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The regulation of moment-to-moment neural variability may permit effective responses to
changing cognitive demands. However, the mechanisms that support variability regulation are
unknown. In the context of working memory, we leverage the largest available PET and fMRI
dataset to jointly consider three lenses through which neural variability regulation could be
understood: dopamine capacity, network-level functional integration, and flexible decision
processes. We show that with greater working memory load, upregulation of variability was
associated with elevated dopamine capacity and heightened functional integration, effects
dominantly expressed in the striato-thalamic system rather than cortex. Strikingly, behavioral
modeling revealed that working memory load evoked substantial decision biases during
evidence accumulation, and those who jointly expressed a more optimal decision bias and
higher dopamine capacity were most likely to upregulate striato-thalamic variability under load.
We argue that the ability to align striato-thalamic variability to level of demand may be a hallmark
of a well-functioning brain.

Brain activity exhibits remarkable variability from
moment to moment, exhibiting multiple dynamic
signatures at every level of neural function'?.
Evidence is building in support of the notion that
the ability to regulate neural variability provides a
key signature of a well-functioning brain?.
Several human studies using blood oxygen level-
dependent (BOLD) signals have shown that BOLD
signal variability (e.g., standard deviation, or
SDsoLp) can be modulated within-person. On
average, increases in task difficulty can drive
decreases in variability>”’, but considerable
individual differences exist. Those who can
continue to elevate variability levels often exhibit a
higher processing limit, maintaining better
performance under higher loads, while poorer
performers may hit a variability-based “cliff,”
exhibiting reduced variability as load continues to
increase®® (Figure 1, top). At present however, the
mechanisms by which higher performing
individuals are able to upregulate neural variability
under load are not known.

One mechanism by which individuals may
upregulate neural variability under cognitive load

is via the dopaminergic (DA) system (Figure 1A).
Although commonly associated with reward and
motivation®®, DA continues to gain traction as a
candidate neurochemical basis for cognitively
relevant aspects of brain signal variability?. Two
human studies have shown that DA agonism can
elevate the standard deviation of the BOLD signal
in both younger (L-dopa'®) and older adults (D-
amphetamine®), while simultaneously boosting
speeded responding. However, it remains
unknown whether upregulation of neural variability
(within-person) under greater cognitive load
requires higher DA system capacity. Although the
D1 system is inextricably linked to brain function
and cognition'""*, D> may be especially important
to consider in the context of neural variability
regulation under cognitive load. The D2 system is
dominantly present in striatum and is thought to
enable adaptive changes to neural processing in
the  face of  changing environmental
demands®'31516 Crucially, striatal  cells
expressing D2 receptors project to the thalamus
through the so-called “indirect” pathway'"-'8, and
in turn, the thalamus provides nearly half of all
excitatory input onto the striatum'®. Among other
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functions, the indirect D2 striato-thalamic pathway
allows for flexible shifting between ongoing
response modes and the processing of new or
salient cognitive demands'”'8. Given that the
striato-thalamic system also appears to be central
for understanding how local (region level)
variability reflects brain function overall?>2, the D2
system may provide an essential window into the
origin and functional importance of temporal
variability in the striato-thalamic system,
especially as cognitive demand varies. We
presume that the ability to upregulate striato-
thalamic variability under load requires D2
capacity to meet demand.

Beyond DA, a second lens through which we can
probe how individuals may upregulate brain signal
variability under load is by examining “functional
integration” (common temporal variation) amongst
the neural populations expressing neural
variability (Figure 1B). It has been proposed that
dynamic neural activity at the regional level may
largely reflect summed synaptic inputs??2°,
potentially linking local dynamics  to
communication between regions. Indeed, more
disconnected biological systems are less dynamic
across moments? and animal and computational
work has shown that the majority of apparent
“noise variation” is shared across neurons that are
similarly functionally tuned?*27. Our recent resting-
state fMRI work in humans has shown that higher
temporal variability within a region reflects greater
(i.e., lower dimensional) functional integration
between regions across moments?. Critically,
higher temporal variability in thalamus and
striatum were among the strongest markers of
functional integration across the entire brain, both
cross-sectionally and longitudinally across the
adult lifespan®2', In simple terms, as striato-
thalamic activity fluctuates during resting-state,
the brain functionally integrates across moments.
However, it is unknown whether local variability
and functional integration are jointly regulated in

Figure 1: Probing individual
differences in neural variability
modulation  with  increasing
cognitive load from three
“Upregulator’ complementary  perspectives.
M » Older adults who can
M “Downregulator’ L
upregulate neural variability

under increasing load (green)
are expected to exhibit (A)
greater dopamine D2 binding
potential, (B) higher functional
integration  between  brain
regions (here, between
thalamus (node a) and striatum
is depicted), and (C) more
effective decision-making
(lower right).
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the face of varying cognitive demands, and if so,
whether the striato-thalamic system remains of
central importance. We anticipate that individuals
who can better upregulate striato-thalamic BOLD
variability will also increase functional integration
under load.

Third, a comprehensive understanding of the
capacity to upregulate signal variability under load
requires in-depth assessment of the cognitive
processes giving rise to task-relevant behavioral
parameters. Despite substantial progress in
understanding how brain signal variability reflects
traditional estimates of cognition in humans? (e.g.,
reaction time; accuracy), it is poorly understood
how neural variability (especially in the striato-
thalamic system) reflects components of decision-
making under varying cognitive demands.
Computational models of behavior such as the
drift diffusion model (DDM) conceptualize decision
making as the accumulation of noisy evidence
over time into an internal decision variable until a
decision boundary is reached?®?°. Such models
separate non-decision (e.g., motor) from decision-
related components (e.g., rate of evidence
accumulation, or drift rate) and can also estimate
the extent to which participants tend towards
certain choice alternatives. Recent work suggests
that those who can modulate evidence
accumulation with increasing cognitive demand®
and adjust their decision criteria when required
also express greater EEG-based variability?'.
However, spatially specific (especially striato-
thalamic) signatures of how neural variability
reflects evidence accumulation and decision
criteria under cognitive load remain unknown. We
expect that individuals who can better maintain
their rate of evidence accumulation and who
express optimal decision criteria in the face of
rising task demands may be more likely to
upregulate neural variability under load (Figure
1C).
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The current study

In the present study, we test for unique
associations between brain signal variability
regulation and our three research targets (D2
capacity, functional integration, and decision-
making; Figure 1), specifically within the domain of
working memory. Neural variability has proven
highly  responsive to  working  memory
demands®7:1%3233 dopamine levels>'%'?, and the
striato-thalamic ~ system in  general®202132,
However, it is not yet known whether one’s
capacity to regulate neural variability in the face of
varying working memory load is associated with
any of our research targets. In particular,
computational models of decision making have
not yet been deployed to understand how working
memory demand drives behavior in association
with variability regulation. To these ends, we
directly probed load-based variability regulation by
taking a fresh look at perhaps the most commonly
used parametric working memory task in cognitive
neuroscience, the n-back task3*.

On this classic task, participants are asked to
respond “yes” or “no” whether the current stimulus
is the same as that seen n positions back in the
set. When n>1, participants must not only store
the immediately presented item, but also the
sequence of stimuli seen®, creating a complex
and demanding interplay between multiple
cognitive processes, including attention, updating,
maintenance, and inhibition®36, If one can
dynamically utilize these various processes
across moments, temporal variation in the
associated brain regions may be increased (top of
Figure 1, green trace)>’. However, if an individual
cannot deploy such processes as capacity limits
are reached (e.g., at 3-back), brain signal
variability may instead compress (e.g., top of
Figure 1, red), perhaps manifesting in greater
behavioral losses (e.g., reduction in evidence
accumulation).

