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Abstract

Enzyme-mediated chemical modifications to mMRNA are important for fine-tuning gene
expression, but they are challenging to quantify due to low copy number and limited
tools for accurate detection. Existing studies have typically focused on the identification
and impact of adenine modifications on mMRNA (m°®A and inosine) due to the availability
of analytical methods. The pseudouridine (¢) mRNA modification is also highly
abundant but difficult to detect and quantify because there is no available antibody, it is
mass silent, and maintains canonical basepairing with adenine. Nanopores may be
used to directly identify g sites in RNAs using a systematically miscalled base, however,
this approach is not quantitative and highly sequence dependent. In this work, we apply
supervised machine learning models that are trained on sequence-specific, synthetic
controls to endogenous transcriptome data and achieve the first quantitative
occupancy measurement in human mRNAs. Our supervised machine learning models
reveal that for every site studied, different signal parameters are required to maximize y
classification accuracy. We show that applying our model is critical for quantification,
especially in low-abundance mRNAs. Our engine can be used to profile y-occupancy
across cell types and cell states, thus providing critical insights about physiological
relevance of y modification to mMRNAs.

Introduction

RNA modifications are critical for cellular function, as demonstrated by their requirement
for proper folding and stability of tRNA and rRNA where they were first discovered'. By
analyzing these highly expressed RNAs, over 100 different types of RNA modifications
have been discovered and characterized using analytical tools such as mass
spectrometry? and thin-layer chromatography3. As sequencing technologies have
developed, many of these modifications have also been identified on messenger RNAs
such as inosine?*, N6-methyladenine (m®A)%¢ and pseudouridine’8. Next-generation
sequencing studies have begun to unravel the role mMRNA modifications play in fine-
tuning gene expression. However, identifying the precise modification site within the
MRNA sequence and the fractional occupancy (i.e., fraction of copies with that
modification) is a daunting task®. Low mass abundance of individual mMRNA species in
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transcriptomes precludes the use of existing methods such as mass spectrometry, and
chemical labeling methods are not quantitative. Pseudouridine () is among the most
highly represented mRNA modifications and is typically detected using biochemical
labeling methods. Pseudouridine-modified mRNAs are more resistant to RNAse-
mediated degradation'® and also have the potential to modulate immunogenicity!' and
enhance translation'? in vivo. During the COVID-19 pandemic, y has taken the spotlight
due to the inclusion of the methylated g analog, N1-methylpseudouridine, in the
Moderna'® and Pfizer'* mRNA vaccines for SARS CoV-2.

Tools for high-confidence, transcriptome-wide identification of RNA modifications, in
particular g, have been somewhat limited due to a lack of chemical specificity and
proper ‘gold-standard’ controls for accurate benchmarking. Coupling next generation
sequencing (NGS) with modification-specific chemicals (i.e. CMC”8'® or bisulfite
sequencing'®) can be used to identify sites, but due to a reliance on cDNA amplification
this method is not quantitative and prone to bias. Thus, there is little overlap between
the identified sites using each method. Moreover, since these methods rely on base
deletion or read termination for detection, tandem modifications on the same transcript
cannot be detected. To this end, non-destructive detection of native RNA molecules is
the most attractive approach for reading epitranscriptome landscapes. The most
promising method thus far has been direct RNA nanopore sequencing, which offers the
ability to preserve full-length RNA structural information?”. In this method, an RNA
strand is ratcheted through a nanopore and the ion current signal produces reports on
its sequence by sequentially reading a string of k-mers (k=5). Variance in the signals
from the consensus expected signals of unmodified bases can be used to identify
modifications. We and others have recently shown that these signal anomalies produce
systematic base-calling errors at or near the site of g modification'®-22. In addition,
prediction models have been developed to improve modification calls by leveraging
features like deviations in the expected ionic current, systematic base mismatches,
changes in base quality score, and insertion/deletion rates'®:20-23,

