bioRxiv preprint doi: https://doi.org/10.1101/2022.03.30.486492; this version posted April 1, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

A fluctuation-based approach to infer kinetics and topology of cell-state
switching

Michael Saint-Antoine', Ramon Grima® and Abhyudai Singh !

Abstract—In the noisy cellular environment, RNAs and pro-
teins are subject to considerable stochastic fluctuations in copy
numbers over time. As a consequence, single cells within the
same isoclonal population can differ in their expression profile
and reside in different phenotypic states. The dynamic nature of
this intercellular variation, where individual cells can transition
between different states over time makes it a particularly
hard phenomenon to characterize. Here we propose a novel
fluctuation-test approach to infer the kinetics of transitions
between cell states. More specifically, single cells are randomly
drawn from the population and grown into cell colonies. After
growth for a fixed number of generations, the number of cells
residing in different states is assayed for each colony. In a simple
system with reversible switching between two cell states, our
analysis shows that the extent of colony-to-colony fluctuations
in the fraction of cells in a given state is monotonically related
to the switching kinetics. Several closed-form formulas for
inferring the switching rates from experimentally quantified
fluctuations are presented. We further extend this approach to
multiple cell states where harnessing fluctuation signatures can
reveal both the topology and the rates of cell-state switching.
In summary, our analysis provides a powerful approach for
dissecting cell-state transitions based on a single time point
measurement. This is especially important for scenarios where
a measurement involves killing the cell (for example, performing
single-cell RNA-seq or assaying whether a microbial/cancer cell
is in a drug-sensitive or drug-tolerant state), and hence the state
of the same cell cannot be measured at different time points.

I. INTRODUCTION

Advances in single-cell technologies have exposed re-
markable differences in phenotype and expression patterns
between individual cells within the same isogenic cell popu-
lation [1]-[9]. While some of this variation can be linked to
extrinsic factors (i.e., cell-cycle stage, cell size, local extra-
cellular environment), increasing evidence points to the role
of stochastic processes inherent to gene expression in driving
random fluctuations (noise) in gene product levels [10]—
[24]. This intercellular phenotypic heterogeneity can play
important functional roles in diverse biological processes,
from driving genetically-identical cells to different cell fates
[25]-[35] to allowing microbes and cancer cells to hedge
their bets against uncertain environmental changes [36]-[47].

While single-cell sequencing tools can probe phenotypic
heterogeneity within a given cell population, they only
provide a static picture of different cell states. Character-
izing the dynamics of individual cells transitioning between
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Fig. 1. The Luria-Delbriick fluctuation test. Single cells are expanded
into colonies and then infected by bacteriophage T1. If resistance mutations
are virus-induced, then the number of resistant cells would follow a Poisson
distribution across colonies. In contrast, if mutant cells arise spontaneously
prior to viral exposure, then there will be considerable colony-to-colony
fluctuations in the number of surviving cells, including “jackpot" populations
where mutations happened early in the lineage expansion causing many cells
to be resistant.

different states with multi-generational time scales remains
a fundamental challenge in advancing the field of single-
cell biology. The Luria-Delbriick experiment, also called the
“Fluctuation Test", demonstrated that genetic mutations arise
randomly in the absence of selection — rather than in response
to selection — and led to a Nobel Prize [48]. We leverage a
similar fluctuation-style assay to infer switching dynamics
between cellular states. The proposed methodology relies on
first growing single cells into colonies and then measuring
each colony’s cell-state composition (i.e, the number of
cells in different cell states). As a simple example, drug
treatment of a single-cell derived colony of cancer cells can
classify individual cells into two phenotypic states: drug-
sensitive (drug-tolerant) cells that die (survive) in response
to treatment. Repeating this process for several colonies
yields a distribution for the number of surviving cells. How
can we exploit this measured distribution to understand the
interchange between cell states?

Starting with a system of reversible switching between
two cell states, we derive three different analytical formulas
employing different approximations to quantify fluctuations
in cell-state composition across colonies and benchmark
them with exact stochastic simulations of the cell prolifer-
ation/switching process. From a practical standpoint, these
formulas are a valuable tool to back-calculate the switching
rates from experimentally measured fluctuations at a single
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time point of colony expansion. In the context of the cancer
example, inferring the timescale of switching between drug-
sensitive and drug-tolerant states is critical for the design of
optimal drug treatment schedules [49]. Later on, we further
generalize these results to multiple cell states with arbitrary
switching topologies. We start by reviewing the original
Luria-Delbriick experiment done 80 years ago.

II. REVISITING THE CLASSICAL LURIA-DELBRUCK
EXPERIMENT

By the early 20th century it was known that bacteria
can acquire resistance to infection by phages (bacterial
viruses). However, it was debated whether mutations leading
to resistance were directly induced by the virus (Lamarckian
theory), or if they arose randomly in the population before
viral infection (Darwinian theory). To discriminate between
these alternative hypotheses, Luria & Delbriick designed
an elegant experiment where single cells were isolated and
grown into colonies. After allowing the colonies to grow for
some duration, they were infected by the T1 phage, and the
number of resistant bacteria were counted across colonies.
If mutations are virus-induced (i.e., no genetic heritable
component to resistance), then each bacterium has a small
and independent probability of acquiring resistance, and the
colony-to-colony fluctuations in the number of resistant cells
should follow Poisson statistics. In contrast, if mutations
occur randomly before viral exposure, then the number of
surviving bacteria will vary considerably across colonies de-
pending on when the mutation arose in the colony expansion
(Fig. 1). The data clearly showed a non-Poissonian skewed
distribution for the number of resistant bacteria, validating
the Darwinian theory of evolution [48].

