistically linked to classical pro-inflammatory myeloid cell function in rodents but
55 not humans. These data emphasise that TSPO expression in human myeloid cells is
56 related to different phenomena than in mice, and that TSPO PET reflects density of
57 inflammatory cells rather than activation state.

58 **Keywords:** ALS, AD, MS, TSPO, microglia

59 Introduction

60 Neuronal-microglial signalling limits microglial inflammatory responses under
61 homeostatic conditions¹. The loss of this cross talk in central nervous system (CNS)
62 pathology partly explains why microglia adopt an activated phenotype in many
63 neurodegenerative diseases^{2,3}. Genomic, *ex vivo* and preclinical data imply that microglial
64 activation also may contribute to neurodegeneration⁴, for example, by releasing
65 inflammatory molecules in response to infectious or damage-related triggers⁵. These lead
66 to both neuronal injury and, more directly, pathological phagocytosis of synapses^{5, 6}.
67 Development of tools which can reliably detect and quantify microglial activation in the
68 living human brain has been an important goal. By enabling improved stratification and
69 providing early pharmacodynamic readouts, these would accelerate experimental
70 medicine studies probing disease mechanisms and early therapeutics.

71 Detection of 18kDa Translocator Protein (TSPO) with positron emission tomography
72 (PET) has been widely used to quantify microglial activation *in vivo*⁷. In the last 5 years
73 alone, there have been ~300 clinical studies using TSPO PET to quantify microglial
74 responses in the human brain, making it the most commonly used research imaging
75 technique for this purpose.

76 The TSPO signal is not specific to microglia, and the contribution from other cell types
77 (particularly astrocytes and endothelial cells) is increasingly acknowledged⁸. The
78 justification for quantifying TSPO as a marker of microglial activation is based on the
79 assumption that when microglia become activated, they adopt a classical pro-
80 inflammatory phenotype and TSPO expression is substantially increased^{7, 9, 10}. This has
81 been demonstrated repeatedly in mice, both *in vitro* and *in vivo*¹¹⁻¹⁴. We have shown,
82 however, that classical proinflammatory stimulation of human microglia and
83 macrophages *in vitro* with the TLR4 ligand lipopolysaccharide (LPS) does not induce
84 expression of TSPO¹⁵. Furthermore, in multiple sclerosis (MS), TSPO does not appear to
85 be increased in microglia with activated morphology¹⁶. These data appear inconsistent
86 with the assumption that TSPO is a marker of activated microglia in humans.

87 To address this issue, we performed a meta-analysis of publicly available expression
88 array data and found that across a range of pro-inflammatory activation stimuli, TSPO
89 expression is consistently and substantially increased in mouse, but not human
90 macrophages and microglia *in vitro*. We then performed a comparative analysis of the
91 TSPO promoter region in a range of mammalian species and found that the binding site
92 for AP1 (a transcription factor which regulates macrophage activation in rodents¹⁷) is
93 present in and unique to a subset of species within the *Muroidea* superfamily of rodents.
94 Consistent with the hypothesis that this binding site is required for the increase in TSPO
95 expression that accompanies pro-inflammatory stimulation, we show that TSPO is
96 inducible by LPS in the rat (another *Muroidea* species with the AP1 binding site in the

97 TSPO core promoter) but not in other mammals. Because neuronal interactions modulate
98 microglial phenotype, we then compared microglial TSPO expression in
99 neurodegenerative diseases affecting the brain and spinal cord (Alzheimer's Disease (AD)
100 and amyotrophic lateral sclerosis (ALS), respectively) as well as the classical
101 neuroinflammatory brain disease MS which features highly activated microglia. We
102 compared each human disease to its respective commonly used mouse models (amyloid
103 precursor protein (*App*^{NL-G-F})¹⁸, tau (Tau^{P301S})¹⁹, superoxide dismutase 1 (SOD1^{G93A})²⁰,
104 and experimental autoimmune encephalomyelitis (EAE) in young and aged animals²¹. We
105 also studied TSPO expression with EAE in the marmoset in conjunction with frequent MRI
106 scanning that allowed for identification of the acute lesions which contain pro-
107 inflammatory microglia. Consistent with the *in vitro* data, we show that in AD, ALS and
108 MS, and in marmoset EAE, TSPO protein expression does not increase in CNS myeloid
109 cells that express a pro-inflammatory phenotype, while expression is markedly increased
110 in activated myeloid cells in all mouse models of these diseases. With exploration of the
111 relative expression of TSPO in publicly available CNS single cell RNA sequencing
112 (scRNAseq) data from brains of the human diseases and rodent models, we again show
113 an increase in microglial TSPO gene expression in mice with proinflammatory stimuli, but
114 not humans. Finally, using functional studies and examination of transcriptomic co-
115 expression networks, we find that TSPO is mechanistically linked to classical pro-
116 inflammatory myeloid cell function in rodents but not humans.

117 These data suggest that the commonly held assumption that TSPO PET is sensitive to
118 microglial *activation* is true only for a subset of species within the *Muroidea* superfamily
119 of rodents. In contrast, in humans and other mammals, it simply reflects the local density
120 of inflammatory cells irrespective of the disease context. The clinical interpretation of the
121 TSPO PET signal therefore needs to be revised.

122 Results

123 **TSPO expression and epigenetic regulation in primary macrophages**

124 To investigate *TSPO* gene expression changes in human and mouse a meta-analysis was
125 performed using publicly available macrophage and microglia transcriptomic datasets
126 upon pro-inflammatory stimulation (Fig. 1). We found 10 datasets (Fig. 1a) derived from
127 mouse macrophages and microglia in samples from 68 mice and with inflammatory
128 stimuli including activation with LPS, Type 1 interferon (IFN), IFN γ , and LPS plus IFN γ .
129 We performed a meta-analysis and found that *Tspo* was upregulated under pro-
130 inflammatory conditions (Fig. 1a). In the individual datasets, *Tspo* was significantly
131 upregulated in 9 of the 10 experiments. We then interrogated 42 datasets from primary
132 human macrophages and microglia involving samples from 312 participants, with stimuli
133 including inflammatory activation with LPS, IFN γ , IL1, IL6, PolyIC, viruses, and bacteria
134 (Fig. 1b). In the meta-analysis, there was a non-significant trend towards a *reduction* in

135 human *TSPO* expression under pro-inflammatory conditions (Fig. 1b). In the individual
136 datasets, *TSPO* was unchanged in 33/42 (79%) of the datasets, significantly
137 downregulated in 8/42 (19%) and significantly upregulated in 1/42 (2%). In contrast to
138 the findings in mice, our analysis thus suggests that *TSPO* expression is not upregulated
139 in human microglia and macrophages after pro-inflammatory stimulation *in vitro*.

140 To test whether *TSPO* gene expression changes are regulated at an epigenetic level, we
141 analysed publicly available ChIP-seq datasets for histone modification in mouse and
142 human macrophages before and after treatment with IFN γ ^{22 23} (Fig. 1c-f). Levels of
143 H3K27Ac and H3K4me1 histone marks in the enhancer regions are associated with
144 increased gene expression^{22, 24}. While both histone modifications were increased after
145 IFN γ treatment in *TSPO* promoter regions in macrophages from mouse, they were
146 decreased in humans (Fig. 1c,d). Consistent with this epigenetic regulation, *Tspo* gene
147 expression was upregulated in mouse macrophages after IFN γ but not in human
148 macrophages in RNAseq data from the same set of samples (Fig. S1a).

149 The PU.1 transcription factor is a master regulator of macrophage proliferation and
150 macrophage differentiation^{25, 26}. Because PU.1 increases *Tspo* gene expression in the
151 immortalised C57/BL6 mouse microglia BV-2 cell line²⁷, we next investigated whether
152 *TSPO* expression in macrophages is regulated by PU.1 binding in human in publicly
153 available ChIP-seq datasets. An increase in PU.1 binding in the mouse *Tspo* promoter after
154 IFN γ treatment was observed (Fig. 1c). However, PU.1 binding to the human *TSPO*
155 promoter was decreased after IFN γ treatment (Fig. 1d). To test whether the reduced PU.1
156 binding at the human *TSPO* promoter was due to reduced PU.1 expression, we analysed
157 RNAseq data from the same set of samples. Expression of SPI-1, the gene that codes for
158 PU.1, was not altered in human macrophages after IFN γ treatment (Fig. S1b), suggesting
159 that the reduced binding of PU.1 to the human *TSPO* promoter region was unlikely to be
160 due to reduced PU.1 levels. This suggests that repressive chromatin remodelling in the
161 human cells leads to decreased PU.1 binding, a consequence of which could be the
162 downregulation of *TSPO* transcript expression. This is consistent with the meta-analysis
163 (Fig. 1a,b); although *TSPO* expression with inflammatory stimuli did not significantly
164 change in most studies, in 8/9 (89%) of studies where *TSPO* did significantly change, it
165 was downregulated (Fig. 1b). Together this data shows that *in vitro*, pro-inflammatory
166 stimulation of mouse myeloid cells increases *TSPO* expression, histone marks in the
167 enhancer regions and PU.1 binding. These changes are not found following pro-
168 inflammatory stimulation of human myeloid cells.

169 **The presence of the AP1 binding site in the *TSPO* promoter and LPS inducible 170 *TSPO* expression is unique to the *Muroidea* superfamily of rodents**

171 To understand why *TSPO* expression is inducible by pro-inflammatory stimuli in mouse
172 but not human myeloid cells, we performed multiple sequence alignment of the *TSPO*

173 promoter region of 15 species including primates, rodents, and other mammals (Fig. 2).
174 We found that an AP1 binding site is present uniquely in a subset of species within the
175 *Muroidea* superfamily of rodents including mouse, rat and chinese hamster (Fig. 2a).
176 These binding sites were not present in other rodents (squirrel, guinea pig), nor in other
177 non-rodent mammals (Fig. 2a). We generated a phylogenetic tree which shows a clear
178 branching in the *TSPO* promoter of rat, mouse and chinese hamster from the other
179 rodents and non-rodent mammals (Fig. 2b). Differential motif enrichment analysis of the
180 *TSPO* promotor region between *Muroidea* vs non-*Muroidea* species confirmed a
181 significant enrichment of the AP1 binding site in the *Muroidea* promoter (Fig. 2c). We
182 expanded this motif search and *TSPO* promoter sequence divergence analysis to a wider
183 range of 24 rodent species from the *Muroidea* superfamily and other non-*Muroidea*
184 rodents. Again, we found that the AP1 site is confined only to a subset of the superfamily
185 *Muroidea* (Fig. S2).

186 Silencing AP1 impairs LPS induced *TSPO* expression in the immortalized mouse BV2 cell
187 line²⁷. We therefore tested the hypothesis that LPS inducible *TSPO* expression occurs only
188 in species with the AP1 binding site in the promoter region. In species that lack the AP1
189 binding site (human, pig, sheep, rabbit), *TSPO* expression was not induced by LPS (Fig.
190 2d). However, in the rat, where the AP1 binding site is present, *TSPO* was increased under
191 these conditions (Fig. 2d).

192 **Microglial *TSPO* expression is unchanged in the AD hippocampus, but is 193 increased in amyloid mouse models**

194 Microglia-neuronal interactions, which modulate microglia inflammatory phenotype¹,
195 are lost in monocultures *in vitro*. We therefore examined *TSPO* expression within
196 inflammatory microglia *in situ* with quantitative neuropathology using *postmortem*
197 samples from AD (Table S1). We compared data from human *postmortem* AD brain to the
198 *App^{NL-G-F}* and *TAU^{P301S}* mouse models.

199 We examined the hippocampal region, one of the most severely affected regions in AD²⁸,
200 ²⁹, comparing it to non-neurological disease controls (Fig. 3a-c). No increases were
201 observed in the number of IBA1+ microglia (Fig. 3d), HLA-DR+ microglia (Fig. 3e) or
202 astrocytes (Fig. 3f) and the density of *TSPO*+ cells in AD did not differ compared to
203 controls (Fig. 3g). Additionally, there was no increase in *TSPO*+ microglia (Fig. 3h,i) and
204 astrocytes (Fig. 3j). We then quantified *TSPO*+ area (μm^2) in microglia and astrocytes as
205 an index of individual cellular expression (see methods). There was no difference in
206 individual cellular *TSPO* expression in microglia (Fig. 3k) or astrocytes (Fig. 3l) in AD
207 relative to controls.

208 We next conducted multiplexed proteomics with imaging mass cytometry (IMC) for
209 further characterisation of cellular phenotype. As with the IHC, we did not see an increase
210 in microglial density, as defined by the number of IBA1+ cells per mm^2 , (Fig. S3a) nor in

211 the density of astrocytes (Fig. S3b). Furthermore, again in agreement with the IHC, we did
212 not see an increase in the number of microglia and astrocytes expressing TSPO (Fig.
213 S3c,d). However, IMC did reveal an increase in CD68+ microglia cells (Fig S3e) in AD
214 compared to control, providing evidence, consistent with the literature^{30, 31}, that
215 microglia are activated in AD. However, despite microglial activation, we did not find an
216 increase in individual cellular TSPO expression, defined here as mean cellular TSPO
217 signal, in either microglia (Fig. S3f) or astrocytes (Fig. S3g) in AD donors relative to
218 control. Because proximity to amyloid plaques is associated with activation of
219 microglia³⁰, we next tested whether cellular TSPO expression was higher in plaque
220 microglia relative to (more distant) non-plaque microglia in the same tissue sections
221 from the AD brains only. We saw no differences in cellular TSPO expression between the
222 plaque and non-plaque microglia (Fig. S3h).

223 We next compared the human AD data to that from mouse *App^{NL-G-F}* (Fig. 4a,b) and
224 TAU^{P301S} (Fig. 4i,j). The *App^{NL-G-F}* model avoids artefacts introduced by APP
225 overexpression by utilising a knock-in strategy to express human APP at wild-type levels
226 and with appropriate cell-type and temporal specificity¹⁸. In this model, APP is not
227 overexpressed. Instead, amyloid plaque density is elevated due to the combined effects
228 of three mutations associated with familial AD (NL; Swedish, G: Arctic, F: Iberian). The
229 *App^{NL-G-F}* line is characterised by formation of amyloid plaques, microgliosis and
230 astrocytosis¹⁸. We also investigated TSPO expression in a model of tauopathy, TAU^{P301S}
231 mice, which develop tangle-like inclusions in the brain parenchyma associated with
232 microgliosis and astrocytosis¹⁹. The use of these two models allows differentiation of
233 effects of the amyloid plaques and neurofibrillary tangles on the expression of TSPO in
234 the mouse hippocampus. In *App^{NL-G-F}* mice, an increase in the density of microglia was
235 observed at 28-weeks (Fig. 4c), but not in the density of astrocytes (Fig. 4d). An increase
236 in TSPO+ cells was also observed (Fig. 4e), due to an increase in numbers of TSPO+
237 microglia and macrophages (Fig. 4f). No differences were observed in the density of
238 TSPO+ astrocytes in *App^{NL-G-F}* at 10 weeks, although a small (relative to that with
239 microglia) increase was observed at 28 weeks (Fig. 4g). Finally, we then quantified TSPO+
240 area in microglia and astrocytes as an index of TSPO expression in individual cells. In
241 contrast to the human data, expression of TSPO in individual cells was increased by 3-
242 fold in microglia in the *App^{NL-G-F}* mice at 28 weeks (Fig. 4h). It was unchanged in
243 astrocytes. In the TAU^{P301S} mice, no differences were observed in microglia (Fig. 4k) or
244 astrocyte (Fig. 4l) densities, in TSPO+ cell density (Fig. 4m), or in the density of TSPO+
245 microglia (Fig. 4n) or of TSPO+ astrocytes (Fig. 4o) in the hippocampus at either 8 or 20
246 weeks (Fig. 4) However, as with the *App^{NL-G-F}* mouse (and in contrast to the human), a 2-
247 fold increase in individual cellular TSPO expression was observed within microglia in
248 TAU^{P301S} mice (Fig 4p). Again, as with the *App^{NL-G-F}* mouse, individual cellular TSPO
249 expression within astrocytes was unchanged.

250 In summary, we showed that TSPO cellular expression is increased within microglia from
251 *App^{NL-G-F}* and *TAU^{P301S}* mice, but not in microglia from AD tissue. TSPO was also
252 unchanged in astrocytes from both mouse models and the human disease.

253 **Microglial TSPO is upregulated in *SOD1^{G93A}* mice but not in ALS**

254 Spinal cord and brain microglia differ with respect to development, phenotype and
255 function³². We therefore next investigated ALS (Table S2), that primarily affects the spinal
256 cord rather than the brain. We compared this data to that from the commonly used
257 *SOD1^{G93A}* mouse model of ALS. TSPO expression was investigated in the ventral horn and
258 lateral columns of the spinal cord in cervical, thoracic, and lumbar regions (Fig. 5a-c). An
259 increase in microglia (Fig. 5d), HLA-DR+ microglia (Fig. 5e) and astrocytes (Fig. 5f) was
260 observed in human ALS spinal cord. The density of TSPO+ cells was increased by 2.5-fold
261 in ALS spinal cords across all regions when compared to controls (Fig. 5g). No additional
262 changes were found when stratifying the cohort based on disease duration or spinal cord
263 regions, white or grey matter, or spinal cord levels. In comparison to the controls, ALS
264 samples exhibited a 3-fold increase in the density of TSPO+ microglia (TSPO+IBA1+ cells,
265 Fig. 5h) and a 3-fold increase in TSPO+ activated microglia/macrophages (TSPO+HLA-
266 DR+ cells, Fig. 5i). A 2.5-fold increase in the density of TSPO+ astrocytes (TSPO+GFAP+
267 cells) was observed in ALS compared to control (Fig. 5j). We then quantified TSPO+ area
268 in microglia and astrocytes as an index of individual cellular TSPO expression (Fig. 5k).
269 No increase in TSPO+ area (μm^2) was found in microglia or astrocytes in ALS when
270 compared to control (Fig. 5k), implying that TSPO expression does not increase in
271 microglia or astrocytes with ALS.