Previous works have reinforced the confidence of y-site calling from direct RNA
sequencing data, which often presents itself as a U-to-C mismatch error. However, the
training data sets contain satellite modifications close to the y-site, which can introduce
undesirable noise and reduced accuracies when training a 5-mer specific model. For
example, in vitro transcribed RNA constructs bearing all combinations of y-containing 5-
mers have been used to generate nanopore-based training data for ¢ modifications?*.
While cost-effective, since all U sites have been replaced with y, training a y detection
model for regions in native RNAs where the 5-mer sequence contains more than one U
site is not feasible. Recent work by Fleming et al.?! involved the design of synthetic
constructs that separate y-sites by ~25 nucleotide spacers to remove the effects of
satellite modifications at the protein motor and pore, allowing them to test signal dwell
time corresponding to when y is located in the helicase motor as another feature for
discrimination. With these constructs, U-to-C mismatch rates varied from 10% to 97%
across 15 different y-modified 5-mers. However, these constructs also lack 5-mers with
canonical U’s adjacent to g, which are often found in the transcriptome.
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To address these challenges and improve the accuracy of g detection by direct RNA
sequencing, we performed a meta-analysis of four synthetic constructs bearing a singly-
modified @ within an endogenous mRNA sequence. These four sites were flagged by
our y-detection algorithm?2. Interestingly, we found that the U-to-C mismatch rates for
the 100% w-modified constructs varied from 30% to 70%, and further, that these
depend on the specific k-mer and sequence context. If mismatch errors were fully
quantitative, we would expect to see 100% U-to-C mismatch in all constructs; however,
the method is highly sequence-specific, and is therefore only effective at identifying
modification sites™®.

We were interested to see whether our synthetic constructs can be used for training 5-
mer specific models that can accurately quantify y occupancy at identified sites in
native mRNA. Toward this, we developed and tested a computational tool that can train
supervised- machine learning (ML) models on nanopore-based features derived from
our four synthetic y-modified constructs to subsequently quantify y occupancy at these
specific locations in native HeLa mRNA transcripts. We find that @ discrimination with 5-
mer-specific ML models trained with basecalling and raw signal features prepared from
labeled 100% and 0% w-modified synthetic reads can achieve accuracies above 90%,
even at low g occupancies. In addition, we found that the combination of features
conducive for classification accuracy depends on the sequence context of the y-
modified 5-mer region. Finally, we applied these trained models and achieved the first
demonstration of site-specific ¢y quantification in human mRNAs.

Results

Supervised Machine Learning on y-modified Synthetic Transcripts. Our pipeline
for quantitative g profiling is shown in Figure 1. We recently developed a set of four
synthetic RNA control standards that bear established and putative y-modification
positions in the HelLa transcriptome?2. Briefly, two of the constructs, MCM5 (chr22:
35424407,UGUAG) and PSMB2 (chr1: 35603333, GUUCG), have been validated by
CeU-seq'®, y-seq?, and RBS-seq'®, while the other two, MRPS14 (chr1: 175014468,
ACUUA), PRPSAP1 (chr17: 76311411, GAUUG) were indirectly detected de novo by
observing a significantly high U-to-C mismatch error in direct RNA nanopore
sequencing. We will subsequently refer to each of these constructs by the gene name
and omit the modification position. Briefly, 100% w-modified (syn-y) standards bearing
a y-modification were generated (Fig. 1a, yellow box), as well as the corresponding,
sequence-matched, unmodified transcript (syn-U). We were interested to compare
different supervised machine learning (ML) models and find the optimal model that can
accurately and quantitatively classify y-sites in the synthetic controls. To determine the
most optimal combination of features we extracted basecalling and raw signal features
at both local (y-site) and remote (upstream) for a total of 60 features.

Understanding which signal features optimize g classification in mRNA is a crucial step
when developing a quantification method. Thus, we extracted 60 signal features from
each synthetic read that passed the 2" filtration stage (see methods) in both the syn-U
library and syn-y library (Fig. 1c) using nanopolish?®. These features were
subsequently used to generate and test different supervised machine learning
classifiers. The features were basecalls, which included deletions, quality scores of
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positions -2, -1, 0 [U/y], +1, +2, current mean, current standard deviation, dwell time,
and Fourier coefficients 2 and 3 (FC2 and FC3) of the 5-mers where y is positioned at -
2,-1,0, +1, +2, and going 12 bases upstream (3’ direction) to the 5-mers when y is at
the protein motor (-14, -13, -12, -11, -10) we also extracted their current mean, current
standard deviation, dwell time, and FC2, FC3. Raw signal features were extracted and
compiled into one dataframe from Fast5 files using the eventalign resquiggle tool from
nanopolish®® (Supplementary Table S5).

