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Abstract

Task-free functional connectivity in animal models provides an experimental framework to
examine connectivity phenomena under controlled conditions and allows comparison with
invasive or terminal procedures. To date, animal acquisitions are performed with varying
protocols and analyses that hamper result comparison and integration. We introduce
StandardRat, a consensus rat functional MRI acquisition protocol tested across 20 centers. To
develop this protocol with optimized acquisition and processing parameters, we initially
aggregated 65 functional imaging datasets acquired in rats from 46 centers. We developed a
reproducible pipeline for the analysis of rat data acquired with diverse protocols and determined
experimental and processing parameters associated with a more robust functional connectivity
detection. We show that the standardized protocol enhances biologically plausible functional
connectivity patterns, relative to pre-existing acquisitions. The protocol and processing pipeline
described here are openly shared with the neuroimaging community to promote interoperability
and cooperation towards tackling the most important challenges in neuroscience.


https://doi.org/10.1101/2022.04.27.489658
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.27.489658; this version posted April 28, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Introduction

Understanding the brain requires a multilevel approach across spatial and temporal scales.
Distinct brain network features, as revealed by task-free functional magnetic resonance imaging
(fMRI), play a central role in our comprehension of healthy brain function and disorder
mechanisms. Human neuroimaging has made great strides in our understanding of the brain
through data-sharing initiatives™. Nonetheless, animal models, particularly small rodents,
continue to play an important role in neuroscience discovery, in part, due to the feasibility of
performing invasive and terminal manipulations on genetically controlled animals®. Specifically,
rats are commonly used in pharmacological studies owing to similarities in drug metabolism, as
well as in behavioral neuroscience due to their higher proficiency in learning more complex
tasks.

Human neuroimaging sharing initiatives have led to a standardization of fMRI acquisition
protocols that aid in the dissemination, aggregation and reuse of data*”2. In contrast, preclinical
neuroimaging essentially remains without harmonizing guidelines®. Acquisitions in animals are
performed under diverse protocols that span different strains, restraint and anesthesia
conditions, radiofrequency coil designs, and magnetic field strengths. These impact the
generalization of the results and conclusions. Efforts to propose acquisition and / or
preprocessing protocols rarely extend beyond the confines of single laboratories, thus limiting
interoperability and widespread adoption®'™°. Thanks to the potential of fMRI in rodents to study
the biological basis for connectivity phenomena across the whole-brain longitudinally', an
optimized consensus protocol could potentiate future scientific discoveries.

In this preregistered study, we set out to aggregate and make publicly available representative
datasets with various fMRI acquisition protocols in the rat and identify experimental parameters
associated with robust and reliable functional connectivity detection. We curated the
Multirat_rest collection (646 rats from 65 datasets) representing protocols used at 46
institutions. Based on the outcome of the analysis of the Multirat_rest collection, we devised a
new consensus protocol and used it to aggregate the StandardRat collection (209 rats from 21
datasets). Preprocessing and confound correction was tailored to rodent data of different
characteristics using a rodent-adapted fMRI preprocessing and analysis tool. Our primary
outcome was the detection of plausible functional connectivity patterns corresponding to the
biologically expected models. Collating data from 50 centers and 855 rats, we show that
standardized acquisition and the associated preprocessing pipeline optimizes the detection of
distributed fMRI networks in rats. In line with large-scale studies from other species'?'® we have
freely released all data and the generated code.

Methods

Prereqgistration, code, and data availability: The study was pre-registered
(https://doi.org/10.17605/0OSF.IO/EMQ4B). Jupyter notebooks demonstrating the analysis code

are available under the terms of the Apache-2.0 license
(https://github.com/grandjeanlab/MultiRat). ~ The raw datasets are available here:
Unstandardized resting-state fMRI (MultiRat_rest)
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(https://doi.org/10.18112/openneuro.ds004114.v1.0.0);  Standardized  resting-state  fMRI
(StandardRat)  (https://doi.org/10.18112/openneuro.ds004116.v1.0.0). The preprocessed

volumes, time-series, and quality control files are available here
(https://doi.org/10.34973/1gp6-gg97). Image preprocessing, confound correction and
connectivity analysis were performed using RABIES 0.3.5

(https://qithub.com/CoBrALab/RABIES).