To date however, precisely how the n-back task
invokes cognitive demand is not known. Beyond
the general level of working memory “demand”
that n-back parametrically invokes®, we argue
that a considerable yet rarely appreciated
asymmetry exists in the demands associated with
"yes” and "no” decisions on the n-back task.
Specifically, correct “no” decisions may rely on a
simple determination of stimulus set membership
(“Did | see this stimulus before?”), whereas correct
“yes” decisions likely require the reinstatement of
details of the remembered item (“l saw it, but was
it n positions back?”)¥-3°. It is plausible that those
who better remember the stimulus set may more
efficiently reach these simpler "No” decisions (i.e.,
that they are more efficient at “knowing not"3":38),
However, as load increases, we presume that only
top performers able to upregulate neural variability

can maintain such an ability. We leverage the drift
diffusion model to capture the effects of these
various decision components on evidence
accumulation in the n-back task*?, in turn providing
a new view of how working memory demand may
drive neural variability regulation.

Using the world’s largest dataset containing both
dopamine positron emission tomography (PET)
and task-based functional magnetic resonance
imaging (fMRI; n = 152 adults), we examined how
our three targets (dopamine D2 capacity,
functional integration, and drift diffusion modelling
of behavior) jointly account for one’s ability to
modulate fMRI-based BOLD variability under
increasing working memory load. We show that
greater upregulation of striato-thalamic variability
is characteristic of individuals who: (i) exhibit
higher D2 binding potential, (ii) increase functional
integration, and (iii) more effectively leverage
evidence accumulation processes (drift rate and
drift criterion) under heightened load.

RESULTS

Target 1: Higher upregulation of striato-
thalamic SDsoLp under load uniquely reflects
higher D2 binding potential

We first asked whether subjects who upregulate
SDsoLp to rising cognitive demands (i.e., from 2- to
3-back; see Methods for rationale) indeed have
higher non-displaceable D2 binding potential
(BPnp; assayed with '"C-raclopride-PET at rest). A
behavioral partial least squares (PLS) model
linking SDsoLp modulation and D2 BPnp revealed
that individuals with higher D2 binding also
expressed greater upregulation of SDsoLp from 2-
to 3-back (r= .30 (bootstrap 95% CI = .17, .43), p
= 1.46e-4; see Figure 2A). This effect was most
evident in dorsal and ventral striatum as well as in
thalamic nuclei known to project to prefrontal
cortex (medial dorsal and “motor thalamic” nuclei),

as well as the intralaminar nuclei*! (Figure 2B).
See Figure S1 for a full axial view of all nuclei.

We then probed whether this positive association
between SDsop modulation and D2 BPno was
unique to the striato-thalamic network. Although
SDsop modulation was significantly bivariately
correlated with striatal D2 BPnp in every network
examined (Figure 2C, left; see Methods for
rationale for network choices), regression
analyses revealed that this effect remained
significant only in the striato-thalamic system
when controlling for all other networks (Figure 2C,
right), highlighting a distinct link between striatal
D2 BPno and striato-thalamic SDsop modulation
over and above the rest of the brain.
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Figure 2: Moment-to-moment brain signal variability in the striato-thalamic system under working memory load and its association
with dopamine D2 binding potential (BPnp). (A) PLS model result showing that those who upregulate SDsoLp under load also have
higher D2 BPnp. (B) Overlay of the Morel nucleic atlas showing key results for the intralaminar (IL), mediodorsal (MD), and “motor”
(ventro-medial (VM), -lateral (VL), and -anterior (VA)) thalamic nuclei. MNI coordinates: left and middle panel = 8, -18, 4; right
panel = -8, -18, 4. BSR = bootstrap ratio (higher values = more robust effects; see Methods). (C) Associations between SDgoLp
modulation and dopamine D2 binding potential. Positive bivariate effects were present in every network (see also Figure S2 for
all scatter plots), but a partial effect was unique to the striato-thalamic system using both standard linear regression and rank
regression (i.e., all variables present in the standard regression were rank transformed prior to model run).

Target 2: Upregulation of SDsoip under load
consistently reflects striato-thalamic
functional integration

We then examined whether joint upregulation of
SDsoLp and functional integration (estimated via
PCA dimensionality; see Methods) in the striato-
thalamic system occurred with increasing
cognitive load. To do so, we first correlated the
DA-driven striato-thalamic ASDsowp brain score
from the previous analysis (Figure 2) with the
change in striato-thalamic PCA dimensionality
from 2- to 3-back (APCAdim). We found a strong
negative correlation (r = -.71, p = 4.92*10'%°; see
Fig 3A), indicating that as working memory load
increased, when regions within the striato-
thalamic system functionally integrated in time
(i.e., became lower dimensional), the time series
variability of those same regions also increased.
We then tested the extent to which associations
between ASDsop and APCAdim were unique to
the striato-thalamic system. First, we noted that

negative associations between ASDsoo and
APCAdim were always present within each
network (Figure 3B, diagonal). Strikingly however,
greater load-based functional integration in the
striato-thalamic  network uniquely predicted
upregulation of SDsowp in every other network
(Figure 3, green box), but modulation of functional
integration in non-striato-thalamic networks was
not significantly associated with modulation of
striato- thalamic SDsowp (Figure 3B, red box).
These results highlight the importance of striato-
thalamic functional integration for understanding
working memory load-based modulation of brain
signal variability across the entire brain.

Target 3a: Drift diffusion modelling of behavior

Before examining how behavior (in concert with
DA and functional integration) may be associated
with individual differences in SDsoLo modulation
under working memory load (Target 3), we first
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Figure 3: Shifts in striato-thalamic network dimensionality are uniquely associated with shifts in SDsoip in every network
examined. APCAdim = change in PCA dimensionality (lower values represent higher functional integration from 2- to 3-back).
(A) Bivariate correlation between APCAdim and ASDsgoLp in the striato-thalamic system. (B) Regressions linking APCAdim to
ASDsgoLp in each network. Green box: A unique effect of striato-thalamic APCAdim on ASDsoLp exists in every single network.
Red box: There are no unique effects of any non-striato-thalamic APCAdim measure on striato-thalamic ASDgoLb.
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Figure 4: Drift diffusion model of n-back. (A) Depiction of DDM of the n-back task. a = boundary separation; v = drift rate; t = non-
decision time (the sum of sensory encoding (8) and post-decision motor components (y)); z = starting point. (B) Canonical DDM
parameter estimates by load level. Error bars represent + 1 SD (within-subjects), calculated with the Rmisc package, using the

method from Morey (2008).
assessed the impact of rising demands on
behavior using drift diffusion modelling.

