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Abstract  
Enzyme-mediated chemical modifications to mRNA are important for fine-tuning gene 
expression, but they are challenging to quantify due to low copy number and limited 
tools for accurate detection. Existing studies have typically focused on the identification 
and impact of adenine modifications on mRNA (m6A and inosine) due to the availability 
of analytical methods. The pseudouridine (Ë) mRNA modification is also highly 
abundant but difficult to detect and quantify because there is no available antibody, it is 
mass silent, and maintains canonical basepairing with adenine. Nanopores may be 
used to directly identify Ë sites in RNAs using a systematically miscalled base, however, 
this approach is not quantitative and highly sequence dependent. In this work, we apply 
supervised machine learning models that are trained on sequence-specific, synthetic 
controls to endogenous transcriptome data and achieve the first quantitative Ë 
occupancy measurement in human mRNAs. Our supervised machine learning models 
reveal that for every site studied, different signal parameters are required to maximize Ë 
classification accuracy. We show that applying our model is critical for quantification, 
especially in low-abundance mRNAs. Our engine can be used to profile Ë-occupancy 
across cell types and cell states, thus providing critical insights about physiological 
relevance of Ë modification to mRNAs.  
  
  
Introduction  
RNA modifications are critical for cellular function, as demonstrated by their requirement 
for proper folding and stability of tRNA and rRNA where they were first discovered1. By 
analyzing these highly expressed RNAs, over 100 different types of RNA modifications 
have been discovered and characterized using analytical tools such as mass 
spectrometry2 and thin-layer chromatography3. As sequencing technologies have 
developed, many of these modifications have also been identified on messenger RNAs 
such as inosine4, N6-methyladenine (m6A)5,6 and pseudouridine7,8. Next-generation 
sequencing studies have begun to unravel the role mRNA modifications play in fine-
tuning gene expression. However, identifying the precise modification site within the 
mRNA sequence and the fractional occupancy (i.e., fraction of copies with that 
modification) is a daunting task9. Low mass abundance of individual mRNA species in 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 6, 2022. ; https://doi.org/10.1101/2022.05.06.490948doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.06.490948
http://creativecommons.org/licenses/by-nc/4.0/


transcriptomes precludes the use of existing methods such as mass spectrometry, and 
chemical labeling methods are not quantitative. Pseudouridine (Ë) is among the most 
highly represented mRNA modifications and is typically detected using biochemical 
labeling methods. Pseudouridine-modified mRNAs are more resistant to RNAse-
mediated degradation10 and also have the potential to modulate immunogenicity11 and 
enhance translation12 in vivo. During the COVID-19 pandemic, Ë has taken the spotlight 
due to the inclusion of the methylated Ë analog, N1-methylpseudouridine, in the 
Moderna13 and Pfizer14 mRNA vaccines for SARS CoV-2.   
  
Tools for high-confidence, transcriptome-wide identification of RNA modifications, in 
particular Ë, have been somewhat limited due to a lack of chemical specificity and 
proper 8gold-standard9 controls for accurate benchmarking. Coupling next generation 
sequencing (NGS) with modification-specific chemicals (i.e. CMC7,8,15 or bisulfite 
sequencing16) can be used to identify sites, but due to a reliance on cDNA amplification 
this method is not quantitative and prone to bias. Thus, there is little overlap between 
the identified sites using each method. Moreover, since these methods rely on base 
deletion or read termination for detection, tandem modifications on the same transcript 
cannot be detected. To this end, non-destructive detection of native RNA molecules is 
the most attractive approach for reading epitranscriptome landscapes. The most 
promising method thus far has been direct RNA nanopore sequencing, which offers the 
ability to preserve full-length RNA structural information17. In this method, an RNA 
strand is ratcheted through a nanopore and the ion current signal produces reports on 
its sequence by sequentially reading a string of k-mers (k=5). Variance in the signals 
from the consensus expected signals of unmodified bases can be used to identify 
modifications. We and others have recently shown that these signal anomalies produce 
systematic base-calling errors at or near the site of Ë modification18322. In addition, 
prediction models have been developed to improve modification calls by leveraging 
features like deviations in the expected ionic current, systematic base mismatches, 
changes in base quality score, and insertion/deletion rates19,20,23.   
  