Preregistration deviations: We used the SIGMA rat template™ instead of the Papp et al. 2014
template'®, due to fewer artifacts, additional relevant assets, and improved in vivo contrast.
Some datasets had field-of-view cropped to ease image registration. Some datasets had
time-series cropped to ease the computational load. We used temporal signal-to-noise instead
of signal-to-noise ratio as these were shown to be correlated’. Detailed deviations are listed
here: https://github.com/grandjeanlab/MultiRat.

Animals: All acquisitions were performed following approval from the respective local and
national authorities. Participating laboratories were instructed to provide n = 10 rat imaging
acquisitions consisting of one anatomical and one resting-state functional run. Exclusion criteria
were unsuitability for RABIES preprocessing (e.g., dedicated image reconstruction needs,
restricted field-of-view). The MultiRat rest collection consists of N = 65 datasets from 46
research centers, n = 646 rats (141/505 f/m). StandardRat consists of N = 21 datasets, n = 209
rats (93/116 f/m) from 20 research centers.

Standardized fMRI acquisition protocol: The standardized protocol was determined based on

the outcomes of the analysis of MultiRat _rest and used to acquire the StandardRat dataset.
Acquisitions were performed chiefly in ~2 months old free-breathing Wistar rats, mixed-sex, and
anesthetised using 4% isoflurane and 0.05 mg/kg medetomidine s.c. bolus for induction, and
0.4% isoflurane and 0.1 mg/kg/h medetomidine s.c. for maintenance. Imaging with a
gradient-echo echo-planar imaging technique was conducted 40 min post-anesthesia induction,
with repetition time = 1000 ms, echo time / flip angle / bandwidth defined as a function of field
strength (Table S1), repetitions = 1000, matrix size [64 x 64], field-of-view (25.6 x 25.6) mm?, 18
interleaved axial slices of 1 mm with 0.1 mm gap. The full protocol is available here:

https://github.com/grandjeanlab/StandardRat.

Data preprocessing and confound correction: Scans were organized according to the BIDS
format'®. Preprocessing was performed on each scan session separately using a reproducible
containerized software environment for RABIES 0.3.5 (Singularity 3.7.3-1.el7, Sylabs,
California, USA). The preprocessing was performed using autobox', N4 inhomogeneity
correction®, motion correction', a rigid registration between functional and anatomical scans’®,
non-linear registration between anatomical scan and template, and a common space
resampling to (0.3 x 0.3 x 0.3) mm?. Visual inspection was performed on preprocessing outputs
for all scans for quality control. Five confound correction models were tested, using three
approaches based on ICA-AROMA'®, white-matter and ventricle signal, or global signal
regression (Table S2). These were done together with motion regression, spatial smoothing to
(0.5 mm)3, a high-pass filter of 0.01 Hz, and a low-pass filter of either 0.1 or 0.2 Hz.
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Data analysis: To determine functional connectivity in individual rats, seed-based analysis was
performed with RABIES in template-space using spherical seeds of 0.9 mm diameter located on
the S1 barrel field area (S1bf) and anterior cingulate area (ACA). Functional connectivity was
calculated as the Pearson’s correlation coefficient between regional time-courses. Functional
connectivity specificity was defined relative to the left S1bf seed, using the contralateral right
S1bf region-of-interest as the specific region-of-interest, and the ACA as the unspecific
region-of-interest'?. Functional connectivity was evaluated for each animal and divided into four
categories: Specific (rsibf et to right > 0-1 AND TFgqpf et to aca < 0.1), UNSPECIfIC (Fsipf eft to right > 0.1 AND
Fsiof teft to acA > 0-1), NO (Fsiof eft 1o rignt [-0-1, 0.1 AND Tsypf et 10 aca [-0-1, 0.1]), and spurious
connectivity (remaining cases).