The Luria-Delbriick experiment that came to be known
as the “Fluctuation Test", not only addressed a fundamental
evolutionary question leading to a Nobel Prize, but also
laid the foundations for the field of bacterial genetics.
Apart from its biological significance, the fluctuation test
exemplifies the usage of stochastic analysis for uncovering
hidden processes even though the underlying cell states
may not be directly observable. Publication of the Luria-
Delbriick article in 1943 catalyzed rich theoretical work
deriving probability distributions for the number of resistant
cells based on different biological assumptions [S0]-[52],
and led to statistical methods for estimating mutation rates
from fluctuations in the data [53]-[55]. We refer the reader
to [56] for an excellent review of mathematical developments
related to the Luria-Delbriick experiment.

The fluctuation test was recently used to study cancer
drug resistance [57]. Individual melanoma cells were isolated
from a clonal cell population by single-cell FACS sorting,
and then grown into colonies. After allowing single cells to
expand for a few weeks, the colonies were treated with a
targeted cancer drug, vemurafenib. Intriguingly, the colony-
to-colony fluctuations in the number of surviving cells were
significantly larger than a Poisson distribution, but an order
of magnitude smaller than what is predicted by the mutation
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Fig. 2. A fluctuation-test approach for deciphering switching between
two cellular states. Schematic showing cells in two different states (State
1 & 2) together with reversible switching between states, and proliferation
in each state. Individual cells are randomly chosen from the original
population and assayed for the fraction of cells in State 2 after a certain
duration of lineage expansion. If switching between states is relatively fast,
then colonies will show similar fractions of State 2 cells as the original
population, and variance across colonies will be minimal. On the other
hand, if switching is slow, then colony composition will heavily depend
on the state of the initial cell, and there would be large colony-to-colony
fluctuations based on differences in the initial condition. Thus, statistical
fluctuations in colony composition can be exploited to infer the transient
heritability of cellular states.

model. Subsequent analysis showed that stochastic expres-
sion of several resistant markers drives individual cells to
reversibly switch between drug-sensitive and drug-tolerant
states prior to drug exposure [58], and the latter state can
transform into a stably-resistant state in the presence of the
drug [57]. We next present the mathematical framework for
modeling cell-state transitions in an expanding cell colony,
followed by the derivation of formulas quantifying the extent
of fluctuations as a function of the switching rates.

III. FLUCTUATION-APPROACH TO INFER CELL-STATE
SWITCHING

Consider a scenario as in Fig. 2 where cells within a
population can reside in two states (State 1 & 2). Cells
proliferate and reversibly switch between states, and the rates
of switching determine the transient heritability of a state,
i.e., how many generations it takes to switch back to the
other state. Let /> denote the average fraction of cells in
State 2 in the original population. Single cells are randomly
drawn from the population (through serial dilutions or FACS
sorting), and expanded into colonies. Note that the state of
the starting single cell is unobservable, as we only consider
a single endpoint measurement. After growing the colonies
for a certain duration of time, each colony is assayed for
the fraction of cells in State 2 (or State 1). The basic idea
is that if switching between states is relatively fast (several
switches happen in the growth duration), then the fraction
of State 2 cells will rapidly equilibrate to f> in each colony,
and colony-to-colony fluctuations will be minimal (Fig. 2).
In contrast, if switching is slow, then based on the memory
of the initial cell, colonies will primarily be composed of
cells in either State 1 or 2 generating large colony-to-colony
fluctuations (Fig. 2). In essence, fluctuations in colony cell-
state composition reveals the timescale of switching, with
slower relaxation kinetics driving higher fluctuations.

Grow colonies
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Fig. 3. Fluctuations in state fractions are robust to the cell-cycle time
distribution. Fluctuation in the number (top) and the fraction (bottom) of
cells in State 2 as a function of colony-expansion time. Here and in all other
figures we set the mean cell-cycle time to 1 time units by having k, = 1, and
t can then be interpreted as time in the number of cell generations. Colony
growth simulation was done assuming two different cell-cycle distributions:
exponentially-distributed and lognormally-distributed cell-cycle time with
mean 1 and variance 0.28. Other parameters were taken as f> = 0.1, ky = 1 /5
and the coefficient of variation was computed across 1000 colonies (i.e.,
simulation runs). These simulations were then repeated 20 times to generate
error bars that show one standard deviation.

To directly relate these fluctuations to the switching
kinetics, we model the cell-colony expansion process by
considering that cells proliferate with a constant rate k,
implying a mean cell-cycle time of 1/k, (i.e., time taken
by each cell to finish cell-cycle and make two daughters).
Cells in State 1 transition to State 2 with a constant rate kq,
and switch back to State 1 with a constant rate k, resulting
in the average fraction

ky

fri= ki+ky

We make several simplifying assumptions in our model
formulation:

(D

o The proliferation rate of a cell is the same irrespective

of the cellular state.

o There is no cell death in the expanding colony.

« The population remains in the exponential growth phase

during the time span of the experiment.

o The switching rates are independent of the number of

cells in the colony.

Assuming that the starting cell at time ¢ = 0 is chosen
randomly from the original population, its state follows
a Bernoulli random variable: the cell is in State 2 with
probability f» and in State 1 with probability 1 — f5. Let
stochastic processes x;(#) and x,(¢) denote the number of
cells in State 1 and 2, respectively, with total cell number
x(t) = x1(¢) +x2(¢). Our goal is to quantify colony-to-colony
fluctuations in the fraction of cells in State 2

x (1)

1) =
f 2( ) X( t) )
at time ¢ of colony expansion. It is important to point out
that we work with the fraction of cells in State 2, and not

2

the number of cells in State 2. The rationale for this is that
fluctuations in the former appear more robust to the cell-
cycle time distribution. For example, stochastic simulations
of an expanding colony with an exponentially-distributed
or a lognormally-distributed cell-cycle time (with the same
mean) result in different levels of fluctuations in x,(¢), but
similar fluctuations in f,(¢) (Fig. 3). Employing different
assumptions, we next derive closed-form formulas for the
coefficient of variation (standard deviation over mean) of
f>(t) across colonies.