Canonical DDM parameters

To investigate which components of the decision
process were affected by the n-back manipulation,
we fit the drift diffusion model (DDM) to the
behavioral data?® using hierarchical drift diffusion
modelling (HDDM)*2, Most applications of the
DDM (Figure 4A) model a binary decision (here, a
"yes” or “no” decision) as the accumulation of
evidence towards one of two choice boundaries.
Three parameters are typically examined: the rate
of sensory evidence accumulation over time (drift
rate); response caution, defined as the distance
between the two bounds (boundary separation),
and; time spent encoding the evidence and
executing the motor response (non-decision time).
We found that when shifting from moderate (2-
back) to high (3-back) working memory load, drift
rate and boundary significantly decreased, while
there was no effect for non-decision time (Figure
4B; see Table S1 for descriptives and RMANOVA
results for each parameter). Also see Figure S3
(distributions) and Table S1 (descriptives and
RMANOVA results) for accuracy and RT effects.

A case for asymmetrical decision-making on the
n-back task

Close consideration of the demands associated
with n-back decisions reveal an asymmetry in
what is required to make ‘yes’ and ‘no’ responses.
Specifically, we propose that this task could be
considered to have (at least) two different decision
stages®. At stage 1, a simple determination of set
membership is required (i.e., “have | seen this digit
or not?”), while at stage 2, a more specific digit
order retrieval process is required to compare the
stimulus to that seen n-back (see Figure 5A). If the
digit is new (e.g., a “6”), a “no” response can
immediately be selected, whereas if the digit is

recognized as part of the set already seen (e.g., a
“4”), then stage 2 is invoked, requiring extra
processing resources.

There are (at least) two possible ways in which
such asymmetrical n-back decisions may be
captured by the DDM when the two decision
boundaries are set to represent the actual choices
(“yes” and “no”). First, by recognizing that “yes”
responses require more deliberation and thus
have slower evidence accumulation, participants
could strategically shift their starting point of
evidence accumulation towards the “yes”
boundary to offset heightened memory demands.
In the DDM framework, this can be estimated as a
“starting point bias” that is implemented before the
decision process begins (Figure 5B, dark grey
trace). Second, via an alternative mechanism,
higher performing participants who keep closer
track of the set of within-block stimuli should be
better able to recognize incoming stimuli as not
being part of the set. The DDM could capture this
phenomenon by estimating whether the rate of
evidence accumulation is equal between “yes”
and "no” responses (i.e., whether a so-called “drift
criterion” exists?®). If a stimulus is detected as new
within the block, this drift criterion should lead to a
more efficient decision termination at the “No"
boundary (Figure 5C, blue trace). On the other
hand, if the item is detected as a target (match),
Stage 2 of the decision process should emerge
(see Figure 5A), leading to a relatively less
efficient termination at the “Yes” boundary (Figure
5B, blue trace). Crucially, unlike a starting point
bias, which may be considered a general strategy
(or pre-decisional bias) to offset resource
demands during n-back, drift bias can only
emerge when a stimulus has been presented, thus
representing an intra-decisional form of bias
directly reflecting differential evidence
accumulation.
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Figure 5: The emergence of decision bias during the n-back working memory task. The n-back task could be considered to have
(at least) two different decision stages. At stage 1, one is required to determine whether an item was previously seen or not,
while at stage 2, a more specific digit order retrieval process is required to compare the stimulus to that seen n-back. (A) Example
in which the current stimulus is either new or previously seen relative to the set of digits already processed. If the digit is new
(e.g., @ “6”), a “no” response can immediately be selected. If the digit is recognized as part of the set already seen (e.g., a “4”),
then stage 2 is invoked, requiring extra decision time. Decision bias in this context could present in two plausible forms. (B)
Starting point bias: Knowing that “yes” responses are more resource-demanding, participants could shift their starting point
towards the yes boundary to offset heightened resource demands (blue trace). Drift bias: Alternatively, a quicker/more accurate
response to novel/non-target items could be captured by a quicker drift to the “no” decision boundary (blue trace). (C) Starting
point bias towards “yes” responses and (D) drift bias towards “no” responses were both reduced under higher working memory
load. Error bars represent + 1 SD (within-subjects), calculated with the Rmisc package, using the method from Morey (2008).

Our results indicated that a DDM including both
bias terms provided a better fit to the n-back
behavioral data than a standard DDM including
only boundary, drift rate, and non-decision time
(Deviance Information Criterion (DIC); basic
model = 25809; bias model = 23641; see Figure
S4 model fits for each subject for the two n-back
conditions). Results indicated a robust starting
point bias towards “yes” responses (Figure 5C) at
2-back (One sample t-test against zero bias (i.e.,
starting point bias = .50), t = 22.33, p = 1.05e-49)
that tapered at 3-back (Figure 5C; t = 15.17, p =
3.72e-32). The average within-subject reduction in
bias with load was also robust (F = 61.11, p =
8.58e-13, eta? = .29). Next, we found a substantial
drift criterion towards “no” responses in every
single subject (Figure 5D) at 2-back (one sample
t-test against zero bias (i.e., drift criterion = 0), t =
40.94, p = 1.21e-83) and at 3-back (t = 36.62, p =
5.36e-77). This suggests that subjects indeed
leveraged the relative ease of “no” decisions on
this task. The average within-subject effect was
also robust (F = 27.97, p = 4.25e-7, eta? = .16).
Finally, in line with the idea that these two bias

terms should capture distinct (pre- vs intra-
decisional) aspects of n-back behavior, we noted
only modest correlations between starting point
bias and drift criterion at both 2-back (r=-.16, p =
.06) and 3-back (r=.12, p = .16).

Associations between DDM parameters and
offline measures

To better understand the behavioral relevance of
our estimated DDM parameters, we correlated
each estimated 2- and 3-back parameter with two
composite measures of offline (outside of the
scanner) cognitive performance, a Working
Memory factor and a general Speed factor (see
Methods). The two most striking sets of effects
were for drift rate and drift bias (see Table S2 for
all correlations). At both 2- and 3-back, higher drift
rate was associated with higher offline Working
Memory and faster offline Speed factor scores (2-
back, r = .37, p = 2.59e-6; 3-back, r = .30, p =
1.34e-4). More negative drift bias (i.e., stronger
bias towards “no” responses) was also associated
with higher offline Working Memory and faster
offline Speed factor scores (2-back, r = -.40, p =
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2.57e-7; 3-back, r = -.29, p = 3.22e-4). Although
more modest correlations between starting point
bias and Working Memory (r = .23, p = 4.62e-3)
and Speed (r = .18, p = .03) at 2-back were also
present, such associations were not significant at
3-back. Further, both higher drift rate and more
negative drift bias were associated with higher
digit symbol task performance (from the Wechsler
Adult Intelligence Scale) at both 2- and 3-back
(abs rrange = .18-.32). Finally, more negative drift
bias was the only parameter significantly
associated with more years of education (2-back,
r=-22, p =.006; 3-back, r =-.29, p = 2.83e-4).
Thus, we found that decision processes reflecting
evidence accumulation (drift rate and drift bias)
were most convincingly associated with offline
performance and educational attainment.

Target 3b: SDsoLp modulation under load as a
function of DDM-based behavior (and its
interactions with D2 BPwnp and functional
integration)

As a final step to understanding the various bases
on which neural variability modulation can occur,
we ran a series of linear models linking modulation
in DDM behavioral parameters, DA binding
potential, and modulation of functional integration
to SDsoLp modulation under working memory load
(see Methods). To help understand the joint role
of these covariates of SDsop modulation,
interactions were of particular interest. We ran
models with and without Cook’s distance outlier
removal and results were highly comparable (see
Table S3 for full model results).