Statistical analysis: One sample t-test voxel-wise maps and group independent component
analysis were estimated using Nilearn 0.7.1%°. Comparisons between functional connectivity
specificity and categorical variables (e.g., magnetic field strength, strain, sex) were determined
using x2 tests, as implemented in SciPy 1.6.2%'. Continuous variables (e.g., mean framewise
displacement) were transformed into six categorical bins to allow comparison with y2 tests.
Linear regression and ANOVA were performed using Pingouin 0.5%%. Individual seed-based
maps are represented as color-coded overlays thresholded at r > 0.1. Given the emphasis on
detection of functional connectivity, we mitigated against false negatives by applying a threshold
Of Puncorected < 0.05 to the one-sample t-test maps, following preregistration specifications. Slice
positions are indicated in mm relative to the anterior commissure.

Results

We aggregated the MultiRat rest collection of unstandardized fMRI datasets representative of
local site acquisition procedures (N = 65 datasets, n = 646 rats). As expected, we found high
heterogeneity in all experimental factors recorded, including rat characteristics (sex, strain,
Figure 1a,b, age, weight, Figure $1), in-scan physiology (anesthesia/awake, breathing rates
Figure 1c,e), and image acquisitions (magnetic field strength, sequence, and sequence
parameters Figure 1d,f,g). Notably, there was a large sex bias in favor of males (Figure 1a).
Despite the heterogeneous distribution of the acquisition parameters and ensuing image quality
(Figure 1g,h,i), 638/646 of the scans passed preprocessing quality control (one scan with
excessive motion, one empty scan, six scans failed image registrations, Figure S$2). As further
quality controls, we described temporal signal-to-noise (Figure S3) and motion parameters
(Figure S4). Overall, we found that the aggregated datasets represent current rodent fMRI
acquisition trends® and that the RABIES toolbox can be effectively employed for the
preprocessing of rat datasets despite widely varying acquisition parameters. This paves the way
for reproducible and interoperable data processing across sites.
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Figure 1. MultiRat_rest dataset description a. Sex, b. Strain, c. Anesthesia, d. Magnetic field
strength, e. Breathing rate as a function of anesthesia, f. Repetition time, g. Echo time as a
function of magnetic field strength, h. Slice position for the examples, i. Example of
representative raw functional images. Arrows indicate different susceptibility artifact-related
geometric distortions in the amygdala.

We focused on examining functional connectivity in the sensory cortex, as sensory networks are
robust to anesthesia effects, in the anesthesia depth range typically used in fMRIZ?. More
specifically, we evaluated the specificity of the connectivity of the S1 barrel field area (S1bf)
using two complementary criteria as indexes of accurate functional connectivity identification
(Figure 2a,b)'?. The first criterion was the strong connectivity between inter-hemispheric
sensory cortices (barrel field, S1bf). Indeed, in both humans and animals, dating back to the
original description of functional connectivity®, the majority of the networks including
sensory-motor networks have a bilateral homotopic organization. The second criterion was a
weak or anti-correlation between S1bf and the anterior cingulate area (ACA). The ACA is a
major node in the task-negative rodent default-mode network. Task-positive (as the
S1bf-associated sensory network®>?), and task-negative networks are generally non- or
anti-correlated?’.