Selecting a supervised machine learning classifier. We assessed the contribution
of upstream features (i.e. features that are related to the presence of y in the protein
motor twelve nucleotides upstream) and found that they did not have an impact on
model accuracy (Supplementary Figure S2). Hence, we continued our analysis with
only local y features and removed upstream features, leaving 35 features for ML
training. We applied five different supervised ML classifiers for each synthetic construct:
logistic regression (LR), gradient boosting (GBC), K-nearest neighbors (KNN), random
forest (RF), and support vector machine (SVM). We trained and fit the parameters of
each classifier with 75% of the data and assessed its performance with the remaining
25%.
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Figure 1. Synthetic RNA pipeline for quantitative pseudouridine profiling. a, A typical RNA
processing pipeline from cells (left) or a synthetically prepared library (right). After RNA extraction,
mRNAs are isolated for library preparation. IVT (unmodified) control library is generated by reverse
transcription of mMRNA followed by in vitro transcription. Libraries are subjected to direct RNA sequencing
on the MinlON followed by basecalling and alignment, followed by site-specific machine learning (ML)
and quantitative y detection. b, Top: example current trace obtained during nanopore sequencing of syn-
PSMB2-y synthetic control for the PSMB2 gene that contains a y-site, where each discrete signal
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fluctuation is associated with presence of a particular RNA k-mer in the pore (k=5). Scheme below
illustrates the direction of motor-driven RNA motion through the pore, highlighting the critical positions
where the signal is read where the y-centered k-mer is at the pore reader position (pink). Bottom traces
show expanded views of the raw signal trace (black) obtained for those sites where y is present in the
pore constriction, as well as various Fourier components of the raw signal, used for ML-based y
detection. Right: hairline basecalling plot shows the query (top row), with D representing deletions, vs.
reference (left column) base calls observed in syn-PSMB2-y reads (n=1,200) at the 5-mer region with @
at position 0, where 38.2% U-to-C mismatch error is found (1.8% was found for the syn-PSMB2-U
construct). c, Flowchart describing two general approaches for y detection using direct RNA nanopore
sequencing. Dashed box represents a U-to-C mismatch error approach to identify y sites, and bottom row
represents integration with synthetic mMRNAs and machine-learning classification to quantify y occupancy
in these sites.

To determine which of the five ML classifiers consistently yields the highest sensitivity
and specificity for each construct, we trained each model and evaluated the Receiver
Operator Characteristic (ROC) curve and its associated area under the curve (AUC)
with the testing dataset (Fig. 2a-d, left) The ROC curve was obtained by sweeping the
call threshold on the probabilistic output of the models. For the PSMB2, PRPSAP1, and
MCMS5 synthetic constructs, we observed an AUC equal to or greater than 0.94 for each
ML model. Similar results were seen with MRPS 14, except the AUC for LR and KNN
was 0.92 and 0.91, respectively. For the PSMB2, PRPSAP1, MCM5, and MRPS14
synthetic constructs, the RFC and GBC consistently generated equivalent, and highest,
AUC results among the five classifiers.

To evaluate which of the two (GBC and RFC) yielded the highest accuracy, we
generated 10 random train-test split sets for each classifier and calculated the mean
and standard deviation of the model’s accuracy for each set. We found that the GBC
classifier consistently had the highest accuracy for all 4 synthetic constructs, with GBC
having an accuracy of 0.97+0.00 for PSMB2, 0.92+0.01 for PRPSAP1, 0.94+0.01 for
MCMS, 0.94+0.01 for MRPS14. In comparison, the next best model, RFC, displayed an
accuracy of 0.95+0.00 for PSMB2, 0.91+£0.01 for PRPSAP1, 0.94+0.01 for MCM5, and
0.92+0.01 for MRPS14 (Supplementary Table S6). Due to its superior accuracy, we
implemented the GBC model for the remainder of our analysis.

