bioRxiv preprint doi: https://doi.org/10.1101/2022.04.29.490104; this version posted April 30, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Main Manuscript for

The Features Underlying the Memorability of Objects

Max A. Kramer', Martin N. Hebart?, Chris I. Baker’, Wilma A. Bainbridgel*

1 — Department of Psychology, University of Chicago
2 — Vision and Computational Cognition Group, Max Planck Institute for Human Cognitive and Brain Sciences

3 — Laboratory of Brain and Cognition, National Institute of Mental Health

*Corresponding Author: Wilma A. Bainbridge
Email: wilma@uchicago.edu
Competing Interest Statement: The authors do not have any competing interests.

Keywords: Memory, Feature Space, Typicality, Semantics


https://doi.org/10.1101/2022.04.29.490104
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.29.490104; this version posted April 30, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

ABSTRACT

Despite decades of study of memory, it remains unclear what makes an image
memorable. There is considerable debate surrounding the underlying determinants of memory,
including the roles of semantic (e.g., animacy, utility) and visual features (e.g., brightness) as
well as whether the most prototypical or most atypical items are best remembered. Prior studies
have relied on constrained stimulus sets, limiting any generalized view of the features that may
contribute to memory. Here, we collected over one million memory ratings (N=13,946) for
THINGS (Hebart et al., 2019), a naturalistic dataset of 26,107 object images designed to
comprehensively sample concrete objects. First, we establish a model of object features that is
predictive of image memorability, capturing over half of the explainable variance. For this
model, we find that semantic features have a stronger influence than visual features on what
people will remember. Second, we examined whether memorability could be accounted for by
the typicality of the objects, by comparing human behavioral data, object feature dimensions, and
deep neural network features. While prototypical objects tend to be the most memorable, the
relationship between memorability and typicality is more complex than a simple positive or
negative association and typicality alone cannot account for memorability.

SIGNIFICANCE STATEMENT

Why is it that we seem to remember and forget the same things? Our lived experiences
differ, but there is remarkable consistency in what is remembered across people. Here, we
collected memory performance scores for a comprehensive and diverse collection of natural
object images to identify which properties determine our ability to remember. We created a
model for predicting memory from object features showing that semantic properties more than
visual properties contribute primarily to memorability. Further, we find that it is neither the most
prototypical or atypical images that are best remembered, which suggests that typicality alone
cannot account for memorability. Our findings challenge decades of prior research that suggest
that the most atypical items are most memorable, informing our understanding of the features
and organizational principles of memory.
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INTRODUCTION

What is it that makes something memorable? Researchers have been struggling for
decades to understand the determinants of memory and how information is encoded, processed,
and retrieved in the brain. The majority of research in memory uses a subject-centric framework,
attempting to understand the underlying processes of memory and individual differences across
people. This subject-centric framework is motivated by the highly personal nature of memory, as
everyone has their own experiences that influence what they will later remember. However, a
complementary stimulus-centric framework has arisen out of the surprising finding that, despite
our individual experiences, we largely remember and forget the same images (Isola et al., 2011;
Bainbridge et al., 2013). This new stimulus-driven perspective allows for a targeted examination
of what we remember, and why.

This stimulus-driven perspective has revealed that images have an intrinsic memorability,
defined for a stimulus as the likelihood that any given person will remember that stimulus later
(Bainbridge et al., 2019). By using aggregated task scores for each stimulus rather than
individual participant responses, memorability for a given stimulus can be quantified, repeatedly
demonstrating a high degree of consistency in what people remember (Isola et al., 2011;
Bainbridge et al., 2019) across stimulus types (see Isola et al., 2011; Bainbridge et al., 2013;
Borkin et al., 2013; Xie et al., 2020). These memorability scores can account for upwards of 50%
of variance in memory task performance (Bainbridge et al., 2013) and demonstrate remarkable
resiliency across tasks and robustness to attention and priming (Bainbridge, 2020). This high
consistency allows one to make honed predictions about what people will remember, which
could have far-reaching implications for fields including advertising, marketing, public safety
(Bainbridge et al., 2019), patient care (Bainbridge, Berron, et al., 2019), and computer vision
(Needell & Bainbridge, 2022). However, in spite of these high consistencies in what individuals
remember, what specific factors determine the memorability of an image is still largely
unknown.

Prior research has sought to explain memorability as either a proxy for a given stimulus
feature such as attractiveness or brightness, while others have attempted to reduce memorability
to a linear combination of features in a constrained stimulus set (Bainbridge et al., 2013; Isola et
al., 2014). These studies mostly utilize faces or scenes as stimuli, and none of them have
explained the majority of variance in memorability using these models. More recently,
researchers have emphasized the importance of considering items in a multidimensional
representational space, with memorability arising from the relative location of an item within that
space (Lukavsky & Déchtérenko, 2017; Bainbridge, 2019; Koch et al., 2020). This theoretical
framework has sparked debate about the roles of low-level visual features such as color and
shape and semantic information such as animacy in determining what we remember and what we
forget (Khosla, 2015; Jaegle et al., 2019; Madan, 2020; Xie et al., 2020). Additionally,
researchers disagree on whether the most memorable items are the most prototypical items
(Bainbridge, Dilks, & Oliva, 2017; Bainbridge & Rissman, 2018) or the most atypical items
(Bylinskii et al., 2015; Lukavsky & Déchtérenko, 2017; Mosenzadeh et al., 2019). Thus, there is
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a lack of consensus surrounding the roles of visual and semantic features as well as typicality
with regards to what we remember, necessitating a much broader and detailed investigation.

Here, we provide a comprehensive characterization of visual memorability across an
exhaustive set of picturable object concepts in the American English language (THINGS
database, Hebart et al., 2019). Specifically, we determine the object features that drive our
memories. We collected over 1 million memory scores for all 26,107 images in the THINGS
database, which we have made publicly available
(https://osf.io/5a7z6/?view_only=675e901c176c4bec9c2540fc4981e5fe). We then leveraged
three complementary measures—human judgments, multidimensional object features, and
predictions from a deep convolutional neural network (CNN)—to examine the relationship of
memorability to object typicality. We construct a feature model that is able to predict a majority
of the variance in image memorability. Among those features, our results uncover a primacy of
semantic over visual dimensions in what we remember. Further, while we find evidence of the
most prototypical items being best remembered, our discovery of high variance in the
relationship between memorability and typicality at multiple levels suggest that typicality alone
cannot account for memorability.