Striato-thalamic system

behavior may account for striato-thalamic SDeoLb
modulation. We found that higher D2 BPnp and
heightened functional integration were uniquely
associated with upregulation of striato-thalamic
SDsoLp under load (see Table S3). We also noted
a negative effect of drift bias, indicating that
maintaining a drift bias towards “no” responses
was associated with upregulation of SDsolp.
Notably however, we found no main effect of
starting point bias in this model. Several key
interactions were also present (Figure 6). First,
participants with higher D2 BPnp and greater ability
to maintain a drift bias towards “no” responses
were best able to upregulate SDgoLp from 2- to 3-
back. We also noted three interactions with
modulation of functional integration, revealing that
those who can jointly increase functional
integration and (1) shrink their decision boundary,
(2) maintain drift rate, and (3) avoid increased
non-decision time under increasing working
memory load were also better able to upregulate
striato-thalamic SDsorp. Individual differences in
striato-thalamic SDeop modulation can thus be
understood as a joint reflection of D2 BPnp,
network-level dimensionality, and a variety of
decision processes invoked during working
memory.

Beyond the striato-thalamic system

We then ran similar models (including interaction
terms) for all other networks of interest (see Table
S3). Most strikingly, unique main effects for all
DDM parameters were present in a model
examining the canonical working-memory-
relevant fronto-parietal network (FPN; see Figure
S4 for scatter plots). Those who collapsed their
decision boundary, maintained drift rate, and
maintained non-decision time also upregulated
SDgowp under load. The FPN model was also the

In a single model, we first examined how  onjy one to show main effects for both bias terms;
dopamine binding, functional integration, and those with a starting point bias (z) closer to the
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Figure 6: Striato-thalamic (S-T) SDsoLo modulation as a function of interactions between D: binding, functional integration (PCA
dimensionality), and drift diffusion model parameters. Participants expressing greater upregulation of SDsoLo from 2 to 3-back
also (A) have higher DA and better maintain a drift bias towards “no” responses. Moreover, SDgoLp upregulators also heightened
functional integration while (B) collapsing their decision bounds, (C) maintaining drift rate, and (D) maintaining non-decision time
under working memory load. Plots depict the visual form of two-way interactions between continuous variables, using point
estimates for each variable (see Methods for details). Because point estimate error bars are not estimable from continuous
variable interactions, we report the unique effect size (pr = partial correlation) of the interaction term estimated within each

regression model; see Table S3 for all model results.



“no” boundary and with a stronger drift bias toward
“no” responses exhibited greater upregulation of
SDsoo under load. However, only a single
interaction was present in this model (Figure 7A);
those who better upregulated functional
integration and maintained drift rate also
upregulated SDsoLp from 2- to 3-back, just as we
noted for the striato-thalamic system (Figure 6C).
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Figure 7: Interactions between dopamine, functional

integration, and behavior beyond the striato-thalamic system.
Left panel: FPN. Right panel: DAN. Plots depict the visual
form of two-way interactions between continuous variables,
using point estimates for each variable (see Methods for
details). Because point estimate error bars are not estimable
from continuous variable interactions, we instead report the
unique effect size (pr = partial correlation) of the interaction
term estimated within each regression model; see Table S3
for all model results.

For the dorsal attention network (DAN), behavioral
main effects of boundary, drift rate, and drift
criterion were also present (and of the same sign
as for the FPN). However, only one interaction
was present here too, revealing that those with
higher D2 BP who were more likely to collapse
their decision bound also upregulated SDsoLp
under load (Figure 7B). The visual and default
mode networks showed no significant main effects
of behavior or any interaction between behavior,
DA and/or functional integration.

DISCUSSION

We sought to elucidate dopaminergic, network-
level, and behavioral mechanisms under which an
individual can upregulate (rather than lose) brain
signal variability in the face of heightened working
memory demands. In many ways, the striato-
thalamic system was crucial for understanding this
triad of influences on signal variability modulation.

Dopamine D2 binding potential is uniquely
associated with modulation of striato-thalamic
variability under working memory load

The positive association between D2 BPno and
ASDsoLp modulation was dominated by the striato-
thalamic system, highlighting the centrality of this
system for understanding how D: is associated
with moment-to-moment neural variability under
heightened working-memory load. Spatially, this
striato-thalamic effect was evident within a host of

key thalamic regions. First, a series of thalamic
regions known to project to frontal cortex were
involved, including the medial dorsal (MD) and
“motor thalamic” nuclei. The MD thalamus has
been proposed as a key node within the
generalized fronto-striato-thalamic circuitry, and
as a recipient of striatal input via the pallidum, it
may be critical for integrating broad-scale
information within PFC during learning and
memory**-45. Notably, MD is a key enabler of
adaptive flexibility of PFC-related cognitive
functions*®47, and is broadly involved in nearly all
aspects of working memory*®-22. The “motor
thalamic nuclei” (ventral medial, ventral anterior,
and ventral lateral nuclei) connect directly to
premotor, motor, and supplementary motor
cortices in the frontal lobe5®*®, but also to
prefrontal cortex (in concert with MD nuclei) to
jointly mediate associative learning, action
selection, and decision-making®*. Second, load-
based modulation of SDsowp in the intralaminar
(IL) nuclei was also key in our results. Previous
work suggests that calbindin-positive matrix cells
are prominent in the IL and other medial thalamic
nuclei (e.g., ventral medial nuclei, as in the
present results; see Figure 2), a cell type that
projects diffusely to superficial layers across the
neocortex and may constitute a thalamic
“activating  system” that drives effective
interactions among multiple cortical areas®®.
The IL may also be crucial for the flexible shifting
between ongoing response modes and the
processing of salient cognitive demands'”:'8, here,
within the context of working memory.

The notion of “flexibility” common to the actions of
many of these nuclei in past work is particularly
noteworthy. We found that working memory load-
based modulations of brain signal variability in
these thalamic nuclei were particularly sensitive to
D2 capacity, where Dz is thought is also thought to
enable flexible, adaptive changes to neural
processing in the face of varying environmental
demands™3. Multiple forms of neural “flexibility” are
theoretically required for the n-back task. Distinct
(yet likely parallel) processes are required on a
trial-by-trial basis that ensure: (1) maintenance of
different memory representations over varying
length delays, and (2) continuous updating of
memory representations from an ongoing stream
of stimulus input. Such varying demands may
require “attractor plasticity,” the continual need to
flexibly adjust the specific memory/representation
that currently resides in attention, while still
allowing established representations to exist
outside of immediate attention for later recall®”-%8,
Given previous conceptualizations of BOLD signal
variability modulation as a general marker of
system flexibility>® and the sensitivity of load-
based modulation of striato-thalamic SDgovp to D2
capacity in the current study, future work could
consider alternative working memory paradigms
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that allow better isolation of competing
maintenance and updating stages of working
memory, permitting such a “flexibility” account to
be more precisely probed in relation to thalamic
function.

Beyond the thalamus, dorsal and ventral striatum
(bilateral putamen, caudate, and nucleus
accumbens) also featured prominently in how D2
binding was reflected in ASDsown. The
striatum®9%-5" has been linked to goal-directed
action and motor program execution, to control of
motivation, response to reward®® and to a variety
of  workihg  memory  operations51:5%-63,
Importantly, both dorsal and ventral striatum
communicate with frontal cortex primarily via
many of the same thalamic nuclei that correlate
with D2 BPnp in our results (i.e., MD, ventral
lateral, and ventral anterior nuclei)®*®°® noted
above. Further, striatal D2 cells specifically project
to thalamus through the so-called ‘“indirect’
pathway'”'® and in turn, the IL provides amongst
the densest excitatory input onto the striatum'”:'°,
Overall, our findings place the striato-thalamic
system (and its frontal targets) at the core of
neural substrates of how the D2 system may
promote modulation of brain signal variability
under increasing working memory load.