Evaluating the sensitivity and specificity of y detection using the GBC model. To
evaluate our capacity to detect y at different occupancies, we generated multiple test
sets with different ratios of syn-U and syn-y reads and compared our highest accuracy
ML model (GBC) to the U-to-C mismatch error model for the same test sets. In total, we
produced 20 different test sets ranging from 5% syn-y (95% syn-U) to 100% syn-y (0%
syn-U), in 5% increments. To assess reproducibility, we reshuffled the dataframe 10
times for each synthetic construct, yielding different combinations of training and test
sets (see Methods for details). In Fig 2a-d we show the mean true positive (TP) trend
of y classification, calculated by dividing the g calls by the total test set size (green
markers). The GBC model performed with a TP accuracy of >90% across all fractions of
g for PRPSAP1, MRPS14, and MCMS5. To determine whether the GBC classifier was
overfitting to syn-y reads, we looked at the false positive (FP) trend, which occurs when
the model misclassifies syn-U reads as syn-y reads, as a function of y ratio (red
markers). As expected, the FP trend had an inverse relationship with syn-y occupancy,
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<10% for any syn-y ratio for PSMB2(0.03), PRPSAP1(0.08), MRPS14(0.06), and
MCM5(0.07). As a result, we note that for very low @ occupancies (<15%), the model
performs poorly in distinguishing g from U.

Finally, we compared the accuracies of the GBC model to the U-to-C mismatch rate g
calling by plotting the mean and standard deviation of the U-to-C TP trend (i.e., the ratio
of y TP calls to the total size of the test set size) for each artificial syn-y fraction.
Notably, the GBC greatly outperforms the U-to-C classifier for all 4 synthetic constructs,
despite the fact that U-to-C mismatch rates vary widely from k-mer to k-mer. The U-to-C
mismatch rate for PSMB2 was 38% in a 100% syn- g dataset, while the GBC model
called 97% of the dataset as y.
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Figure 2. Performance of machine-learning (ML) classification for synthetic g controls. a-d,
Machine-learning classification accuracy after training on 35 signal features when y-site in labeled
synthetic constructs is present in the pore constriction. Left: Receiver operator characteristic (ROC)
curves of five different supervised ML classifiers: support vector machine (SVM), random forest classifier
(RFC), K-nearest neighbors (KNN), gradient boosting classifier (GBC), and linear regression (LR), along
with their respective area-under-curve values in parentheses. Top right: Mean classification accuracy of g
true positive (TP) rate out of total y samples present in the test set (true positives/(true positives+false
negatives)) as a function of y fraction in the test set using the GBC classifier (ten models generated for
each percentage y with random combinations of data for training and testing). The error bars represent
the standard error of the TP rate for those ten models. Bottom right: The mean and standard deviation of
TP y prediction by GBC models (the same ten GBC iterations used for the TP rate analysis) divided by
total size of the test set is shown in green at each y fraction. Dashed black line represents perfect
discrimination of all y and control samples in the test set at each y percent ratio. The mean and standard
deviation of false positive (FP) calls by the GBC divided by total size of the test set at each y percent ratio
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are shown in red. The mean and standard deviation of a U-to-C mismatch classifier divided by the total
size of the test at each y percent ratio are shown in blue.

What are the most important features that contribute to the accuracy of the GBC model?
After training and testing the GBC model, we used scikit-learn's?® feature importance
tool to obtain the weights for all 35 features, which is an estimate of their relative
importance during model fitting (see Sl, Tables S7-10). Quality score features were
present in the top 10 list for all the synthetic constructs except for PSMB2, while Fourier
components were only seen in the top 10 list of MRPS14. These results demonstrate
that the relative importance of individual features is highly dependent on the specific k-
mer sequence, as recently suggested by others'2",