RESULTS

To explore memorability across concrete objects, we collected memorability scores for
the entire image corpus of the THINGS database of object images (Hebart et al., 2019) and
uncovered a dispersion of memorability across the hierarchical levels of THINGS. We examined
the roles of semantic and visual information by predicting memorability from semantic and
visual features using multivariate regression, revealing that semantic dimensions contribute
primarily to object memorability. We then analyzed multiple measures of object typicality along
with the memorability scores and found a small but robust effect of the most prototypical items
being best remembered.

THINGS is a hierarchically structured dataset containing 26,107 images representing
1,854 object concepts (such as aardvark, tank, and zucchini) derived from a lexical database of
picturable objects in the English language (see Methods), 1,619 of which are assigned to 27
higher categories (such as animal, weapon, and food). The concepts were assigned to categories
in prior work through a two-stage process where one group of participants proposed categories
for a given concept while a second group narrowed the potential categories further, with the most
consistently chosen category becoming the assigned category for the concept (Hebart et al.,
2020). The concepts and images are also characterized by an object space consisting of 49
dimensions that capture 92.25% of the variance in human behavioral similarity judgments of the
objects (Hebart et al., 2020). Each concept and each image thus can be described by a 49-
dimensional embedding that corresponds to the representation of that item in the object space.
This overall dataset structure enables the analysis of memorability at the image, concept,
category, and dimensional levels.

Memorability is Highly Variable Across Objects
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In order to quantify memorability for all 26,107 images in THINGS, we conducted a
continuous recognition memory task (N = 13,946) administered over the online experiment
platform Amazon Mechanical Turk (AMT) wherein participants viewed a stream of images and
were asked to press a key when they recognized a repeated image that occurred after a delay of at
least 60 seconds. Memorability was quantified as the corrected recognition (CR) score for a
given image, calculated as the proportion of correct identifications of the image minus the
proportion of false alarms on that image (Bainbridge & Rissman, 2018). The overall pattern of
results remains unchanged when corrected recognition is instead substituted with hit rate or false
alarm rate (Supplementary Material). To test if we observe consistency across people in what
they remember and forget, we conducted a split-half consistency analysis across 1,000 iterations
and found significant agreement in what independent groups of participants remembered
(Spearman-Brown corrected split-half rank correlation, mean p = 0.449, p < .001), which is
striking given the diversity of the THINGS images. This consistency in memory performance
demonstrates that memorability can be considered an intrinsic property of these stimuli.

When assessing memorability at the concept level (e.g. candy bars, windshields), we
observe that memorability varied widely across the concepts (Figure 1a). This dispersion of CR
suggests that not all concepts in THINGS are equally memorable. For example, candy bars were
highly memorable overall with a maximum CR of 1, a mean of 0.873, and a minimum of 0.756
(range = 0.127), while windshields were less memorable with a maximum CR of 0.756, a mean
of 0.649, and a minimum of 0.404 (range = 0.352). We observe a similar diversity of
memorability patterns at the higher category level (e.g. dessert, part of car; Figure 1b). The
average CR across the THINGS categories is 0.793, with some categories demonstrating a higher
average memorability than others; body parts attained the highest average memorability at 0.855
while part of car had the lowest average memorability of 0.753. These measures highlight the
rich variation present within the THINGS database as it relates to memorability.

The previously reported embeddings along 49 dimensions for each of the object concepts
(Hebart et al., 2020) allow us to determine if certain dimensions are more strongly reflected in
memorable stimuli (Figure 1c). Specifically, we examined Spearman rank correlations between
the memorability of the THINGS concepts and the concepts’ embedding values for each of the
49 dimensions. We found that 36 dimensions showed a significant relationship to memorability
(FDR-corrected q < 0.01), of which 9 were positive and the remaining 27 were negative. These
correlations reveal that some properties used to characterize an object do show a relationship to
memorability. For example, the positive relationship for the body / body part dimension (p =
0.257, p = 1.873 x 10?°) indicates that stimuli related to body parts tend to be more memorable,
while a negative correlation like metal / tools (p = -0.323, p = 1.689 x 107'5) implies that stimuli
made of metal tend to be less memorable.
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Figure 1. Descriptive analyses of memorability across the concept and category levels of the THINGS database as
well as the 49 object dimensions. (A) The spread of corrected recognition (CR) across the 1,854 object concepts
revealed that not all concepts are equally memorable. For concepts like candy bars, the entire range of component
image memorability values were contained above the average value for a concept like windshields. (B) Visualizing
the same spread across higher order categories revealed variation in average memorability across the 27 categories,
with some categories including part of car displaying a CR score below the overall average memorability of 0.793
represented by the dotted horizontal line while others like body parts displayed a score above the average. (C) This
high variability in memorability continues when examining the correlation between memorability and embeddings
along the object dimensions. 36 out of 49 dimensions displayed a significant association with memorability (shaded
bars, FDR-corrected q < 0.01), with 9 showing a positive relationship (i.e., body / body parts being more
memorable), and 27 showing a negative relationship (i.e., metal / tools being less memorable).

Having explored memorability across the structure of THINGS, we can readily observe
that memorability varies at the exemplar, concept, higher category, and dimensional levels. With

this understanding, the question becomes: what determines some concepts/categories/dimensions
to be more memorable than others?

Semantic Information Contributes Most to Memorability

To examine which object features are most important for explaining what is remembered
and what is forgotten, we used the object space dimensions to predict the average memorability
scores of the THINGS concepts (Table 1). Our regression model utilized the 49-dimensional
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embedding of each concept to predict the average CR score for the concept. Overall, the model
explained 38.52% of the variance in memorability (Figure 2b). Because memorability scores
contain some noise, we also calculated performance of this model in comparison to a noise
ceiling estimated by predicting split halves of the memory data across 100 iterations (see
Methods). We found our model explained 61.66% of the variance given the noise ceiling,
implying that these dimensions capture a majority of variance in memorability.