As the brain to fluctuates under load, the striato-
thalamic system integrates

We also found that working memory load-based
upregulation of “local” signal variability was tightly
coupled with increased functional integration
within every network examined. This provides first
human evidence that local dynamics and
functional integration are closely aligned outside
of the resting-state?®?'. Crucially, striato-thalamic
functional integration uniquely accounted for a
sizable proportion of ASDsoLp in every network,
but functional integration in non-striato-thalamic
networks was not independently associated with
modulation of striato-thalamic  SDsoip. In
particular, although the fronto-parietal network is
broadly considered a canonical working memory
network®-¢7 we found that functional integration
within the striato-thalamic network was the
strongest unique correlate of how moment-to-
moment variation in the FPN was modulated
under load. The clear presence of frontally-
projecting thalamic nuclei in our results may
provide a useful future basis for understanding
how such an effect could be achieved in the brain.
Our findings also provide a neural systems-level,
working memory-based specificity to previous
propositions that more disconnected, fractionated
biological systems should generally be less
dynamic across moments?%. Overall, these results
highlight the centrality of striato-thalamic
functional integration for understanding working
memory load-based modulation of neural

variability across the entire brain. In short, for the
brain to fluctuate under working memory load, the
striato-thalamic system must be integrated (or
“unified”) across moments.

Drift diffusion modeling provides a new view of
how the n-back task can be solved

Though the n-back task is among the most
commonly deployed working memory tasks in
cognitive  neuroscience (including previous
studies linking n-back to BOLD variability>”), the
drift diffusion model has only rarely been used to
analyze n-back behavior®®%. In many ways, the n-
back task is well suited to decouple multiple
behavioral processes that may occur on this task.
Our results indicated that the DDM is broadly
sensitive to n-back load-based modulations at
nearly all parameterized levels, offering novel
insights into working memory-based decision-
making. Increasing load strongly reduced the rate
of evidence accumulation (drift rate), likely
indexing the heightened difficulty of evidence
accumulation during working memory search as
demands increase and capacity limits are
reached. Boundary separation also shrunk under
load, suggesting a general reduction in response
caution. This effect may indicate that participants
recognize that 3-back is appreciably more difficult,
in turn reducing their internal criterion for how
much evidence is required prior to making a
decision; in this way, decisions can still be made
within the available response window despite
increased task difficulty.

Perhaps most strikingly, the estimation of bias
parameters served to capture previously
unappreciated individual differences in n-back
performance. Drift criterion was the most robust
form of response bias in the present data; every
single subject expressed a drift criterion towards
“no” responses (i.e., where “no” means that the
current stimulus does not match that seen n-
back). Why might subjects drift more quickly
toward “no” on this task? Like many previous
studies on the n-back task, the lure rate in the
current task is negligible, to prevent confusion
between target and non-target items (see
Methods). In this light, our drift criterion effect then
becomes clear once a clear decision asymmetry
inherent in the construction of the n-back task is
acknowledged (see Figure 4). We have framed
the n-back task as requiring two key decision
stages. At Stage 1, simple set membership of the
stimulus is judged. Given a low lure rate, if the
subject doesn’t recognize the stimulus at any
level, then “no” can be immediately selected as
the item is almost certainly new. However, if the
stimulus is recognized, then Stage 2 is required to
specify whether the recognized stimulus was seen
n positions back, requiring a more specific and
resource intensive form of memory reinstatement.
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We postulated that better performers in general
may more efficiently reach these simpler "No”
decisions (i.e., that they are more efficient at
“knowing not™7:38). In accord with this prediction,
we showed that those exhibiting a greater drift
criterion towards “no” responses were more
successful on a series of offline working memory
and speed tasks, had higher general intelligence,
and greater years of education. The ability to
leverage such a drift criterion under load may thus
characterize a well-performing system in general,
and our findings open a new window into how
cognitive “demand” on the classic n-back task may
manifest.

The regulation of neural variability is jointly
accounted for by behavior, dopamine capacity,
and functional integration

Beyond average DDM-based behavioral effects
on the n-back task, our core interest here was
examining how load-based modulations in SDsoLb
may be accounted for jointly by performance, D2
binding, and functional integration. We noted that
the striato-thalamic system was again uniquely
sensitive, revealing a series of notable
interactions. First, under increasing working
memory load, those who increased functional
integration and: (a) collapsed their decision
bound, (b) maintained (rather than lost) drift rate,
and (c) maintained (rather than increased) non-
decision time were best able to upregulate striato-
thalamic SDsop under load. These results
suggest that the ability to avoid falling off a
variability-based “cliff” under load may require that
better performers also maintain a low dimensional,
temporally “unified” striato-thalamic system.

Strikingly, the striato-thalamic system was the only
network to reveal that higher D2 binding and better
maintenance of a negative drift criterion under
load combined to account for upregulation of
SDsoLp. How might this interaction between D2
capacity and drift bias work? As noted above, the
better that subjects keep track of the stimuli they
have seen, the effectively they should recognize
that a stimulus has not yet been seen. As such,
previously unseen stimuli could represent a
particularly salient (“pop-out”) signal for a well-
functioning working memory system, creating the
context for a more efficient drift to “no” responses
to exist. Dedicated circuitry in the striato-thalamic
system may permit this to occur (see Figure 8). In
general, the indirect (D2 -based) striato-thalamic
pathway allows the thalamus to interrupt ongoing
cortical response modes to flexibly re-orient the
brain toward particularly salient stimuli'”'¢, As
summarized by Gerfen et al."”” and Ding et al."®,
the intralaminar nuclei of the thalamus in particular
can rapidly respond to salient stimuli, creating an
immediate burst/pause function in cholinergic
interneurons that suppresses the ongoing cortical

drive of striatal circuits, in turn strongly biasing the
striatal network towards a more flexible D2 regime.
Higher D2 binding potential could then be
suggestive of a higher-capacity indirect pathway
system, such that the intralaminar nuclei have
more options available to them when the time
comes to shift from the ongoing processing of
already seen items toward the processing of new
(salient) stimuli. Animal work suggests that this
primary thalamo-striatal pathway is also crucial for
reducing interference between new and existing
learning’® and becomes degraded in aging’".
Such interference reduction may also be critically
important for simultaneously performing the
maintenance and updating components of the n-
back task. Further, D2 striatal neurons are also
remarkably excitable over a range of inputs'’’2,
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Indirect pathway (D,) SPNs
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Figure 8: Depiction of how effective processing of new items in
n-back could permit a negative drift criterion by engaging a D2-
specific thalamo-striatal circuit. For example, at 3-back, upon
onset of an unseen stimulus (e.g., a 6, after previously seeing
4-7-9-4), drift criterion towards a “no” decision (i.e., the item
does not match that seen n-back) emerges. This novel
stimulus acts as rapid input to the intralaminar nucleus of the
thalamus, which creates a burst of activity in cholinergic
interneurons, ultimately biasing spiny projection neurons
(SPNs) in the striatum toward a D2 regime for ~1 sec. Figure
adapted from "7'78,
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producing relatively higher moment-to-moment
dynamics (than D+) as a result. We may have
captured some aspects of those dynamics via
working memory load-related shifts in SDsowp in
the current study.