A. Deterministc proliferation approximation

Ignoring any stochasticity in the cell proliferation and
switching processes, colony growth from a single cell can
be modeled as an ordinary differential equation

dx dx;
o = kX, e X2 +kix— (ko +ki)x2
d
= % ki(1—=f2) —kafo. 3)

Solving (3) for a Bernoulli initial condition f,(0) =1 with
probability f, (starting cell is in State 2) and f>(0) = 0 with
probability 1 — f, (starting cell is in State 1) yields

L) =f+1-fe
(1) = fo— fre itk

This results in the following mean fraction
(Gal0)) = o (ot (1= fo)e il
HO-R (hofe ) =f©

where ( ) denotes the expected value of a random process. As
intuitively expected, at any time in the lineage expansion the
mean fraction of cells in State 2 across colonies is the same
as that in the original population. Using a similar approach
for the second-order moment

2
(BO) = fo (ot (1 = fr)e )
+(1-f) (fszze (ki h2) )2
— () = B+ A1 = pe 2tk (7)

This leads to the following colony-to-colony fluctuations

(kitk2)t with probability f>  (4)

with probability 1—f>.  (5)

CVA(1) = () -7} _ 1_Af2e72(k1+k2)z )
f 2 f 2
with CV; being the coefficient of variation (CV) of the State
2 fraction. The formula shows that for a fixed f» and time
t, faster switching attenuates fluctuations with CV, — 0 as
k1,ky — co. By defining a dimensionless quantity

1_f
ky
we can rewrite (8) as
17 £ xt
VR = Lo % (10)

2
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Given a time ¢ of CV, measurement, switching rates can be
inferred by simultaneously solving (1) and (10) based on a-
priori knowledge of the cell proliferation rate, and fz is the
average fraction of State 2 cells across colonies.

B. Stochastic proliferation model

To capture low-copy number effects at early stages of
colony expansion, we consider a stochastic model formula-
tion where now x(¢),x;(¢),x2(¢) € {0,1,2,...} are integer-
valued random processes. For deﬁmng the model and its
subsequent analysis we work with x(f) and x,(¢). The time
evolution of these populations is governed by the events in
Table 1 that occur probabilistically with rates given in the
third column. Whenever the event occurs, the corresponding
reset map is activated and cell numbers increase/decrease by
one. This formulation corresponds to the cell-cycle time be-
ing drawn from an exponential distribution with mean 1/k.
Moreover, the time spent in States 1 and 2 is exponentially-
distributed with means 1/k; and 1/k,, respectively.

TABLE I
STOCHASTIC MODEL OF CELL PROLIFERATION AND SWITCHING.

Stochastic event Reset in Prob. event
counts occurs in (z,7 +dt)
Cell proliferation in State 1 x—x+1 ky(x — x2)dt
Cell proliferation in State 2 x—x+1 kyxodt
xp—xp+1
Cell switching from State 1 to 2 x; —xp+1 ki (x—x)dt
Cell switching from State 2to 1  xp —xy—1 koxodt

Given that the event rates are linear functions of the state-
space, the statistical moments of x(¢),x,(¢) can be obtained
exactly using standard tools from moment dynamics. In
particular, the time derivative of the expected value of any
continuously differentiable function ¢@(x,x;) is given by

HOEX2) _ (g(0)

dt
8(x,x2) = ke(x —x2) (@(x+ 1,x2) — @(x,x2))
+hexy (@(x+ 1,00+ 1) — @(x,x2))
Fki(x—x2) (@(x, 24+ 1) — @(x,x2))
+koxa (@(x,x2 — 1) — @(x,x2)) (11)
[59]-[62]. By setting ¢(x,x;) =x and x, in (11), one obtains
the average population dynamics

d(x) d(x2)
Mk
dt <bx)s dt
that is identical to the deterministically-formulated dynamics
(3). Following the same steps for @(x,x2) = x2, xx, and x%

d{x?)

= ke(x2) + k1 (x) — (k1 +k2) (x2) (12)

o = ) + 2k, (x*) (13a)
dg‘? =k (x) — 2k (x3) + ka (x2) + 2k1 {xx2)
— 2k (x5) — ky (x2) + 2k (x3) + ki (x2) (13b)
d<;f2> = —ka o) + k1 (%) — ki foxa) + 2k (o) + ke (x2).

(13c¢)

Based on the Bernoulli cell-state assignment of the starting
cell, solving the linear dynamics system (12)-(13) with initial
conditions

<x(0>> =1, <)C2(0)> :f27 <x2(0)> =1

(300)) =2, (x(0)x2(0)) = /2
determines the statistical moments of x(f) and x»(¢) at any
time in the colony expansion. How do we use the moments
of x(r) and x,(¢) to obtain moments of their ratio f,(¢) =
x2(t)/x(¢)? We next discuss two alternative approaches for
doing this.