Functional connectivity was evaluated for each animal and divided into four categories based on
these two criteria referred above: specific, unspecific, spurious, and no connectivity. Five
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confound correction models were tested (Table S2, Figure 2c). The global signal regression
nuisance model was the one that performed the best for specific connectivity detection (40.8%
of the animals with specific connectivity, 11.8% as unspecific, 13.6% as spurious, and 33.9% as
containing no detectable functional connectivity, Figure 2c,d,e). Because network inference is
often assessed at the group-level rather than at the individual-level, we performed a one-sample
t-test per dataset to estimate the incidence of contralateral connectivity detected within groups,
relative to the S1bf seed (Figure 2f). Up to 70% of the 65 datasets presented limited evidence
of contralateral connectivity relative to the seed, and 50% of the datasets captured the features
of a larger sensory network at the group level (see also other seeds, Figure S5). We conclude
that rat datasets do not capture functional connectivity equally, similar to what we previously
reported in the mouse'. Although we found that global signal regression enhances the
incidence of specific connectivity of S1bf seeds, we can not generalize this nuisance model to
examine other connectivity outcomes. Indeed, the global signal partakes in previously
unsuspected roles in the signal acquired in task-free paradigms®, and its removal should be
considered with care.
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Figure 2. Functional connectivity specificity. a. Diagram illustrating the logic behind
functional connectivity specificity. The sensory (barrel field, S1bf) area (blue) chiefly projects to
the contralateral homotopic area (light blue), but not to the anterior cingulate area (ACA) area
(purple) b. Example of temporal dynamics in the resting-state signal. Correlated signal between
the ipsi- and contralateral S1bf, and anti-correlated signal from the ACA. c. Distribution of
functional connectivity (FC) categories as a function of confound correction models. d.
Functional connectivity in left S1bf relative to specific (right S1bf) and unspecific (ACA) ROls
using the global regression correction model. Dots represent scans (n = 638 rats), dotted lines
indicate the thresholds used to delineate the categories. e. Example of individual seed-based
analysis maps for each connectivity category. f. Group-level functional connectivity incidence
map (N = 65 datasets).
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Our observations underline the need for an improved acquisition protocol to maximize
individual-level inferences to potentiate discovery in experimental network neuroscience. To
address this, we evaluated parameters associated with increased specificity incidence in the
MultiRat _rest collection. Medetomidine/isoflurane anesthesia combination condition was
enriched in scans categorized as specific (Figure S6a, 92/187 scans, y? test: ¢ = 0.27, dof = 15,
g = 92.38, p = 3.5e-13). The use of gradient echo imaging sequence was also associated with
higher specificity incidence (Figure S6b, 241/568 scans, y° test: @ = 0.11, dof = 3, g = 16.00, p
= 0.001). Based on these observations, we devised an anesthesia protocol derived from dataset
ds01031 (9/10 specific scans), and an imaging sequence based on ds01028 (8/10 specific
scans), acquired on a 4.7 T mid-field system. We hypothesized that this protocol would enhance
functional specificity while being compatible with lower field systems that continue to represent a
relevant share of the systems in use (Figure 1d)°.

Using this consensus protocol, we curated the StandardRat collection of 21 datasets obtained
across 20 centers. This consisted of n = 209 rats (93/116 f/m) rats, chiefly Wistar (189/209)
aged ~ 2 months (Figure S7). Dataset acquisitions were performed at magnetic field strengths
ranging from 4.7 to 17.2 T. Preprocessing was performed similarly to the unstandardized
dataset. 207/209 scans passed quality assurance (two discards due to image misregistration).
Interestingly, despite the same anesthesia protocol being used, the respiratory rates reported at
the start of fMRI acquisition differed as a function of rat strain (Figure 3a,b, ANOVA, n?=0.24,
Fueszy = 31.17, p = 1.8e-12,). Finally, there was only a negligible effect on the temporal
signal-to-noise ratio as a function of magnetic field strength (Figure 3¢, linear regression, coef =
0.53 [-0.23, 1.30], r* = 0.01, dof = 201, T = 1.37, p = 0.17).