The explanatory power of our model serves as a strong starting point for an analysis of
the types of dimensions that contribute most to memorability. We sorted the dimensions into two
main categories: visual and semantic dimensions. Dimension names were determined in a prior
study, as the top two-word phrases selected by naive observers for sets of the most heavily
weighted images on those dimensions (see Methods; Hebart et al., 2020). We defined visual
dimensions of an image to be those concerned primarily with color and shape information, such
as “red / color”, “long / thin”, “round / circular”, and “pattern / patterned” (Table 1). We defined
semantic dimensions as categorical information that did not include references to color or shape,
such as “food / carbs”, “technology / electronic”, and “body / body parts”. Any dimensions that
contained both semantic and visual information as defined above were classified as mixed, such

as “green / vegetables”, “black / accessories”, and “white / winter”.

Table 1. Categorization of THINGS object space dimensions across semantic, visual, and mixed dimensions.
Dimension names were derived from naive observers viewing the highest weighted images on each dimension.
Dimensions are listed in order of highest to lowest correlation with memorability score.

Semantic Visual Mixed
Metal / Tools Colorful / Colors Furniture / Bland to Colorful
Food / Carbs Circular / Round Green / Vegetables
Animal / Animals Patterns / Piles Wood / Brown
Clothes / Clothing Long / Thin Royalty / Gold
Backyard / Garden Red / Color Dirt / Grainy
Cars / Vehicles Round / Circular Black / Accessories
Body / Body Parts Pattern / Patterned Long / Rope
Technology / Electronic Tall / Big Paper / White
Sports / Sport Mesh / Nets Rope / Bands
Tools / Hand Tools Construction / Long
Paper / Books Unknown / Colorful
Liquids / Containers White / Winter
Water / Ocean Shiny / Jewels
Feminine / Flowers
Bathroom / Hygiene
War / Military
Instruments / Music
Flight / Air
Insects / Bugs
Feet / Body Parts
Fire / Heat
Face / Head
Wheels / Can Sit On
Containers / Hold Other Things
Baby / Children
Medicine / Medical
Candles / Crafts
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With these dimensions labelled, we can differentiate the contributions of primarily
semantic and primarily visual dimensions to memorability. By analyzing the embeddings of each
concept in the multidimensional object space, we revealed that 70.44% of the concepts were
more heavily embedded in dimensions classified as semantic than dimensions classified as visual
(Figure 2a). We ran a regression model that predicted memorability only from the dimensions
strictly classified as either semantic or visual (excluding mixed dimensions). The resulting 36-
dimensional model (27 semantic, 9 visual) explained 35.16% of the variance in memorability,
and the semantic dimensions contributed 31.22% of the variance while visual dimensions only
accounted for 1.62% with a shared variance of 2.32% (Figure 2c). This result suggests a clear
dominance of semantic over visual properties in memorability. To examine the effects of
dimensions labelled as mixed, we also broke down the unique and shared variance contributions
from semantic, visual, and mixed dimensions in the full 49-dimensional model, demonstrating
that mixed dimensions contributed 1.03% of variance in memorability (see Supplementary
Material).

However, since there are also a larger number of semantic dimensions than visual
dimensions in that model, we conducted a follow-up analysis with a model using just the top 9
highest weighted semantic dimensions and top 9 highest weighted visual dimensions. This model
accounted for 19.15% of variance in memorability, with the top 10 semantic dimensions
contributing 15.21% of variance while the top 10 visual dimensions contributed 1.87% of
variance with a shared variance of 2.07% (Figure 2d). A summary of all regression results is
displayed in Figure 2b.
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a) Embedding scores in 49 dimensional object space at concept level b) Summary of Regression Results
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Figure 2. Analyses of relative contributions of semantic and visual properties to memorability. (A) Histogram of
averaged embedding values in semantic (red) and visual (blue) dimensions across concepts. The yellow histogram
represents the difference between the visual and semantic embeddings (blue - red). The embeddings of the 1,854
concepts in the object space reveal that 70.44% of the concepts are more heavily embedded in semantic dimensions
than in visual dimensions. (B) Table of regression models. The semantic and visual models utilize all 27 semantic
and 9 visual dimensions respectively to predict memorability and captured 38.52% of the variance in memorability.
The top models utilized only the 9 most heavily embedded semantic and visual dimensions, to balance the number
of semantic and visual dimensions in the model. Across models, the majority of variance was captured by semantic
dimensions. (C) Venn diagram displaying the unique contributions to memorability from semantic and visual
dimensions. For the model using all non-mixed dimensions, the majority of variance is captured by the 27 semantic
dimensions, with a smaller contribution from the 9 visual dimensions. Note the larger shared variance than visual
variance, suggesting that most of the contribution of visual dimensions may be contained in shared variance with
semantic dimensions. (D) The same type of Venn diagram as in (C) but with a model including equal numbers of

semantic and visual dimensions (9 regressors each). Again, the majority of explained variance comes from semantic
dimensions.

Taken together, our results indicate that semantic properties contribute far more than
visual properties towards the memorability of an image. While the results reveal contributions of

visual properties, these contributions are largely captured by shared variance with semantic
properties.

Memorability is More than Just Typicality

While we have determined that semantic features are the most predictive dimensions of
the object space for memorability, there is still the question of whether it is the most prototypical
or most atypical items that are best remembered along these dimensions. In terms of the object
feature space, items that are clustered closely together are the most prototypical items, while
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items spaced further apart are the most atypical items. The relationship between typicality and
memory has been studied extensively in face processing, scene recognition, and related fields
(Lee et al., 2000; Bylinskii et al., 2015; Lukavsky & Déchtérenko, 2017), with some studies
using memorability interchangeably with atypicality or distinctiveness (e.g., Bruce et al., 1994).
A recent body of work has suggested three different hypotheses, where the relationship between
typicality and memorability is either always negative (Lukavsky & Déchtérenko, 2017), always
positive (Bainbridge & Rissman, 2018), or a specific combination of the two (Koch et al., 2020).
Here, we leverage the scale of THINGS to determine this relationship utilizing converging
methods for defining typicality based on the multidimensional object space derived from human
similarity judgments, a deep neural network for object recognition, and behavioral ratings. These
three complementary approaches allow for testing a wide range of hypotheses concerning
whether the most prototypical or atypical items are most often remembered.