(14)

C. Independent variable approximation

Analyzing the moment dynamic equations reveals

foxa) — (x) (x2)

(x) (x2)
a positive covariance between the number of cells in State
2 and the colony size. Equation (15) points to weakly
correlated x and x, = xf, for short times, implying an
even weaker correlation between x and f,. This motivates
an approximation where the fraction of cells in State 2
is independent of the colony size. Working along these
lines, assuming f>(¢) and x(¢) to be independent allows an
analytical derivation for the extent of fluctuations in f,(¢)
in spite of the nonlinear dependence. To see this, recall
that by definition x, = f,x, assuming (f>x) & {f>)(x) and

(f3x%) ~ (f?)(x?), the moment of f> can be obtained as

=1-e*>0 (15)

(o) = (fax) ~ () () = m>w (16)
2
@4&%%W><mﬂ% (16b)

Substituting the solution of (12)-(13) in (16) results in

(fo(t)) = f» and the following formula for the extent of
fluctuations
CVi(t) = 27) 2-7z\1-f , (1P
I P T A S
(17)

Note Z > 0 as fg takes values between O and 1. When Z =2,
(17) reduces to

1+2kxt> 11—/ 18)

2 —
CVs(t)= <2eth ~1) R

Here the dimensionless constants rk, and k/k, have im-
portant biological interpretations: tk, represents the average
number of generations of colony expansion, and k, /k; is the
average number generations a cell remains in State 2 before
switching to State 1. As expected from the Bernoulli initial
condition,

limCVZ = -5
t—0 fz

19)

and if one grows the colony long enough, then lim;_,., C V22 =
0 as f,(r) converges to f> in each colony. For a fixed f> and
t, CV, monotonically increases with increasing time spent in
State 2, i.e., slower switching results in higher fluctuations
in the fraction of State 2 cells (Fig. 4).
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Fig. 4. Inferring switching rates from the fluctuation test. Left: Colony-
to-colony fluctuations in the fraction of State 2 cells as predicted by (17),
as a function of time spent in State 2 for different durations ¢ of colony
expansion. In this plot, ky is decreased to increase time spent in State 2,
and k; is adjusted to keep f> = 0.1. Thus, slower switching, where the
memory of the initial state is retained and inherited for more generations,
generates larger colony-to-colony fluctuations. Right: Same plot as on the
left except ¢ = 10 is fixed, and colony-to-colony fluctuations predicted by
(17) are plotted for different fractions f». As before, ky =1, and ¢ can be
interpreted as time in the number of cell generations.

D. Small noise approximation

An alternative derivation of CV relies on small fluctuations
in x(¢) and x;(¢) around their respective means. Performing
a Taylor series expansion of f,(r) yields

s <<)§c2>> a(gi)zcimh#xm#m (2 = {x2))
+ % e () a= () (X — (X))

X () xn—(2) ®X)E-x)

e R — 5

x ) (x) ()
after ignoring quadratic and higher-order terms in the expan-
sion. It is straightforward to see that in this limit

(20)

<f2>=<);2>%<<);2>>=f2- (21
Moreover, from (20)
X _ (%)
Y ) x—)
ey PO .

x)
Squaring the terms on both sides and taking the expected
value leads to

) =) ) (07 2((on) — () (x)

2
Ve w2 et

which after substituting the population number moments
obtained from solving (12)-(13) yields the following formula

2kxt A
2o (220F) 4 z)e ke \ 1
CVy(t) = 7> 7 (24a)
—kyt _ £
CVE(r) =< (szfxt)(l Ry, (24b)
2

In summary, we have now developed three different formulas
given by (10), (17) and (24), quantifying fluctuations in
fraction State 2 cells across colonies. It is interesting to note

{ simulations
—— Deterministic Proliferation
Independent Variable Approximation
—— Small Noise Approximation

12

10

CV? of fraction State 2 cells
o

Time (generations)

Fig. 5. Comparison of analytical approaches to predict fluctuations
in state fractions across single-cell colonies. Stochastic simulations of
the model presented in Table 1 were used to simulate the fluctuation test
experiment with f> =0.1, k, = 1 and ky = 1/5 (i.e., cells spend an average
of 5 generations in State 2). CV; is computed based on 1000 colonies, and
simulations were repeated 20 times to generate error bars that show one
standard deviation.

that while all formulas reduce to (19) at ¢t = 0, they have
qualitatively different initial slopes

dCV}  2k(1-f
lim —-2% = — (A f2) < 0 (Deterministic Proliferation)
t—0 dl f2Z

(25a)

dcvi
lirr(l) dt2 =0 (Independent Variable) (25b)
t—

dCV} k(11— f
im €2 _k(-15) (Small Noise) (25¢)
t—0 dt f2

with fluctuations increasing with time in the early phase of
colony expansion in (25¢). All formulas share the common
feature of lim;_,..CV> = 0.

Fig. 5 shows the accuracy of these formulas by com-
parison with exact CV, values as obtained by performing
stochastic simulations of the system shown in Table 1. While
the formula based on the deterministic formulation greatly
underestimates fluctuations in f>(¢), the independent variable
assumption that takes into account stochastic proliferation
provides a better approximation, especially at initial time
points. The formula based on the small noise approach goes
in the wrong direction at the start and overestimates the noise,
but converges to the exact value at later time points when
CV; is small.

IV. STATE TRANSITIONS BETWEEN MULTIPLE CELL
STATES

Having discussed an innovative approach to identify rates
of switching between two states from measured inter-colony
fluctuations, we now generalize this approach to multiple
cell states. With more than two cell states there will be many
different switching topologies, and one would like to identify
plausible topologies from measured fluctuations in cell-state
compositions. Here the fluctuation data will also be richer —
one will measure both the variances and covariances in the
fraction of different states across colonies. In this section,
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we show how to analytically predict these fluctuations for
switching between an arbitrary number of cell states.
Notation: Consider a system with n > 2 cell states - States
1, 2,3...,n. In each state the cell proliferates with rate k,
and k, N ;é Jj is the switching rate from state i to j. We denote
by /; as the average fraction of cells in State i € {1,...,n}.
Random processes x;(7) and f;(¢) represent the number and
fraction of State i cells in the expanding colony, respectively,
with total cell numbers x(z) = ¥ x;(¢). Our goal is to quantify
the colony-to-colony fluctuations in fraction State i cells

2
cvr_ D= () 2
i AL (26)
and the normalized covariances
R L ieas
Gj= ) i, 4,j€4{1,2,3} (27)

over time as a function of the proliferation/switching rates.
Having described the notation used in this section, we briefly
discuss the methodology for obtaining these fluctuations
using the assumptions discussed in the previous section.