Quantification of site-specific pseudouridine modifications in HeLa cell mRNA.
Following the development of an accurate model for y-site detection using our synthetic
controls, we applied it to profile y-site occupancies based on three independent direct
mRNA nanopore sequencing datasets for HeLa transcriptomes from Tavakoli et al.??
The three datasets (D1,D2 and D3) were extracted and filtered using the same filtration
steps implemented on the synthetic constructs. Additionally, HeLa IVT reads that
aligned to the gene targets were extracted and filtered. After filtration, the 35 features
used to fit the GBC model during syn-y training and testing were parsed from each
native read and compiled for classification. For each synthetic construct, we generated
ten GBC models by fitting each one to a reshuffled synthetic dataset with a split of 85%
for training and 15% for testing. Subsequently, each model was invoked onto the HelLa
MRNA reads for single-read y prediction, providing a y-quantified output for each gene
from D1, D2, and D3 experiments (Fig. 3a).
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Figure 3. Quantification of y in HeLa cell mMRNA with synthetic-trained machine learning models. a, @
quantification of Hela mRNA targets (PSMB2, MCM5, PRPSAP1, MRPS14) observed in three

independent sequencing libraries, direct 1 (gold) and direct 2 (red), and direct 3 (purple) using a gradient
boosting classifier (GBC) trained with the corresponding syn-y and syn-U constructs. The same 35 target
features used to train each GBC model were extracted from each Hela mRNA read that passed the
necessary filtration stages. The mean and standard deviation illustrate the result of y occupancy called by
ten randomly generated GBC models that were all re-corrected using the ratio calibration of true positive
and false positive fits observed for each mRNA syn-y construct (green and red trends in Figure 2). The
calculated TPM for each gene is annotated next to each marker. The acronyms for the top five weighted
features for each replicate-trained GBC model are shown. b, Comparison of y true-positive standard
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deviation when syn-PSMB2-y reads are predicted with either a U-to-C mismatch classifier (blue) or an
GBC (green) as a function of read coverage. Standard deviation of the U-to-C mismatch classifier for
each read coverage increment on the x-axis is obtained through resampling reads from the syn-PSMB2-y
sample 30 times. A similar approach is used for obtaining GBC y true-positive standard deviation, except
that the resampled syn-PSMB2-y reads are only extracted from the test set and not the training set used
to build the GBC. The histogram displays the total differential mMRNA read coverage captured in the direct
1 library. Square markers indicate actual standard deviations for the three direct RNA sequencing
replicates of PSMB2.

Prior to comparing the model-predicted @ occupancy for all three direct experiments for
each gene, the artificial g TP trend (green markers) and FP trend (red markers), (Fig.
2a-d bottom, bottom right) observed during synthetic model training and testing was
used to derive a re-correction factor for each gene by summing both together for each y
fraction and taking the slope of the linear fit. After reweighing the initial quantified
prediction of each model on HeLa mRNA, we observed similar g frequencies (within
10%) across all three independent experiments for PSMB2 and MCM5 (Fig. 3a). For
PSMB2, we observed a re-corrected mean y-occupancy of 0.89 (D1, D2, and D3). For
MCMS5, the GBC estimated a mean y-occupancy of 0.52. For PRPSAP1, the GBC
estimated a mean y-occupancy of 0.59. For MRPS 14, the GBC estimated a mean y-
occupancy of 0.29. The read coverage and base mismatch rate per direct experiment
for each mRNA are shown in Supplementary Table S1-4). Next to each result in Fig.
3a we have annotated the transcripts per million (TPM) count.

To assess the strength of our method in overcoming low-read coverage, we tested and
compared the TP rate of our GB classifier with the U-to-C mismatch classifier generated
for PSMB2 as a function of read count with our syn-PSMB2-y dataset (Fig. 3b). For
each read coverage bin, which ranged from n=7 to n=200 in increments of n=2, we
resampled from the syn-PSMB2-yp dataset multiple times and calculated the TP
standard deviation for both the GB and U-to-C mismatch classifiers (green and blue
data points, respectively). Compared with the U-to-C mismatch classifier (blue), the
standard deviation of the TP rate for our GBC classifier was substantially lower across
all read counts. Furthermore, we used the feature Counts module from Rsubread?’ on
our direct 1 HeLa mRNA library to corroborate that the majority of mRNA transcripts
captured in nanopore sequencing have a relatively low read coverage (Fig. 3b,
background histogram in gold). Moreover, the standard deviations from ML g
quantification results for all PSMB2 direct RNA sequencing data (Fig. 3a) are in
agreement with the fit of the TP rate standard deviation versus read coverage for the
PSMB2-trained GBC (Fig. 3b).