Previous works have reinforced the confidence of Ë-site calling from direct RNA 
sequencing data, which often presents itself as a U-to-C mismatch error. However, the 
training data sets contain satellite modifications close to the Ë-site, which can introduce 
undesirable noise and reduced accuracies when training a 5-mer specific model. For 
example, in vitro transcribed RNA constructs bearing all combinations of Ë-containing 5-
mers have been used to generate nanopore-based training data for Ë modifications24. 
While cost-effective, since all U sites have been replaced with Ë, training a Ë detection 
model for regions in native RNAs where the 5-mer sequence contains more than one U 
site is not feasible. Recent work by Fleming et al.21 involved the design of synthetic 
constructs that separate Ë-sites by ~25 nucleotide spacers to remove the effects of 
satellite modifications at the protein motor and pore, allowing them to test signal dwell 
time corresponding to when Ë is located in the helicase motor as another feature for 
discrimination. With these constructs, U-to-C mismatch rates varied from 10% to 97% 
across 15 different Ë-modified 5-mers. However, these constructs also lack 5-mers with 
canonical U9s adjacent to Ë, which are often found in the transcriptome.   
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To address these challenges and improve the accuracy of Ë detection by direct RNA 
sequencing, we performed a meta-analysis of four synthetic constructs bearing a singly-
modified Ë within an endogenous mRNA sequence. These four sites were flagged by 
our Ë-detection algorithm22. Interestingly, we found that the U-to-C mismatch rates for 
the 100% Ë-modified constructs varied from 30% to 70%, and further, that these 
depend on the specific k-mer and sequence context. If mismatch errors were fully 
quantitative, we would expect to see 100% U-to-C mismatch in all constructs; however, 
the method is highly sequence-specific, and is therefore only effective at identifying 
modification sites19.  
  
We were interested to see whether our synthetic constructs can be used for training 5-
mer specific models that can accurately quantify Ë occupancy at identified sites in 
native mRNA. Toward this, we developed and tested a computational tool that can train 
supervised- machine learning (ML) models on nanopore-based features derived from 
our four synthetic Ë-modified constructs to subsequently quantify Ë occupancy at these 
specific locations in native HeLa mRNA transcripts. We find that Ë discrimination with 5-
mer-specific ML models trained with basecalling and raw signal features prepared from 
labeled 100% and 0% Ë-modified synthetic reads can achieve accuracies above 90%, 
even at low Ë occupancies. In addition, we found that the combination of features 
conducive for classification accuracy depends on the sequence context of the Ë-
modified 5-mer region. Finally, we applied these trained models and achieved the first 
demonstration of site-specific Ë quantification in human mRNAs.         
  
Results  
Supervised Machine Learning on Ë-modified Synthetic Transcripts. Our pipeline 
for quantitative Ë profiling is shown in Figure 1. We recently developed a set of four 
synthetic RNA control standards that bear established and putative Ë-modification 
positions in the HeLa transcriptome22. Briefly, two of the constructs, MCM5 (chr22: 
35424407,UGUAG) and PSMB2 (chr1: 35603333, GUUCG), have been validated by 
CeU-seq15, Ë-seq8, and RBS-seq16, while the other two, MRPS14 (chr1: 175014468, 
ACUUA), PRPSAP1 (chr17: 76311411, GAUUG)  were indirectly detected de novo by 
observing a significantly high U-to-C mismatch error in direct RNA nanopore 
sequencing. We will subsequently refer to each of these constructs by the gene name 
and omit the modification position. Briefly, 100% Ë-modified (syn-Ë) standards bearing 
a Ë-modification were generated (Fig. 1a, yellow box), as well as the corresponding, 
sequence-matched, unmodified transcript (syn-U). We were interested to compare 
different supervised machine learning (ML) models and find the optimal model that can 
accurately and quantitatively classify Ë-sites in the synthetic controls. To determine the 
most optimal combination of features we extracted basecalling and raw signal features 
at both local (Ë-site) and remote (upstream) for a total of 60 features.   
Understanding which signal features optimize Ë classification in mRNA is a crucial step 
when developing a quantification method. Thus, we extracted 60 signal features from 
each synthetic read that passed the 2nd filtration stage (see methods) in both the syn-U 
library and syn-Ë library (Fig. 1c) using nanopolish25. These features were 
subsequently used to generate and test different supervised machine learning 
classifiers. The features were basecalls, which included deletions, quality scores of 
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positions -2, -1, 0 [U/Ë], +1, +2, current mean, current standard deviation, dwell time, 
and Fourier coefficients 2 and 3 (FC2 and FC3) of the 5-mers where Ë is positioned at -
2, -1, 0, +1, +2, and going 12 bases upstream (39 direction) to the 5-mers when Ë is at 
the protein motor (-14, -13, -12, -11, -10) we also extracted their current mean, current 
standard deviation, dwell time, and FC2, FC3. Raw signal features were extracted and 
compiled into one dataframe from Fast5 files using the eventalign resquiggle tool from 
nanopolish25 (Supplementary Table S5).   
  