272 *SOD1^{G93A}* mice express high levels of mutant SOD1 that initiates adult-onset
273 neurodegeneration of spinal cord motor neurons leading to paralysis, and as such these
274 mice have been used as a preclinical model for ALS²⁰. To determine the extent to which
275 TSPO+ cells were present in *SOD1^{G93A}* mice TSPO+ microglia and astrocytes were
276 quantified with immunohistochemistry in the white and grey matter of the spinal cord
277 (Fig. 5l,m). An increase was observed in the total number of microglia (Fig. 5n) and
278 astrocytes (Fig. 5o) in 16-week old *SOD1^{G93A}* mice but not in 10 week old animals (Fig.
279 6c,d). The density of TSPO+ cells was increased 2- to 3-fold in presymptomatic disease
280 (10 weeks) compared to non-transgenic littermate control mice in both white and grey
281 matter (Fig. 5p). Increases in the density of TSPO+IBA+ cells were not observed in
282 *SOD1^{G93A}* mice compared to control animals (Fig. 5q). However, a significant 8- to 15-fold
283 increase in the density of TSPO+GFAP+ astrocytes was observed in 10- and 16-week old
284 *SOD1^{G93A}* mice compared to 10- and 16-week old wild-type mice (Fig. 5r). Finally, we then
285 quantified TSPO+ area in microglia and astrocytes as an index of individual cellular TSPO
286 expression. In contrast to the human data, where there was no change in disease samples
287 relative to controls, expression of TSPO in individual cells was increased by 1.5-fold in

288 microglia in the rodent model. As with the *App^{NL-G-F}* and *TAU^{P301S}* mice above, TSPO
289 expression within astrocytes was unchanged (Fig. 5s).

290 In summary, consistent with the data from AD and relevant mouse models, we have
291 shown that TSPO expression is increased within microglia from *SOD1^{G93A}* mice, but not
292 increased in microglia from human ALS tissue. TSPO also was unchanged in astrocytes
293 from the *SOD1^{G93A}* mice and the human disease relatively to those in the healthy control
294 tissues.

295 **Increased myeloid cell TSPO expression is found in mouse EAE, but not in MS
296 or marmoset EAE**

297 Having found no evidence of increased TSPO expression in activated microglia in human
298 neurodegenerative diseases affecting the brain or spinal cord, we next examined MS as
299 an example of a classical neuroinflammatory disease characterised by microglia with a
300 highly activated pro-inflammatory phenotype. We compared data from human
301 *postmortem* MS brain (Table S3) to mice with EAE (Table S4). We also examined brain
302 tissue from marmoset EAE (Table S5), as *antemortem* MRI assessments in these animals
303 allow for identification of acute lesions which are highly inflammatory.

304 We previously defined TSPO cellular expression in MS^{16, 33}. HLA-DR+ microglia
305 expressing TSPO were increased up to 14-fold in active lesions compared to control³³,
306 and these microglia colocalised with CD68 and had lost homeostatic markers P2RY12 and
307 TMEM119, indicating an activated microglial state¹⁶. Here we quantified individual
308 cellular TSPO expression in both microglia and astrocytes by comparing cells in active
309 white matter lesions to white matter from control subjects. Consistent with the human
310 data from AD and ALS, there was no difference in TSPO expression in individual microglia
311 or astrocytes in MS compared to control tissue (Fig. 6a-c).

312 We next investigated the relative levels of TSPO expression (Fig. 6d-l) in microglia and
313 astrocytes in acute EAE (aEAE), a commonly used experimental mouse model of MS^{21, 34}.
314 Neurodegenerative diseases typically occur in old age, whereas aEAE and the AD and ALS
315 relevant rodent models described above are induced in young mice. As age might affect
316 TSPO regulation³⁵, we also investigated TSPO expression in progressive EAE (PEAE), a
317 model where the pathology is induced in aged mice (12 months).

318 Increases in numbers of both microglia and astrocytes were observed in aEAE as well as
319 in PEAE mice compared to their respective young and old control groups (Fig. 6f,g).
320 Similarly, increases were observed in the number of TSPO+ microglia and TSPO+
321 astrocytes in both aEAE and PEAE relative to their respective controls (Fig. 6h-j). When
322 comparing the young control mice (aEAE controls) with the old control mice (PEAE
323 controls), no differences were observed in microglial and TSPO+ microglial density (Fig.

324 6f,i). Similarly, there was no difference in density of astrocytes or TSPO+ astrocytes
325 between these two control groups (Fig. 6g,j).

326 To investigate individual cellular TSPO expression, TSPO+ area was measured in
327 microglia and astrocytes. Individual microglia expressed 3-fold greater TSPO and 2-fold
328 greater TSPO in aEAE and PEAE respectively, relative to their control groups. The
329 individual cellular TSPO expression was not higher in microglia from young mice relative
330 to old mice. Again, as with the SOD1^{G93A}, *App*^{NL-G-F}, and TAUP^{301S} mice, individual cellular
331 TSPO expression within astrocytes was unchanged.

332 Finally, we investigated TSPO expression in EAE induced in the common marmoset
333 (*Callithus jacchus*) (Fig. S4, Fig. 6m-o), a non-human primate which, like humans, lacks
334 the AP1 binding site in the core promoter region of TSPO. Both the neural architecture
335 and the immune system of the marmoset are more similar to humans than are those of
336 the mouse³⁶⁻³⁸. Marmoset EAE therefore has features of the human disease which are not
337 seen in mouse EAE, such as perivenular white matter lesions identifiable by MRI, B cell
338 infiltration and CD8+ T cell involvement. Marmosets were scanned with MRI biweekly,
339 which allowed the ages of lesions to be determined and the identification of acute lesions
340 including pro-inflammatory microglia. In acute and subacute lesions, there was an
341 increase of up to 27-fold in the density of TSPO+ microglia relative to control (Fig. S4a-c)
342 and these microglia bore the hallmarks of pro-inflammatory activation. However, TSPO
343 expression in individual microglia, here defined as the percentage of TSPO+ pixels using
344 immunofluorescence, was not increased in acute or subacute lesions relative to control
345 (Fig. 6o).

346 In summary, and consistent with the AD and ALS data, we have shown that individual
347 cellular TSPO expression is increased in microglia in EAE in both young and aged mouse
348 models, but it is not increased in microglia from MS lesions nor marmoset EAE acute
349 lesions. Again, consistent with previous data, astrocytes did not show an increase in TSPO
350 expression in either MS or EAE.

351 **Single cell RNAseq shows *TSPO* gene expression is upregulated in activated
352 mouse microglia, but not in activated human microglia**

353 Methods for protein quantification by immunohistochemistry in *postmortem* brain are
354 semiquantitative and therefore we also assessed *ex vivo* species-specific TSPO gene
355 expression of microglial under pro-inflammatory conditions to add further confidence to
356 our findings. We employed publicly available human and mouse scRNAseq datasets³⁹⁻⁴⁴.
357 We first examined evidence for a pro-inflammatory microglial phenotype by quantifying
358 the differential expression of homeostatic and/or activation markers. We then quantified
359 the differential expression of TSPO in pro-inflammatory activated microglia using
360 MAST⁴⁵.

361 In a model of LPS exposure in the mouse³⁹, scRNAseq yielded 2019 microglial cells that
362 showed evidence of pro-inflammatory activation including a downregulation of the
363 homeostatic marker *P2ry12* and an upregulation of activation markers *Fth1* and *Cd74*
364 (Fig. 7a). In this population, *TSPO* was significantly upregulated. In a mouse model of
365 acute EAE⁴⁰, scRNAseq yielded 8470 pro-inflammatory activated microglial cells that
366 showed significant downregulation of *P2ry12*, and a significant upregulation of *Fth1* and
367 *Cd74* (Fig. 7b). *TSPO* was significantly upregulated. Finally, in the 5XFAD mouse model of
368 AD⁴¹, scRNAseq yielded over 6203 microglial cells. Among them, 223 showed enrichment
369 in disease-associated microglia (DAM) markers⁴¹, including increased expression of *Apoe*,
370 *Trem2*, *Tyrobp* and *Cst7* (Fig. 7c). Compared to non-DAM cells, DAM cells showed a
371 significant upregulation of *TSPO*.

372 In cerebrospinal fluid (CSF)-derived cells isolated from people with AD⁴², microglia-like
373 cells (n=522) had an activated phenotype with a significant upregulation of *APOE*, *FTH1*
374 and *SPI1* relative to controls. However, *TSPO* was not differentially expressed (Fig. 7d). In
375 CSF isolated from people with MS⁴³, microglia-like cells (n=1650) showed evidence of
376 activation: *TREM2*, *C1QA*, *C1QB*, *SPI1*, and *HLA-DQA1* all were significantly upregulated⁴³.
377 However, *TSPO* was not differentially expressed in these cells (Fig. 7e). In a similarly
378 designed study also using CSF-derived cells, microglia showing upregulation of *HLA-*
379 *DRB1*, *HLA-DRB5* and *SPI1* also downregulated *TSPO*⁴⁴ (Fig. 7f).

380 These experiments are consistent at the gene expression level with our own data at the
381 protein expression level showing that the *TSPO* gene is not increased in microglia in AD
382 or EAE, but is increased in their respective commonly used mouse models.

383 **TSPO is mechanistically linked to classical pro-inflammatory myeloid cell
384 function in mice but not humans.**

385 Having demonstrated species-specific differences in TSPO expression and regulation, we
386 then sought to examine TSPO function in mouse and human myeloid cells. We first
387 examined the effect of pharmacological modulation of the classical microglial pro-
388 inflammatory phenotype using the high affinity TSPO ligand, XBD173. Consistent with the
389 literature¹¹⁻¹³, we found that in primary mouse macrophages and the BV2 mouse
390 microglial cell line, XBD173 reduced LPS induced release of proinflammatory cytokines
391 (Fig. 8a,b,c). However, in primary human macrophages and in human induced pluripotent
392 stem cell (hIPSC) derived microglia, XBD173 had no impact on the release of these
393 cytokines, even at high concentrations associated with 98% TSPO binding site occupancy
394 (Fig. 8d,e,f,g). We found similar results for zymosan phagocytosis. Primary mouse
395 microglia demonstrated a dose dependant increase in phagocytosis upon exposure to
396 XBD173 (Fig. 8h). However, we saw no increase in phagocytosis in primary human
397 macrophages upon XBD173 exposure (Fig. 8i).

398 XBD173 is metabolised by CYP3A4, which is expressed in myeloid cells. We therefore
399 used LC-MSMS to quantify XBD173 in the supernatant in order to test the hypothesis that
400 the lack of drug effect on human myeloid cells was due to depletion of XBD173. The
401 measured concentration of XBD173 in the supernatant at the end of the assay was no
402 different to the planned concentration (Fig. S5), excluding the possibility that XBD173
403 metabolism explained the lack of effect.

404 To understand if TSPO is associated with divergent functional modules in mouse and
405 human we then used weighted gene co-expression network analysis to examine the genes
406 whose expression are correlated with *TSPO* in mouse and human myeloid cells. To
407 construct the gene co-expression networks, we used four publicly available and one in-
408 house RNA-seq data from human (n = 47) and five publicly available mouse (n = 35)
409 datasets of myeloid cells treated with LPS or LPS and IFN γ . In mouse myeloid cells, the
410 gene ontology biological processes associated with the TSPO network related to classical
411 pro-inflammatory functions such as responses to type 1 and 2 interferons, viruses and
412 regulation of cytokine production (Fig 8j, Supplementary File 1). However, in human
413 myeloid cells, the processes associated with the TSPO co-expression network related to
414 bioenergetic functions such as ATP hydrolysis, respiratory chain complex assembly, and
415 proton transport (Fig 8k, Supplementary File 1). There was no overlap in the genes that
416 TSPO is co-expressed with in mouse, relative to human, myeloid cells (Fig 8l).

417 **Discussion**

418 Microglial activation accompanies and is a major contributor to neurodegenerative and
419 neuroinflammatory diseases^{1, 4-6, 46}. A better understanding of microglial activation in
420 combination with a technique that could reliably quantify activated microglia in the
421 human brain would have broad utility to monitor disease progression as well as response
422 to therapy. TSPO PET has been applied by many with this objective^{9, 10}. Here we have
423 tested the widely held assumption that *TSPO* cellular expression increases upon
424 microglial activation. We examined *in vitro* data from isolated myeloid cells across 6
425 species, multiple sequence alignment of the TSPO promoter region across 34 species, and
426 *ex vivo* neuropathological and scRNAseq data from human neuroinflammatory and
427 neurodegenerative diseases, with relevant marmoset and young and aged mouse models.
428 We show that TSPO expression increases in mouse and rat microglia when they are
429 activated by a range of stimuli, but that this phenomenon is unique to microglia from a
430 subset of species from the *Muroidea* superfamily of rodents. The increase in TSPO
431 expression is likely dependant on the AP1 binding site in the core promoter region of
432 TSPO. Finally, we showed that TSPO is mechanistically linked to classical pro-
433 inflammatory myeloid cell function in mice but not humans.

434 This finding fundamentally alters the way in which the TSPO PET signal is interpreted,
435 because it implies that the microglial component of the TSPO PET signal reflects density

436 only, rather than a composite of density and activation phenotype. For example, in
437 Parkinson's Disease (PD) there is evidence of activated microglia in the *postmortem* brain
438 but minimal change in microglial density⁴⁷. Three well designed studies using modern
439 TSPO radiotracers found no difference in TSPO signal between PD and controls groups<sup>48-
440 50</sup>. The lack of increase in the TSPO PET signal is consistent with the data presented here,
441 and should therefore not be interpreted as evidence for lack of microglial activation in
442 PD.

443 Our study has several limitations. First, we have only examined microglia under certain
444 pro-inflammatory conditions and cannot exclude the possibility that other stimulation
445 paradigms would increase TSPO in human myeloid cells. However, the *in vitro* stimuli
446 which were examined included a broad range of pro-inflammatory triggers, and the three
447 human diseases are diverse with respect to the mechanisms underlying the activation of
448 microglia. Second, the measurements of cellular TSPO expression we used in brain tissue
449 are semi-quantitative. However, the same IHC quantification methods were used in all
450 human and mouse comparisons, and these methods consistently detected cellular TSPO
451 increases in mouse microglia despite not detecting analogous changes in human
452 microglia. Furthermore, where IMC and immunofluorescence were used, the quantitative
453 data were consistent with IHC. The neuropathology protein quantification was also
454 consistent with gene expression measured by scRNAseq. Third, for RNAseq analysis, we
455 were restricted to single cell rather than single nucleus experiments. This is because *TSPO*
456 is detected in only 5-12% of microglial nuclei⁵¹⁻⁵⁴ but ~80% of microglial cells³⁹⁻⁴⁴.
457 Fourth, the *in vitro* assay which most closely mimics *in vivo* PET data is radioligand
458 binding, which quantifies the binding of the radioligand to the binding site itself. Here, we
459 quantified expression of the TSPO gene or protein rather than radioligand binding site
460 density. However, we have previously shown that for TSPO, gene expression, protein
461 expression and radioligand binding site data closely correlate¹⁵. Finally, whilst we
462 present data correlating inducible TSPO expression with the presence of the AP1 binding
463 site in the TSPO core promoter region, to demonstrate causation the AP1 binding site
464 would need to be knocked out from the mouse or rat, and knocked in to a non-*Muroidea*
465 rodent. Furthermore, although we were able to find array expression data for a range of
466 non-rodent mammals that show TSPO is not induced upon myeloid cell activation, we
467 were unable to find array expression data for those rodents that lack the AP1 binding site,
468 such as squirrel or naked mole rat.

469 In summary, we present *in vitro* expression and sequence alignment data from a range of
470 species, as well as *ex vivo* data from neurodegenerative and neuroinflammatory diseases
471 and associated animal models. We show that inflammation-induced increases in cellular
472 TSPO expression are restricted to microglia from a subset of species within the *Muroidea*
473 superfamily of rodents, and that TSPO is mechanistically linked to classical pro-
474 inflammatory myeloid cell function in mice, but not humans. This challenges the
475 commonly held view that TSPO provides a readout of microglial activation in the human

476 brain and shows that the TSPO PET signal likely reflects the local density of inflammatory
477 cells irrespective of phenotype. The interpretation of TSPO PET data therefore requires
478 revision.

479 Acknowledgements

480 The authors thank the UK MS society for financial support (grant number: C008-16.1).
481 Raw count matrices corresponding to microglia-like cells from Ramesh et al.⁴⁴ were
482 kindly provided by Prof Michael Wilson. DRO was funded by an MRC Clinician Scientist
483 Award (MR/N008219/1). PMM acknowledges generous support from Edmond J Safra
484 Foundation and Lily Safra, the NIHR Investigator programme and the UK Dementia
485 Research Institute. PMM and DRJO thank the Imperial College Healthcare Trust-NIHR
486 Biomedical Research Centre for infrastructure support and the Medical Research Council
487 for support of TSPO studies. Dr Sally Cowley (Oxford Parkinson's Disease Centre, James
488 Martin Stem Cell Facility, University of Oxford) provided the iPS cell line and expertise in
489 differentiation to iPS-microglia.

490 Methods

491 **Meta-analysis of TSPO gene expression.** Datasets were searched using the search
492 terms “Macrophage/Monocyte/Microglia” and filtered for ‘*Homo sapiens*’ and ‘*Mus*
493 *musculus*’. Datasets with accessible raw data and at least three biological replicates per
494 treatment group were used. To avoid microarray platform-based differences only
495 datasets with Affymetrix chip were used. Raw microarray datasets were downloaded
496 from ArrayExpress (<https://www.ebi.ac.uk/arrayexpress/>) and RMA normalisation was
497 used. The ‘Limma v.3.42.2’ R package was used to compute differentially expressed genes,
498 and the resulting *P*-values are adjusted for multiple testing with Benjamini and
499 Hochberg’s method to control the false discovery rate⁵⁵. Meta-analysis was performed
500 using R package ‘meta v.5.1.1’. A meta *P*-value was calculated using the random-effect
501 model.