A) Object Space-Derived B) CNN-Derived Typicality C) Behavioral
Typicality Typicality
49 Dimensional Object Space VGG-F CNN Typicality Rating Task

Dim 1 Dim 2 Dim 3 Dim 4 How Typical is a Snake of Animals?
==u X22 Layers p &,
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Figure 3. Generating typicality scores from object space dimensions, CNN activations, and behavior. (A) To
generate typicality scores from the object space dimensions, we begin with loadings on each of the 49 dimensions of
the object space for each of the 26,107 THINGS images. Correlating the resulting dimension loadings within each of
the object concepts allowed for the generation of similarity matrices for each object concept. From these matrices,
we compute the typicality of each image as the mean correlation between that image and all other images of a given
object concept, resulting in a typicality score for every image in relation to its concept. (B) The procedure for
generating typicality scores from a CNN is largely the same as the process for the object space dimensions but
relying instead on layer activations at each of the 22 layers of the VGG-F network as the representations for each
image, which were then correlated to form similarity matrices. (C) For behavioral typicality, participants on Amazon
Mechanical Turk used a 0-10 Likert scale to assess the typicality of a given object concept (snake) to its higher
category (animals). These typicality scores were then aggregated across all the concepts under a given higher
category to generate a typicality score for that category.
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Object Space Typicality

Our first measure of typicality we dub “object space typicality”, and it is derived from the
object space employed in the previous analysis of the visual and semantic dimensions (Figure
3a). Specifically, we quantify an object’s typicality as the average similarity of a given example
image (e.g. a particular example of a squirrel) to all other examples of that image’s concept (e.g.
all images of squirrels in THINGS; see Methods). The 49-dimensional space has been
demonstrated to capture human behavior in excess of 90% of the noise ceiling (Hebart et al.,
2020) and we have just shown it is able to predict memorability with high accuracy.

We first tested the overall relationship between corrected recognition and typicality
scores for the 26,107 image corpus of THINGS. We found a significant positive relationship
between image typicality and memorability across the THINGS dataset (r = 0.309, p = 6.131 x
107). This suggests that more memorable images tend to be more prototypical of their concept in
their representations across these dimensions, arguing against a general primacy of atypicality in
memorability. We also analyzed the relationship between object space typicality and
memorability within each of the 1,854 concepts in THINGS by correlating memorability and
typicality values across the exemplar images of each concept. In other words, within each
concept, what is the relationship between typicality and memorability? We determined that
overall, the concepts were more likely to display a relationship where more prototypical images
tended to be more memorable (one sample t-test: #(1852) = 2.074, p = 0.038).

While this finding of most object concepts showing a positive relationship between object
space typicality and memorability seems to provide evidence for memorability corresponding to
object prototypicality, it is important to note that many object concepts (917) show the opposite
relationship where more atypical images are more memorable. For example, for coats, more
prototypical images were more memorable (r = 0.857, p = 3.66 x 10™), but for other concepts
such as handles, more atypical images were more memorable (r = -0.798, p = 0.001).

Additional mixed evidence is also apparent when relating the typicality and memorability
of concepts within each of the 27 higher categories present in THINGS, in contrast to the
previously described analyses that tested the typicality of images in relation to their concepts.
For any given concept, the category typicality score reflects the typicality of that concept (e.g.
squirrels) relative to all other concepts of its higher category (e.g. animals).

When examining the relationship between memorability and object space typicality at the
category level, we observed that certain categories, such as containers (r = -0.213, p = 0.029) and
electronic devices (r =-0.232, p = 0.047) showed negative relationships (e.g., more atypical
containers are more memorable), while animals (r = 0.159, p = 0.034) and body parts (r = 0.473,
p = 0.005) demonstrated positive relationships. Overall, across all high-level categories, there
were an equal number of positive and negative significant relationships, demonstrating further
mixed evidence within the THINGS dataset.

CNN-Based Typicality
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We term our second measure of typicality “CNN-based typicality”, as it employs the
VGG-F deep CNN to compute similarity ratings across the 22 layers of the network (Figure 3b).
Deep neural network models have demonstrated success in predicting the neural responses of
different regions in the visual system (Yamins et al., 2014; Khaligh-Razavi & Kriegeskorte,
2014). A critical insight from these studies suggests that earlier layers in the network represent
low-level visual information such as edges, while later layers represent more complex and
semantic features like categorical information (Gii¢lii & van Gerven, 2015). Unlike the object
space derived scores, these typicality values are directly computed from image features, rather
than based on behavioral similarity judgments in response to the images themselves.

Recent analyses using CNNs have suggested that the relationship between typicality and
memorability may differentially depend on similarity across semantic and visual features; for
example, for a set of scene images, images that were the most visually atypical (i.e., atypical at
early layers) but semantically prototypical (i.e., prototypical at late layers) tended to be most
memorable (Koch et al., 2020). We can directly address this hypothesis using our CNN-based
typicality measure, as we can directly compare typicality values at both early and late layers of
the VGG-F network. If the pattern displayed in Koch et al. (2020) holds true, we would expect to
see a strong negative correlation between memorability and early layer typicality (i.e., visually
atypical items are best remembered) and a strong positive correlation with late layer typicality
(i.e., semantically prototypical items are best remembered).

We test this hypothesis by producing two correlations for each object concept — the
correlation between CR and early layer (2) typicality, and the correlation between CR and late
layer (20) typicality. This produces a pair of correlations for each of the 1,854 object concepts.
We then visualize these correlation pairs (Figure 4a) and provide a best fit line, which
demonstrates the relationship between each correlation pair. The resulting correlation (r = 0.253,
p =2.504 x 102®) suggests that in general, visual and semantic features (as represented in early
and late layers) show similar correlations with memorability across the object concepts.