A. Deterministc proliferation Approximation

Let f(t) = [fi(t),...,fu(t)]" denote a column vector of the
fraction of cells in each state. Starting from a single cell that
is in state i with probability f;, modeling colony expansion
as an ordinary differential equation, f(¢) evolves as per the
linear dynamical system

daf
I Af (28)

where elements of the A matrix are given by
n
_Zkij’ Cll‘j:kj,' fOI‘l?é]
j=1
Solving (28) yields

(29)

ajj =

f(e)="£(0)

where the random vector f(0) is a column vector with zeros
except 1 at the i"* row with probability f;, i € {1,...,n}.
Having obtained this initial-condition dependent random
process f(t), (26) and (27) can directly be derived from it
as done in (4)-(8).

(30)

B. Independent variable approximation

To account for stochastic proliferation one can build a
model similar to Table I that enumerates all probabilis-
tic events corresponding to cell proliferation in each state
and switching between states. Let vector p consists of all
first- and second-order moments of integer-valued random
processes xi (), ..., x,(t). Then, its time evolution can be
derived as a linear dynamical system

CZ—"? =Aul. (31)
using moment dynamic tools [59], [61]. Solving this system
with initial condition

(xi(0)) = i, (x7(0)) = fi, (xi(0)x;(0)) =0 for i # j (32)

determines the time evolution of all the first- and second-
order moments of cell numbers in different states. Having
obtained these number moments, the moments of state frac-
tions are obtained as

) (xix;)
VI Gy )

assuming that f;(z) is independent of x().

(fifj) =~ fori#j. (33

C. Small noise approximation

As derived in (23), for small deviations in cell numbers
from their means the fluctuations in the fraction of State i is
given by

D =) o) =7 2 (fax) — () ()
’ (xi)? (x)? (xi) (x)
Using a similar Taylor series expansion approach it can also

be shown that

. (34)

— (*) )
<xj> (x)

in the limit of small fluctuations in cell numbers. Substituting
moments computed from (31) in (34) and (35) provides the
extent of fluctuations and covariances between state fractions
over time.

We illustrate these approximations on a ring topology of
state switching where kp; = k3 = k13 = 0 (Fig. 6). Com-
parison with exactly-computed fluctuations from stochastic
simulations shows that the independent variable approxima-
tion generally provides a good approximation at earlier time
points when noise levels are high, while the small noise
approximation works best at later time points.

(35)

V. CONCLUSION

The classical fluctuation test developed by Luria and
Delbriick revolutionized the field of bacterial genetics and
is employed to this day to estimate mutation rates (Fig. 1).
While a genetic mutation is an irreversible transition, here
we have used a similar fluctuation assay to probe reversible
switching between cell states (Fig. 2). An advantage of this
approach is that a single measurement of fluctuations in cell-
state composition across colonies allows an estimation of a
state’s transient heritability, i.e., how long a cell stays in
a state before exiting it. While the approach only needs a
single time point, performing the assay at several different
time points is important for validating the inferred model. We
have recently exploited his approach for diverse applications
include characterizing drug-tolerant cancer cells [63]-[65],
activation of human viruses such as HIV [66], and innate
immune response in individual human cells [67].

The key contribution of this work has been the devel-
opment of different analytical formulas for quantifying the
extent of inter-colony fluctuations. While the formula based
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Fig. 6. Extending the fluctuation test approach for switching between
multiple states. Starting with a ring topology where ky; = k3, = kj3 =0 and
k12 = k3 = k31 = 1/5, ky = 1, 2000 colonies were simulated and plots show
fluctuations in the fraction State 1 cells (top) and the normalized covariance
between States 1 & 2 (bottom) over time. These fluctuations from stochastic
simulations are compared with analytical formulas obtained using the three
different approximations discussed in Section IV.

on deterministic proliferation is the simplest, it may result in
inferred switching rates that are slower than their actual val-
ues as it underestimates fluctuations (Fig. 3). Using formulas
based on stochastic proliferation may provide more accurate
inference. Future work will consider expanding these for-
mulas to scenarios where states have different proliferative
potentials and this is especially important given that drug
persisters can in some cases grow significantly slower than
drug-sensitive cells [68]—[73].

We further generalized these analytical formulations to
switching between an arbitrary number of cells states. While
here we have primarily focused on the forward prediction
of fluctuations given a switching topology, the backward
inference problem of using measured fluctuation signatures
to find the most parsimonious switching topology provides
fertile grounds for future work.

REFERENCES

[1]1 J. M. Raser and E. K. O’Shea, “Noise in gene expression: Origins,
consequences, and control,” Science, vol. 309, pp. 2010 — 2013, 2005.

[2] M. Kern, T. C. Elston, W. J. Blake, and J. J. Collins, “Stochasticity
in gene expression: from theories to phenotypes,” Nature Reviews
Genetics, vol. 6, pp. 451464, 2005.

[3] L. Brandt, S. Cristinelli, and A. Ciuffi, “Single-cell analysis reveals
heterogeneity of virus infection, pathogenicity, and host responses:
Hiv as a pioneering example,” Annual Review of Virology, vol. 7, pp.
333-350, 2020.

[4] A.Raj and A. van Oudenaarden, “Nature, nurture, or chance: stochas-
tic gene expression and its consequences,” Cell, vol. 135, pp. 216-226,
2008.

[5] R. Foreman and R. Wollman, “Mammalian gene expression variability
is explained by underlying cell state,” Molecular systems biology,
vol. 16, p. 9146, 2020.