Selecting a supervised machine learning classifier.  We assessed the contribution 
of upstream features (i.e. features that are related to the presence of Ë in the protein 
motor twelve nucleotides upstream) and found that they did not have an impact on 
model accuracy (Supplementary Figure S2). Hence, we continued our analysis with 
only local Ë features and removed upstream features, leaving 35 features for ML 
training. We applied five different supervised ML classifiers for each synthetic construct: 
logistic regression (LR), gradient boosting (GBC), K-nearest neighbors (KNN), random 
forest (RF), and support vector machine (SVM). We trained and fit the parameters of 
each classifier with 75% of the data and assessed its performance with the remaining 
25%.   

 
  
Figure 1. Synthetic RNA pipeline for quantitative pseudouridine profiling. a, A typical RNA 
processing pipeline from cells (left) or a synthetically prepared library (right). After RNA extraction, 
mRNAs are isolated for library preparation. IVT (unmodified) control library is generated by reverse 
transcription of mRNA followed by in vitro transcription. Libraries are subjected to direct RNA sequencing 
on the MinION followed by basecalling and alignment, followed by site-specific machine learning (ML) 
and quantitative Ë detection.  b, Top: example current trace obtained during nanopore sequencing of syn-
PSMB2-Ë synthetic control for the PSMB2 gene that contains a Ë-site, where each discrete signal 
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fluctuation is associated with presence of a particular RNA k-mer in the pore (k=5). Scheme below 
illustrates the direction of motor-driven RNA motion through the pore, highlighting the critical positions 
where the signal is read where the Ë-centered k-mer is at the pore reader position (pink). Bottom traces 
show expanded views of the raw signal trace (black) obtained for those sites where Ë is present in the 
pore constriction, as well as various Fourier components of the raw signal, used for ML-based Ë 
detection. Right: hairline basecalling plot shows the query (top row), with D representing deletions, vs. 
reference (left column) base calls observed in syn-PSMB2-Ë reads (n=1,200) at the 5-mer region with Ë 
at position 0, where 38.2% U-to-C mismatch error is found (1.8% was found for the syn-PSMB2-U 
construct). c, Flowchart describing two general approaches for Ë detection using direct RNA nanopore 
sequencing. Dashed box represents a U-to-C mismatch error approach to identify Ë sites, and bottom row 
represents integration with synthetic mRNAs and machine-learning classification to quantify Ë occupancy 
in these sites.   
  
To determine which of the five ML classifiers consistently yields the highest sensitivity 
and specificity for each construct, we trained each model and evaluated the Receiver 
Operator Characteristic (ROC) curve and its associated area under the curve (AUC) 
with the testing dataset (Fig. 2a-d, left) The ROC curve was obtained by sweeping the 
call threshold on the probabilistic output of the models. For the PSMB2, PRPSAP1, and 
MCM5 synthetic constructs, we observed an AUC equal to or greater than 0.94 for each 
ML model. Similar results were seen with MRPS14, except the AUC for LR and KNN 
was 0.92 and 0.91, respectively. For the PSMB2, PRPSAP1, MCM5, and MRPS14 
synthetic constructs, the RFC and GBC consistently generated equivalent, and highest, 
AUC results among the five classifiers.   
  
To evaluate which of the two (GBC and RFC) yielded the highest accuracy, we 
generated 10 random train-test split sets for each classifier and calculated the mean 
and standard deviation of the model9s accuracy for each set. We found that the GBC 
classifier consistently had the highest accuracy for all 4 synthetic constructs, with GBC 
having an accuracy of 0.97±0.00 for PSMB2, 0.92±0.01 for PRPSAP1, 0.94±0.01 for 
MCM5, 0.94±0.01 for MRPS14. In comparison, the next best model, RFC, displayed an 
accuracy of 0.95±0.00 for PSMB2, 0.91±0.01 for PRPSAP1, 0.94±0.01 for MCM5, and 
0.92±0.01 for MRPS14 (Supplementary Table S6). Due to its superior accuracy, we 
implemented the GBC model for the remainder of our analysis.   
  