We also segment the concepts into quadrants, which represent four potential patterns for
the correlation pairs for a given object concept. The first quadrant contains concepts that display
positive correlations for both early and late layers (i.e., visually and semantically prototypical
items are best remembered). The second quadrant contains concepts that have positive early
layer correlations but negative late layer correlations (i.e., visually prototypical and semantically
atypical items are best remembered). The third quadrant contains concepts with negative
correlations for both early and late layers (i.e., visually and semantically atypical items are best
remembered), and the fourth quadrant contains concepts with negative early layer and positive
late layer correlations (i.e., visually atypical and semantically prototypical items are best
remembered). This fourth quadrant can be considered a representation of Koch et al.’s (2020)
hypothesis, as it corresponds to visually atypical and semantically prototypical items being best
remembered.
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A chi-square analysis on each quadrant revealed that significantly more concepts than
chance showed a pattern where the most memorable items were prototypical in terms of both
early and late layer features (y* = 38.046, p = 6.909 x 10°1°). In contrast, we find significantly
fewer concepts than chance show a mixed pattern, where memorable items were determined by
early layer prototypicality and late layer atypicality (x> = 8.454, p = 0.004), or the opposite
pattern of early layer atypicality and late layer prototypicality (x> = 20.286, p = 6.668 x 10°%).
Finally, there was no difference from chance in the proportion of concepts that showed a pattern
where the most memorable items were the most atypical items for both early and late CNN
layers (x> = 8.3993, p = 0.553). These results suggest that in general, memorable images tend to
be those that are both visually and semantically prototypical of their object concept, although
there are also concepts for which memorable images may tend to be either visually or
semantically atypical.

a) Scatterplot of Typicality-Memorability Relationship b) Example Concepts from Typicality/Memorability Scatterplot
Early vs Late Layer

Apple Tree
so0° PP , Gnola _

Layer 20 Correlations
o
A\

479°

-1 -0.8 -0.6 04 -02 0 0.2 0.4 0.6 08 1
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Badge Straightjacket

* = significantly different from chance
Figure 4. Examining relationships between typicality, memorability, and semantic and visual content. (A)
Visualizing the correlation of CNN-based typicality and memorability for all 1,854 concepts in terms of an early
layer (layer 2) and late layer (layer 20) allows for the observation of an overall positive relationship between early
and late layer typicality scores across the concepts (r = 0.253, p = 2.504 x 102%). A chi-square analysis of the four
quadrants of the scatterplot demonstrated significantly more concepts than chance showed a pattern where the most
memorable items were prototypical in terms of both early and late layer features (3 = 38.046, p = 6.909 x 10719).
Contrastingly, we find significantly fewer concepts that demonstrate “mixed” patterns where more memorable items
demonstrated early layer prototypicality and late layer atypicality (x> = 8.454, p = 0.004), or the opposite pattern (>
=20.286, p = 6.668 x 10°). We found no significant difference from chance for concepts where the most
memorable items were atypical across both early and late layer features (> = 8.3993, p =0.553). This suggests that,
in general, memorable concepts tend to be both visually and semantically prototypical. (B) Example concepts that
fell into each quadrant of the scatterplot seen in A.

Behavioral Typicality

Our third and final measure of typicality, referred to as “behavioral typicality”, consists
of behavioral ratings derived from a concept to category matching task (Hebart et al., 2020)
(Figure 3c). In this prior study, participants on Amazon Mechanical Turk used a 0-10 Likert
scale to assess the degree to which a given concept was typical of a category (e.g., how typical is
a snake of animals?). These ratings allow us to capture human intuition regarding typicality.
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A correlation between CR scores and behavioral typicality scores across all higher
categories showed no significant relationship between typicality and memorability (r = 0.139, p
=(.576). When examining the distribution of correlations between typicality and memorability
within the higher categories, we observed a marginal effect of more atypical (rather than
prototypical) categories being more memorable (t(26) = -2.022, p = 0.054). When examining the
correlations for each of the 27 categories separately (see Supplementary Material), we found that
home décor (r = -0.384, p = 0.009), office supplies (r =-0.430, p = 0.032), and plants (r = -0.429,
p = 0.003) showed significant negative relationships, implying that more memorable examples of
each category were more atypical. In contrast, animals (r = 0.176, p = 0.020), food (r =0.115, p
= 0.050) and vegetables (r = 0.317, p = 0.041) had positive relationships, implying that more
memorable examples were more prototypical. Overall, when examining typicality using
behavioral ratings, we find additional evidence suggesting that memorability is not accounted for
by either object prototypicality or atypicality.

Together, our results demonstrate that memorability cannot be considered synonymous
with either prototypicality or atypicality, as has been suggested in previous studies (e.g.,
Valentine et al., 1991; Bylinskii et al., 2015; Bainbridge et al., 2017). Certain results collected
using both object space-derived and CNN-derived typicality scores suggest a trend towards more
prototypical stimuli being more often remembered, but the large number of counterexamples
present across the different typicality scores and levels of analysis suggest that the relationship
between memorability and typicality is likely more complex than a simple positive or negative
association, varying strongly from concept to concept.

DISCUSSION

We acquired and analyzed a large dataset of memory ratings for a representative object
image database to uncover what makes certain objects more memorable than others. Specifically,
we investigated the roles of semantic and visual features and revealed that semantic properties
more strongly influence what is remembered than visual properties. We leveraged three
complementary measures of object typicality to determine whether the most prototypical or most
atypical images are best remembered and uncovered some evidence suggesting more
prototypical items are more memorable, but also a high degree of variance across concepts and
categories, suggesting that memorability is not just a measure of the typicality of an object or
image. These findings shed new light on the determinants of what we remember and stand in
contrast to previous studies that have claimed both that semantic information is not required to
determine memorability (Lin et al., 2021) and that memorability is synonymous with atypicality
(Bruce et al., 1994).

Semantic Primacy of Memorability

We analyzed the contributions of semantic and visual dimensions to memorability to
determine if the two types of information contribute differentially to the THINGS stimuli. Our
results reveal a primacy of semantic dimensions in explaining memorability, based on multiple
regressions comparing the relationship of the entire object dimensional space to memorability.
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Even after equalizing the number of semantic and visual dimensions inputted to the model,
88.02% of the variance in memorability captured by the space was exclusively from the top 9
semantic dimensions.