502 **ChIP-seq data processing and visualisation.** ChIP-seq datasets were downloaded from
503 GSE66594²² (human) and GSE38377⁵⁶ (mouse). Raw fastq sequences were aligned with
504 Bowtie2 v.2.2.9⁵⁷ to the human reference genome hg19 or to mouse reference genome
505 mm9, annotated SAM files are converted to tag directories using HOMER v.4.11.1⁵⁸ using
506 the makeTagDirectory module. These directories are further used for peak calling using
507 -style histone parameter or converted to the bigWig format normalized to 10⁶ total tag
508 counts with HOMER using the makeUCSCfile module with -fsize parameter set at 2e9. For
509 the analysis of histone ChIP-seq data input samples were utilized as control files during
510 peak detection, whereas IgG control files were used during peak correction of the PU.1
511 ChIP-seq data. Peaks were visualised using UCSC genome browser⁵⁹.

512 **Multiple sequence alignment and phylogenetic tree construction.** We have retrieved
513 the TSPO promoter region starting from 1 Kbp upstream and 500 bp downstream of the
514 putative transcription start site (TSS) of 34 rodent and non-rodent mammals from
515 ENSEMBL genome database (<http://www.ensembl.org/index.htmls>). The full list can be
516 found in Supplementary File 2. The multiple sequence alignment was performed using
517 the T-Coffee (v13.45.0.4846264) multiple sequencing tool with the parameter -
518 mode=procoffee which is specifically designed to align the promoter region^{60, 61}. The
519 sequence alignment and the phylogenetic tree were visualised using Jalview (v
520 2.11.1.6)⁶². Phylogenetic tree was constructed using MEGA11 using Maximum Parsimony
521 method with 1000 bootstrap replication. The MP tree was obtained using the Tree-
522 Bisection-Regrafting (TBR) algorithm⁶³.

523 **Motif finding and motif enrichment.** We have used SEA (Simple Enrichment Analysis)
524 from the MEME-suite (v 5.4.1) to calculate the relative motif enrichment between
525 Muroidea family species and non-Muroidea mammals^{64, 65}. We set the TSPO promoter
526 sequences for the three Muroidea species (Mouse, Rat, Chinese Hamster) as the input
527 sequence and the rest of species as the control sequence. We set the E-value ≤ 10 for
528 calculating significance. We used the motifs for AP1, ETS and SP1 from JASPAR motif
529 database (<https://jaspar.genereg.net/>).

530 **Multi-species TSPO expression in macrophage and microglia.** Datasets were
531 searched using the search terms “Macrophage/Monocyte”, “Microglia” and “LPS”. Dataset
532 featuring stimulation less than 3 hours were excluded. Datasets with accessible raw data
533 and at least three biological replicates were used. Microarray datasets were analysed as
534 the same way described in section “Meta-analysis of TSPO gene expression”. Raw gene
535 count data for the RNAseq datasets were downloaded from either ArrayExpress or GEO
536 (<https://www.ncbi.nlm.nih.gov/geo/>) and differential expression was performed using
537 DESeq2 v.1.26.0⁶⁶. For S1a, the mouse *Tspo* expression (GEO ID: GSE38371) fold change
538 was directly used from the respective study since biological replicates were not publicly
539 accessible²³.

540 **Human and mouse scRNAseq analysis of microglia.** We assessed alterations in gene
541 expression of *TSPO* in human and mouse activated microglia in publicly available
542 scRNAseq datasets. *Postmortem* human brain samples are predominantly studied using
543 single *nucleus* RNA sequencing (snRNAseq) rather than single *cell* RNAseq (sc)RNAseq
544 because the latter requires intact cells which cannot be recovered from frozen brain
545 tissue samples. However, *TSPO* is detected in a very low percentage of nuclei from
546 snRNAseq experiments which prevents accurate assessment of differential expression of
547 *TSPO* across disease or microglial states⁵⁴. For this reason, we searched MEDLINE for
548 human scRNAseq experiments involving AD, MS and ALS donors and mouse brain
549 scRNAseq datasets derived from the respective mouse models, as well as of pro-
550 inflammatory activation with LPS treatment. We found three human studies involving

551 donors with AD⁴² and MS^{43, 44}. Where microglia from CSF samples were analysed with
552 scRNASeq. We found no studies with ALS donors. We found three mouse studies: an LPS
553 activated model³⁹ an AD model⁴¹ and acute EAE⁴⁰. A fourth mouse scRNASeq dataset was
554 identified from LPS-treated mice⁶⁷, however, due to its small size (less than 400
555 microglial cells were sequenced), this dataset was discarded from further analysis. Raw
556 count matrices were downloaded from the Gene Expression Omnibus (GEO) with the
557 following accession numbers: GSE130119⁴⁰, GSE115571³⁹, GSE98969⁴¹, GSE138266⁴³
558 and GSE134578⁴². Data were processed with Seurat (v3)⁶⁸ or nf-core/scflow⁶⁹. Quality
559 control, sample integration, dimension reduction and clustering were performed using
560 default parameters as previously described^{54, 70}. Microglial cells (mouse datasets) and
561 microglia-like cells were identified using previously described cell markers. Differential
562 gene expression analysis was performed using MAST⁴⁵ implemented in Seurat to perform
563 zero-inflated regression analysis by fitting a fixed-effects model. Disease vs control group
564 comparisons were performed for all datasets, except for the Keren-Shaul dataset where
565 the AD-associated microglia phenotype was compared to the rest of the microglial
566 population in 5XFAD mice. In all cases, we assessed expression of activated microglial
567 markers. Gene expression alterations were considered significant when the adjusted p
568 value was equal to or lower than 0.05.

569 **Bulk RNA-seq data preparation and WGCNA network analysis.** RAW RNA-seq fastq
570 files for publicly available datasets were downloaded from SRA. Four public human
571 dataset accession are: GSE100382, GSE55536, EMTAB7572, GSE57494 and mouse
572 dataset accession are: GSE103958, GSE62641, GSE82043, GSE58318, E_ERAD_165. The
573 GEO accession ID for the in-house human RNA-seq data is awaiting. Both human and
574 mouse RNA-seq analysis was then performed using nf-core/rnaseq v.1.4.2 pipeline⁷¹.
575 Human RNA-seq data was aligned to *Homo sapiens* genome GRCh38 and *Mus musculus*
576 genome mm10 respectively. Raw count data was first transformed using variance
577 stabilizing transformation (VST) from R package 'DESeq2 v. 1.26.0'. Genes with an
578 expression value of 1 count in at least 50% of the samples were included in the analysis.
579 Batch correction across datasets were then performed on VST-transformed data using
580 removeBatchEffect function from R package 'Limma v. 3.42.2' using the dataset ID as the
581 batch. Batch-corrected normalised data was then used for co-expression network
582 analysis using the R package 'WGCNA v. 1.69'⁷². The power parameter ranging from 1-20
583 was screened out using the 'pickSoftThreshold' function. A suitable soft threshold of 6
584 was selected, as it met the degree of independence of 0.85 with the minimum power
585 value. We generated a signed-hybrid network using Pearson correlation with a minimum
586 module size of 30. Subsequently, modules were constructed, and following dynamic
587 branch cutting with a cut height of 0.95. Functional enrichment analysis of the gene
588 modules was performed using the R package 'WebGestaltR v. 0.4.3'⁷³ using default
589 parameters and 'genome_protein-coding' as the background geneset.

590 **Human Brain Tissue.** The rapid autopsy regimen of the Netherlands Brain Bank in
591 Amsterdam (coordinator Prof I. Huitinga) was used to acquire the samples. Human tissue
592 was obtained at autopsy from the spinal cord (cervical, thoracic, lumbar levels) from 12
593 ALS patients, 7 with short disease duration (SDD; <18 months survival; mean survival
594 11.1 ± 3.4 months) and 4 with medium disease duration (MDD; >24 months survival;
595 mean survival 71.5 ± 31.5 months). Tissues for controls were collected from 10 age-
596 matched cases with no neurological disorders or peripheral inflammation (Table S1). The
597 hippocampal region was collected from 5 AD patients with Braak stage 6, and 5 aged-
598 matched controls that had no cognitive impairments prior to death (Table S2). Active MS
599 lesions were obtained from 5 MS cases as well as white matter from age-matched controls
600 (Table S3). All tissue was collected with the approval of the Medical Ethical Committee of
601 the Amsterdam UMC. All participants or next of kin had given informed consent for
602 autopsy and use of their tissue for research purposes.

603 **Generation and details of mouse and marmoset models**

604 **Mouse EAE.** Spinal cord tissue from mice with EAE was obtained from Biozzi ABH mice
605 housed at Queen Mary University of London, UK (originally obtained from Harlan UK Ltd,
606 Bicester, UK). The mice were raised under pathogen-free conditions and showed a
607 uniform health status throughout the studies. EAE was induced via injection of mouse
608 spinal cord homogenate in complete Freund's adjuvant (CFA) into mice of 8-12 weeks or
609 12 months of age as described previously^{34,74}. Immediately, and 24 h after injection mice
610 were given 200ng *Bordetella pertussis* toxin (PT). Age-matched control groups were
611 immunized with CFA and PT. Table S4 gives an overview of the EAE mice used in this
612 study, including a score of neurological signs (0 = normal, 1 = flaccid tail, 2 = impaired
613 righting reflex, 3 = partial hindlimb paresis, 4 = complete hindlimb paresis, 5 =
614 moribund). Spinal cord was collected from acute (aEAE)⁷⁴ in the young mice, and
615 progressive EAE (PEAE) in the 12 month old mice. Animal procedures complied with
616 national and institutional guidelines (UK Animals Scientific Procedures Act 1986) and
617 adhered to the 3R guidelines⁷⁵.

618 **Marmoset EAE.** EAE was induced by subcutaneous immunization with 0.2 g of white
619 matter homogenate emulsified in CFA in 3 adult common marmosets (*Callithrix jacchus*)
620 at 4 dorsal sites adjacent to inguinal and axillary lymph nodes. Animals were monitored
621 daily for clinical symptoms of EAE progression and assigned clinical EAE scores weekly
622 based on extent of disability. Neurological exams were performed by a neurologist prior
623 to each MRI scan. All animals discussed in this study are shown in Table S5. Animal #8
624 was treated with prednisolone for 5 days as part of a concurrent study (primary results
625 not yet published). These animals were the first within their twin pair that showed three
626 or more brain lesions by *in vivo* MRI and received corticosteroid treatment with the goal
627 to reduce the severity of inflammation and potentially allow longer-term evaluation of
628 the lesions. MRI analyses were performed according to previously published marmoset

629 imaging protocols using T1, T2, T2*, and PD-weighted sequences on a Bruker 7T animal
630 magnet⁷⁶. Marmosets were scanned biweekly over the course of the EAE study. Following
631 the completion of EAE studies, the brains, spinal cords, and optic nerves excised from
632 euthanized animals were scanned by MRI for *postmortem* characterization of brain
633 lesions and previously uncharacterized spinal lesions and optic nerve lesions. Animal
634 procedures complied with national and institutional guidelines (NIH, Bethesda, USA)

635 ***SOD1*^{G93A}**. Female hemizygous transgenic SOD1^{G93A} mice on 129SvHsd genetic
636 background (n=10) and corresponding non transgenic littermates (n=9) were used. This
637 mouse line was raised at the Mario Negri Institute for Pharmacological Research-IRCCS,
638 Milan, Italy, derived from the line (B6SJL-TgSOD1^{G93A}-1Gur, originally purchased from
639 Jackson Laboratories, USA) and maintained on a 129S2/SvHsd background⁷⁷. The
640 thoracic segments of spinal cord were collected from 10- and 16-week-old mice and
641 processed as previously described⁷⁸. Briefly, anaesthetised mice were transcardially
642 perfused with 0.1M PBS followed by 4% PFA. The spinal cord was quickly dissected out
643 and left PFA overnight at 4°C, rinsed, and stored 24 h in 10% sucrose with 0.1% sodium
644 azide in 0.1 M PBS at 4°C for cryoprotection, before mounting in optimal cutting
645 temperature compound (OCT) and stored at -80°C.

646 Procedures involving animals and their care were conducted in conformity with the
647 following laws, regulations, and policies governing the care and use of laboratory
648 animals: Italian Governing Law (D.lgs 26/2014; Authorization 19/2008-A issued 6
649 March, 2008 by Ministry of Health); Mario Negri Institutional Regulations and Policies
650 providing internal authorization for persons conducting animal experiments; the
651 National Institutes of Health's Guide for the Care and Use of Laboratory Animals (2011
652 edition), and European Union directives and guidelines (EEC Council Directive,
653 2010/63/UE).

654 ***APP*^{NL-G-F}**. For the APP^{NL-G-F} model of AD, male and female brain tissue was obtained from
655 11 homozygous (APP^{NL-G-F/NL-G-F}) APP knock-in mice and 11 wild type mice. Mice were
656 bred at Charles River Laboratories, UK and sampled at the Imperial College London, UK.
657 Brain tissue samples were collected fresh from 10- and 28 week-old mice that were
658 euthanised with sodium pentobarbital and exsanguinated. Animal procedures complied
659 with national and institutional guidelines (UK Animals Scientific Procedures Act 1986)
660 and adhered to 3R guidelines. Hippocampal areas were used as region of interest for
661 characterization.

662 ***Tau*^{P301S}**. Male brain tissue was obtained from 10 homozygous P301S knock-in mice⁷⁹⁻⁸¹
663 and 8 wild-type C57/Bl6-OLA mice (Envigo, UK) from the Centre for Clinical Brain
664 Sciences, Edinburgh, United Kingdom. Brain tissue samples were collected from 8- and
665 20-week-old mice that were perfused with PBS and 4% paraformaldehyde, with tissues
666 being post-fixed overnight before being cryopreserved in 30% sucrose and frozen
667 embedded in tissue tec (Leica, UK). Sections were cut, 20µm, on a cryostat onto

668 superfrost plus slides and stored in -80 freezer. Animal procedures complied with
669 national and institutional guidelines (UK Animals Scientific Procedures Act 1986 &
670 University of Edinburgh Animal Care Committees) and adhered to 3R guidelines.
671 Hippocampal areas were used as region of interest for characterization.

672 For all studies mice were housed 4-5 per standard cages in specific pathogen-free and
673 controlled environmental conditions (temperature: $22\pm2^\circ\text{C}$; relative humidity: $55\pm10\%$
674 and 12 h of light/dark). Food (standard pellets) and water were supplied *ad libitum*.

675 **Immunohistochemistry.** Paraffin sections were de-paraffinized by immersion in xylene
676 for 5 min and rehydrated in descending concentrations of ethanol and fixed-frozen
677 sections were dried overnight. After washing in PBS, endogenous peroxidase activity was
678 blocked with 0.3 % H₂O₂ in PBS while for immunofluorescence sections were incubated
679 in 0.1% glycine. Antigen retrieval was performed with citrate or TRIS/EDTA buffer,
680 depending on the antibody, in a microwave for 3 min at 1000W and 10 min at 180W.
681 Sections were cooled down to RT and incubated with primary antibodies (Table S6)
682 diluted in antibody diluent (Sigma, U3510) overnight. Sections were washed with PBS
683 and afterwards incubated with the appropriate secondary antibodies for 1 h at room
684 temperature. HRP labelled antibodies were developed with diluted 3,3'-
685 diaminobenzidine (DAB; 1:50, DAKO) for 10 min and counterstained with haematoxylin.
686 Sections were immersed in ascending ethanol solutions and xylene for dehydration and
687 mounted with Quick-D. For immunofluorescence, sections were incubated with Alexa
688 Fluor®-labelled secondary antibodies. Autofluorescent background signal was reduced
689 by incubating sections in Sudan black (0.1% in 70% EtOH) for 10 min. Nuclei were stained
690 with 4,6-diami-dino-2-phenylindole (DAPI) and slides were mounted onto glass
691 coverslips with Fluoromount™ (Merck).

692 **Imaging mass cytometry.** Antibody conjugation was performed using the Maxpar X8
693 protocol (Fluidigm). 51 slides of paraffin-embedded tissue from the Medial Temporal
694 Gyrus (MTG) and 48 slides of paraffin-embedded tissue from the Somatosensory Cortex
695 (SSC) underwent IMC staining and ablation. Each slide was within 5-10 μm in thickness.
696 The slides underwent routine dewaxing and rehydration before undergoing antigen
697 retrieval, in a pH8 Ethylenediaminetetraacetic acid (EDTA) buffer. The slides were
698 blocked in 10% normal horse serum (Vector Laboratories) before incubation with a
699 conjugated-antibody cocktail (Table S6) at 4°C overnight. Slides were then treated in
700 0.02% Triton X-100 (Sigma-Aldrich) before incubation with an Iridium-intercalator
701 (Fluidigm) then washed in dH₂O and air-dried. Image acquisition took place using a
702 Hyperion Tissue Imager (Fluidigm) coupled to a Helios mass cytometer. The instrument
703 was tuned using the manufacturer's 3-Element Full Coverage Tuning Slide before the
704 slides were loaded into the device. 4 500x500 μm regions of interest within the grey
705 matter were selected and then ablated using a laser at a frequency of 200Hz at a 1 μm
706 resolution. The data was stored as .mcd files compatible with MCD Viewer software

707 (Fluidigm) then exported as TIFF files. Post-acquisition image processing using ImageJ
708 (v1.53c) software allowed threshold correction and the despeckle function to reduce
709 background noise. The data was opened with HistoCAT (BodenmillerGroup) to quantify
710 the signal of each Ln-channel and exported as .csv files.

711 **Multiplex immunofluorescence.** To immunophenotype microglia/macrophages
712 expressing TSPO in the marmoset CNS, a multi-color multiplex immunofluorescence
713 panel was used to stain for Iba1, PLP, and TSPO. Deparaffinised sections were washed
714 twice in PBS supplemented with 1 mg/ml BSA (PBS/BSA), followed by two washes in
715 distilled water. Antigen retrieval was performed by boiling the slide in 10mM citrate
716 buffer (pH 6) for 10 min in an 800W microwave at maximum power, after which they
717 were allowed to cool for 30 min and washed twice in distilled water. To reduce
718 nonspecific Fc receptor binding, the section was incubated in 250 μ l of FcR blocker
719 (Innovex Biosciences, cat. no. NB309) for 15 min at room temperature and washed twice
720 in distilled water. To further reduce background, sections were coated with 250 μ l
721 Background Buster (Innovex Biosciences, cat. no. NB306) for 15 min at room
722 temperature and washed twice in distilled water. Sections were incubated for 45 min at
723 room temperature in a primary antibody cocktail containing antibodies diluted in
724 PBS/BSA (Supplemental Table 1), washed in PBS/BSA and three changes of distilled
725 water. They were then incubated for 45 min in a secondary antibody cocktail composed
726 of secondary antibodies diluted in PBS/BSA containing DAPI (Invitrogen, cat. no. D1306,
727 100 ng/ml) (Supplemental Table 2), then washed once in PBS/BSA and twice in distilled
728 water. To facilitate mounting, the sections were air-dried for 15 min at room
729 temperature, sealed with a coverslip as described previously, and allowed to dry
730 overnight prior to image acquisition.