[6] E. D. SoRelle, J. Dai, E. N. Bonglack, E. M. Heckenberg, J. Y.
Zhou, S. N. Giamberardino, J. A. Bailey, S. G. Gregory, C. Chan, and
M. A. Luftig, “Single-cell rna-seq reveals transcriptomic heterogeneity
mediated by host—pathogen dynamics in lymphoblastoid cell lines,”
Elife, vol. 10, p. 62586, 2021.

[7]1 L. C. Van Eyndhoven, A. Singh, and J. Tel, “Decoding the dynamics of
multilayered stochastic antiviral ifn-i responses,” Trends in immunol-
ogy, vol. 42, pp. 824-839, 2021.

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

Z.Lyu, A. Yang, P. Villanueva, A. Singh, and J. Ling, “Heterogeneous
flagellar expression in single salmonella cells promotes diversity in
antibiotic tolerance,” Mbio, vol. 12, pp. €02374-21, 2021.

P. Topolewski, K. E. Zakrzewska, J. Walczak, K. Nienattowski,
G. Miiller-Newen, A. Singh, and M. Komorowski, “Phenotypic vari-
ability, not noise, accounts for most of the cell-to-cell heterogeneity in
ifn-y and oncostatin m signaling responses,” Science Signaling, vol. 15,
no. 721, p. eabd9303, 2022.

H. Ochiai, T. Hayashi, M. Umeda, M. Yoshimura, A. Harada,
Y. Shimizu, K. Nakano, N. Saitoh, Z. Liu, T. Yamamoto, et al.,
“Genome-wide kinetic properties of transcriptional bursting in mouse
embryonic stem cells,” Science advances, vol. 6, p. eaaz6699, 2020.

A.J. Larsson, P. Johnsson, M. Hagemann-Jensen, L. Hartmanis, O. R.
Faridani, B. Reinius, A. Segerstolpe, C. M. Rivera, B. Ren, and
R. Sandberg, “Genomic encoding of transcriptional burst kinetics,”
Nature, vol. 565, pp. 251-254, 2019.

J. Rodriguez, G. Ren, C. R. Day, K. Zhao, C. C. Chow, and D. R.
Larson, “Intrinsic dynamics of a human gene reveal the basis of
expression heterogeneity,” Cell, vol. 176, pp. 213-226, 2019.

A. J. Larsson, C. Ziegenhain, M. Hagemann-Jensen, B. Reinius,
T. Jacob, T. Dalessandri, G.-J. Hendriks, M. Kasper, and R. Sand-
berg, “Transcriptional bursts explain autosomal random monoallelic
expression and affect allelic imbalance,” PLoS computational biology,
vol. 17, p. €1008772, 2021.

A. Eldar and M. B. Elowitz, “Functional roles for noise in genetic
circuits,” Nature, vol. 467, pp. 167-173, 2010.

G. Neuert, B. Munsky, R. Z. Tan, L. Teytelman, M. Khammash, and
A. van Oudenaarden, “Systematic identification of signal-activated
stochastic gene regulation,” Science, vol. 339, pp. 584-587, 2013.

G. Chalancon, C. N. Ravarani, S. Balaji, A. Martinez-Arias, L. Ar-
avind, R. Jothi, and M. Babu, “Interplay between gene expression
noise and regulatory network architecture,” Trends in Genetics, vol. 28,
pp. 221-232, 2012.

A. Magklara and S. Lomvardas, “Stochastic gene expression in mam-
mals: lessons from olfaction,” Trends in Cell Biology, vol. 23, pp.
449-456, 2014.

G. M. Siiel, J. Garcia-Ojalvo, L. M. Liberman, and M. B. Elowitz,
“An excitable gene regulatory circuit induces transient cellular differ-
entiation,” Nature, vol. 440, pp. 545-550, 2006.

H. Maamar, A. Raj, and D. Dubnau, “Noise in gene expression
determines cell fate in bacillus subtilis,” Science, vol. 317, pp. 526—
529, 2007.

R. D. Dar, N. N. Hosmane, M. R. Arkin, R. F. Siliciano, and L. S.
Weinberger, “Screening for noise in gene expression identifies drug
synergies,” Science, vol. 344, pp. 1392-1396, 2014.

N. Battich, T. Stoeger, and L. Pelkmans, “Control of transcript
variability in single mammalian cells,” Cell, vol. 163, pp. 1596-1610,
2015.

1. G. Johnston, B. Gaal, R. P. das Neves, T. Enver, F. J. Iborra, and
N. S. Jones, “Mitochondrial variability as a source of extrinsic cellular
noise,” PLOS Computational Biology, vol. 8, p. €1002416, 2012.

A. Singh, B. Razooky, C. D. Cox, M. L. Simpson, and L. S.
Weinberger, “Transcriptional bursting from the HIV-1 promoter is
a significant source of stochastic noise in HIV-1 gene expression,”
Biophysical Journal, vol. 98, pp. L32-134, 2010.

L. C. Fraser, R. J. Dikdan, S. Dey, A. Singh, and S. Tyagi, “Reduction
in gene expression noise by targeted increase in accessibility at gene
loci,” Proceedings of the National Academy of Sciences, vol. 118,
2021.

A. P. Arkin, J. Ross, and H. H. McAdams, “Stochastic kinetic analysis
of developmental pathway bifurcation in phage A-infected Escherichia
coli cells,” Genetics, vol. 149, pp. 1633-1648, 1998.

R. Losick and C. Desplan, “Stochasticity and cell fate,” Science, vol.
320, pp. 65-68, 2008.

G. Baldzsi, A. van Oudenaarden, and J. J. Collins, “Cellular decision
making and biological noise: From microbes to mammals,” Cell, vol.
144, pp. 910-925, 2014.