Previous findings of the ability of CNNs (Khosla et al., 2015) and monkeys (Jaegle et al.,
2019) to predict human performance on memorability tasks and examples of memory
performance robust to semantic degradation (Lin et al., 2021) have led to the assertion that
semantic knowledge is not required to make an image memorable. However, recent research has
demonstrated that semantic similarity is predictive of memorability and lexical stimuli also
display intrinsic memorability despite a lack of rich visual information (Xie et al., 2020; Madan
et al., 2021). More recently, other studies have demonstrated that both visual and semantic
features contribute differentially with regards to both object memory (Hovhannisyan et al., 2021)
as well as the typicality-memorability relationship, where visually atypical but semantically
prototypical scene images may be the most memorable (Koch et al., 2020). Additionally, recent
research in memorability prediction suggests that adding semantic information to a deep neural
network improves the prediction of memorability scores (Needell & Bainbridge, 2022). Our
results demonstrate a strong semantic primacy in memory which lends additional support to
recent findings demonstrating the importance of semantic information in determining what we
remember.

Beyond behavior, our findings align with the results from recent neuroimaging studies
that have examined the neural correlates of memorability. One such study found a lack of
memorability-related activation in the Early Visual Cortex (EVC), suggesting that areas involved
in lower-level perception may not be sensitive to memorability (Bainbridge et al., 2017). This
result, coupled with a study demonstrating faster neural reinstatement for highly memorable
stimuli in the Anterior Temporal Lobe (ATL), an area typically associated with semantic
processing (Xie et al., 2020), could potentially reflect a neural signature of the observed outsize
influence of semantic features in determining what is best remembered. In this study,
memorability for word stimuli could be significantly predicted by the semantic connectedness of
these words, where words that exist at the roots of a semantic structure tended to be more
memorable (Xie et al., 2020). This suggests that memorability could reflect our semantic
organization of items in a memory network. Other work has also found sensitivity to
memorability in late perceptual areas, such as the Fusiform Face Area (FFA) and the
Parahippocampal Place Area (PPA) (Bainbridge et al., 2017; Bainbridge & Rissman, 2018),
often associated with the patterns seen in late CNN layers (Yamins et al., 2014; Khaligh-Razavi
& Kriegeskorte, 2014).

Our findings are particularly surprising given the fact that the object space dimensions
explained 61.66% of the variance in memorability. Unlike previous studies of memorability
using single attributes (Bainbridge et al., 2017; Isola et al., 2014) or linear combination models
with constrained stimulus sets (Bainbridge et al., 2013), we are able to explain a large degree of
the variance in memorability, further highlighting the importance of semantic properties. The
success of this model also means that this same model can be applied to selecting stimulus sets
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intended to drive memory in specific ways; given an object’s feature space, we can predict which
items are likely to be remembered or forgotten. However, given the remaining unexplained
variance, it is clear that there are still lingering questions about the determinants of what we
remember and what we forget.

Typicality as it Relates to Memorability

Here, we observe that across our images, concepts, and categories, there are some by
which the most prototypical are the most memorable, while there are others where the most
atypical are the most memorable. These results suggest that memorability does not just reflect an
object’s typicality, and it is not merely that memorable items are the most distinctive, atypical
items. In fact, across multiple levels of analysis, we observe the opposite, where in general more
prototypical items tend to be the most memorable.

This is surprising, given that typicality has long been thought to encapsulate the effect of
memorability based on evidence from faces (Valentine, 1991; Bruce et al., 1994) and scenes
(Bylinskii et al., 2015), whereby more atypical items are thought to be easier to remember. Other
studies have rebutted this claim by demonstrating that semantic similarity is predictive of
memorability (Xie et al., 2020). Furthermore, late visual areas regions show neural patterns
reflective of our current behavioral findings, where memorable face and scene images show
more similar neural patterns to each other (i.e., have more prototypical patterns), while
forgettable images have more dissimilar neural patterns (i.e., more atypical patterns; Bainbridge
et al., 2017; Bainbridge & Rissman, 2018). Further, Koch and colleagues (2020) found a
complex relationship with typicality, where visually distinct and semantically similar images
were most often remembered in an indoor-outdoor classification task. Our divergent findings
could possibly be explained by the constrained stimulus sets utilized in prior studies. While prior
work focused on narrow stimulus sets such as faces or a smaller sampling of scene images, our
study examines a comprehensive, representative set of object images across the human
experience. Our divergent findings from these earlier studies may suggest that while previous
findings are reasonable extrapolations from the stimuli domains examined, they are not
characteristic of memorability as a whole. When assessed at a global scale, it is neither
prototypicality nor atypicality of an item that makes it memorable.

The observation of variability in the typicality-memorability relationship may have
important ramifications for neuroimaging research examining the neural correlates of
memorability and memory more broadly. Observations of prototypicality in neuroimaging
research reference a phenomenon called pattern completion as a means by which the
hippocampus retrieves a complex representation from a given cue (LaRocque et al., 2013). This
process depends on another hippocampal phenomenon termed pattern separation, where similar
inputs are assigned distinct representations to facilitate the mnemonic discrimination required in
memory (Ngo et al., 2020). Whole-brain fMRI analyses have revealed that different areas
involved in memory utilize separated and overlapping information to facilitate memory
(LaRocque et al., 2013), suggesting a potential role for both prototypicality (as represented by
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pattern completion) and atypicality (as represented by pattern separation) in facilitating memory.
Future neuroimaging research could identify potential neural markers of prototypicality and
atypicality and determine if the effects of semantic and visual information are dissociable at a
neural level.

Conclusion

Here, we have created the best performing model to date of the object features that are
predictive of image memorability. From this model, we have observed a primacy of semantic
properties in determining what we remember. This underscores recent findings of the important
role of semantic information in memory (Xie et al., 2020) and emerging work with CNNs that
demonstrate a classification performance benefit when including semantic information into their
models (Needell & Bainbridge, 2022).

Beyond highlighting the roles of semantic and visual dimensions, our results demonstrate
that neither prototypicality nor atypicality fully explains what makes something memorable, and
if anything, prototypical items tend to be the most memorable. Our findings challenge decades of
prior research suggesting we best remember more atypical items (Valentine, 1991; Vokey &
Read, 1992; Lee et al., 2001; Bylinskii et al., 2015; Lukavsky & Dé&chtérenko, 2017). This trend
towards prototypicality is reflected in recent neuroimaging studies (Bainbridge et al., 2017;
Bainbridge & Rissman, 2018; Xie et al., 2020), suggesting that prototypicality may be related to
the underlying neural mechanisms governing memory.