Evaluating the sensitivity and specificity of Ë detection using the GBC model. To 
evaluate our capacity to detect Ë at different occupancies, we generated multiple test 
sets with different ratios of syn-U and syn-Ë reads and compared our highest accuracy 
ML model (GBC) to the U-to-C mismatch error model for the same test sets. In total, we 
produced 20 different test sets ranging from 5% syn-Ë (95% syn-U) to 100% syn-Ë (0% 
syn-U), in 5% increments. To assess reproducibility, we reshuffled the dataframe 10 
times for each synthetic construct, yielding different combinations of training and test 
sets (see Methods for details). In Fig 2a-d we show the mean true positive (TP) trend 
of Ë classification, calculated by dividing the Ë calls by the total test set size (green 
markers). The GBC model performed with a TP accuracy of >90% across all fractions of 
Ë for PRPSAP1, MRPS14, and MCM5. To determine whether the GBC classifier was 
overfitting to syn-Ë reads, we looked at the false positive (FP) trend, which occurs when 
the model misclassifies syn-U reads as syn-Ë reads, as a function of Ë ratio (red 
markers). As expected, the FP trend had an inverse relationship with syn-Ë occupancy, 
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<10% for any syn-Ë ratio for PSMB2(0.03), PRPSAP1(0.08), MRPS14(0.06), and 
MCM5(0.07). As a result, we note that for very low Ë occupancies (<15%), the model 
performs poorly in distinguishing Ë from U.   
Finally, we compared the accuracies of the GBC model to the U-to-C mismatch rate Ë 
calling by plotting the mean and standard deviation of the U-to-C TP trend (i.e., the ratio 
of Ë TP calls to the total size of the test set size) for each artificial syn-Ë fraction. 
Notably, the GBC greatly outperforms the U-to-C classifier for all 4 synthetic constructs, 
despite the fact that U-to-C mismatch rates vary widely from k-mer to k-mer. The U-to-C 
mismatch rate for PSMB2 was 38% in a 100% syn- Ë dataset, while the GBC model 
called 97% of the dataset as Ë. 

 
Figure 2. Performance of machine-learning (ML) classification for synthetic Ë controls. a-d, 
Machine-learning classification accuracy after training on 35 signal features when Ë-site in labeled 
synthetic constructs is present in the pore constriction. Left: Receiver operator characteristic (ROC) 
curves of five different supervised ML classifiers: support vector machine (SVM), random forest classifier 
(RFC), K-nearest neighbors (KNN), gradient boosting classifier (GBC), and linear regression (LR), along 
with their respective area-under-curve values in parentheses. Top right: Mean classification accuracy of Ë 
true positive (TP) rate out of total Ë samples present in the test set (true positives/(true positives+false 
negatives)) as a function of Ë fraction in the test set using the GBC classifier (ten models generated for 
each percentage Ë with random combinations of data for training and testing). The error bars represent 
the standard error of the TP rate for those ten models. Bottom right: The mean and standard deviation of 
TP Ë prediction by GBC models (the same ten GBC iterations used for the TP rate analysis) divided by 
total size of the test set is shown in green at each Ë fraction. Dashed black line represents perfect 
discrimination of all Ë and control samples in the test set at each Ë percent ratio. The mean and standard 
deviation of false positive (FP) calls by the GBC divided by total size of the test set at each Ë percent ratio 
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are shown in red. The mean and standard deviation of a U-to-C mismatch classifier divided by the total 
size of the test at each Ë percent ratio are shown in blue.  
  
What are the most important features that contribute to the accuracy of the GBC model? 
After training and testing the GBC model, we used scikit-learn's26 feature importance 
tool to obtain the weights for all 35 features, which is an estimate of their relative 
importance during model fitting (see SI, Tables S7-10). Quality score features were 
present in the top 10 list for all the synthetic constructs except for PSMB2, while Fourier 
components were only seen in the top 10 list of MRPS14. These results demonstrate 
that the relative importance of individual features is highly dependent on the specific k-
mer sequence, as recently suggested by others19,21.    
           
Quantification of site-specific pseudouridine modifications in HeLa cell mRNA. 
Following the development of an accurate model for Ë-site detection using our synthetic 
controls, we applied it to profile Ë-site occupancies based on three independent direct 
mRNA nanopore sequencing datasets for HeLa transcriptomes from Tavakoli et al.22 
The three datasets (D1,D2 and D3) were extracted and filtered using the same filtration 
steps implemented on the synthetic constructs. Additionally, HeLa IVT reads that 
aligned to the gene targets were extracted and filtered. After filtration, the 35 features 
used to fit the GBC model during syn-Ë training and testing were parsed from each 
native read and compiled for classification. For each synthetic construct, we generated 
ten GBC models by fitting each one to a reshuffled synthetic dataset with a split of 85% 
for training and 15% for testing. Subsequently, each model was invoked onto the HeLa 
mRNA reads for single-read Ë prediction, providing a Ë-quantified output for each gene 
from D1, D2, and D3 experiments (Fig. 3a).   
 