731 **Imaging and statistical analyses.** Brightfield images were collected at 40x
732 magnification using a Leica DC500 microscope (Leica Microsystems, Heidelberg,
733 Germany, Japan), or a Leica DM6000 (Leica Microsystems, Heidelberg, Germany) or a
734 Zeiss AxioImager.Z2 wide field scanning microscope for fluorescent images. For AD,
735 APP^{NL-G-F}, and TAUP^{301S} tissue images were collected from the hippocampus. For ALS
736 tissue, images of the ventral horn and the lateral column were obtained from cervical,
737 thoracic, and lumbar spinal cord levels. For mouse EAE and SOD1^{G93A} mice, images of grey
738 and white matter of the spinal cord were collected per case. ImageJ software was used
739 for picture analyses. Nuclei and stained cells were counted manually using the cell
740 counter plugin (de Vos, University of Sheffield, UK), excluding nuclei at the rim of each
741 picture and within blood vessels. To determine inter-observer variation 18 pictures were
742 manually counted by 3 independent observers with a correlation coefficient of > 0.9. To
743 determine single cell TSPO expression, IBA+ or GFAP+ cells were outlined manually using
744 the imageJ using the ROI manager. Afterwards TSPO+ pixels were measured within IBA+
745 and GFAP+ ROIs per cell. Data were analyzed using GraphPad Prism 9.1.0 software. All
746 data were tested for normal distribution, using the Shapiro-Wilk normality test.

747 Significant differences were detected using an unpaired t-test or one-way analysis of
748 variance test. Dunnett's post-hoc test was performed to analyze which groups differ
749 significantly. Number of mice were calculated by power analysis and as a maximum 6-8
750 mice were used per group based on previous studies³⁴. Data was considered significant
751 when P < 0.05.

752 **BV2 and primary mouse macrophage culture.** All cells were kept at 37°C, 5% CO₂ and
753 95% humidity. Mouse BV2 cells (a kind gift from Federico Roncaroli, Manchester) were
754 cultured in RPMI-1640 containing 2mM GlutaMAX and 10% heat inactivated FBS (all
755 Gibco). For experiments BV2 were seeded at 1x10⁴ cells per well of a 96-well plate the
756 day before treatment. Primary mouse bone marrow-derived macrophages (BMDMs)
757 were obtained from bone marrow of adult C57BL/6 mice and cultured in DMEM
758 containing 10% FBS, penicillin/streptomycin, and glutamine supplemented with M-CSF
759 (10ng/mL; Peprotech) as previously described (Ying et al. 2013). All animal procedures
760 were approved by the Memorial University Animal Care Committee in accordance with
761 the guidelines set by the Canadian Council in Animal Care.

762 **Primary human macrophage culture.** All donors gave informed consent under a REC
763 approved protocol (12/L0/0538). Human monocyte derived macrophages (MDMs) were
764 obtained from fresh blood of male and female, healthy donors between 20 and 60 years
765 after CD14-affinity purification. In brief, whole blood was diluted 1:1 with DPBS (Sigma),
766 layered onto Ficoll (Sigma) and spun for 20 min at 800xg with minimal
767 acceleration/deceleration. Peripheral mononuclear cells were collected, washed, and
768 labelled with CD14-affinity beads (Miltenyi) according to the manufacturers protocol.
769 CD14 monocytes were eluted and cultured at 5x10⁵ cells/ml in RPMI-1640 containing
770 2mM GlutaMAX, 10% heat inactivated FBS, and 25ng/ml M-CSF (all Gibco) with medium
771 change after 3 days. MDMs were used after 7 days in-vitro culture. For monocytes, M-CSF
772 was omitted from the medium and cells were used immediately ex-vivo.

773 **Human TSPO genotyping.** Genotyping at rs6971 was performed by LGC. Where not
774 specified, studies were performed with homozygous A carriers due to the high affinity for
775 XBD-173 (high-affinity binders; HAB). Homozygous T carriers were grouped as low
776 affinity binders (LAB). Heterozygous rs6971 carriers were omitted from this study.

777 **iPSC culture and microglia-like cell differentiation.** The human induced pluripotent
778 stem cell (iPSC) line SFC841-03-01 (<https://hpscreg.eu/cell-line/STBCi044-A>,
779 previously derived from a healthy donor⁸², Oxford Parkinson's Disease
780 Centre/StemBANCC) was obtained under MTA from the James Martin Stem Cell Facility,
781 University of Oxford and cultured in feeder-free, fully defined conditions. In brief, iPSCs
782 were maintained in E8 medium on Geltrex (both Gibco) and fed every day until 80%
783 confluent. For cell cluster propagation, iPSCs were lifted with 0.5 mM EDTA (Thermo) in
784 DPBS and upon visible dissociation, EDTA was removed, and iPSC were diluted 4-6 times
785 in E8 for culture maintenance. iPSCs were screened genotypically for chromosomal

786 abnormalities using single nucleotide polymorphism analysis and phenotypically using
787 Nanog (Cell Signalling) and Tra-1-60 (BioLegend) immune positivity. Mycoplasma
788 infection was excluded based on LookOut test (Sigma) according to manufacturer's
789 protocol. Microglia-like cells were differentiated according to Haenseler et al 2017⁸³. In
790 short, on day 0 iPSCs were dissociated with TrypLE Express (Gibco) and 4x10⁶ iPSCs
791 were added to one well of 24-well AggreWell™ 800 (Stem Cell Technology) according to
792 the manufacturer's protocol in 2ml EB medium (E8, SCF (20ng/ml, Miltenyi), BMP4
793 (50ng/ml; Gibco), VEGF (50ng/ml, PeproTech)) with 10uM ROCK inhibitor (Y-27632,
794 Abcam). From day 1 to 6, 75% medium was exchanged with fresh EB. On day 7 embryoid
795 bodies were transferred to 2x T175 flasks containing factory medium (XVIVO-15 (Lonza),
796 2mM GlutaMAX, 50uM 2-Mercaptoethanol, 25ng/ml IL-3, and 100ng/ml M-CSF (all
797 Gibco)) and fed weekly with factory medium. Starting from week 4 after transfer, medium
798 was removed and tested for the presence of primitive macrophages using CD45
799 (immunotools), CD14 (immunotools) and CD11b (Biolegend) immunopositivity by flow
800 cytometry (FACSCalibur, BD Biosciences). Primitive macrophages were transferred to
801 microglia medium (SILAC Adv DMEM/F12 (Gibco), 10 mM glucose (Sigma), 2 mM
802 GlutaMAX, 0.5 mM L-lysine (Sigma), 0.5 mM L-arginine (Sigma), 0.00075% phenol red
803 (Sigma), 100ng/ml IL-34 (PeproTech), 10gn/ml GM-CSF (Gibco)), fed every 3-4 days and
804 used for experiments after 7 days.

805 **Drug treatments and Cell activation.** Cells were treated with XBD-173 at the indicated
806 concentrations for 1h prior to LPS activation or for 20h prior to phagocytosis. Pro-
807 inflammatory activation was induced with lipopolysaccharide (100ng/ml; Sigma) for
808 24h. For live-cell phagocytosis assays, pHrodo®-labelled zymosan A bioparticles
809 (Thermo) were added to the culture medium and incubated for 2h at 37°C with 5% CO₂.
810 pHrodo®-fluorescence intensity was acquired in a plate reader (Cytation5, BioTek) or by
811 Flow cytometry (FACSCalibur, BD Biosciences).

812 **Cytokine analysis.** Cytokines were assessed from cell-free cell culture supernatant using
813 enzyme-linked immunosorbent assay (ELISA) according to the manufacturers' protocols.
814 The following assays were used: mouse-TNF α and mouse-IL-6 ELISA (R&D Systems),
815 huma-TNF α and human-IL-6 (BD Biosciences). Absorbance was measured in a Spark
816 plate reader (Tecan).

817 **RNA Sequencing.** RNA was extracted from control and LPS treated (100ng/mL, 24
818 hours) primary human macrophages using the RNeasy Mini Kit. cDNA libraries (Total
819 RNA with rRNA depletion) were prepared and sequenced using a HiSeq4000. Lanes were
820 run as 75 bases Paired End. Sequencing depth was minimum 40 million reads per sample

821 **LC-MSMS analysis of supernatant for XBD173 concentration.** Supernatant samples
822 were stored at -20°C or lower until analysis. Samples (25 μ L) were prepared for analysis
823 by protein precipitation with acetonitrile containing internal standard (tolbutamide)
824 (200 μ L) followed by mixing (150 rpm, 15 min) and centrifugation (3000 rpm, 15 min).

825 The supernatant (50) μ L was diluted with water (100 μ L) and mixed (100 rpm, 15min).
826 Samples were analysed by LC-MSMS (Shimadzu Nexera X2 UHPLC/Shimadzu LCMS
827 8060) with Phenomenex Kinetex Biphenyl (50 x 2.1)mm, 1.7 μ m column and mobile
828 phase components water/0.1% formic acid (A) and acetonitrile/0.1% formic acid (B).
829 Mobile phase gradient was 0 to 0.3 min 2% B; 0.3 to 1.1 min increase to 95% B; 1.1 to
830 1.75 min 95% B, 1.75 to 1.8 min decrease to 2% B; 1.8 to 2.5 min 2% B. Flow rate was 0.4
831 mL/min. Injection volume was 1 μ L. Calibration standards were prepared by spiking
832 XDB173 into control supernatant over the range 2-10000 ng/mL, then preparing and
833 analysing as for the study samples. Lower limit of detection was 2 ng/mL.

834 **Reporting Summary**

835 Further information on research design is available in the Nature Research Reporting
836 Summary linked to this article.

837 **Data availability**

838 The data that support the findings of this study are available in this manuscript and the
839 Supplementary Information. Source data are provided with this paper.

840 **Code availability**

841 Code used throughout this study is available upon request from the corresponding
842 authors.

843 **Author contributions**

844 Conceptualisation: E.N., N.F., M.W., S.A., and D.R.O. Technical and Analysis Support: J.A.,
845 D.S., S.C., M.C.T., T.Saito., T.Saido., M.W., C.S.M., C.B., and C.I.R. Data Collection and
846 Curation: E.N., N.F., M.W., M.C.M., S.T., R.C.J.M., I.F., J.B., D.H., and R.P. Writing – Original
847 Draft: E.N., N.F., S.A., and D.R.O. Writing – Review and Editing: All authors have reviewed
848 the manuscript. Visualisation: E.N., N.F., M.W., M.C.M., S.T., R.C.J.M., and I.F. Supervision:
849 S.A., and D.R.O.

850 **References**

- 851 1. Cunningham, C. Microglia and neurodegeneration: the role of systemic inflammation. *Glia* **61**, 71-
852 90 (2013).
- 853 2. Heneka, M.T., *et al.* Locus ceruleus controls Alzheimer's disease pathology by modulating
854 microglial functions through norepinephrine. *Proc Natl Acad Sci U S A* **107**, 6058-6063 (2010).
- 855 3. O'Sullivan, J.B., Ryan, K.M., Curtin, N.M., Harkin, A. & Connor, T.J. Noradrenaline reuptake inhibitors
856 limit neuroinflammation in rat cortex following a systemic inflammatory challenge: implications for
857 depression and neurodegeneration. *Int J Neuropsychopharmacol* **12**, 687-699 (2009).
- 858 4. Brown, G.C. & Vilalta, A. How microglia kill neurons. *Brain Res* **1628**, 288-297 (2015).
- 859 5. Brown, G.C. & Neher, J.J. Inflammatory neurodegeneration and mechanisms of microglial killing of
860 neurons. *Mol Neurobiol* **41**, 242-247 (2010).

861 6. Brown, G.C. & Neher, J.J. Microglial phagocytosis of live neurons. *Nature reviews. Neuroscience* **15**,
862 209-216 (2014).

863 7. Guilarte, T.R. TSPO in diverse CNS pathologies and psychiatric disease: A critical review and a way
864 forward. *Pharmacol Ther* **194**, 44-58 (2019).

865 8. Guilarte, T.R., Rodichkin, A.N., McGlothan, J.L., Acanda De La Rocha, A.M. & Azzam, D.J. Imaging
866 neuroinflammation with TSPO: A new perspective on the cellular sources and subcellular localization.
867 *Pharmacol Ther*, 108048 (2021).

868 9. Pascoal, T.A., *et al.* Microglial activation and tau propagate jointly across Braak stages. *Nature
869 medicine* **27**, 1592-1599 (2021).

870 10. Jucaite, A., *et al.* Effect of the myeloperoxidase inhibitor AZD3241 on microglia: a PET study in
871 Parkinson's disease. *Brain : a journal of neurology* **138**, 2687-2700 (2015).

872 11. Bae, K.R., Shim, H.J., Balu, D., Kim, S.R. & Yu, S.W. Translocator protein 18 kDa negatively regulates
873 inflammation in microglia. *J Neuroimmune Pharmacol* **9**, 424-437 (2014).

874 12. Wang, M., *et al.* Macrogli-microglia interactions via TSPO signaling regulates microglial activation
875 in the mouse retina. *J Neurosci* **34**, 3793-3806 (2014).

876 13. Karlstetter, M., *et al.* Translocator protein (18 kDa) (TSPO) is expressed in reactive retinal
877 microglia and modulates microglial inflammation and phagocytosis. *J Neuroinflammation* **11**, 3 (2014).

878 14. Gottfried-Blackmore, A., Sierra, A., Jellinck, P.H., McEwen, B.S. & Bulloch, K. Brain microglia express
879 steroid-converting enzymes in the mouse. *J Steroid Biochem Mol Biol* **109**, 96-107 (2008).

880 15. Owen, D.R., *et al.* Pro-inflammatory activation of primary microglia and macrophages increases 18
881 kDa translocator protein expression in rodents but not humans. *J Cereb Blood Flow Metab* **37**, 2679-2690
882 (2017).

883 16. Nutma, E., *et al.* Activated microglia do not increase 18 kDa translocator protein (TSPO) expression
884 in the multiple sclerosis brain. *Glia* **69**, 2447-2458 (2021).

885 17. Srivastava, P.K., Hull, R.P., Behmoaras, J., Petretto, E. & Aitman, T.J. JunD/AP1 regulatory network
886 analysis during macrophage activation in a rat model of crescentic glomerulonephritis. *BMC Syst Biol* **7**, 93
887 (2013).

888 18. Saito, T., *et al.* Single App knock-in mouse models of Alzheimer's disease. *Nature neuroscience* **17**,
889 661-663 (2014).

890 19. Yoshiyama, Y., *et al.* Synapse loss and microglial activation precede tangles in a P301S tauopathy
891 mouse model. *Neuron* **53**, 337-351 (2007).

892 20. Gurney, M.E., *et al.* Motor neuron degeneration in mice that express a human Cu,Zn superoxide
893 dismutase mutation. *Science* **264**, 1772-1775 (1994).

894 21. Baker, D., *et al.* Induction of chronic relapsing experimental allergic encephalomyelitis in Biozzi
895 mice. *J Neuroimmunol* **28**, 261-270 (1990).

896 22. Schmidt, S.V., *et al.* The transcriptional regulator network of human inflammatory macrophages is
897 defined by open chromatin. *Cell Res* **26**, 151-170 (2016).

898 23. Ostuni, R., *et al.* Latent enhancers activated by stimulation in differentiated cells. *Cell* **152**, 157-171
899 (2013).

900 24. Shlyueva, D., Stampfel, G. & Stark, A. Transcriptional enhancers: from properties to genome-wide
901 predictions. *Nat Rev Genet* **15**, 272-286 (2014).

902 25. Celada, A., *et al.* The transcription factor PU.1 is involved in macrophage proliferation. *J Exp Med*
903 **184**, 61-69 (1996).

904 26. Ghisletti, S., *et al.* Identification and characterization of enhancers controlling the inflammatory
905 gene expression program in macrophages. *Immunity* **32**, 317-328 (2010).

906 27. Rashid, K., Geissl, L., Wolf, A., Karlstetter, M. & Langmann, T. Transcriptional regulation of
907 Translocator protein (18kDa) (TSPO) in microglia requires Pu.1, Ap1 and Sp factors. *Biochim Biophys Acta
908 Gene Regul Mech* **1861**, 1119-1133 (2018).

909 28. Lane, C.A., Hardy, J. & Schott, J.M. Alzheimer's disease. *Eur J Neurol* **25**, 59-70 (2018).

910 29. Tiwari, S., Atluri, V., Kaushik, A., Yndart, A. & Nair, M. Alzheimer's disease: pathogenesis,
911 diagnostics, and therapeutics. *International journal of nanomedicine* **14**, 5541-5554 (2019).

912 30. Kellner, A., *et al.* Autoantibodies against beta-amyloid are common in Alzheimer's disease and help
913 control plaque burden. *Ann Neurol* **65**, 24-31 (2009).

914 31. Hansen, D.V., Hanson, J.E. & Sheng, M. Microglia in Alzheimer's disease. *J Cell Biol* **217**, 459-472
915 (2018).

916 32. Xuan, F.L., Chithanathan, K., Lillevali, K., Yuan, X. & Tian, L. Differences of Microglia in the Brain and
917 the Spinal Cord. *Front Cell Neurosci* **13**, 504 (2019).

918 33. Nutma, E., *et al.* A quantitative neuropathological assessment of translocator protein expression in
919 multiple sclerosis. *Brain: a journal of neurology* **142**, 3440-3455 (2019).

920 34. Peferoen, L.A., *et al.* Ageing and recurrent episodes of neuroinflammation promote progressive
921 experimental autoimmune encephalomyelitis in Biozzi ABH mice. *Immunology* **149**, 146-156 (2016).