T. M. Norman, N. D. Lord, J. Paulsson, and R. Losick, “Memory
and modularity in cell-fate decision making,” Nature, vol. 503, pp.
481-486, 2013.

F. St-Pierre and D. Endy, “Determination of cell fate selection during
phage lambda infection,” Proceedings of the National Academy of
Sciences, vol. 105, pp. 20705-20710, 2008.

K. H. Kim and H. M. Sauro, “Adjusting phenotypes by noise control,”
PLOS Computational Biology, vol. 8, p. €1002344, 2012.


https://doi.org/10.1101/2022.03.30.486492
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.30.486492; this version posted April 1, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

(501

[51]

[52]

[53]

H. H. Chang, M. Hemberg, M. Barahona, D. E. Ingber, and S. Huang,
“Transcriptome-wide noise controls lineage choice in mammalian
progenitor cells,” Nature, vol. 453, pp. 544-547, 2008.

E. Abranches, A. M. V. Guedes, M. Moravec, H. Maamar, P. Svoboda,
A. Raj, and D. Henrique, “Stochastic nanog fluctuations allow mouse
embryonic stem cells to explore pluripotency,” Development, vol. 141,
pp. 2770-2779, 2014.

M. E. Torres-Padilla and I. Chambers, “Transcription factor hetero-
geneity in pluripotent stem cells: a stochastic advantage,” Develop-
ment, vol. 141, pp. 2173-2181, 2014.

R. L. Thompson, C. M. Preston, and N. M. Sawtell, “De novo synthesis
of VP16 coordinates the exit from HSV latency in vivo,” PLOS
Pathogens, vol. 5, p. €1000352, 2009.

A. Singh and L. S. Weinberger, “Stochastic gene expression as a
molecular switch for viral latency,” Current Opinion in Microbiology,
vol. 12, pp. 460-466, 2009.

S. Doganay, M. Y. Lee, A. Baum, J. Peh, S.-Y. Hwang, J.-Y. Yoo,
P. J. Hergenrother, A. Garcia-Sastre, S. Myong, and T. Ha, “Single-
cell analysis of early antiviral gene expression reveals a determinant
of stochastic IFNB1 expression,” Integrative Biology, vol. 9, pp. 857—
867, 2017.

A. P. Gasch, F. B. Yu, J. Hose, L. E. Escalante, M. Place, R. Bacher,
J. Kanbar, D. Ciobanu, L. Sandor, I. V. Grigoriev, et al., “Single-cell
rna sequencing reveals intrinsic and extrinsic regulatory heterogeneity
in yeast responding to stress,” PLoS biology, vol. 15, p. 2004050,
2017.

T. D. Evans and F. Zhang, “Bacterial metabolic heterogeneity: ori-
gins and applications in engineering and infectious disease,” Current
opinion in biotechnology, vol. 64, pp. 183-189, 2020.

N. M. V. Sampaio and M. J. Dunlop, “Functional roles of microbial
cell-to-cell heterogeneity and emerging technologies for analysis and
control,” Current Opinion in Microbiology, vol. 57, pp. 87-94, 2020.
M. Acar, J. T. Mettetal, and A. van Oudenaarden, “Stochastic switch-
ing as a survival strategy in fluctuating environments,” Nature Genet-
ics, vol. 40, pp. 471-475, 2008.

J.-W. Veening, W. K. Smits, and O. P. Kuipers, “Bistability, epige-
netics, and bet-hedging in bacteria,” Annual Review of Microbiology,
vol. 62, pp. 193-210, 2008.

E. Kussell and S. Leibler, “Phenotypic diversity, population growth,
and information in fluctuating environments,” Science, vol. 309, pp.
2075-2078, 2005.

A. L. Bishop, F. A. Rab, E. R. Sumner, and S. V. Avery, “Phenotypic
heterogeneity can enhance rare-cell survival in stress-sensitive yeast
populations,” Molecular Microbiology, vol. 63, pp. 507-520, 2007.
M. Ackermann, “A functional perspective on phenotypic heterogeneity
in microorganisms,” Nature Reviews Microbiology, vol. 13, pp. 497-
508, 2015.

C. Shu, A. Chatterjee, W.-S. Hu, and D. Ramkrishna, “Role of
intracellular stochasticity in biofilm growth. insights from population
balance modeling,” PLOS ONE, vol. 8, p. €79196, 2013.

X. Zheng, A. Beyzavi, J. Krakowiak, N. Patel, A. S. Khalil, and
D. Pincus, “Hsfl phosphorylation generates cell-to-cell variation in
hsp90 levels and promotes phenotypic plasticity,” Cell reports, vol. 22,
no. 12, pp. 3099-3106, 2018.

A. E. Vasdekis and A. Singh, “Microbial metabolic noise,” WIREs
Mechanisms of Disease, vol. 13, no. 3, p. e1512, 2021.

S. E. Luria and M. Delbriick, ‘“Mutations of bacteria from virus
sensitivity to virus resistance,” Genetics, vol. 28, no. 6, p. 491, 1943.
S. Paryad-Zanjani, M. M. Saint-Antoine, and A. Singh, “Opti-
mal scheduling of therapy to delay cancer drug resistance,” IFAC-
PapersOnLine, vol. 54, pp. 239-244, 2021.

S. Sarkar, “Haldane’s solution of the luria-delbriick distribution,”
Genetics, vol. 127, no. 2, p. 257, 1991.

B. Houchmandzadeh, “General formulation of luria-delbriick distribu-
tion of the number of mutants,” Physical Review E, vol. 92, no. 1, p.
012719, 2015.

C. M. Holmes, M. Ghafari, A. Abbas, V. Saravanan, and I. Nemenman,
“Luria—delbriick, revisited: the classic experiment does not rule out
lamarckian evolution,” Physical biology, vol. 14, no. 5, p. 055004,
2017.