Interestingly, although the striato-thalamic system
revealed the only robust D2 by drift bias interaction
on SDsowp, drift bias modulation was the single
most consistent main effect across all networks
showing brain-behavior associations (i.e., striato-
thalamic, DAN, and FPN). It is notable that SDsoLp
modulation in frontally-projecting thalamus and
the FPN and DAN networks (both with strong
lateral frontal regional representation) were all
sensitive to drift bias on n-back. Indeed, the FPN
is perhaps the most common a priori target in the
working memory literature and is thought
generally responsible for top-down control of
working memory representations73'74. The DAN
(often termed the “task positive network”) typically
becomes more active during a host of different
tasks requiring externally-oriented attention.
Combined, the broader fronto-striato-thalamic
system overall may be a primary target for
understanding how working memory-based drift
bias can be implemented by the human brain.
Further, SDsop modulation in the FPN was
remarkably sensitive to main effects of all
estimated DDM parameters, supporting its
general role in how working memory load-based
modulation of behavior is associated with BOLD
variability. Further, SDsoLo modulation in the FPN
was sensitive to starting point bias and drift
criterion modulation, with the effect of each
pointing in the same direction — those who start
closer and drift quicker to “no” expressed greater
upregulation of SDsop under higher working
memory load. We argue that such biases should
serve as a key future target for undertstanding the
neural dynamics of working memory.

Future directions

There are several future directions that could
further clarify how dopamine, functional
integration, and behavior are associated with
moment-to-moment neural variability. First, to fully
interrogate how decision bias manifests in n-
back/working memory, future task designs could
directly manipulate the capacity for bias to emerge
by manipulating the lure rate at each load level.
Second, our measure of striatal D2 is an estimate
of binding potential, gauging the capacity of the
system to utilize a D2 regime. An estimate of real-
time DA dynamics would be ideal for testing
whether the indirect (Dz2) striato-thalamic pathway
is preferentially engaged (e.g., over the direct (D1)
pathway) as drift criterion is implemented under
increasing working memory load. Although sub-
second estimates of DA fluctuations have been

achieved in Parkinson’s patients undergoing deep
brain stimulation’, this has not yet proven
possible in healthy adults. Third, alternative
neuroimaging modalities, data processing
routines, and variability estimation methods can
sometimes reveal spatially and statistically
differential results (see?'?337677), In particular,
choice of artifact removal and normalization
technique prior to estimating variability can
dramatically shift results. As such, future studies
should be careful to document precisely how
variability is computed and interpret their results in
that light. Finally, the present multi-modal results
were obtained with an unusually large sample of
older adults. It remains to be seen whether our
effects are equally strong during earlier periods of
the human lifespan. To achieve success in typical
young adult samples, higher n-back load levels
may be required to invoke individual differences in
modulation on the level of those seen in the
present study.

Conclusions

Our work suggests that an individual’s ability to
upregulate moment-to-moment variability in brain
activity under working memory load is jointly
associated with higher D2, higher functional
integration, and more optimal decision-making. In
particular, the striato-thalamic system appears to
represent a rich nexus for understanding how
these three signatures interact to determine neural
variability regulation. We argue that the ability to
upregulate brain signal variability under working
memory load may be a crucial hallmark of an
effective adult brain.
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METHODS

A comprehensive description of the recruitment
procedure, imaging protocols, and cognitive and
life-style assessments in the large-scale
Cognition, Brain, and Aging (COBRA) study have
been published elsewhere®283787%  Here, we
describe the methods directly relevant to the
present study.

Participants

The current sample consisted of 152 older adults
(64-68 years; mean = 66.2, SD = 1.2; 81 women)
randomly selected from the population register of
Umea, in northern Sweden. As noted in previous
work on this sample’®, exclusion criteria included
suspected brain pathology, diabetes, treatment
for cancer, neurological and psychiatric disorders,
impaired cognitive functioning (Mini Mental State
Examination < 27), and conditions that could bias
the brain measurements (e.g., severe trauma,
tumors), cognitive performance (e.g., severely
reduced vision), or preclude imaging (e.g., metal
implants). 28% of the sample was working, 18%
used nicotine, and 33% took blood-pressure
medications. Mean education was 13.3 years (SD
= 3.5), body-mass index (BMI) was 26.1 (SD =
3.5), systolic blood pressure was 142 (SD = 17),
and diastolic blood pressure was 85 (SD = 10).
The sample is representative of the healthy target
population in Umeda, Sweden.

Image Acquisition

Magnetic resonance (MR) imaging was performed
with a 3 Tesla Discovery MR 750 scanner
(General Electric, WI, US), equipped with a 32-
channel phased-array head coil. A 3D fast-spoiled
echo sequence was used for acquiring anatomical
T1-weighted images, collected as 176 slices with
a thickness of 1 mm. TR = 8.2 ms, flip angle = 12
degrees, and field of view = 25 x 25 cm. BOLD-
contrast sensitive scans were acquired using a
T2*-weighted single-shot gradient echoplanar-
imaging sequence. Parameters were: 37
transaxial slices, 3.4 mm thickness, 0.5 mm
spacing, TE/TR = 30/2000 ms, 80 degrees flip
angle, 25 x 25 cm field of view, and a 96 x 96
acquisition matrix (Y direction phase encoding). At
the start, 10 dummy scans were collected.
Functional data were acquired during a resting-
state condition (6 min) followed by the numerical
n-back WM task described above.

Positron Emission Tomography (PET) was
performed with a Discovery 690 PET/CT scanner
(General Electric, WI, US) during resting-state
conditions, following an intravenous bolus
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injection of 250 MBq [11C] raclopride. Preceding
the injection, a 5 min low-dose helical CT scan (20
mA, 120 kV, 0.8 s/revolution) was acquired, for
attenuation correction. Following the bolus
injection, a 55-min 18-frame dynamic scan was
acquired (9x120s, 3x180s, 3x260s, 3x300s).
Attenuation, scatter, and decay-corrected images
(47 slices, field of view = 25 cm, 256 x 256-pixel
transaxial images, voxel size = 0.977 x 0.977 x
3.27 mm) were reconstructed with the iterative
resolution-recovery VUE Point HD-SharpIR
algorithm, using 6 iterations, 24 subsets, and 3.0
mm post filtering, yielding full width at half
maximum (FWHM) of 3.2 mm?®. Head movements
during the imaging session were minimized with
an individually fitted thermoplastic mask attached
to the bed surface. For 82% of the individuals, PET
was carried out 2 days after the MR scan (average
time difference between MRI and PET: 3 + 6
days).