Discussion

It has been previously established that U-to-C mismatch error may be used to identify
sites of pseudouridine modification'®22. However, based on the synthetic controls
established in Tavakoli et al., the variable U-to-C mismatch rate for the y-modified
synthetic controls demonstrates that this method is not quantitative, and highly
dependent on the sequence context. The Guppy (3.2.10) basecaller was trained on a
heterogenous population of RNAs containing a majority of canonical nucleotides, but
also containing modified nucleotides. Since this basecaller was not trained on k-mers
that exclusively contain y-sites, mismatch errors are inconsistent (Fig. 1b), requiring re-
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training in the right sequence context in order to accurately distinguish g from canonical
U.

To determine what combination of features can enhance y discrimination, we extracted
from the sequencing data a total of 60 raw signal features and found that 35 local
features were critical for @ discrimination (Supplementary Table S5). Upstream
features corresponding to presence of the suspect y-site in the protein motor (12
nucleotides upstream from the y-site in the pore) were considered because of a recent
report?! that showed y modifications with an adjacent 5’ guanosine (G) can induce
distinct pauses in motor protein steps. However, Stephenson et al.? showed that G-rich
RNA sequences can also stall the motor protein, making it a less reliable parameter
under circumstances where y is near or on a polyG region. We therefore excluded
these features because these did not provide a noticeable boost in accuracy
(Supplementary Figure S2).

Five different supervised ML models were tested for each synthetic construct, and we
found that GBC consistently provided the highest classification accuracy for every
synthetic replicate. Conversely, previous algorithms have used KNN for y quantification
which we observed to have the lowest AUC and classification accuracy
(Supplementary Table S6). This may be attributed to the high dimensional feature
space (35 dimensions) of our training data, which is not suitable for KNN, and that was
previously trained on a 6-dimensional data set based on the quality scores of three
bases and the current mean of three 5-mers (-1, 0 [U/y], +1)'®. GBC accuracies were
high across different constructs, with mean TP rates (TP/(TP+FP)) >0.9 for PSMB2
(GUUCG), PRPSAP1 (GAUUG), MCM5 (UGUAG), and MRPS14 (ACUUA) across all
concentration increments from 5% - 100% (Fig 2, top right). Evaluating the top five
weighted features for the trained models (see Supplementary Information, page 16)
generated for each construct using scikit-learn's feature importance revealed that not a
single feature was retained across all synthetic constructs. We observed a variable
degree of separation and difference in correlation among the top five weighted features
between syn-y and syn-U with respect to each construct (Supplementary S4-S11).
Moreover, we found signal features that correspond to 5-mers with g in the +2 and -2 to
be among the top five fitting parameters for MCM5 (UGUAG), MRPS14 (ACUUA), and
PRPSAP1 (GAUUG), with current mean of the +2 5-mer having the highest weight for
MCMS5.These results further highlight the critical need to train models that consider the
sequence context neighboring the modified site, which should also ensure all 5-mers
bearing g in every position (-2, -1, 0, +1, +2) to be sequenced without the influence of
any neighboring y modifications.

Finally, we applied our computational engine to HeLa mRNA reads that aligned to the
corresponding gene from three biological replicates. Remarkably, the ¢y occupancy
called by the GBC model was similar for all three direct experiments for PSMB2 (chr1:
35603333) and MCMS5 (chr22: 35424407). Based on the functions of these genes,
PSMB2 is a component of the 20S core proteasome complex that degrades most
intracellular proteins, while MCMS5 is involved in the initiation of DNA replication during
mitosis. For the MRPS14 (chr1: 175014468), the GBC predicted similar y-occupancy
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across D1 and D3, while there was a noticeable increase in the y-occupancy at D2 (Fig
3a). The GBC trained for PRPSAP1(chr17: 76311411) estimated a similar y-occupancy
for D1 and D2 at ~65%, while D3 had a lower y-occupancy at ~45%. The computational
engine we developed here achieves the first quantitative y occupancy measurements in
human mRNAs from direct RNA sequencing data. This 2-step engine first integrates
endogenous transcriptome data to identify putative sites de novo via specific U-to-C
basecalling errors??), and then quantifies the y occupancy at a given site using ML
models that are trained on sequence-specific synthetic mRNA standards. Our
application of supervised ML models reveals that for each y-site studied, different signal
parameters are required to maximize y classification accuracy. Applying our models
resulted in quantification of these y-sites with a much higher accuracy than U-to-C
basecalling errors provide. We show that this improved quantification ability of our
engine is particularly critical for low-abundance mRNAs, for which typical mMRNA
coverage are low for a MinlON run (<10). Additional synthetic controls for validated y-
sites applied in combination with our new computational engine, would enable us to
profile patterns of y mRNA modification with high accuracy from minlON direct RNA
sequencing libraries.