B. M. Hall, C.-X. Ma, P. Liang, and K. K. Singh, “Fluctuation analysis
calculator: a web tool for the determination of mutation rate using
luria—delbriick fluctuation analysis,” Bioinformatics, vol. 25, no. 12,
pp. 1564-1565, 2009.

[54]

[55]

[56]

(571

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

A. L. Koch, “Mutation and growth rates from luria-delbriick fluctuation
tests,” Mutation Research/Fundamental and Molecular Mechanisms of
Mutagenesis, vol. 95, no. 2-3, pp. 129-143, 1982.

M. Jones, J. Wheldrake, and A. Rogers, “Luria-delbriick fluctuation
analysis: estimating the poisson parameter in a compound poisson
distribution,” Computers in biology and medicine, vol. 23, no. 6, pp.
525-534, 1993.

Q. Zheng, “Progress of a half century in the study of the luria—delbriick
distribution,” Mathematical biosciences, vol. 162, no. 1-2, pp. 1-32,
1999.

S. M. Shaffer, M. C. Dunagin, S. R. Torborg, E. A. Torre, B. Emert,
C. Krepler, M. Beqiri, K. Sproesser, P. A. Brafford, M. Xiao, E. Eggan,
I. N. Anastopoulos, C. A. Vargas-Garcia, A. Singh, K. L. Nathanson,
M. Herlyn, and A. Raj, “Rare cell variability and drug-induced
reprogramming as a mode of cancer drug resistance,” Nature, vol.
546, pp. 431-435, 2017.

L. Schuh, M. Saint-Antoine, E. M. Sanford, B. L. Emert, A. Singh,
C. Marr, A. Raj, and Y. Goyal, “Gene networks with transcriptional
bursting recapitulate rare transient coordinated high expression states
in cancer,” Cell systems, vol. 10, pp. 363-378, 2020.

A. Singh and J. P. Hespanha, “Approximate moment dynamics for
chemically reacting systems,” IEEE Transactions on Automatic Con-
trol, vol. 56, pp. 414-418, 2011.

D. Schnoerr, G. Sanguinetti, and R. Grima, “Approximation and
inference methods for stochastic biochemical kinetics tutorial review,”
Journal of Physics A: Mathematical and Theoretical, vol. 50, no. 9,
p. 093001, 2017.

A. Singh and J. P. Hespanha, “Stochastic hybrid systems for study-
ing biochemical processes,” Philosophical Transactions of the Royal
Society A, vol. 368, pp. 4995-5011, 2010.

J. P. Hespanha and A. Singh, “Stochastic models for chemically react-
ing systems using polynomial stochastic hybrid systems,” International
Journal of Robust and Nonlinear Control, vol. 15, pp. 669-689, 2005.
S. M. Shaffer, B. L. Emert, R. A. R. Hueros, C. Cote, G. Harmange,
D. L. Schaff, A. E. Sizemore, R. Gupte, E. Torre, A. Singh, et al.,
“Memory sequencing reveals heritable single-cell gene expression
programs associated with distinct cellular behaviors,” Cell, vol. 182,
pp- 947-959, 2020.

P. Bokes and A. Singh, “A modified fluctuation test for elucidating
drug resistance in microbial and cancer cells,” European Journal of
Control, vol. 62, pp. 130-135, 2021.

C. A. Chang, J. Jen, S. Jiang, A. Sayad, A. S. Mer, K. R. Brown,
A. M. Nixon, A. Dhabaria, K. H. Tang, D. Venet, et al., “Ontogeny
and vulnerabilities of drug-tolerant persisters in her2+ breast cancer,”
Cancer discovery, 2021.

Y. Lu, H. Singh, A. Singh, and R. D. Dar, “A transient heritable
memory regulates HIV reactivation from latency,” Iscience, vol. 24, p.
102291, 2021.

H. R. Clark, C. McKenney, N. M. Livingston, A. Gershman, S. Sajjan,
I. S. Chan, A. J. Ewald, W. Timp, B. Wu, A. Singh, et al., “Epigenet-
ically regulated digital signaling defines epithelial innate immunity at
the tissue level,” Nature communications, vol. 12, pp. 1-13, 2021.

R. A. Fisher, B. Gollan, and S. Helaine, ‘Persistent bacterial infections
and persister cells,” Nature Reviews Microbiology, vol. 15, p. 453,
2017.

S. Manuse, Y. Shan, S. J. Canas-Duarte, S. Bakshi, W.-S. Sun, H. Mori,
J. Paulsson, and K. Lewis, “Bacterial persisters are a stochastically
formed subpopulation of low-energy cells,” PLoS Biology, vol. 19, p.
e3001194, 2021.

N. Balaban, J. Merrin, R. Chait, L. Kowalik, and S. Leibler, “Bacterial
persistence as a phenotypic switch,” Science, vol. 305, pp. 1622-1625,
2004.

J. Feng, D. A. Kessler, E. Ben-Jacob, and H. Levine, “Growth feedback
as a basis for persister bistability,” Proceedings of the National
Academy of Sciences, vol. 111, pp. 544-549, 2014.

E. Maisonneuve, M. Castro-Camargo, and K. Gerdes, “(p)ppGpp Con-
trols Bacterial Persistence by Stochastic Induction of Toxin-Antitoxin
Activity,” Cell, vol. 154, pp. 1140-1150, 2013.

I. E. Meouche, Y. Siu, and M. J. Dunlop, “Stochastic expression of a
multiple antibiotic resistance activator confers transient resistance in
single cells,” Scientific Reports, vol. 6, p. 19538, 2016.


https://doi.org/10.1101/2022.03.30.486492
http://creativecommons.org/licenses/by-nd/4.0/