922 35. Tuisku, J., *et al.* Effects of age, BMI and sex on the glial cell marker TSPO - a multicentre
923 [(11)C]PBR28 HRRT PET study. *European journal of nuclear medicine and molecular imaging* **46**, 2329-
924 2338 (2019).

925 36. Gaitan, M.I., *et al.* Perivenular brain lesions in a primate multiple sclerosis model at 7-tesla
926 magnetic resonance imaging. *Mult Scler* **20**, 64-71 (2014).

927 37. t Hart, B.A., Vogels, J., Bauer, J., Brok, H.P. & Blezer, E. Non-invasive measurement of brain damage
928 in a primate model of multiple sclerosis. *Trends Mol Med* **10**, 85-91 (2004).

929 38. Lefevre, J.A., *et al.* The spectrum of spinal cord lesions in a primate model of multiple sclerosis.
930 *Mult Scler* **26**, 284-293 (2020).

931 39. Sousa, C., *et al.* Single-cell transcriptomics reveals distinct inflammation-induced microglia
932 signatures. *EMBO Rep* **19**, e46171 (2018).

933 40. Wheeler, M.A., *et al.* MAFG-driven astrocytes promote CNS inflammation. *Nature* **578**, 593-599
934 (2020).

935 41. Keren-Shaul, H., *et al.* A Unique Microglia Type Associated with Restricting Development of
936 Alzheimer's Disease. *Cell* **169**, 1276-1290 e1217 (2017).

937 42. Gate, D., *et al.* Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer's disease.
938 *Nature* **577**, 399-404 (2020).

939 43. Schafflick, D., *et al.* Integrated single cell analysis of blood and cerebrospinal fluid leukocytes in
940 multiple sclerosis. *Nat Commun* **11**, 247 (2020).

941 44. Ramesh, A., *et al.* A pathogenic and clonally expanded B cell transcriptome in active multiple
942 sclerosis. *Proc Natl Acad Sci U S A* **117**, 22932-22943 (2020).

943 45. Finak, G., *et al.* MAST: a flexible statistical framework for assessing transcriptional changes and
944 characterizing heterogeneity in single-cell RNA sequencing data. *Genome Biol* **16**, 278 (2015).

945 46. Stephenson, J., Nutma, E., van der Valk, P. & Amor, S. Inflammation in CNS neurodegenerative
946 diseases. *Immunology* **154**, 204-219 (2018).

947 47. Doorn, K.J., *et al.* Microglial phenotypes and toll-like receptor 2 in the substantia nigra and
948 hippocampus of incidental Lewy body disease cases and Parkinson's disease patients. *Acta
949 neuropathologica communications* **2**, 90 (2014).

950 48. Ghadery, C., *et al.* Microglial activation in Parkinson's disease using [(18)F]-FEPPA. *J
951 Neuroinflammation* **14**, 8 (2017).

952 49. Koshimori, Y., *et al.* Imaging Striatal Microglial Activation in Patients with Parkinson's Disease.
953 *PLoS One* **10**, e0138721 (2015).

954 50. Varnäs, K., *et al.* PET imaging of [11C] PBR28 in Parkinson's disease patients does not indicate
955 increased binding to TSPO despite reduced dopamine transporter binding. *European journal of nuclear
956 medicine and molecular imaging* **46**, 367-375 (2019).

957 51. Mathys, H., *et al.* Author Correction: Single-cell transcriptomic analysis of Alzheimer's disease.
958 *Nature* **571**, E1 (2019).

959 52. Grubman, A., *et al.* A single-cell atlas of entorhinal cortex from individuals with Alzheimer's disease
960 reveals cell-type-specific gene expression regulation. *Nature neuroscience* **22**, 2087-2097 (2019).

961 53. Zhou, Y., *et al.* Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and
962 TREM2-independent cellular responses in Alzheimer's disease. *Nature medicine* **26**, 131-142 (2020).

963 54. Smith, A.M., *et al.* Diverse human astrocyte and microglial transcriptional responses to Alzheimer's
964 pathology. *Acta Neuropathol* **143**, 75-91 (2022).

965 55. Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate - a Practical and Powerful
966 Approach to Multiple Testing. *J R Stat Soc B* **57**, 289-300 (1995).

967 56. Felton, J.M., *et al.* Epigenetic Analysis of the Chromatin Landscape Identifies a Repertoire of Murine
968 Eosinophil-Specific PU.1-Bound Enhancers. *J Immunol* **207**, 1044-1054 (2021).

969 57. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of
970 short DNA sequences to the human genome. *Genome Biol* **10**, R25 (2009).

971 58. Heinz, S., *et al.* Simple combinations of lineage-determining transcription factors prime cis-
972 regulatory elements required for macrophage and B cell identities. *Mol Cell* **38**, 576-589 (2010).

973 59. Kent, W.J., *et al.* The human genome browser at UCSC. *Genome Res* **12**, 996-1006 (2002).

974 60. Notredame, C., Higgins, D.G. & Heringa, J. T-Coffee: A novel method for fast and accurate multiple
975 sequence alignment. *J Mol Biol* **302**, 205-217 (2000).

976 61. Erb, I., et al. Use of ChIP-Seq data for the design of a multiple promoter-alignment method. *Nucleic
977 Acids Res* **40**, e52 (2012).

978 62. Waterhouse, A.M., Procter, J.B., Martin, D.M., Clamp, M. & Barton, G.J. Jalview Version 2--a multiple
979 sequence alignment editor and analysis workbench. *Bioinformatics* **25**, 1189-1191 (2009).

980 63. Tamura, K., Stecher, G. & Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11.
981 *Mol Biol Evol* **38**, 3022-3027 (2021).

982 64. Bailey, T.L., Johnson, J., Grant, C.E. & Noble, W.S. The MEME Suite. *Nucleic Acids Res* **43**, W39-49
983 (2015).

984 65. Bailey, T.L. & Grant, C.E. SEA: Simple Enrichment Analysis of motifs. *bioRxiv* (2021).

985 66. Love, M.I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq
986 data with DESeq2. *Genome Biol* **15**, 550 (2014).

987 67. Duan, L., et al. PDGFRbeta Cells Rapidly Relay Inflammatory Signal from the Circulatory System to
988 Neurons via Chemokine CCL2. *Neuron* **100**, 183-200 e188 (2018).

989 68. Stuart, T., et al. Comprehensive Integration of Single-Cell Data. *Cell* **177**, 1888-1902 e1821 (2019).

990 69. Khoozoe, C., et al. scFlow: A Scalable and Reproducible Analysis Pipeline for Single-Cell RNA
991 Sequencing Data. (Authorea Preprints, 2021).

992 70. Tsartsalis, S., et al. Single nuclear transcriptional signatures of dysfunctional brain vascular
993 homeostasis in Alzheimer's disease. (2021).

994 71. Ewels, P.A., et al. The nf-core framework for community-curated bioinformatics pipelines. *Nat
995 Biotechnol* **38**, 276-278 (2020).

996 72. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. *BMC
997 Bioinformatics* **9**, 559 (2008).

998 73. Zhang, B., Kirov, S. & Snoddy, J. WebGestalt: an integrated system for exploring gene sets in various
999 biological contexts. *Nucleic Acids Res* **33**, W741-748 (2005).

1000 74. Al-Izki, S., et al. Practical guide to the induction of relapsing progressive experimental autoimmune
1001 encephalomyelitis in the Basso ABH mouse. *Mult Scler Relat Disord* **1**, 29-38 (2012).

1002 75. Baker, D. & Amor, S. Publication guidelines for refereeing and reporting on animal use in
1003 experimental autoimmune encephalomyelitis. *J Neuroimmunol* **242**, 78-83 (2012).

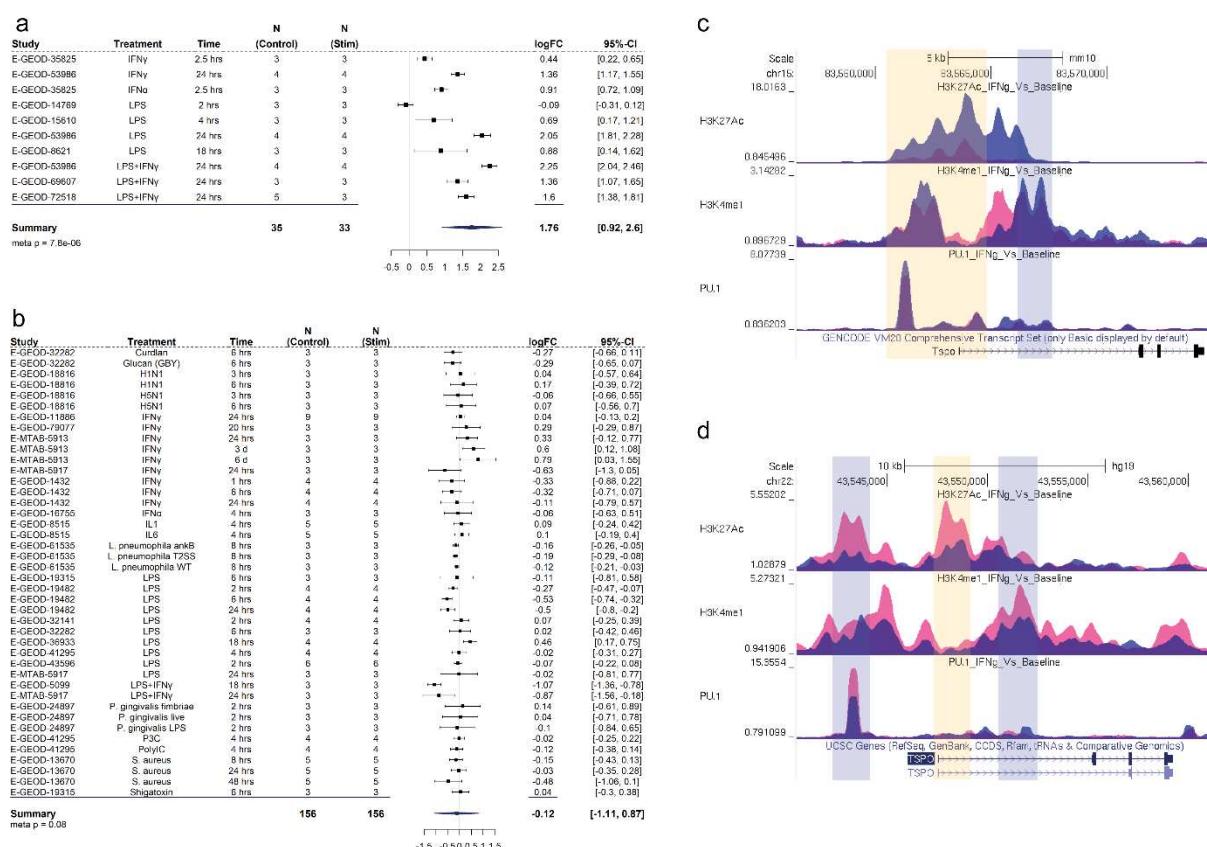
1004 76. Maggi, P., Sati, P. & Massacesi, L. Magnetic resonance imaging of experimental autoimmune
1005 encephalomyelitis in the common marmoset. *J Neuroimmunol* **304**, 86-92 (2017).

1006 77. Nardo, G., et al. Transcriptomic indices of fast and slow disease progression in two mouse models
1007 of amyotrophic lateral sclerosis. *Brain : a journal of neurology* **136**, 3305-3332 (2013).

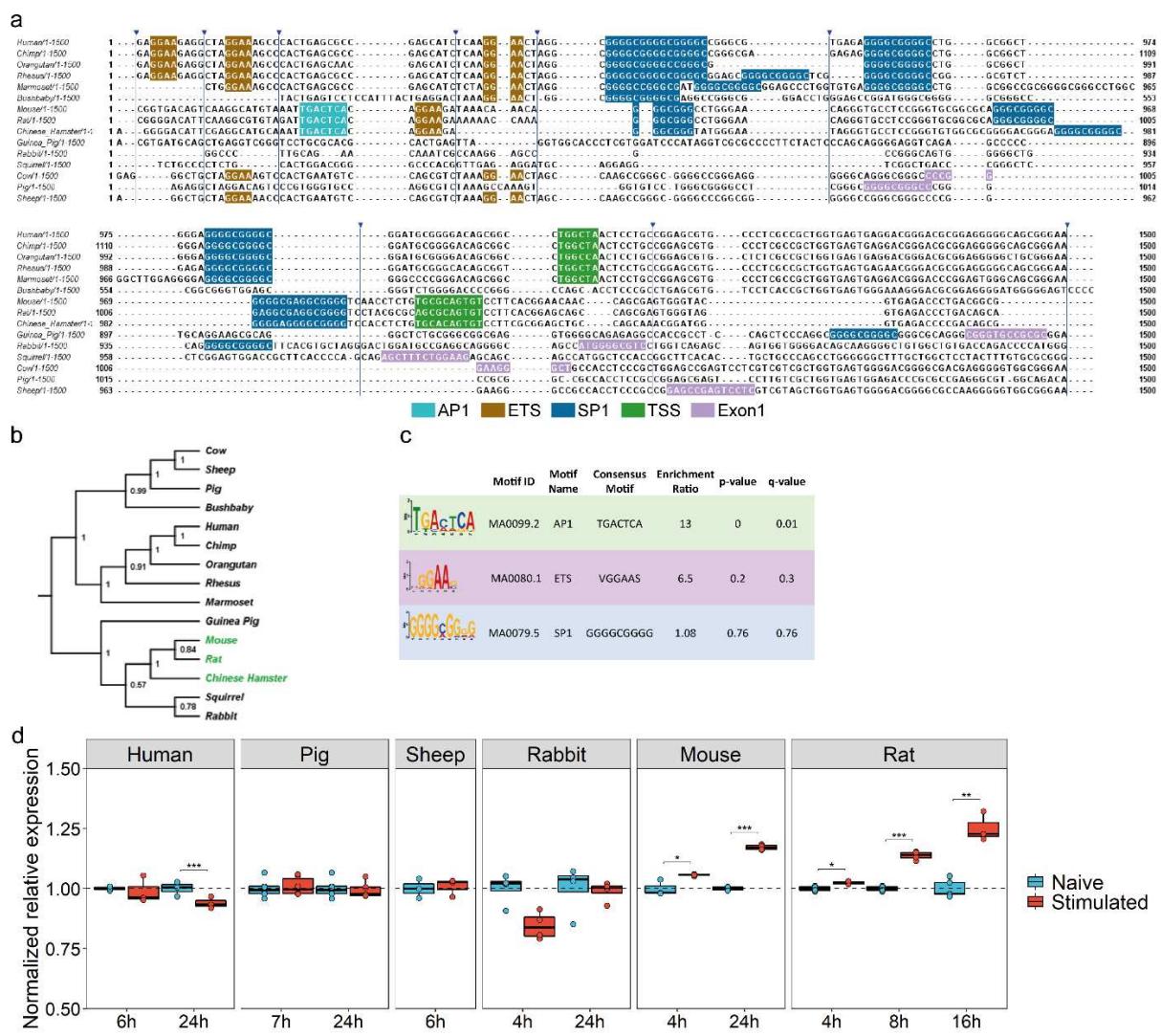
1008 78. Nardo, G., et al. Immune response in peripheral axons delays disease progression in SOD1(G93A)
1009 mice. *J Neuroinflammation* **13**, 261 (2016).

1010 79. Hampton, D.W., et al. HspB5 Activates a Neuroprotective Glial Cell Response in Experimental
1011 Tauopathy. *Frontiers in neuroscience* **14**, 574 (2020).

1012 80. Hampton, D.W., et al. Cell-mediated neuroprotection in a mouse model of human tauopathy. *J
1013 Neurosci* **30**, 9973-9983 (2010).

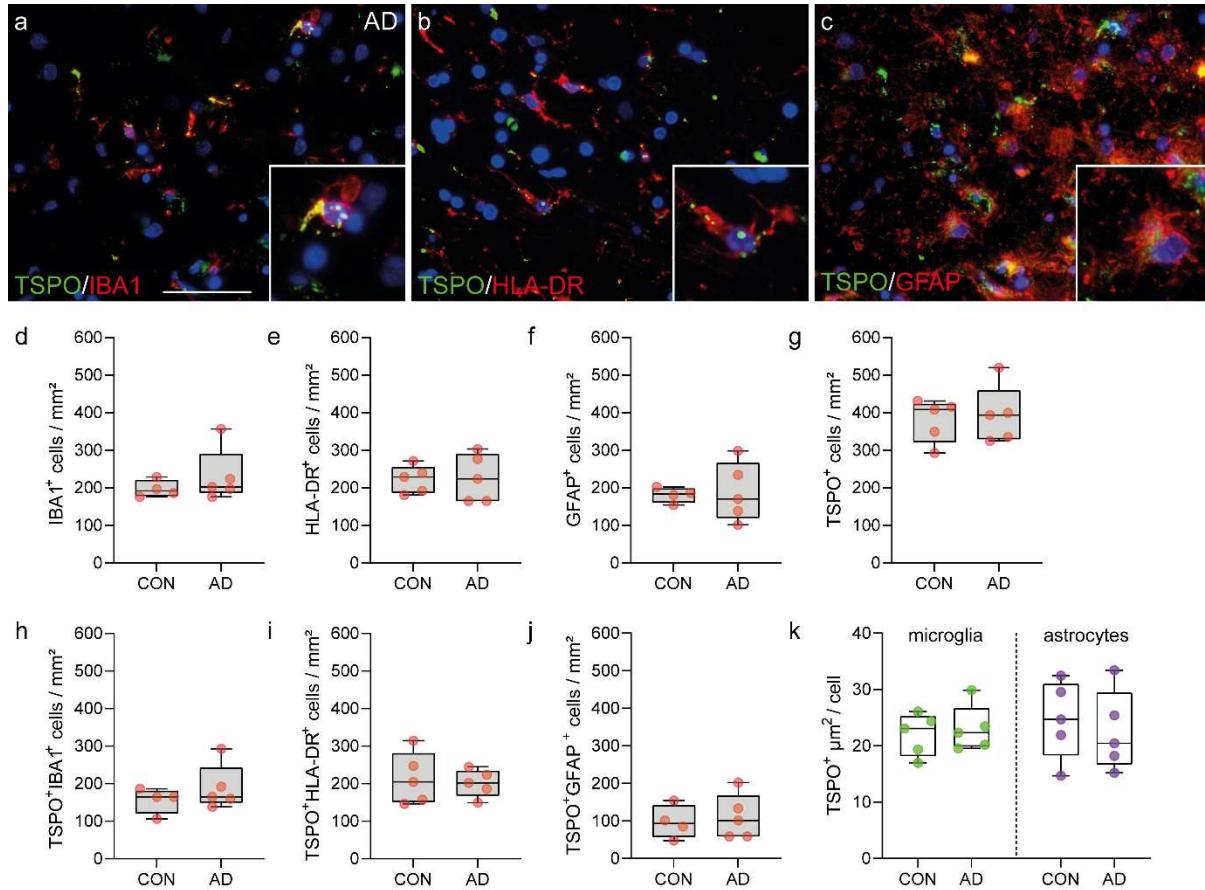

1014 81. Torvell, M., et al. A single systemic inflammatory insult causes acute motor deficits and accelerates
1015 disease progression in a mouse model of human tauopathy. *Alzheimers Dement (N Y)* **5**, 579-591 (2019).