In-scanner task

During fMRI scanning, participants performed a
numerical n-back task. In this task, a sequence of
single digits appeared on the screen. Each digit
was shown for 1.5 s (within which a response must
have been made), with an ISI of 0.5 s. During
every item presentation, participants reported if
the number currently seen on the screen was the
same as that shown 1, 2, or 3 digits back. A
heading that preceded each blocked condition
indicated the load level. Participants responded by
pressing one of two adjacent buttons with the
index or middle finger to reply ‘yes, it is the same
number or ‘no, it is not the same number’,
respectively. A single fMRI run with 9 blocks for
each condition (1-, 2-, and 3-back) was performed
in random order (inter-block interval: 22 s). Each
block consisted of 10 ftrials that included 4
matches (requiring a “yes” response) and 6 non-
matches (requiring a “no” response). Within each
block of 10 trials, the number of valid trials
depended on n-back level (1-back: first trial
dropped, 9 valid trials, 4 yes/5 no ftrials; 2-back:
first two trials dropped, 8 valid trials, 4 yes/4 no
trials; 3-back: first three trials dropped, 7 valid
trials, 4 yes/3 no trials), yielding a total of 81, 72,
and 63 valid trials per subject for 1-, 2-, and 3-back
respectively. The specific stimulus/trial sequence
was the same for all participants, with only two
lures total (a single 2-back lure within two of the 3-
back blocks). The n-back condition blocks were
counterbalanced.

For the purposes of the current study, we focus
primarily on the 2- and 3-back conditions.
Although typically examined when the n-back task
is reported in the literature, 1-back demands can
easily be considered qualitatively different from 2
or 3-back. For 1-back, all that is required is for a
single digit to be maintained in memory for 0.5 sec;

each digit seen is simply compared to the one that
comes immediately afterward. From the
perspective of component processes of working
memory3¢, this simple process of maintaining a
single stimulus in mind has even been framed as
a “focus of attention”®®'. For 2- and 3-back
however, one must maintain a given stimulus and
its temporal order in memory for multiple seconds
in the face of ongoing updates to the string/list of
numbers to be remembered. Further, performance
is typically extremely high at 1-back®7-35%% and
shows minimal associations with D2 BPnp in past
work®. With all these issues combined, we thus
focused on the 2- and 3-back conditions
throughout the current study.

Behavior
Dirift diffusion modeling of choice behavior

We fitted a drift diffusion model (DDM) to the
accuracy and RT data of the 2- and 3-back
conditions to quantify the dynamics of the
cognitive processes underlying working memory-
based decisions?®. The DDM is a sequential
sampling model that provides an algorithmic
account of how the accumulation of evidence over
time contributes to a binary decision process. To
this end, the DDM decomposes the decision
process into three basic parameters: drift rate,
capturing the degree of evidence accumulation;
separation of the decision boundaries
representing each alternative, and; non-decision
time spent on sensory encoding and motor
response. The DDM has successfully been
applied to the n-back task in previous work®. In
addition to these standard parameters, we
estimated two parameters related to decision bias
to account for systematic preferences for either
‘yes’ or ‘no’ choices®®, one invoked prior to the
onset of the evidence accumulation process
(starting point bias), and another representing a
bias in the evidence accumulation process itself
(drift bias). See Results for our detailed rationale
for including these bias parameters in the context
of n-back.

We used hierarchical drift diffusion modeling as
implemented in the HDDM toolbox*? to estimate
model parameters. To enable estimation of the
response bias parameters, we fit the model using
separate correct and error RT distributions for
target-present and target-absent ftrials. This
procedure is termed ‘stimulus coding’ in the
HDDM toolbox, as opposed to the more common
‘accuracy coding’, where RT distributions are fit
separately for correct and error trials, independent
of the stimulus. The hierarchical Bayesian
parameter estimation of the DDM in the HDDM-
toolbox constrains single-participant parameters
estimates by the group and therefore results in
stable estimates also when within-subject data are
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limited but the number of subjects is relatively
large, as in our dataset.

We ran 5 separate Markov chains for the Bayesian
estimation with 5000 samples each. The first 2500
samples were discarded as burn-in, i.e., to let the
sampler identify the region of best fitting values in
the parameter space. The remaining 2500
samples per chain were concatenated across
chains. Individual parameter estimates were then
estimated from the posterior distributions. All
group-level chains were visually inspected to
ensure convergence. Additionally, we computed
the Gelman-Rubin R-hat statistic (which compares
within-chain and between-chain variance) and
checked that all group-level parameters were
below 1.1%. We also performed posterior
predictive checks to assess whether the model
was able to capture choice and reaction-time
patterns (Fig. S4).

Offline measures

To better characterize the relevance of DDM
parameters, we also utilized several offline
measures of interest. We examined unit weighted
composite scores of Working Memory (average
score across letter updating, columnized
numerical 3-back, and spatial updating tasks) and
Speed (average across letter, number, and figure
comparison) used in previous work (see 788). We
also used the digit symbol subtest from the

Wechsler Adult Intelligence Scale, a task
capturing broad-scale aspects of processing
speed, attention, associative learning, and
executive function®.
Image Processing

PET
The following preprocessing steps were

performed for each subject in SPM8. The 18 frame
PET scans were coregistered to the T1-image
using the time-frame-mean of the PET images as
source. They were then normalized to MNI-space
with the subject-specific flow fields (obtained with
DARTEL) and then affine transformed and
smoothed via a Gaussian filter of 8mm.
Normalization parameters were selected so that
concentrations in the images were preserved. For
determination of D2 BP, time-activity curves for
each voxel were entered into a Logan analysis
(Time frames 10-18 (18-55 minutes))®”#, using
time-activity curves in the grey-matter parts of
cerebellum as reference. Regions of interest were
delineated with the FreeSurfer 5.3 segmentation
software 8!, Median BP to non-displaceable
tissue uptake (BPnp) data were extracted for all
regions of interest based on the subcortical
parcellations in Freesurfer and the Desikan-
Killiany atlas °2 for extrastriatal regions.

Our specific estimate of striatal D2 BPnp was taken
from previous work on the COBRA dataset using
structural equation modeling (SEM) to model
between-person differences in D2 availability in a
variety of striatal and extrastriatal regions®.
Briefly, ["'C]raclopride BPnp of the left and right
caudate and putamen was estimated as a single
latent striatal factor. Single subject values on this
factor were calculated using regression-based
estimation of factor scores; see Papenberg et al.%
for further details.