The objective for this study was to find an improvement in specific connectivity in the individual
datasets. We found that 61.8% of the scans were categorized to contain specific connectivity
(Figure 3d) against 40.8% in the MultiRat rest dataset with unstandardized acquisitions
(Figure 2d) when using global signal regression (x* test: @ = 0.13, dof = 3, g = 33.01, p =
3.2e-07). The difference remained when we compared datasets from centers that contributed to
both collections exclusively (y2 test: ¢ = 0.17, dof = 3, g = 28.37, p = 3.0e-06). This is going
against the notion that the StandardRat collection is outperforming due to an enrichment in
datasets from more experienced laboratories. Intriguingly, we could not establish a field strength
effect on connectivity specificity (y?> test: @ = 0.19, dof = 12, g = 14.89, p-value = 0.25),
suggesting acquisition systems are not the limiting factor in this protocol. We conclude that the
newly standardized protocol outperforms, on average, previously used protocols within the
community for the detection of biologically plausible connectivity patterns.
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Figure 3. StandardRat dataset description. a. Breathing rate (breath per minute, bpm) as a
function of strain. b. Mean framewise displacement (MFW) as a function of strain. ¢. Temporal
signal-to-noise ratio in the sensory cortex as a function of field strength. d. Functional
connectivity in left S1bf relative to specific (right S1bf) and unspecific (ACA) ROls using the
global regression correction model. Dots represent scans (n = 207 rats), dotted lines indicate
the thresholds used to delineate the categories.

Intriguingly, there remained differences in the connectivity patterns between datasets from the
StandardRat collection. We next sought to identify the variables associated with greater
incidences of specific connectivity patterns. Importantly, we could not establish strain, sex, or
magnetic field strength effects, suggesting the protocol is applicable for a large range of
conditions (Table S3). Next, we examined breathing rate and temporal signal-to-noise ratio as
indicators of acquisition variability (Figure S8). Overall, we found that scans with breathing rates
ranging 84-114 breaths-per-minutes, cortical temporal signal-to-noise ratio >53 achieved higher
incidences of connectivity specificity among the StandardRat collection. These provide the first
line of evidence to refine the StandardRat protocol by identifying practices that can further
enhance connectivity outcomes.

In summary, we curated two dataset collections (Multirat_rest and StandardRat), analyzed them
and made them an open-access resource. These are the largest rodent fMRI datasets currently
available. We developed and deployed a preprocessing and confound correction strategy
generalizable to most scans and every dataset. Using information from the MultiRat rest
collection, we provide useful population parameter estimates to enhance the comparison of rat
fMRI datasets. We proposed and evaluated a new standardized protocol and found that this
consensus acquisition and preprocessing pipeline outperformed the previous acquisitions for
connectivity specificity. To allow replication and to inspire new analyses we release all raw and
processed data to the broader community.
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On average, the standardized protocol yielded improvements over previous acquisitions
gathered in the MultiRat rest collection. However, individual-level inferences remain limited to
61.8% of the scans acquired. This underlines the importance of implementing sound quality
assurance metrics based on assumptions of biologically-plausible functional connectivity.
Improving output quality, either through understanding the factors leading to successful
acquisitions, enhanced protocols, preprocessing, or nuisance regression models would lead to
tangible outcomes capable of further potentiating future data acquisitions and reducing animal
use by reducing discards.

Importantly, our new protocol relies on light sedation to restrain the animals. While optimized for
fMRI, this protocol may not generalize to other procedures such as electrophysiology. We also
found that existing awake restraining protocols, on average, lead to lower incidence of specific
connectivity patterns. A previous report has indicated similar values in a dataset in awake rats?.
Due to the impact of anesthesia on networks®'°, it remains central to develop awake imaging as
an alternative. However, these protocols should be examined through the lens of quality control
metrics to ensure plausible connectivity patterns are achieved consistently. Further, the
acquisition sequence in StandardRat is designed to run on a wide range of systems. The
effectiveness of new sequences should be examined against the current protocol, e.g., isotropic
resolution® or multiband acquisition®'.

Our project's methodological and conceptual advancements are the first step towards large
multi-site rat neuroimaging acquisitions. Coordinated open-science projects in neuroimaging
and other disciplines are transforming the scientific landscape®?. Through the concerted efforts
of our centers and potentiated by a substantially improved protocol, rat functional brain imaging
is set to tackle urgent questions in neuroscience and mental health research.
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