1016 82. Haenseler, W., et al. Excess alpha-synuclein compromises phagocytosis in iPSC-derived
1017 macrophages. *Sci Rep* **7**, 9003 (2017).

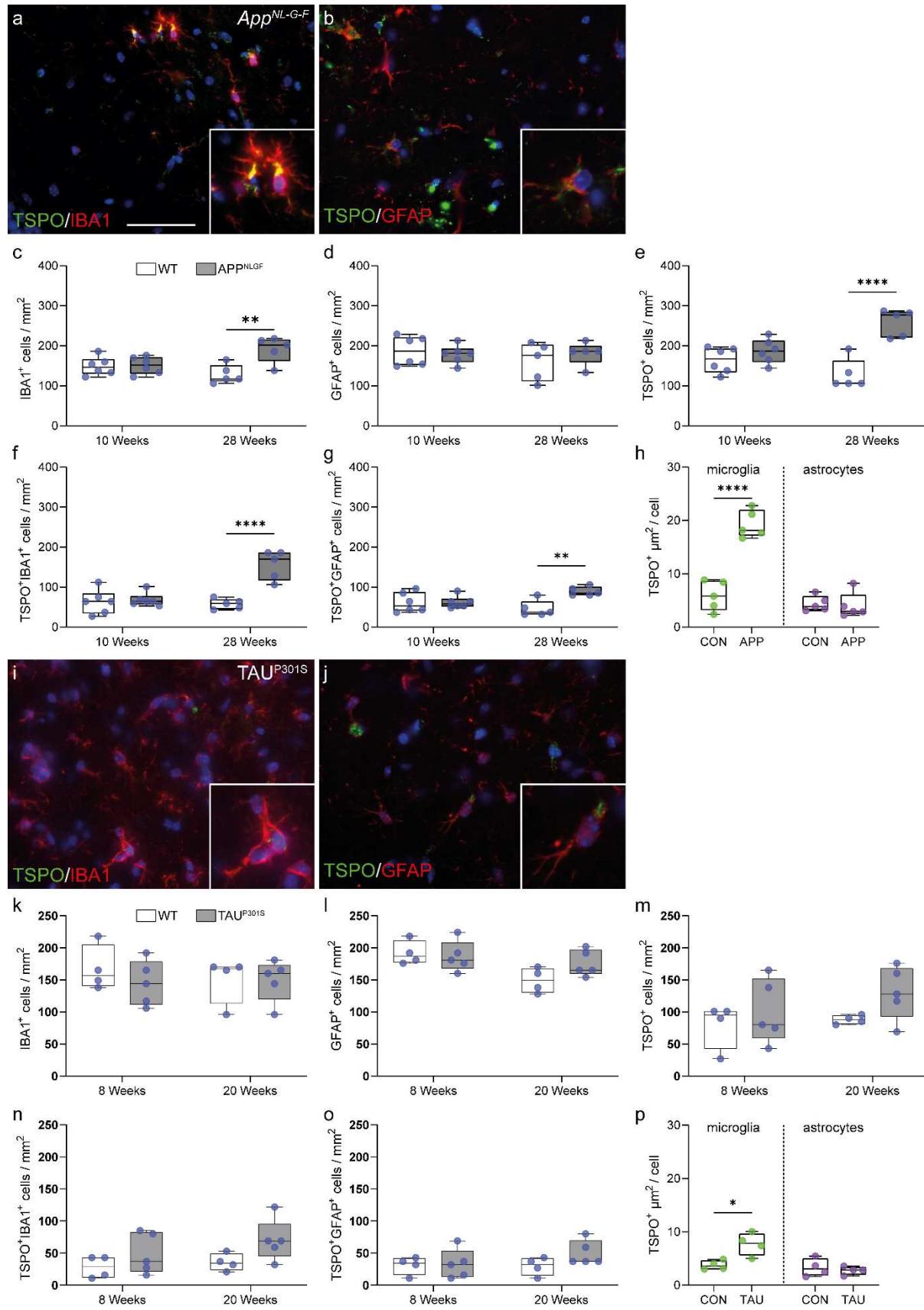

1018 83. Haenseler, W., et al. A Highly Efficient Human Pluripotent Stem Cell Microglia Model Displays a
1019 Neuronal-Co-culture-Specific Expression Profile and Inflammatory Response. *Stem Cell Reports* **8**, 1727-
1020 1742 (2017).

1021

1022 **Figures**



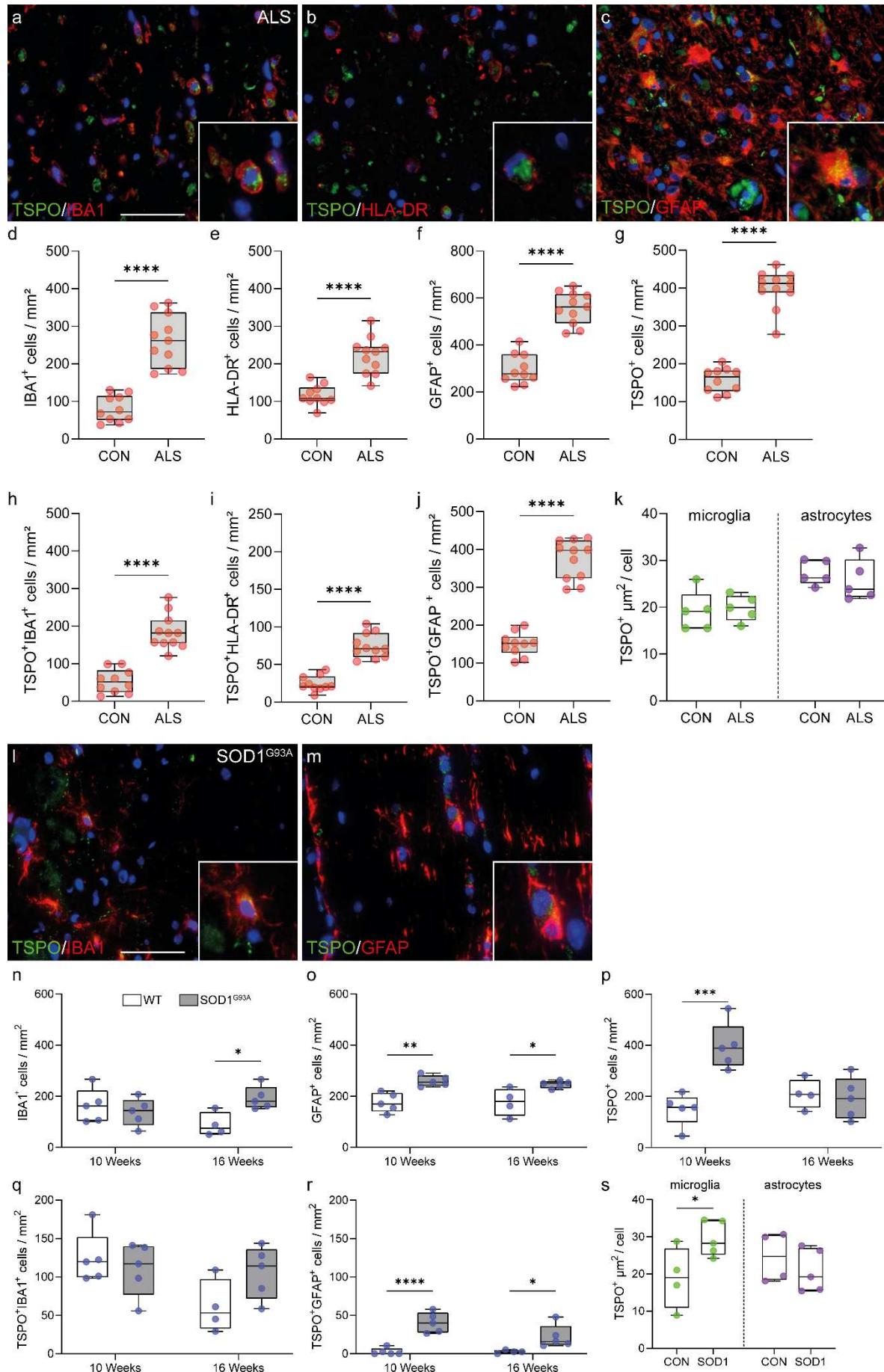
1023
1024 **Figure 1. TSPO gene expression and epigenetic profile in human and mouse**
1025 **macrophages. a,b** Forest plot of the meta-analysis for TSPO expression in **a** mouse and
1026 **b** human myeloid cells treated with a pro-inflammatory stimulus. The random-effect
1027 model was applied when combining the gene expression. The black squares represent the
1028 logFC value of each dataset. The horizontal lines indicate the 95% confidence intervals of
1029 each study. The diamond represents the pooled logFC. **c,d** ChIP-seq data, generated from
1030 mouse and **d** human myeloid cells treated with IFN γ , visualisation of histone
1031 modification peaks (H3K27Ac, H3K4me3, H3K4me1) and PU.1 binding peaks at TSPO loci
1032 in IFN γ -treated (pink) and baseline (blue) conditions. Yellow vertical shading
1033 corresponds to the TSS along with promoter and light blue shading corresponds to the
1034 enhancer region of the loci.


1035
1036 **Figure 2. AP1 binding site in the TSPO promoter and LPS inducible TSPO expression**
1037 **is unique to the Muroidea superfamily of rodents. a** Multiple sequence alignment of
1038 TSPO promoter region of 15 species from primate, rodent, non-primate mammals. AP1
1039 (cyan) and an adjacent ETS (brown) site is present in only a sub-group of rodent family
1040 which includes mouse, rat and Chinese hamster. The ETS site which binds transcription
1041 factor PU.1 is present across species. SP1 (blue) site is found in the core promoter close
1042 to the TSS (green). For species where the TSS is not known Exon1 (pink) location is
1043 shown. Blue arrowhead indicates sequence without any motif hidden for visualization. **b**
1044 Phylogenetic tree is showing a clear branching of rat, mouse and Chinese hamster TSPO
1045 promoter from the rest of the species from rodents. Primates including marmoset forms
1046 a separate clade while sheep, cow and pig are part for the same branch. Green highlights
1047 represent species that contain the AP1 site in TSPO promoter. Phylogenetic tree was
1048 generated using the Maximum Parsimony method in MEGA11. The most parsimonious
1049 tree with length = 4279 is shown. The consistency index (CI) is 0.760458 (0.697014) and
1050 the retention index is 0.656386 (RI) (0.656386) for all sites and parsimony-informative
1051 sites (in parentheses). The percentage of replicate trees in which the associated taxa
1052 clustered together in the bootstrap test (1000 replicates) are shown next to the branches.

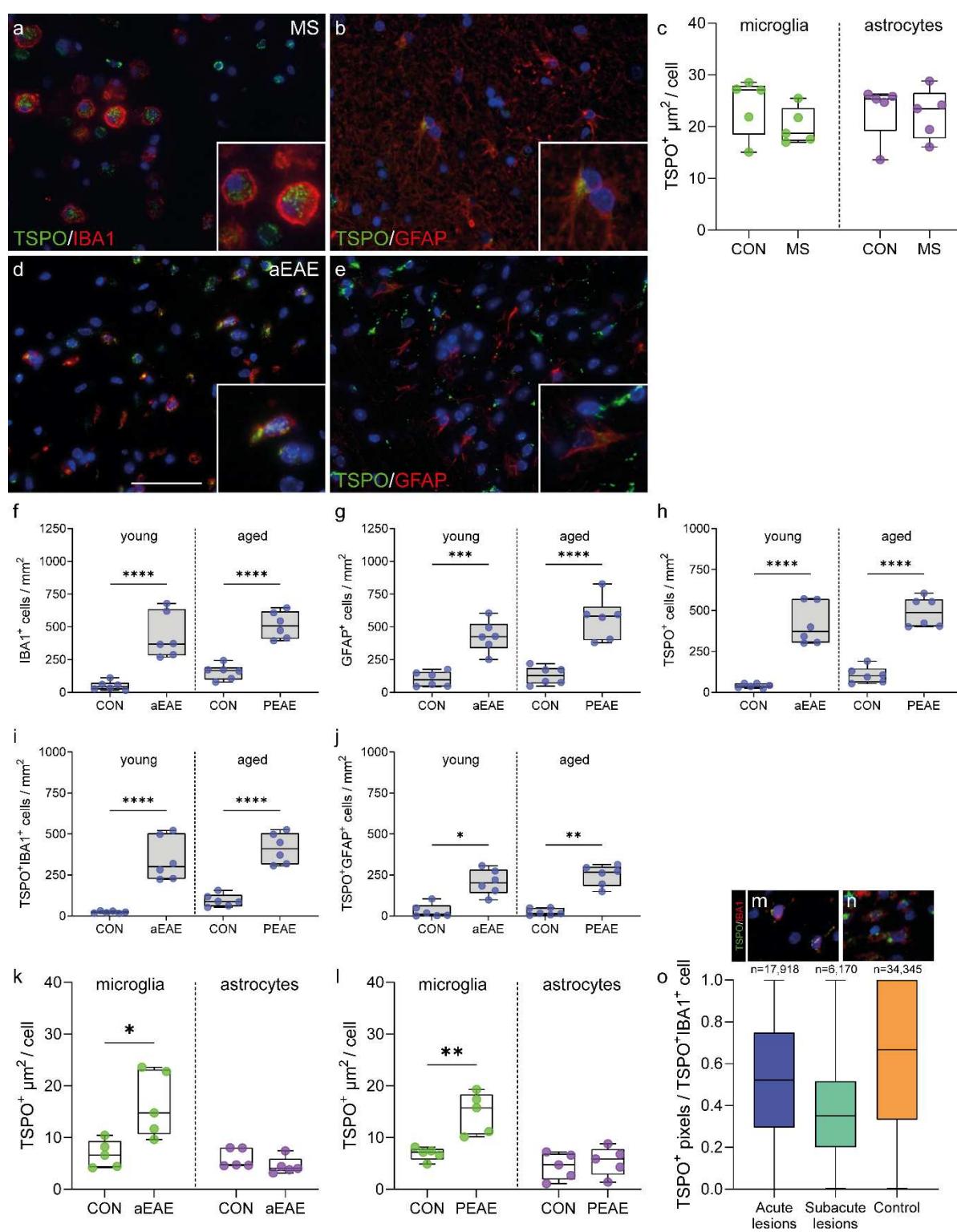
1053 d Differential motif enrichment analysis between rodent vs non-rodent TSPO promoter
1054 region by SEA tools from MEME-suite confirms the significant enrichment of AP1 site in
1055 rodent promoter whereas SP1 site does not show any differential enrichment. TSS;
1056 Transcription start site. **d** TSPO gene expression in macrophages or microglia isolated
1057 from multiple species after LPS stimulation. In line with the multiple sequence alignment
1058 of the TSPO promoter, species (mouse, rat) that contains an adjacent AP1 and ETS motif
1059 shows an upregulation of TSPO gene after LPS stimulation. Species lacking (human, pig,
1060 sheep, rabbit) those sites show a downregulation or no change in expression after
1061 stimulation.

1062

1063 **Figure 3. TSPO expression is not altered in the AD hippocampus. a-c** Representative
1064 images of TSPO expression in microglia and astrocytes in AD hippocampus. **d-g** no
1065 increases were observed in microglia ($P=0.5159$, $U=7$, ranks=17, 28), activated microglia
1066 ($P=0.8997$, $t=0.1301$, $df=8$) astrocytes ($P = 0.8599$, $t=0.1831$, $df=7$) or TSPO+ cells ($P =$
1067 0.7329 , $t=0.3534$, $df=8$) in the AD hippocampus. **h-j** Concurrently no increases were
1068 observed in the number of TSPO+IBA1+ microglia ($P = 0.3573$, $t=0.9854$, $df=7$),
1069 TSPO+HLA-DR+ microglia ($P = 0.7239$, $t=0.3659$, $df=8$) and astrocytes ($P = 0.7181$,
1070 $t=0.3760$, $df=7$). **k** Even though microglia in the AD brain show signs of activation
1071 microglia do not upregulate TSPO expression in the hippocampus ($P = 0.6717$, $t=0.4398$,
1072 $df=8$), nor do astrocytes ($P = 0.6475$, $t=0.4750$, $df=8$). Statistical significance in **d-k** was
1073 determined by a two-tailed unpaired *t*-test or Mann-Whitney U-test when not normally
1074 distributed. Box and whiskers mark the 25th to 75th percentiles and min to max values,
1075 respectively, with the median indicated. Scale bar = 50 μm , inserts are digitally zoomed in
1076 (200%).