Our findings shed new light on the features and organizational principles of memory,
opening up a wide variety of potential follow-up studies. In fact, with this large-scale analysis,
we have identified the stimulus features that govern memorability within and across a
comprehensive set of objects, and make this data publicly available for use
(https://osf.i0/5a7z6/?view_only=675e901c176c4bec9c2540fc4981e5fe). This will allow
researchers to make honed predictions of memory within these categories, or use these
dimensions to design ideal stimulus sets. For example, our analysis found that animal images are
highly memorable, while manmade, metal images are highly forgettable, and so memorability is
an important factor to consider in studies looking at visual perception of animacy (Konkle &
Caramazza, 2013). Further, given the success of our feature model in predicting memorability,
this model could be potentially used to identify memorable images in other image datasets.
While THINGS representatively samples concrete object concepts, there are additional stimulus
domains beyond objects including dynamic stimuli such as movies, scenes, and non-visual
stimuli that could be analyzed in the context of our results. With the understanding that neither
prototypicality nor atypicality alone fully characterizes the relationship between typicality and
memorability, there is the question of what biases certain stimuli towards one or the other.

We uncover both a semantic primacy in explaining memorability and determine that the
relationship between typicality and memorability is more complex than either prototypicality or
atypicality alone. We provide this comprehensive characterization in pursuit of a nuanced
understanding of the underlying determinants of memorability, and memory more broadly.
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Developing this understanding further will have implications far beyond cognitive neuroscience
in realms such as advertising, patient care, and computer vision. With the development of
generative models of stimulus memorability, it is more important than ever before to ground
these models in an empirical understanding of what makes something memorable.

METHODS

Participants

13,946 unique participants completed a continuous recognition repetition detection task
on the THINGS images over AMT (see “Obtaining Memorability Scores for THINGS”). All
online participants acknowledged their participation and were compensated for their time,
following the guidelines of the National Institute of Health Office for Human Subjects Research
Protections (OHSRP). Participants had to be located within the United States and have
participated in at least 100 tasks previously on AMT with at least a 98% approval rating overall
to be recruited for the experiment. Participants who made no responses on the task were removed
from the data sample.

Stimuli: THINGS

To examine memorability across a broad range of object concepts, we utilized the entire
26,107 image corpus of the THINGS database (Hebart et al., 2019, https://osf.io/jum?2f/) for all
of our experiments. The THINGS concepts span the wide range of concrete objects, including
animate and inanimate, as well as manmade and natural concepts, such as aardvarks, goalposts,
tanks, and boulders. These 1,854 concepts were generated from the WordNet lexical database
through a multilevel web scraping process (Hebart et al., 2019). Each concept has a minimum of
12 exemplar images, though some have as many as 35. These concepts were sorted into 27
overarching categories including animal-related, food-related, and body parts. These higher
categories were generated using a two-stage AMT experiment.

At the concept level, we utilized the representational embedding of each concept supplied
by THINGS as the multidimensional space for our analyses (Hebart et al., 2020). The original
49-dimensional behavioral similarity embeddings (Hebart et al., 2020) had been generated based
on the 1,854 object concepts. Dimension names were generated by two pools of naive observers
in a categorization task (Hebart et al., 2020). The first pool of observers viewed the most heavily
reflected images along a given dimension of the space and generated potential labels from the
images. The second pool of observers then narrowed down the list of labels until the top two
labels remained for each dimension, which was then assigned as the name for that dimension. To
derive 49-dimensional embeddings for each of the 26,107 images in the THINGS database, we
used predictions from a deep neural network as a proxy. The prediction was carried out for each
dimension separately using Elastic Net regression based on the activations of object images in
the penultimate layer of the CLIP Vision Transformer (ViT, Radford et al., 2021), which has
been shown to yield the most human-like behavior of all available CNN models in a range of
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tests (Geirhos et al., 2021). The Elastic Net hyperparameters were tuned and evaluated using
nested 10-fold cross-validation, yielding high predictive performance in most dimensions (mean
Pearson correlation between predicted and true dimension scores: r > 0.8 in 20 dimensions, r >
0.7 is 32 dimensions, r > 0.6 in 44/49 dimensions). We then tuned the hyperparameters on all
available data using 10-fold cross-validation and applied the regression weights to the CNN
representations of THINGS images, yielding 49-dimension scores for all 26,107 images.

Obtaining Memorability Scores for THINGS

In order to examine memorability in the context of the THINGS space, we collected
memorability scores for all 26,107 images (publicly available in an online repository:
https://osf.io/5a7z6/?7view_only=675e901c176c4bec9c2540fc4981e5fe). To quantify the
memorability of each stimulus, each participant viewed a stream of images on their screen and
was instructed to press the R key whenever they saw a repeated image. Each image was
presented for 500ms, and the interstimulus interval was 800ms. For each repeated stimulus, there
was a minimum 60-second delay between the 1st and 2nd presentation of that image, although
this delay was jittered so that repetitions could not be predicted based on timing. The task also
included easier “vigilance repeats” of 1-5 images apart, to ensure participants were paying
attention to the task. The presentation of images was such that approximately 40 participant
responses were gathered per image. Of the 1,854 concepts in THINGS, each concept was either
represented with a single exemplar or not represented at all during a participant’s set of trials in
order to control for within-concept competition effects on memory performance. To avoid
familiarity effects, participants were only allowed to participate again after a minimum delay of
2 weeks.

Memorability was quantified in THINGS using corrected recognition (CR) scores for
each image. Corrected recognition is calculated by subtracting the false alarm rate for a given
stimulus from the hit rate for the same stimulus. Hit rate is defined as the proportion of correct
repetition detections, whereas false alarm rate is defined as the proportion of incorrect detections.
CR allows for a single metric that integrates information about both hit rate and false alarm rate.
However, we also replicate all results using hit rate and false alarm rate separately
(Supplementary Material).