Methods

Alignment

After basecalling with guppy (3.2.10), fastq reads that passed the default ONT filtration
stage (>Q7) were aligned to the synthetic reference using minimap 2 (2.17) with the
option “-ax map-ont -un -k15”. The sam file was converted to bam using samtools
(1.10). Bam files were sorted by “samtools sort” and indexed using “samtools index” and
visualized using IGV (2.8.13). Finally, a bam file was prepared for each synthetic
construct by slicing out the corresponding reads from the original bam file using
“samtools view -h -Sb”.

Filtration

After alignment, a second-stage filtration step was implemented to remove reads that
were truncated near the site of modification. For the synthetic replicates, y was located
on position 511 for all four transcripts. Each read was scanned for the position of y, the
7 bases upstream (3’) from y, and the 7 basecalls downstream (5’) from y, denoting
this region as the 15-mer target segment. Next, using Rsamtools (3.6.0), we set the
filter pass conditions to only retain reads with a mapping quality score of 50.
Additionally, each read was required to have no more than three deletions within its 15-
mer target segment. Finally, reads with one or more insertions in the 15mer target
segment were filtered out. Reads that were retained after this stage were passed onto
the next stage for feature extraction.

Feature extraction
Basecalls and quality scores were extracted with Rsamtools (3.6.0). Current data used
to prepare signal features was extracted using nanopolish eventalign.

Data preprocessing
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For each construct, features from syn-y and syn-U reads were labeled and combined
into one dataframe. We used the scikit-learn python library (1.0.2) for data
preprocessing and model training and testing. For each replicate, the dataset was
resampled to contain an equal sample size of both unmodified and y modified
transcripts. The y modified data was the limiting factor for all four targets. Next, the
dataset underwent a 75/25 split, where 75% of the reads were randomly binned into the
training set and the remaining 25% went into the test set. The features in the training set
were normalized using the scikit-learn’s StandardScaler function, where the mean was
centered around 0 and the first standard deviation was +/-1. The normalization
parameters were then used to scale the features in the test set.

Model training/testing/evaluation

The five supervised ML models (support vector machine, logistic regression, random
forest, and k-nearest neighbors) were imported from scikit-learn. Every model was
trained and tested with each construct-specific dataframe. The accuracy and
reproducibility of the models were assessed through multiple training and testing
iterations (n=10), where for every model generation, the dataframe was reshuffled in
order to produce a new 75-25 split. ROC plots were made with scikit-learn’s
plot_roc_curve. Model accuracy as a function of y concentration (Fig 2) was acquired
from 10 different models that were generated with a balanced training set and
subsequently implemented on test sets that varied in w:U ratio. The original test set was
resampled to get the desired y ratio.

HeLa mRNA classification and analysis

The same features from synthetic reads used for model generation were extracted and
prepared from native reads. Prior to y quantification of native reads, the GBC model
was trained on synthetic data corresponding to the native reads with an 85-15 split.
Native data was normalized with the same parameters used to scale the testing data.
Next, the model classified every native read as g or unmodified. This process was
repeated ten times, with each model having a different train-test split. Finally, the
reported g percentage present in the native reads was recorrected with the addition of
the model’s average false positive and true positive values observed from the analysis
that tested model accuracy as a function of y occupancy (Fig 2).

Code availability
Scripts for all analyses presented in this paper, including all data extraction, processing,
and graphing steps are freely accessible at https://github.com/wanunulab/psiquant.

Data availability

All raw and processed data used to generate figures and representative images
presented in this paper are available at
https://www.biorxiv.org/content/10.1101/2021.11.03.467190v1.

Statistical analysis
All experiments were performed in multiple, independent experiments, as indicated in
the figure legends. All statistics and tests are described fully in the text or figure legend.
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