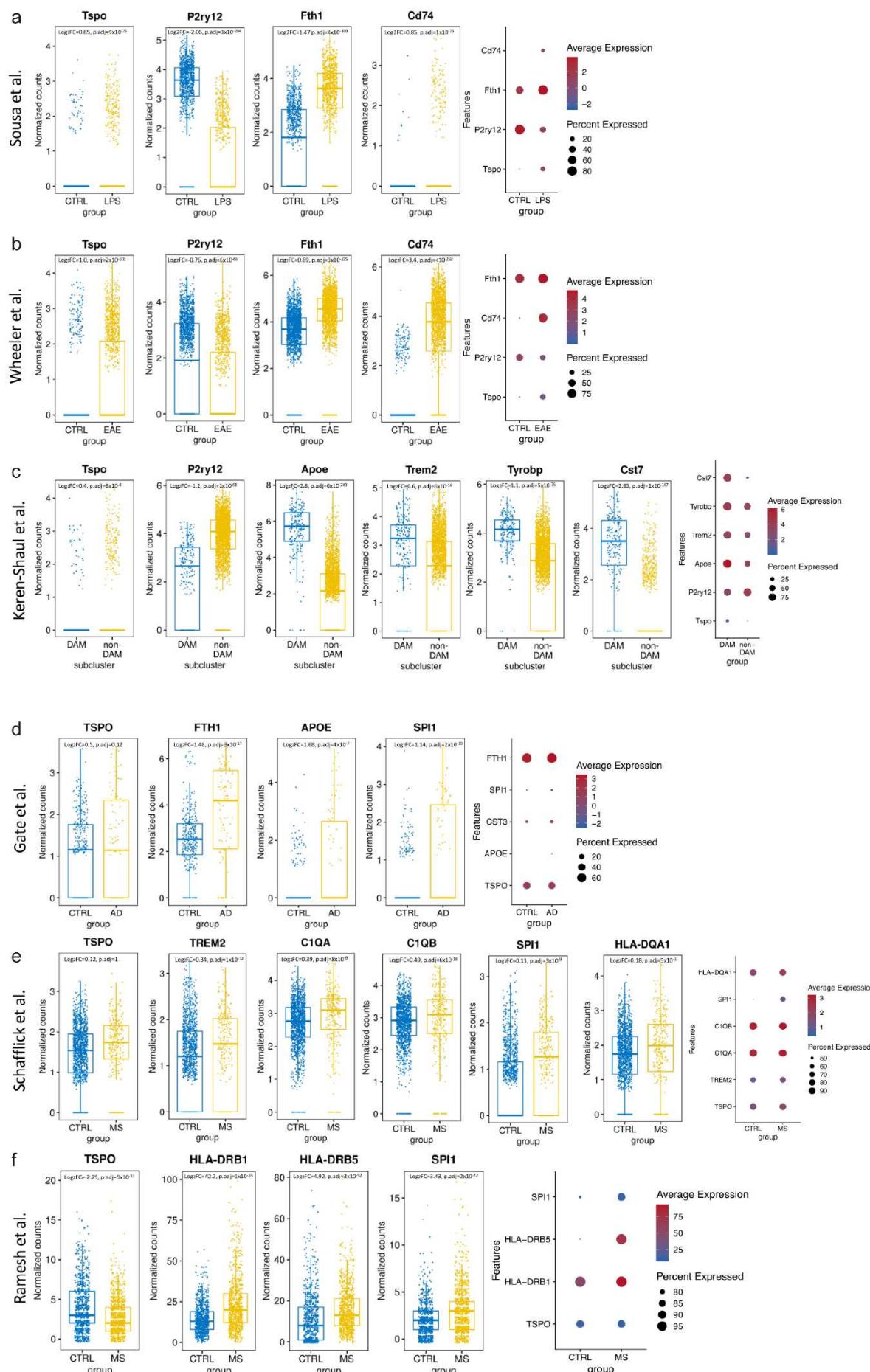

1077

1078


1079 **Figure 4. Microglia in the *App^{NL-G-F}* and *TAU^{P301S}* model increase TSPO expression.**

a, b Representative images of TSPO expression in microglia and astrocytes in *App^{NL-G-F}*

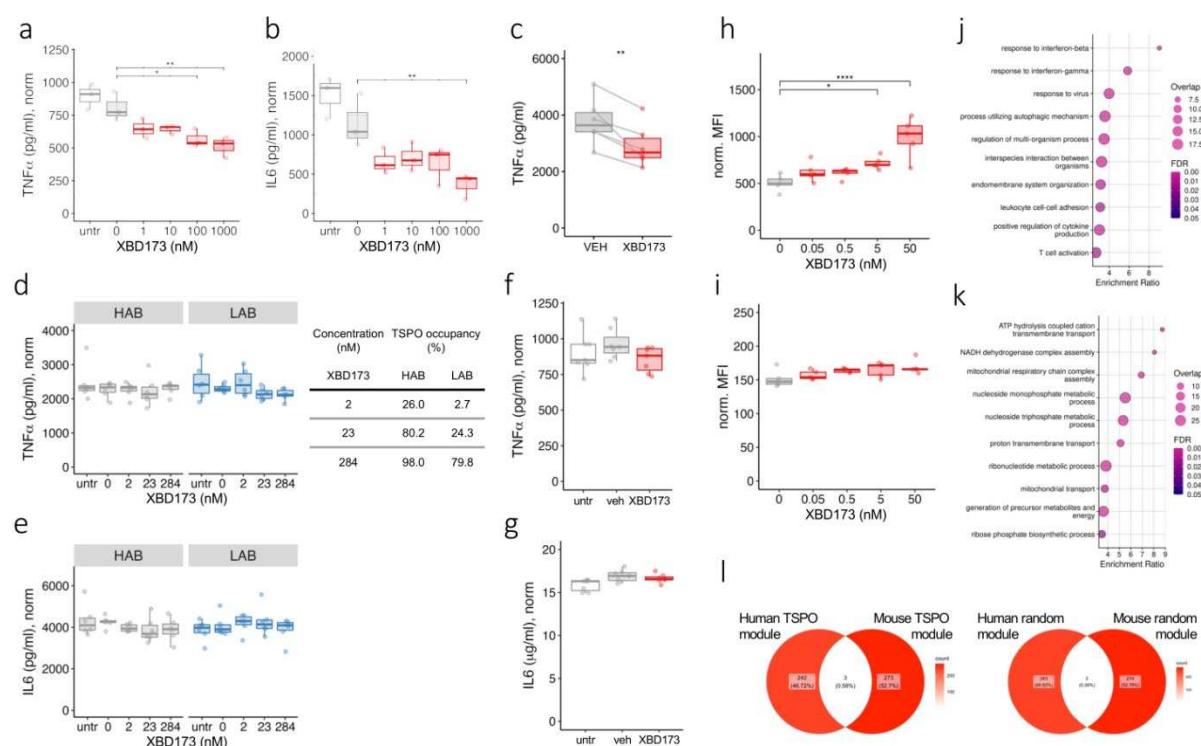
1080 hippocampus. **c** An increase was observed in IBA1+ microglia at 28 weeks ($P = 0.0078$,
1081 $t=3.522$, $df=8$) but not 10 weeks ($P = 0.8788$, $t=0.1565$, $df=10$) in App^{NL-G-F} hippocampus
1082 compared to control. **d** No increase in astrocytes was observed (10 weeks: $P = 0.6266$,
1083 $t=0.5019$, $df=10$; 28 weeks: $P = 0.4425$, $t=0.8080$, $df=8$). **e** TSPO+ cells were increased at
1084 28 weeks ($P = 0.0079$, $U=0$, ranks=15, 40) but not at 10 weeks ($P = 0.2375$, $t=1.257$,
1085 $df=10$) in the App^{NL-G-F} mice. **f,g** Both TSPO+ microglia ($P = 0.0005$, $t=5.658$, $df=8$) and
1086 astrocytes ($P = 0.0030$, $t=4.207$, $df=8$) were increased at 28 weeks in the hippocampus of
1087 App^{NL-G-F} mice but not at 10 weeks (microglia: $P = 0.7213$, $t=0.3670$, $df=10$; astrocytes: P
1088 = 0.9561, $t=0.056$, $df=10$). **h** Activated microglia ($P < 0.0001$, $t=7.925$, $df=8$), but not
1089 astrocytes ($P = 0.3095$, $U=7$, ranks=33, 22), in the App^{NL-G-F} model have increased TSPO
1090 expression. **i,j** Representative images of TSPO expression in microglia and astrocytes in
1091 TAU^{P301S} hippocampus. **k-m** No increases in microglia (8 weeks: $P = 0.3687$, $t=0.9608$,
1092 $df=7$; 20 weeks: $P = 0.9647$, $t=0.04580$, $df=7$), astrocytes (8 weeks: $P = 0.7353$, $t=0.3519$,
1093 $df=7$; 20 weeks: $P = 0.0870$, $t=1.989$, $df=7$) or TSPO+ cells (8 weeks: $P = 0.8492$, $U=9$,
1094 ranks=19, 26; 20 weeks: $P = 0.0876$, $t=1.985$, $df=7$) were observed in the hippocampus of
1095 TAU^{P301S} mice. **n,o** No increase was observed in the number of TSPO+ microglia (8 weeks:
1096 $P = 0.2787$, $t=1.174$, $df=7$; 20 weeks: $P = 0.0907$, $t=1.961$, $df=7$) or astrocytes (8 weeks: P
1097 = 0.8684, $t=0.1718$, $df=7$; 20 weeks: $P = 0.1984$, $U=4.5$, ranks=14.5, 30.5). **p** Microglia in
1098 the TAU^{P301S} increase TSPO expression ($P = 0.0133$, $t=3.471$, $df=6$) whereas astrocytes do
1099 not ($P = 0.5800$, $t=0.5849$, $df=6$). Statistical significance in **c-h** and **k-p** was determined
1100 by a two-tailed unpaired *t*-test or Mann-Whitney U-test when not normally distributed.
1101 Box and whiskers mark the 25th to 75th percentiles and min to max values, respectively,
1102 with the median indicated. Scale bar = 50 μ m, inserts are digitally zoomed in (200%).


1104 **Figure 5. TSPO is increased in microglia in SOD1^{G93A} mice but not in ALS spinal cord.**
1105 **a-c** Representative images of TSPO expression in microglia and astrocytes in ALS spinal
1106 cord. **d-f** An increase was observed in microglia ($P < 0.0001$, $t=7.445$, $df=19$), HLA-DR+
1107 microglia ($P < 0.0001$, $t=6.007$, $df=19$), and astrocytes ($P < 0.0001$, $t=9.024$, $df=19$) in ALS
1108 spinal cord when compared to controls. **g** A 2.5-fold increase of TSPO+ cells ($P < 0.0001$,
1109 $t=12.88$, $df=19$) was observed in the ALS spinal cord. **h,i** Up to a 3.4-fold increase in the
1110 density of TSPO+ microglia (TSPO+IBA1+ cell, $P < 0.0001$, $t=7.541$, $df=19$) (TSPO+HLA-
1111 DR+ cells, $P < 0.0001$, $t=3.368$, $df=19$) was observed. **j** TSPO+ astrocytes were
1112 significantly increased ($P < 0.0001$, $t=11.77$, $df=19$) in the spinal cord of ALS patients. **k**
1113 The increase in activated microglia and astrocytes was not associated with an increase in
1114 TSPO expression in microglia ($P = 0.7684$, $t=0.3046$, $df=8$) or in astrocytes ($P = 0.5047$,
1115 $t=0.6985$, $df=8$). **l,m** Representative images of TSPO expression in microglia and
1116 astrocytes in SOD1^{G93A} spinal cord. **n** An increase was observed in microglia in SOD1^{G93A}
1117 spinal cord when compared to controls at 16 weeks ($P=0.0115$, $t=3.395$, $df=7$) but not at
1118 10 weeks ($P = 0.5334$, $t=0.6509$, $df=8$). **o** An increase for astrocytes was observed for both
1119 10 weeks ($P = 0.0024$, $t=4.362$, $df=8$) and 16 weeks ($P = 0.0248$, $t=2.848$, $df=7$) **p** An
1120 increase in TSPO+ cells was observed at 10 weeks ($P = 0.0011$, $t=4.931$, $df=8$) but not 16
1121 weeks ($P = 0.7299$, $t=0.3594$, $df=7$). **q** No increase in the number of TSPO+ microglia was
1122 observed (10 weeks: $P = 0.5244$, $t=0.6656$, $df=8$; 16 weeks, $P = 0.0930$, $t=1.944$, $df=7$). **r**
1123 TSPO+ astrocytes were increased up to 15-fold in the spinal cord of SOD1^{G93A} mice (10
1124 weeks: $P = 0.0003$, $t=6.085$, $df=8$; 16 weeks: $P = 0.382$, $t=2.548$, $df=7$). **s** Despite no
1125 increase in the number of TSPO+ microglia, an increase in the amount of TSPO per cell
1126 was observed in microglia ($P = 0.0451$, $t=2.435$, $df=7$), but not astrocytes ($P = 0.4052$,
1127 $t=0.8856$, $df=7$). Statistical significance in **d-k**, and **o-s** was determined by a two-tailed
1128 unpaired *t*-test. Box and whiskers mark the 25th to 75th percentiles and min to max values,
1129 respectively, with the median indicated. Scale bar = 50 μ m, inserts are digitally zoomed in
1130 (200%).

1131

1132 **Figure 6. Microglia in mouse aEAE and PEAE, and marmoset EAE, but not MS,**
1133 **increase TSPO expression.** **a,b** Representative images of TSPO+ microglia and
1134 **astrocytes in MS.** **c** TSPO+ microglia ($P = 0.2278$, $t=1.306$, $df=8$) and astrocytes ($P =$
1135 0.5476 , $U=9$, $ranks=31, 24$) do not increase TSPO expression in MS. **d,e** Representative
1136 **images of TSPO expression in microglia and astrocytes in EAE mice.** **f-h** microglia ($P <$
1137 0.0001 , $F_{(3,20)}=25.68$), astrocyte ($P < 0.0001$, $F_{(3,20)}=25.51$), and TSPO+ cell numbers ($P <$

1138 0.0001, $F_{(3,20)}=44.53$), are increased during disease in aEAE mice and PEAE. **i,j** An
1139 increase in both TSPO+ microglia ($P < 0.0001$, $F_{(3,20)}=30.93$) and TSPO+ astrocytes ($P =$
1140 0.0005, $K-W=17.72$) is observed during disease. **k,l** TSPO+ microglia increase TSPO
1141 expression in aEAE mice ($P = 0.0136$, $t=3.152$, $df=8$), and in PEAE mice ($P = 0.0028$,
1142 $t=4.248$, $df=8$). Astrocytes do not increase TSPO expression in aEAE ($P = 0.0556$, $U=3$,
1143 ranks=37, 18), and PEAE ($P = 0.5918$, $t=0.5584$, $df=8$). **m,n** Representative images of
1144 TSPO+ microglia in marmoset EAE. **o** TSPO+ pixels are not increased in acute and
1145 subacute lesions in marmoset EAE relative to control. Statistical significance in **f-j,o** was
1146 determined by a one way ANOVA or Kruskal-Wallis test when not normally distributed,
1147 and by a two-tailed unpaired *t*-test or Mann-Whitney U-test when not normally
1148 distributed in **c,k** and **l**. Holm-Sidak's and Dunn's multiple comparisons were performed.
1149 Box and whiskers mark the 25th to 75th percentiles and min to max values, respectively,
1150 with the median indicated. Scale bar = 50 μ m, inserts are digitally zoomed in (200%).

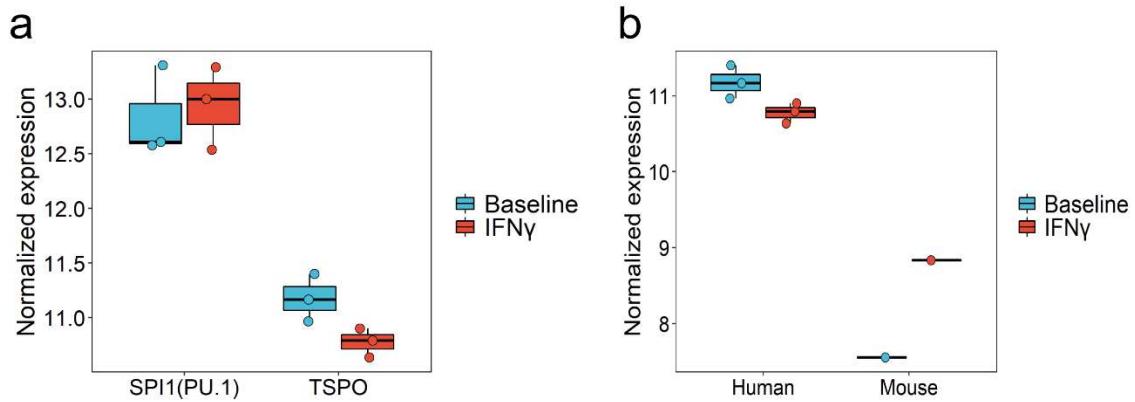


1152 **Figure 7. TSPO is increased in mouse but not human pro-inflammatory activated**
1153 **and disease-associated microglia. a-c** Boxplots and dotplots showing the significantly
1154 elevated expression of *Tspo* in mouse models of pro-inflammatory activation using LPS
1155 (GSE115571), of acute EAE (GSE130119) and of AD (GSE98969). The percentage of cells
1156 that express *Tspo* in mouse microglia is relatively low, but it is considerably increased
1157 after LPS treatment, in the EAE model and in the DAM cells. **d-f** TSPO is not significantly
1158 upregulated in microglia-like cells from the CSF of AD (GSE134578) and MS (GSE138266)
1159 patients. The percentage of cells that express a given gene corresponds to the size of the
1160 dot, whereas the average expression corresponds to the fill colour of the dot.