 
 
Figure 3. Quantification of Ë in HeLa cell mRNA with synthetic-trained machine learning models. a, Ë 
quantification of Hela mRNA targets (PSMB2, MCM5, PRPSAP1, MRPS14) observed in three 
independent sequencing libraries, direct 1 (gold) and direct 2 (red), and direct 3 (purple) using a gradient 
boosting classifier (GBC) trained with the corresponding syn-Ë and syn-U constructs. The same 35 target 
features used to train each GBC model were extracted from each Hela mRNA read that passed the 
necessary filtration stages. The mean and standard deviation illustrate the result of Ë occupancy called by 
ten randomly generated GBC models that were all re-corrected using the ratio calibration of true positive 
and false positive fits observed for each mRNA syn-Ë construct (green and red trends in Figure 2). The 
calculated TPM for each gene is annotated next to each marker. The acronyms for the top five weighted 
features for each replicate-trained GBC model are shown. b, Comparison of Ë true-positive standard 
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deviation when syn-PSMB2-Ë reads are predicted with either a U-to-C mismatch classifier (blue) or an 
GBC (green) as a function of read coverage. Standard deviation of the U-to-C mismatch classifier for 
each read coverage increment on the x-axis is obtained through resampling reads from the syn-PSMB2-Ë 
sample 30 times. A similar approach is used for obtaining GBC Ë true-positive standard deviation, except 
that the resampled syn-PSMB2-Ë reads are only extracted from the test set and not the training set used 
to build the GBC. The histogram displays the total differential mRNA read coverage captured in the direct 
1 library. Square markers indicate actual standard deviations for the three direct RNA sequencing 
replicates of PSMB2.  
  
Prior to comparing the model-predicted Ë occupancy for all three direct experiments for 
each gene, the artificial Ë TP trend (green markers) and FP trend (red markers), (Fig. 
2a-d bottom, bottom right) observed during synthetic model training and testing was 
used to derive a re-correction factor for each gene by summing both together for each Ë 
fraction and taking the slope of the linear fit. After reweighing the initial quantified 
prediction of each model on HeLa mRNA, we observed similar Ë frequencies (within 
10%) across all three independent experiments for PSMB2 and MCM5 (Fig. 3a). For 
PSMB2, we observed a re-corrected mean Ë-occupancy of 0.89 (D1, D2, and D3). For 
MCM5, the GBC estimated a mean Ë-occupancy of 0.52. For PRPSAP1, the GBC 
estimated a mean Ë-occupancy of 0.59. For MRPS14, the GBC estimated a mean Ë-
occupancy of 0.29. The read coverage and base mismatch rate per direct experiment 
for each mRNA are shown in Supplementary Table S1-4). Next to each result in Fig. 
3a we have annotated the transcripts per million (TPM) count.  
  
To assess the strength of our method in overcoming low-read coverage, we tested and 
compared the TP rate of our GB classifier with the U-to-C mismatch classifier generated 
for PSMB2 as a function of read count with our syn-PSMB2-Ë dataset (Fig. 3b). For 
each read coverage bin, which ranged from n=7 to n=200 in increments of n=2, we 
resampled from the syn-PSMB2-Ë dataset multiple times and calculated the TP 
standard deviation for both the GB and U-to-C mismatch classifiers (green and blue 
data points, respectively). Compared with the U-to-C mismatch classifier (blue), the 
standard deviation of the TP rate for our GBC classifier was substantially lower across 
all read counts. Furthermore, we used the featureCounts module from Rsubread27 on 
our direct 1 HeLa mRNA library to corroborate that the majority of mRNA transcripts 
captured in nanopore sequencing have a relatively low read coverage (Fig. 3b, 
background histogram in gold). Moreover, the standard deviations from ML Ë 
quantification results for all PSMB2 direct RNA sequencing data (Fig. 3a) are in 
agreement with the fit of the TP rate standard deviation versus read coverage for the 
PSMB2-trained GBC (Fig. 3b).                      
                  
Discussion    
It has been previously established that U-to-C mismatch error may be used to identify 
sites of pseudouridine modification18322. However, based on the synthetic controls 
established in Tavakoli et al., the variable U-to-C mismatch rate for the Ë-modified 
synthetic controls demonstrates that this method is not quantitative, and highly 
dependent on the sequence context. The Guppy (3.2.10) basecaller was trained on a 
heterogenous population of RNAs containing a majority of canonical nucleotides, but 
also containing modified nucleotides. Since this basecaller was not trained on k-mers 
that exclusively contain Ë-sites, mismatch errors are inconsistent (Fig. 1b), requiring re-
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training in the right sequence context in order to accurately distinguish Ë from canonical 
U.   
  
To determine what combination of features can enhance Ë discrimination, we extracted 
from the sequencing data a total of 60 raw signal features and found that 35 local 
features were critical for Ë discrimination (Supplementary Table S5). Upstream 
features corresponding to presence of the suspect Ë-site in the protein motor (12 
nucleotides upstream from the Ë-site in the pore) were considered because of a recent 
report21 that showed Ë modifications with an adjacent 59 guanosine (G) can induce 
distinct pauses in motor protein steps. However, Stephenson et al.28 showed that G-rich 
RNA sequences can also stall the motor protein, making it a less reliable parameter 
under circumstances where Ë is near or on a polyG region. We therefore excluded 
these features because these did not provide a noticeable boost in accuracy 
(Supplementary Figure S2).   
  
