

1 SARS-CoV-2 Omicron potently neutralized by a novel antibody with 2 unique Spike binding properties

3 Craig Fenwick^{‡1}, Priscilla Turelli^{‡2}, Dongchun Ni^{‡3}, Laurent Perez^{‡1}, Kelvin Lau², Erica Lana¹, Céline
4 Pellaton¹, Charlène Raclot², Line Esteves-Leuenberger¹, Jérémie Campos¹, Alex Farina¹, Flurin
5 Fiscalini¹, Cécile Herate⁵, Romain Marlin⁵, Rana Abdelnabi⁴, Caroline S. Foo⁴, Johan Neyts⁴, Pieter
6 Leyssen⁴, Roger LeGrand⁵, Yves Lévy^{6,7,8}, Florence Pojer², Henning Stahlberg³, Didier Trono^{2*},
7 Giuseppe Pantaleo^{1,9*}

8
9 1- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital
10 and University of Lausanne, Lausanne, Switzerland
11 2- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
12 3- School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne and Faculty of Biology
13 and Medicine, UNIL, Lausanne, Switzerland.
14 4- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for
15 Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium.
16 5- CEA, Université Paris Sud 11, INSERM U1184, Center for Immunology of Viral Infections and
17 Autoimmune Diseases, IDMIT Department, IBFJ, Fontenay-aux-Roses, France.
18 6- VRI, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, 94010 Créteil, France.
19 7- Inserm U955, Equipe 16, Créteil, France.
20 8- AP-HP, Hôpital Henri-Mondor Albert-Chenevier, Service d'Immunologie Clinique et Maladies
21 Infectieuses, Créteil, France.
22 9- Swiss Vaccine Research Institute, Lausanne University Hospital and University of Lausanne,
23 Switzerland.
24

25
26
27
28
29
30
31
32 Key words: SARS-CoV-2, neutralizing antibodies, Variants of concern, Omicron

33 Running title: Structural basis for broad and potent anti-SARS-CoV-2 neutralizing activity

34 ‡Authors contributing equally

35 *Lead and co-corresponding authors: Prof. Giuseppe Pantaleo
36 Service of Immunology and Allergy
37 Lausanne University Hospital
38 1011 Lausanne, Switzerland
39 giuseppe.pantaleo@chuv.ch
40

41 Prof. Didier Trono
42 School of Life Sciences
43 Ecole Polytechnique Fédérale de Lausanne
44 Lausanne, Switzerland
45 didier.trono@epfl.ch

46 **Abstract**

47 The SARS-CoV-2 Omicron variant exhibits very high levels of transmission, pronounced
48 resistance to authorized therapeutic human monoclonal antibodies and reduced sensitivity to
49 vaccine-induced immunity. Here we describe P2G3, a human monoclonal antibody (mAb)
50 isolated from a previously infected and vaccinated donor, which displays picomolar-range
51 neutralizing activity against Omicron BA.1, BA.1.1, BA.2 and all other current variants, and is
52 thus markedly more potent than all authorized or clinically advanced anti-SARS-CoV-2 mAbs.
53 Structural characterization of P2G3 Fab in complex with the Omicron Spike demonstrates
54 unique binding properties to both down and up spike trimer conformations at an epitope that
55 partially overlaps with the receptor-binding domain (RBD), yet is distinct from those bound by
56 all other characterized mAbs. This distinct epitope and angle of attack allows P2G3 to overcome
57 all the Omicron mutations abolishing or impairing neutralization by other anti-SARS-CoV-2
58 mAbs, and P2G3 accordingly confers complete prophylactic protection in the SARS-CoV-2
59 Omicron monkey challenge model. Finally, although we could isolate *in vitro* SARS-CoV2
60 mutants escaping neutralization by P2G3 or by P5C3, a previously described broadly active
61 Class 1 mAb, we found these viruses to be lowly infectious and their key mutations extremely
62 rare in the wild, and we could demonstrate that P2G3/P5C3 efficiently cross-neutralized one
63 another's escapees. We conclude that this combination of mAbs has great prospects in both the
64 prophylactic and therapeutic settings to protect from Omicron and other VOCs.