1161

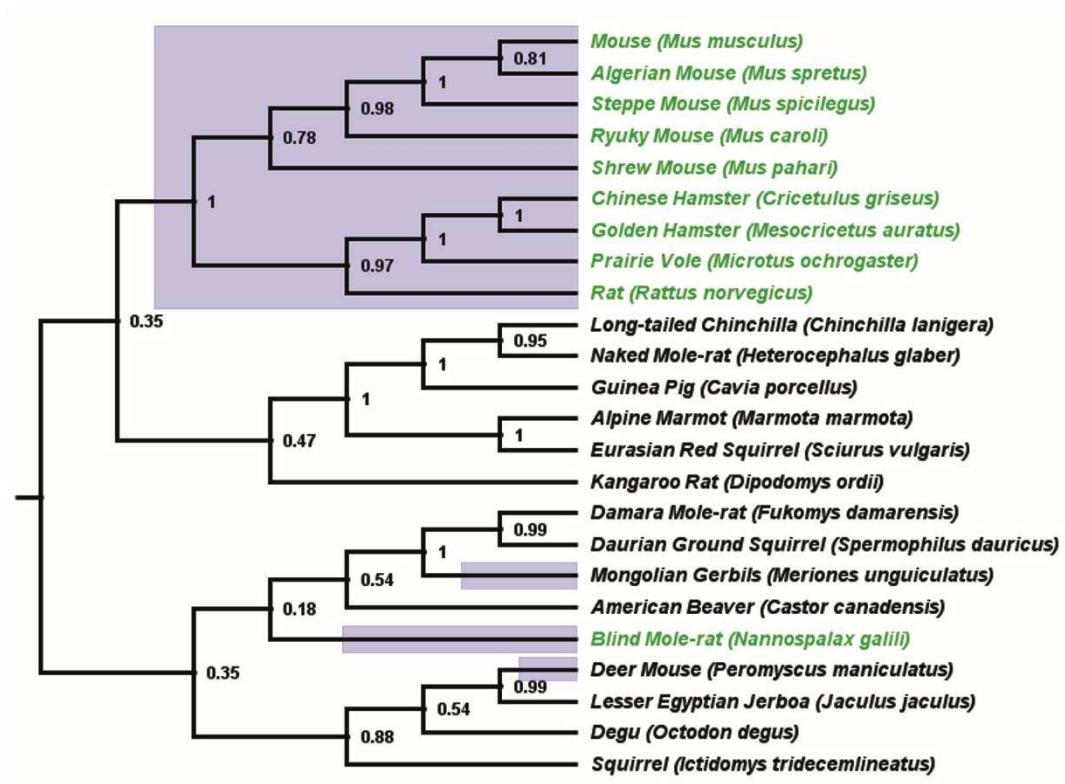
1162

1163



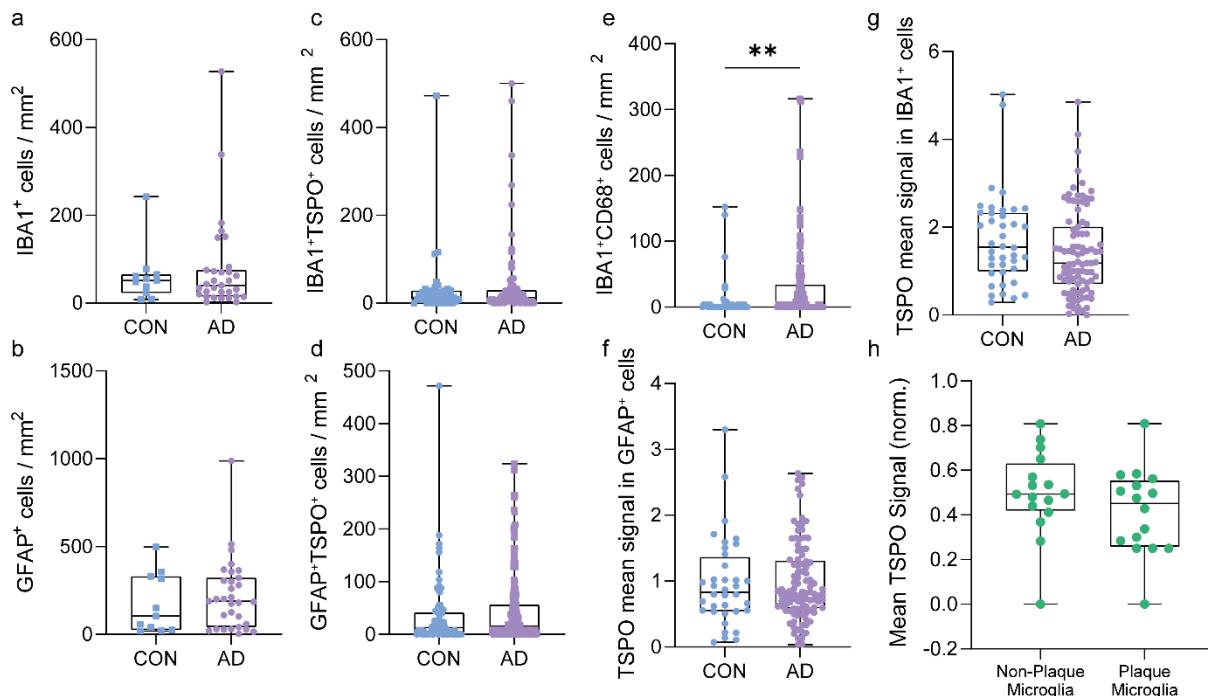
1164

1165 **Figure 8. TSPO ligand XBD-173 modulates classical pro-inflammatory myeloid cell**
1166 **function in mouse but not human myeloid cells.** **a-c.** The specific TSPO ligand XBD-
1167 173 reduces LPS-induced cytokine secretion in mouse BV2 microglia (**a,b**) and primary
1168 bone-marrow derived macrophages (**c**; BMDM, XBD = 10nM). (**a** $P = 0.0007$, $F = 9.646$, df
1169 = 5, $n = 3$, $padj_{(100)} = 0.014$, $padj_{(1000)} = 0.003$; **b** $P = 0.0008$, $F = 9.282$, $df = 5$, $n = 3$, $padj_{(1000)}$
1170 = 0.006; **c** $P = 0.005$, $n = 6$). **d-g** XBD-173 does not reduce LPS-induced cytokine secretion
1171 by human primary monocyte-derived macrophages derived from rs6971 AA individuals
1172 (high affinity binders, HAB), rs6971 TT individuals (low affinity binders, LAB) (**d,e**) or by
1173 hiPSC derived microglia-like cells (**f,g**) (**d** HAB: $P = 0.8333$, $K-W = 1.4624$, $df = 4$, $n = 6$;
1174 LAB: $P = 0.141$, $K-W = 5.8624$, $df = 4$, $n = 6$; **e** HAB: $P = 0.09999$, $K-W = 7.7796$, $df = 4$, $n = 6$,
1175 LAB: $P = 0.2097$, $F = 0.68$, $df = 4$, $n = 6$; **f** $P = 0.057$, $n = 7$, XBD = 200nM; **g** $P = 0.423$, $n = 7$,
1176 XBD = 200nM). **h,i** XBD-173 enhances phagocytosis in mouse BMDM (**h**) but not human
1177 monocytes (**i**) (**h** $P < 0.0001$, $F = 12.07$, $df = 4$, $n = 5$; **i** $P = 0.1728$, $K-W = 6.376$, $df = 4$, $n = 5$).

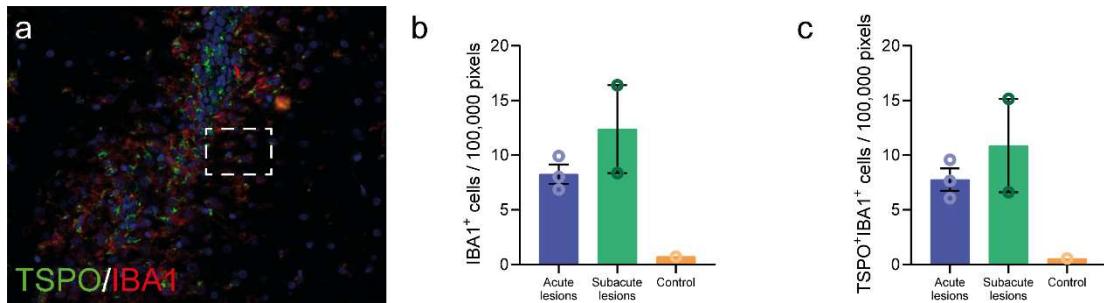

1178 **j-k** TSPO gene co-expression modules from naïve and pro-inflammatory primary
1179 macrophages in mouse and human. Gene ontology biological processes for the mouse
1180 TSPO module is enriched in classical proinflammatory pathways (**j**) and the human TSPO
1181 module is enriched for bioenergetic pathways (**k**). 3 genes overlap between mouse and
1182 human TSPO modules (**l**, left panel), compared to 2 genes overlapping between human
1183 and mouse random modules of the same size (**l**, right panel).

1184 Statistical significance in **a,b**, **d,e** and **i,j** was determined by one way ANOVA or Kruskal-Wallis test when not normally
1185 distributed and by a two-tailed unpaired *t*-test or Mann-Whitney U-test when not
1186 normally distributed in **c,f** and **g**. Box and whiskers mark the 25th to 75th percentiles and
1187 min to max values, respectively, with the median indicated.

1188


1189 **Figure S1.** **a** Boxplot showing TSPO fold change in human and mouse macrophages in
1190 baseline and IFN γ treated samples. **b** Boxplot showing PU.1 (SPI1) transcription factor
1191 and TSPO gene expression change in IFN γ treated macrophage compared to baseline
1192 condition.

1193


0.8

1194 **Figure S2.** Of the 24 rodent species examined here, 12/24 are from the Muroidea
1195 superfamily (purple branches). 10 of these 12 Muroidea species contain the AP1 binding
1196 site in the TSPO promoter (Green Highlight). We did not find any rodent species outside
1197 the Muroidea superfamily that contain the AP1 binding site in the TSPO promoter. The
1198 phylogenetic analysis shows that majority of the species (9/12) from Muroidea
1199 superfamily forms a single clade. Phylogenetic tree was generated using the Maximum
1200 Parsimony method in MEGA11. The consistency index (CI) is 0.623399 (0.553120) and
1201 the retention index (RI) is 0.525671 (0.525671) for all sites and parsimony-informative
1202 sites (in parentheses). The percentage of replicate trees in which the associated taxa
1203 clustered together in the bootstrap test (1000 replicates) are shown next to the branches.

1204

1205 **Figure S3. a-d** no increase in total or TSPO+ microglia (P) and astrocytes (P) are observed
1206 in control versus AD. **e** An increase in CD68+IBA1+ cells is observed in AD. **f,g** No
1207 increases in mean TSPO signal in microglia and astrocytes is observed in AD relative to
1208 control. **h** No differences are observed in mean TSPO signal in microglia associated with
1209 plaques compared to mean TSPO signal in microglia that are distant from plaques.

1210
1211
1212
1213

Figure S4. a Representative image of an acute lesion in marmoset EAE. IBA1⁺ and TSPO+IBA1⁺ cells are increased in acute and subacute lesions compared to white matter in control marmoset.

Planned Concentration (nM)	Measured Concentration (nM)
XDB173	XDB173
Cell supernatant 1.78nM XBD	2.0
Cell supernatant 1.78nM XBD	1.9
Cell supernatant 22.5nM XBD	21.8
Cell supernatant 22.5nM XBD	20.6
Cell supernatant 284nM XBD	290.6
Cell supernatant 284nM XBD	318.8

1214 **Figure S5.** Planned and measured concentrations of XBD173 in medium for experiments
1215 described in Figures 8d and 8e.

1216 **Supplementary Table 1. Clinical details of AD and control cases**

Case	Age/sex	Diagnosis	Region	Braak stage	PMD, h:min
AD cases					
1	81/F	AD	HC (anterior)	6	05:30
2	88/F	AD	HC (anterior)	6	06:19
3	62/M	AD	HC (anterior)	6	06:15
4	64/F	AD	HC (anterior)	6	06:30
5	76/M	AD	HC (anterior)	6	04:40
Controls					
1	65/F	NDC	HC	2	07:10
2	90/F	NDC	HC	3	06:10
3	81/F	NDC	HC	3	05:30
4	77/M	NDC	HC (anterior)	2	04:30
5	81/F	Ischemic changes	HC (anterior)	4	05:50

1217 Abbreviations: F – female; HC – hippocampus; M – male; NDC – non-demented control; PMD – postmortem delay.

1218 **Supplementary Table 2. Clinical details of ALS and control cases**

Case	Age/ sex	Diagnosis	DD, months	Cause of death	PMD, h	Primary onset	SPC levels
ALS short disease duration							
1	70/F	sALS	6	respiratory failure	< 12	leg	C/T/L
2	63/M	sALS	7	respiratory failure	< 12	leg	C/T/L
3	61/F	sALS	12	euthanasia	< 12	arm	C/T/L
4	60/M	sALS	12	euthanasia	< 12	arm	C/T/L
5	81/M	sALS	12	respiratory failure	< 12	respiratory	T/L
6	84/F	sALS	13	euthanasia	< 12	bulbar	C/T
7	56/F	sALS	16	euthanasia	< 12	leg	C/T/L
ALS medium disease duration							
8	43/M	sALS	36	unknown	< 12	arm	C/T/L
9	64/F	fALS	57	pneumonia	< 12	leg	C/T/L
10	68/M	sALS	87	euthanasia	< 12	arm	C/T/L
11	79/M	sALS (C9orf72)	107	pneumonia	< 12	arm	C/T/L
Controls							
12	60/M	bricker-bladder	N/A	lung embolism	< 24	N/A	C/T/L
13	63/M	kidney carcinoma	N/A	lung embolism	< 24	N/A	C/T/L
14	81/F	heart ischemia	N/A	endocarditis	< 24	N/A	C/T/L
15	63/F	adeno-carcinoma	N/A	paralytic ileus	< 24	N/A	C/T/L
16	69/M	oesophagus carcinoma	N/A	multi-organ failure	< 24	N/A	C/T/L
17	78/F	cholangio-carcinoma	N/A	multi-organ failure	< 24	N/A	T
18	75/M	COPD, pneumonia	N/A	respiratory failure	< 12	N/A	C/T
19	59/F	pleuritis carcinomatosa	N/A	respiratory failure	< 24	N/A	C/T/L
20	47/F	pancreas carcinoma	N/A	abdominal bleeding	< 24	N/A	C/T/L
21	54/F	gallbladder carcinoma	N/A	heart failure	< 48	N/A	C/T/L

1219 Abbreviations: C – cervical; COPD – chronic obstructive pulmonary disease; DD – disease duration; F – female; fALS – familial ALS; L – lumbar; M – male; PMD – postmortem delay; S – sacral; sALS – sporadic ALS; SPC – spinal cord; T – thoracic.
 1220

1221 Supplementary Table 3. Clinical details of MS and control cases

Case	Age/sex	Diagnosis	Disease duration, years	Cause of death	PMD, h:min
MS cases					
1	35/F	SPMS	10	Euthanasia	10:20
2	54/F	SPMS	27	Respiratory failure	9:25
3	50/F	SPMS	18	Euthanasia	9:05
4	50/M	SPMS	21	Unknown	10:50
5	63/F	Unknown	Unknown	Unknown	10:50
Controls					
1	84/M	NNC	N/A	Heart failure	5:35
2	89/F	NNC	N/A	Pneumonia	3:52
3	79/M	NNC	N/A	Heart failure	6:20
4	73/F	NNC	N/A	Mamma carcinoma	7:45
5	87/F	NNC	N/A	Pneumonia	7:00

1222 Abbreviations: F – female; M – male; N/A – not applicable; NNC – non-neurological control; PMD – postmortem delay; SPMS –
 1223 secondary progressive multiple sclerosis.

1224 Supplementary Table 4. Clinical History of mice with EAE

Mouse number	Sampling day	Age (weeks)
Acute young (aEAE)		
1	14 (4)	10-15
2	12 (4)	10-15
3	15 (4.5)	10-15
4	15 (4)	10-15
5	13 (4.5)	10-15
6	20 (4.5)	10-15
Acute old (PEAE)		
1	15 (4.5)	> 50
2	13 (5)	> 50
3	13 (4.5)	> 50
4	16 (4.5)	> 50
5	15 (5)	> 50
6	17 (4.5)	> 50

1225 EAE mice were immunized with SCH in CFA and monitored (sampling day refers to the day after immunization). Indicated clinical
 1226 scores are the maximal scores during neurological episodes of EAE. Abbreviations: EAE – experimental autoimmune
 1227 encephalomyelitis; aEAE – acute EAE, PEAE – **progressive EAE**.

1228 Supplementary Table 5. Clinical History of Marmosets

Animal ID	Gender	Disease Status	Age at EAE induction (years)	Disease duration (days)	Age (years)
1	M	Control	N/A	N/A	3
4	F	EAE	2.0	32	2.1
5	F	EAE	1.6	105	1.9
8	F	EAE	1.6	123	1.9

1229 Abbreviations: EAE – experimental autoimmune encephalitis; N/A – not applicable.

1230 Supplementary Table 6. Antibodies for immunohistochemistry and imaging mass
1231 cytometry

Antigen	Species (isotype)	Clonality	Dilution	Antigen Retrieval	Product Number	Supplier
TSPO	goat	pAb	1:750	Citrate	NB100-41398	Novus Biologicals
TSPO	rabbit	mAb	1:750	Citrate	AB109497	Abcam
IBA1	rabbit	pAb	1:10000	Tris-EDTA	019-19741	Wako
IBA1	goat	pAb	1:1000	Tris-EDTA	AB48004	Abcam
IBA1	guinea pig	pAb	1:100	Citrate	234004	Synaptic Systems
GFAP	chicken	pAb	1:500	Citrate	AB5541	Millipore
HLA-DR	mouse (IgG2B)	mAb	1:750	Citrate	14-9956-82	Invitrogen
A β IC16	mouse (IgG2A)	mAb	1:400	Citrate	N/A	in-house ^a
P-Tau AT8	mouse (IgG1)	mAb	1:400	Citrate	AB_223647	Invitrogen
PLP	mouse (IgG2A)	mAb	1:200	Citrate	MCA839G	Bio-Rad
IMC	Ln-Isotope					
CD68	159Tb		1:800	EDTA	3159035D	Fluidigm
GFAP	162Dy		1:600	EDTA	Ab218309	Abcam
HLA-DR	174Yb		1:400	EDTA	3174025D	Fluidigm
IBA1	169Tm		1:3000	EDTA	019-197471	Wako
TSPO	149Sm		1:400	EDTA	Ab213654	Abcam

1232 ^aWith permission from Carsten Korth, Heinrich Heine University, Düsseldorf, Germany. Abbreviations: GFAP – glial fibrillary acidic
1233 protein; IBA1 – ionized calcium-binding adaptor molecule 1; mAb – monoclonal antibody; pAb – polyclonal antibody; P-Tau –
1234 phosphorylated Tau (Ser202, Thr205).