Five different supervised ML models were tested for each synthetic construct, and we 
found that GBC consistently provided the highest classification accuracy for every 
synthetic replicate. Conversely, previous algorithms have used KNN for Ë quantification 
which we observed to have the lowest AUC and classification accuracy 
(Supplementary Table S6). This may be attributed to the high dimensional feature 
space (35 dimensions) of our training data, which is not suitable for KNN, and that was 
previously trained on a 6-dimensional data set based on the quality scores of three 
bases and the current mean of three 5-mers (-1, 0 [U/Ë], +1)19. GBC accuracies were 
high across different constructs, with mean TP rates (TP/(TP+FP)) >0.9 for PSMB2 
(GUUCG), PRPSAP1 (GAUUG), MCM5 (UGUAG), and MRPS14 (ACUUA) across all 
concentration increments from 5% - 100% (Fig 2, top right). Evaluating the top five 
weighted features for the trained models (see Supplementary Information, page 16) 
generated for each construct using scikit-learn's feature importance revealed that not a 
single feature was retained across all synthetic constructs. We observed a variable 
degree of separation and difference in correlation among the top five weighted features 
between syn-Ë and syn-U with respect to each construct (Supplementary S4-S11). 
Moreover, we found signal features that correspond to 5-mers with Ë in the +2 and 32 to 
be among the top five fitting parameters for MCM5 (UGUAG), MRPS14 (ACUUA), and 
PRPSAP1 (GAUUG), with current mean of the +2 5-mer having the highest weight for 
MCM5.These results further highlight the critical need to train models that consider the 
sequence context neighboring the modified site, which should also ensure all 5-mers 
bearing Ë in every position (-2, -1, 0, +1, +2) to be sequenced without the influence of 
any neighboring Ë modifications. 
  
Finally, we applied our computational engine to HeLa mRNA reads that aligned to the 
corresponding gene from three biological replicates. Remarkably, the Ë occupancy 
called by the GBC model was similar for all three direct experiments for PSMB2 (chr1: 
35603333) and MCM5 (chr22: 35424407). Based on the functions of these genes, 
PSMB2 is a component of the 20S core proteasome complex that degrades most 
intracellular proteins, while MCM5 is involved in the initiation of DNA replication during 
mitosis. For the MRPS14 (chr1: 175014468), the GBC predicted similar Ë-occupancy 
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across D1 and D3, while there was a noticeable increase in the Ë-occupancy at D2 (Fig 
3a). The GBC trained for PRPSAP1(chr17: 76311411) estimated a similar Ë-occupancy 
for D1 and D2 at ~65%, while D3 had a lower Ë-occupancy at ~45%. The computational 
engine we developed here achieves the first quantitative Ë occupancy measurements in 
human mRNAs from direct RNA sequencing data. This 2-step engine first integrates 
endogenous transcriptome data to identify putative sites de novo via specific U-to-C 
basecalling errors22), and then quantifies the Ë occupancy at a given site using ML 
models that are trained on sequence-specific synthetic mRNA standards. Our 
application of supervised ML models reveals that for each Ë-site studied, different signal 
parameters are required to maximize Ë classification accuracy. Applying our models 
resulted in quantification of these Ë-sites with a much higher accuracy than U-to-C 
basecalling errors provide. We show that this improved quantification ability of our 
engine is particularly critical for low-abundance mRNAs, for which typical mRNA 
coverage are low for a MinION run (<10). Additional synthetic controls for validated Ë-
sites applied in combination with our new computational engine, would enable us to 
profile patterns of Ë mRNA modification with high accuracy from minION direct RNA 
sequencing libraries. 
  
Methods  
 
Alignment  
After basecalling with guppy (3.2.10), fastq reads that passed the default ONT filtration 
stage (>Q7) were aligned to the synthetic reference using minimap 2 (2.17) with the 
option 88-ax map-ont -un -k1599. The sam file was converted to bam using samtools 
(1.10). Bam files were sorted by <samtools sort=)and indexed using <samtools index= and 
visualized using IGV (2.8.13). Finally, a bam file was prepared for each synthetic 
construct by slicing out the corresponding reads from the original bam file using 
<samtools view -h -Sb=.  
))  
Filtration  
After alignment, a second-stage filtration step was implemented to remove reads that 
were truncated near the site of modification. For the synthetic replicates, Ë was located 
on position 511 for all four transcripts. Each read was scanned for the position of Ë, the 
7 bases upstream (39) from Ë, and the 7 basecalls downstream (59) from Ë, denoting 
this region as the 15-mer target segment. Next, using Rsamtools (3.6.0), we set the 
filter pass conditions to only retain reads with a mapping quality score of 50. 
Additionally, each read was required to have no more than three deletions within its 15-
mer target segment. Finally, reads with one or more insertions in the 15mer target 
segment were filtered out. Reads that were retained after this stage were passed onto 
the next stage for feature extraction.  
  