Functional MRI
fMRI data were preprocessed with FSL 5
(RRID:SCR_002823)%95, Pre-processing
included motion-correction with spatial smoothing
(7 mm full-width at half maximum, Gaussian
kernel) and bandpass filtering (.01-.10 Hz). We
registered functional images to participant-specific
T1 images, and from T1 to 2mm standard space
(MNI 152_T1) using FLIRT. We then masked the
functional data with the GM tissue prior provided
in FSL (thresholded at probability > 0.37). We
detrended the data (up to a cubic trend) using the
SPM_detrend function in SPM8. We also utilized
extended pre-processing steps to further reduce
data artifacts®%%. Specifically, we subsequently
examined all functional volumes for artifacts via
independent component analysis (ICA) within-run,
within-person, as implemented in
FSL/MELODIC®. Noise components were
identified according to several key criteria: a)
Spiking (components dominated by abrupt time
series spikes); b) Motion (prominent edge or
“ringing” effects, sometimes [but not always]
accompanied by large time series spikes); c)
Susceptibility and flow artifacts (prominent air-
tissue boundary or sinus activation; typically
represents cardio/respiratory effects); d) White
matter (WM) and ventricle activation®; e) Low-
frequency signal drift'®; f) High power in high-
frequency ranges unlikely to represent neural
activity (= 75% of total spectral power present
above .10 Hz;); and g) Spatial distribution (“spotty”
or “speckled” spatial pattern that appears
scattered randomly across = 25% of the brain, with
few if any clusters with = 80 contiguous voxels [at
2x2x2 mm voxel size]). Examples of these various
components we typically deem to be noise can be
found in the supplementary material of Garrett et
al®. By default, we utilized a conservative set of
rejection criteria; if manual classification decisions
were challenging due to mixing of “signal” and
“noise” in a single component, we generally
elected to keep such components. Three
independent raters of noise components were
utilized; > 90% inter-rater reliability was required
on separate data before denoising decisions were
made on the current data. To enable semi-
automated data denoising using FSL FIX'0"102 we
manually classified 30% of participant data to
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provide a noise component training set. Features
from the noise component training set were then
extracted and used to detect noise components
from the remaining 70% of participant data via
FIX. Upon evaluating the automated labelling for
several subjects against our manual decisions, we
used a FIX threshold of 60, which permitted a best
match to manual decisions of two independent
raters. Components identified as artifacts were
then regressed from corresponding fMRI runs
using the regfilt command in FSL. We found
previously that these additional preprocessing
steps had dramatic effects on the predictive power
of SDsowLp in past research, effectively removing
50% of the variance still present after traditional
preprocessing steps, while simultaneously
doubling the predictive power of SDgoL%.
Critically, our recent work also suggests that when
such denoising approaches are applied, age
differences in SDsoLp remain robust to multiple
vascular controls measured via dual-echo ASL-
BOLD using carbogen-based hypercapni'®. The
present sample only contains a narrow age range
of older adults (64-68 years), further minimizing
the potential impact of aging-based differences in
vasculature that may be more present in samples
with wider age ranges.

Network parcellations

To provide full coverage over striatal and thalamic
regions, we first created a joint MNI152 registered
mask of bilateral striatal (from the Basal Ganglia
Human Area Template (BGHAT) atlas'®) and
thalamic regions (from the thalamic nucleus-
specific Morel atlas*'). To examine the relative
importance of the striato-thalamic system vs.
cortical networks, we also utilized the Yeo 7%
parcellation to estimate visual, fronto-parietal
(FPN), dorsal attention (DAN), and default-mode
networks (DMN). In particular, the FPN is
classically assumed to be crucial for parametric
working-memory tasks®4-7, providing perhaps the
most flexible hub in the brain specifically for
cognitive  control and  working memory
storage®6:106,

Brain measures

Voxel-wise estimates of SDsoLp
To calculate SDsoLp, we first performed a block
normalization procedure to account for residual
low frequency artifacts. We normalized all blocks
for each condition such that the overall 4D mean
across brain and block was 100. For each voxel,
we then subtracted the block mean and
concatenated across all blocks. Finally, we
calculated voxel standard deviations across this
concatenated time series (Garrett et al. 2010). All
models described below were run on grey matter
(GM) only, after a standard GM mask derived from

the MNI152 average brain was applied to each 4D
image set.

“Temporal” PCA dimensionality as an

estimate of functional integration
Building on our previous use of PCA
dimensionality to identify spatially coherent
networks 2°, in the current paper, we utilized
“temporal” principal components analysis (PCA)
as our primary within-subject  network
dimensionality estimation. Here, separately for
each n-back condition and network (i.e., striato-
thalamic, visual, FPN, DAN, and DMN), a
correlation matrix was estimated for all timepoint
pairs (across voxels) from each within-subject
data matrix. This correlation matrix was then
decomposed using PCA,

PCA(Rtime point pairs) = USV’ (1 )

where U and V are the left and right eigenvectors,
and S is a diagonal matrix of eigenvalues. We then
counted the number of dimensions it took to
capture 90% of the within-subject data. Because
the S matrix represents the eigenvalues of the
solution, and each eigenvalue is proportional to
the variance accounted for in the entire
decomposition, we summed eigenvalues until
90% of the total variance was reached. In effect,
the fewer dimensions it takes to capture 90% of a
given subject's data, the fewer distinct
(orthogonal) temporal periods (or temporal
“modes”) there are in their time series, suggesting
a unification/integration of temporal processing
during a given n-back condition. For a
comprehensive and direct comparison of
information captured by spatial and temporal
approaches to component estimation in fMRI, see
Smith et al.’%’.

Statistical modeling

Handling of outliers

Prior to model runs, we ran each variable of
interest through a modified Winsorization'%®
procedure; all values beyond +- 2.5SDs from the
mean were flagged as outliers and “Winsorized”
by assigning each outlier the closest non-outlying
value. All variables were then Z-transformed to
minimize collinearity issues that could arise when
simultaneously estimating main effects and
interactions within the regression models reported
for Target 3. All regressions in Target 3 were also
run with and without removal of multivariate
outliers (see Table S6). We estimated outliers
using Cook’s distance; values > 4/n (i.e., 4/152 =
.026) were initially flagged as outliers, but only a
maximum of 5% of the total sample (= 7 cases)
was dropped from any model run.

Plotting of interactions
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All estimated two-way interactions were between
continuous variables (see Table S3). To depict the
visual form of such interactions (see Figures 6 and
7), we used a typical point estimate
approach'%%119, Because of the continuous nature
of the variables forming these interaction terms,
point estimate error bars are, by definition, not
estimable. Instead, the unique effect size (pr =
partial correlation) of the interaction term
estimated within each regression model serves as
the relevant marker of “error.”

Partial Least Squares

To examine multivariate relations between
working memory-based SDsoo modulation and
DA, we utilized behavioral PLS analysis (Mcintosh
et al. 1996; Krishnan et al. 2011). This modelling
form begins by calculating a between-subject
correlation matrix (CORR) between (1) each
voxel's SDsop modulation value (i.e., 3-back
SDsoLp minus 2-back SDsoLp) and (2) D2 binding
potential (see Results). CORR is then
decomposed using singular value decomposition
(SVD).

SVDcorr = USV’ (2)

This decomposition produces a left singular vector
of offline task weights (U), a right singular vector
of brain voxel weights (V), and a diagonal matrix
of singular values (S). A single estimable latent
variable (LV) results that represents the relations
between SDsoo modulation and DA. This LV
contains a spatial activity pattern depicting the
brain regions that show the strongest relation to
DA identified by the LV. Each voxel weight (in V)

is proportional to the voxel-wise correlation
between DA and SDsoLp modulation.

Significance of detected relations was assessed
using 1000 permutation tests of the singular value
corresponding to the LV. A subsequent
bootstrapping procedure revealed the robustness
of within-LV voxel saliences across 1000
bootstrapped resamples of the data (Efron and
Tibshirani 1993). By dividing each voxel’s weight
(from V) by its bootstrapped standard error, we
obtained “bootstrap ratios” (BSRs) as non-
parametric, normalized estimates of robustness.
For the whole brain analysis, we thresholded
BSRs at values of +3.00 (which exceeds a 99%
confidence interval).

We also obtained a summary measure of each
participant’s robust expression of a particular LV’s
spatial pattern (a within-person “brain score”) by
multiplying the model-based vector of voxel
weights (V) by each subject’'s vector of voxel
SDeolp upregulation values (Q), producing a
single within-subject value,

Brain score = VQ- (3)
Code sharing

All code, masks/parcellations, and
(un)thresholded brain maps will be available on
Github upon final publication at:
https://github.com/LNDG/Garrett_etal 2022 CO
BRA.
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