We ran a split-half consistency analysis to determine if participants were consistent in
what they remembered. The analysis randomly partitioned participants into two halves and
calculated a Spearman rank correlation between the CR scores for all images, as defined by the
two random halves of participants. In other words, this analysis determines how similar the
memory performance is for each image between these two independent halves of participants.
This process was repeated across 1,000 iterations and an average correlation rho was calculated.
This rho was then corrected using the Spearman-Brown correction formula for split-half
correlations. If there is no consistency in memory performance across participants, we would
expect a zero value for rho, whereas a high value would suggest that what one-half of
participants remembered, so did the other. To estimate chance, we correlated one half of
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participants’ scores with those for a shuffled image order of the other participant half, across
1,000 iterations. The p-value was calculated as the proportion of shuffled correlations higher
than the mean consistency between halves.

Semantic/Visual Contribution and Regression Model Analyses

With memorability scores at the image level available, we can relate the memorability of
THINGS stimuli with the associated representational space and determine the relative
contributions of semantic and visual dimensions to memorability. To accomplish this, we
analyzed the embeddings of the 1,854 concepts in the 49 dimensions and separated them into
semantic and visual dimensions. Of the 49 dimensions, 27 were identified as semantic, 9 as
visual, and the remaining 13 as mixed (Table 1).

To determine the effects of semantic and visual dimensions on memorability, we ran a
series of multiple regression models. We began with an omnibus model predicting average
memorability for each of the 1,854 concepts using the full set of 49 dimensions. This model
assessed the total variance in memorability explained by the dimensions. We then utilized a
model predicting memorability from the 36 dimensions classified as either semantic or visual to
determine the differential contributions of each type of information. As there were more
semantic dimensions than visual dimensions, we also ran a model that only used the 9 most
heavily reflected semantic and 9 most heavily reflected visual dimensions to control for the
overrepresentation of semantic information. In order to assess the potential variance explained by
dimensions classified as mixed, we also break down the unique variance contributed by mixed
dimensions to the full 49-dimensional model (see Supplementary Material). In all models we
also analyzed the unique and shared variance contributions of the two types of dimensions to
memorability using variance partitioning. Unique semantic variance was calculated as the overall
R? value for the full model minus the R? value for a model containing only the visual dimensions
and vice versa for visual variance. The shared variance was calculated as the overall model R?
minus both the unique semantic and unique visual variance.

In order to compare the performance of the omnibus model (all 49 dimensions) to the
noise ceiling, we conducted a split-half regression analysis. Across 100 iterations, the participant
sample was split into two random halves, and we ran two models. For the first model, we looked
at the ability of the 49 dimensions to predict the memorability scores derived from the first half
of participants. For the second model, we included an additional 50" predictor which was the
memorability scores derived from the second half of participants, for the same images. This
second model serves as a noise ceiling of memorability from which we can compare the first
model. To see the proportion of variance explained in comparison to this noise ceiling, we then
averaged the ratio of the R? of the first model to the second model, across iterations.

Memorability-Typicality Relationship Analyses

To determine if memorability is reflective of object prototypicality or atypicality, we
assessed the relationship between typicality and memorability of the THINGS images. We


https://doi.org/10.1101/2022.04.29.490104
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.29.490104; this version posted April 30, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

conducted these analyses at two levels: mapping images to concepts, and mapping concepts to
categories. We utilized typicality scores from the object space dimensions, the VGG-F
Convolutional Neural Network (CNN), and behavioral ratings of typicality.

To create our object space typicality scores, we leveraged the 49-dimensional object
space and embeddings of all 26,107 images within that space. For each concept, we generated a
similarity matrix containing the embedding values of the component images of that concept
along all 49 dimensions. From that matrix, we can extract a single value for each image that is
the average similarity (Pearson correlation) between that image’s dimensional embeddings and
those of the other images of that concept, which we define as the typicality of that image. In
other words, a low mean correlation would imply a highly atypical stimulus (distinct from other
exemplars of the same concept), while a high mean correlation would imply a highly
prototypical stimulus (very similar to exemplars of the same concept). We utilize the same
paradigm to generate typicality values for each concept in relation to other concepts under a
given category using an embedding of each concept in the object space and comparing its
similarity to the embedding of all other concepts within the same category.

For our CNN-based typicality scores, we leveraged the VGG-F CNN object classification
network to compute typicality directly from image features. Early layers of CNNs are more
sensitive to low-level image features, such as edges, while later layers are more sensitive to
higher-level and semantic features, such as animacy (Giiclii & van Gerven, 2015). We can
therefore extract information at these various points in the network to test the separate
contributions of visual and semantic typicality. The paradigm for extracting typicality values was
similar to the object space typicality values: for each concept, similarity matrices were generated
based on the flattened layer output values for all component images. The typicality for each
exemplar was then calculated as the mean of its similarity (Pearson correlations) with all other
exemplars in the concept. This measure tells us how similar a given exemplar is to all other
exemplars in terms of its CNN-predicted features. This procedure is repeated for every layer in
VGG-F, resulting in 21 typicality values for each image in relation to its object concept, one for
each layer of VGG-F.

For our behavioral typicality scores, we employed the ratings collected as part of the
THINGS database (Hebart et al., 2020). These ratings were collected for each of the 1,854
THINGS concepts and represent the typicality of the concept in relation to its higher category on
a scale of 0 to 10. For example, the typicality rating for stomach under the higher category body
parts reflects how typical a stomach is as a body part (considering other body parts like legs or
shoulders).

To analyze the relationships between typicality and memorability across the THINGS
dataset, we use our object space, CNN-based, and behavioral typicality scores at two different
levels of analysis: image level and concept level. At the image level, we analyze the object space
and CNN-derived typicality values to examine their relationship to memorability across all
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26,107 images in THINGS, which gives a single value for the overall typicality-memorability
relationship of the THINGS images. Beyond the overall trend, we also examine the relationship
within each of the 1,854 image concepts by correlating the typicality scores and memorability
scores of their component images. This allows for the visualization of more nuanced
relationships between the THINGS concepts. At the concept level, we perform a correlation
between the behavioral typicality scores and CR scores and examine the resulting distribution of
the relationships for each of the 27 higher categories.
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