Feature extraction  
Basecalls and quality scores were extracted with Rsamtools (3.6.0). Current data used 
to prepare signal features was extracted using nanopolish eventalign.  
  
Data preprocessing)))  
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For each construct, features from syn-Ë and syn-U reads were labeled and combined 
into one dataframe. We used the scikit-learn python library (1.0.2) for data 
preprocessing and model training and testing. For each replicate, the dataset was 
resampled to contain an equal sample size of both unmodified and Ë modified 
transcripts. The Ë modified data was the limiting factor for all four targets. Next, the 
dataset underwent a 75/25 split, where 75% of the reads were randomly binned into the 
training set and the remaining 25% went into the test set. The features in the training set 
were normalized using the scikit-learn9s StandardScaler function, where the mean was 
centered around 0 and the first standard deviation was +/-1. The normalization 
parameters were then used to scale the features in the test set.))  
  
Model training/testing/evaluation  
The five supervised ML models (support vector machine, logistic regression, random 
forest, and k-nearest neighbors) were imported from scikit-learn. Every model was 
trained and tested with each construct-specific dataframe. The accuracy and 
reproducibility of the models were assessed through multiple training and testing 
iterations (n=10), where for every model generation, the dataframe was reshuffled in 
order to produce a new 75-25 split. ROC plots were made with scikit-learn9s 
plot_roc_curve. Model accuracy as a function of Ë concentration (Fig 2) was acquired 
from 10 different models that were generated with a balanced training set and 
subsequently implemented on test sets that varied in Ë:U ratio. The original test set was 
resampled to get the desired Ë ratio.)  
  
HeLa mRNA classification and analysis  
The same features from synthetic reads used for model generation were extracted and 
prepared from native reads. Prior to Ë quantification of native reads, the GBC model 
was trained on synthetic data corresponding to the native reads with an 85-15 split. 
Native data was normalized with the same parameters used to scale the testing data. 
Next, the model classified every native read as Ë or unmodified. This process was 
repeated ten times, with each model having a different train-test split. Finally, the 
reported Ë percentage present in the native reads was recorrected with the addition of 
the model9s average false positive and true positive values observed from the analysis 
that tested model accuracy as a function of Ë occupancy (Fig 2).   
 
Code availability 
Scripts for all analyses presented in this paper, including all data extraction, processing, 
and graphing steps are freely accessible at https://github.com/wanunulab/psiquant. 
 
Data availability 
All raw and processed data used to generate figures and representative images 
presented in this paper are available at 
https://www.biorxiv.org/content/10.1101/2021.11.03.467190v1. 
 
Statistical analysis 
All experiments were performed in multiple, independent experiments, as indicated in 
the figure legends. All statistics and tests are described fully in the text or figure legend. 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 6, 2022. ; https://doi.org/10.1101/2022.05.06.490948doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.06.490948
http://creativecommons.org/licenses/by-nc/4.0/


 
  
ACKNOWLEDGMENTS 
We acknowledge Dr. Miten Jain for helpful advice with data preparation for processing. 
The authors acknowledge generous support through an Opportunity Fund by the 
Technology Development Coordinating Center at Jackson Laboratories (NHGRI 
federal award no. U24HG011735). 
  
  
 
 
 
  

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 6, 2022. ; https://doi.org/10.1101/2022.05.06.490948doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.06.490948
http://creativecommons.org/licenses/by-nc/4.0/


References 
1. Boccaletto, P. et al. MODOMICS: a database of RNA modification pathways. 2021 

update. Nucleic Acids Res. 50, D2313D235 (2022). 
2. Wein, S. et al. A computational platform for high-throughput analysis of RNA sequences 

and modifications by mass spectrometry. Nat. Commun. 11, 926 (2020). 
3. Wu, G., Huang, C. & Yu, Y.-T. Pseudouridine in mRNA: Incorporation, Detection, and 

Recoding. Methods Enzymol. 560, 1873217 (2015). 
4. Athanasiadis, A., Rich, A. & Maas, S. Widespread A-to-I RNA Editing of Alu-Containing 

mRNAs in the Human Transcriptome. PLOS Biol. 2, e391 (2004). 
5. Dominissini, D. et al. Topology of the human and mouse m6A RNA methylomes 

revealed by m6A-seq. Nature 485, 2013206 (2012). 
6. Meyer, K. D. et al. Comprehensive Analysis of mRNA Methylation Reveals Enrichment 

in 32 UTRs and near Stop Codons. Cell 149, 163531646 (2012). 
7. Carlile, T. M. et al. Pseudouridine profiling reveals regulated mRNA pseudouridylation in 

yeast and human cells. Nature 515, 1433146 (2014). 
8. Schwartz, S. et al. Transcriptome-wide mapping reveals widespread dynamic-regulated 

pseudouridylation of ncRNA and mRNA. Cell 159, 1483162 (2014). 
9. Schaefer, M., Kapoor, U. & Jantsch, M. F. Understanding RNA modifications: the 

promises and technological bottlenecks of the 8epitranscriptome9. Open Biol. 7, 170077. 
10. Anderson, B. R. et al. Nucleoside modifications in RNA limit activation of 29-59-

oligoadenylate synthetase and increase resistance to cleavage by RNase L. Nucleic 
Acids Res. 39, 932939338 (2011). 

11. Karikó, K., Buckstein, M., Ni, H. & Weissman, D. Suppression of RNA Recognition by 
Toll-like Receptors: The Impact of Nucleoside Modification and the Evolutionary Origin 
of RNA. Immunity 23, 1653175 (2005). 

12. Anderson, B. R. et al. Incorporation of pseudouridine into mRNA enhances translation 
by diminishing PKR activation. Nucleic Acids Res. 38, 588435892 (2010). 

13. Baden, L. R. et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. 
Engl. J. Med. 384, 4033416 (2021). 

14. Polack, F. P. et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N. 
Engl. J. Med. 383, 260332615 (2020). 

15. Li, X. et al. Chemical pulldown reveals dynamic pseudouridylation of the mammalian 
transcriptome. Nat. Chem. Biol. 11, 5923597 (2015). 

16. Khoddami, V. et al. Transcriptome-wide profiling of multiple RNA modifications 
simultaneously at single-base resolution. Proc. Natl. Acad. Sci. 116, 678436789 (2019). 

17. Garalde, D. R. et al. Highly parallel direct RNA sequencing on an array of nanopores. 
Nat. Methods 15, 2013206 (2018). 

18. Smith, A. M., Jain, M., Mulroney, L., Garalde, D. R. & Akeson, M. Reading canonical 
and modified nucleobases in 16S ribosomal RNA using nanopore native RNA 
sequencing. PLOS ONE 14, e0216709 (2019). 

19. Begik, O. et al. Quantitative profiling of pseudouridylation dynamics in native RNAs with 
nanopore sequencing. Nat. Biotechnol. 39, 127831291 (2021). 

20. Huang, S. et al. Interferon inducible pseudouridine modification in human mRNA by 
quantitative nanopore profiling. Genome Biol. 22, 330 (2021). 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 6, 2022. ; https://doi.org/10.1101/2022.05.06.490948doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.06.490948
http://creativecommons.org/licenses/by-nc/4.0/


21. Fleming, A. M., Mathewson, N. J., Howpay Manage, S. A. & Burrows, C. J. Nanopore 
Dwell Time Analysis Permits Sequencing and Conformational Assignment of 
Pseudouridine in SARS-CoV-2. ACS Cent. Sci. 7, 170731717 (2021). 

22. Tavakoli, S. et al. Detection of pseudouridine modifications and type I/II 
hypermodifications in human mRNAs using direct, long-read sequencing. 
2021.11.03.467190 (2021) doi:10.1101/2021.11.03.467190. 

23. Workman, R. E. et al. Nanopore native RNA sequencing of a human poly(A) 
transcriptome. Nat. Methods 16, 129731305 (2019). 

24. Liu, H. et al. Accurate detection of m6A RNA modifications in native RNA sequences. 
Nat. Commun. 10, 4079 (2019). 

25. Simpson, J. T. et al. Detecting DNA cytosine methylation using nanopore sequencing. 
Nat. Methods 14, 4073410 (2017). 

26. Buitinck, L. et al. API design for machine learning software: experiences from the scikit-
learn project. ArXiv13090238 Cs (2013). 

27. Liao, Y., Smyth, G. K. & Shi, W. The R package Rsubread is easier, faster, cheaper and 
better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res. 47, 
e47 (2019). 

28. Stephenson, W. et al. Direct detection of RNA modifications and structure using single-
molecule nanopore sequencing. Cell Genomics 2, 100097 (2022). 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 6, 2022. ; https://doi.org/10.1101/2022.05.06.490948doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.06.490948
http://creativecommons.org/licenses/by-nc/4.0/