65

66 SARS-CoV-2 has to this day been responsible for >340 million confirmed infections and >5.5
67 million fatalities ¹. Its unabated propagation has progressively led to the emergence of variants
68 of concern (VOC) with enhanced transmission and resistance to immune responses. The scene
69 has been most recently dominated by VOCs harbouring a high number of mutations compared
70 to the original SARS-CoV-2 strain, with Delta (B.1.617.2) and its 11 to 15 Spike mutations
71 now supplanted by the highly infectious Omicron (B.1.1.529.1), which contains up to 37 amino
72 acid mutations in this viral protein ^{2,3}. Fifteen of Omicron Spike substitutions reside within the
73 RBD, the region targeted by most neutralizing antibodies whether induced by infection or
74 current vaccines, all derived from the original 2019-nCoV Wuhan strain ⁴⁻⁸. Omicron also
75 resists neutralization by most anti-SARS-CoV-2 mAbs reported so far ⁹⁻¹⁵ and is circulating as
76 several sub-variants including BA.1.1, BA.2 (B.1.1.529.2) and BA.3 (B.1.1.529.3) ², creating
77 an urgent unmet medical need for both prophylaxis and therapeutics.

78 **Results**

79 **Identification of P2G3, a highly potent SARS-CoV-2 neutralizing antibody**

80 We screened for the presence of anti-Spike antibodies in serum samples from a cohort of >100
81 donors and focused on one post-infected donor that received two doses of the mRNA-1273
82 vaccine and displayed among the highest serum antibody levels with excellent breadth against
83 a panel of SARS-CoV-2 variants in a trimeric Spike-ACE2 surrogate neutralization assay ¹⁶.
84 Screening of B cell clone supernatants for high affinity Spike binding led us to prioritize six
85 clones for mAb production via expression of paired heavy and light chains in ExpiCHO cells.
86 During initial profiling of these purified mAbs, P2G3 exhibited the strongest binding affinity
87 for the original 2019-nCoV Spike trimer and a panel of Spike proteins encoding mutations
88 found in Alpha, Beta, Gamma and Delta VOCs (IC₅₀s of 0.006-0.010 µg/ml) (**Extended Data**
89 **Fig. 1a**). Cross-competitive Spike RBD binding studies performed with a panel of authorized
90 or clinically advanced anti-SARS-CoV-2 mAbs (REGN10933 and REGN10987 from
91 Regeneron ¹⁷, AZD8895 and AZD1061 from AstraZeneca ¹⁸, ADG-2 from Adagio ¹⁹,
92 S309/Sotrovimab from Vir/GSK ²⁰) and mAbs previously described by our group ²¹,
93 demonstrate that P2G3 binds an unique albeit overlapping epitope with those recognized by
94 both AZD1061 and S309/Sotrovimab, the latter of which acts by a mechanism distinct from
95 blocking the RBD/ACE2 interaction²⁰ (**Extended Data Fig. 1b**). Importantly, our potent and
96 broadly active Class 1 mAb, P5C3, bound RBD non-competitively with P2G3, prompting us to
97 profile these mAbs both alone and in combination for subsequent studies.

98 Using a biochemical trimeric Spike-ACE2 surrogate neutralization assay ¹⁶, we further
99 determined that P2G3 and P5C3 had the most potent and broad activity in blocking ACE2
100 binding to high quality structural grade Spike trimers from all past VOCs compared to our panel
101 of benchmark mAbs (**Extended data Fig. 1 c-d**). P2G3 and P5C3 also display the most potent
102 activity in assays performed with the Spike protein from Omicron BA.1, BA.1.1 that includes
103 the R346K mutation and BA.2. (**Fig. 1a and 1b**). P2G3 alone gave comparable activities to
104 the P2G3/P5C3 combination, with the cocktail showing improved IC₈₀ values of 6.1-, 47.2- and
105 3.4-fold versus the AZD1061/AZD8895 mix, 9.9-, 12.4 and 340-fold versus ADG-2 and 375-,
106 337- and 32-fold versus the REGN10933/ REGN10987 mix in assays performed with Omicron
107 BA.1, BA.1.1 and BA.2, respectively. Interestingly, while the P2G3/P5C3 combination
108 reached ~100% of inhibition in blocking ACE2 binding to Omicron Spike proteins at 1 µg/ml
109 total mAbs, P2G3 alone only blocked 50-72% of ACE2 binding at 20 µg/ml and P5C3 alone
110 reached a ~100% inhibition at 20 µg/ml.

111 We next compared P2G3 alone or in combination with P5C3 with our panel of current clinically
112 authorized and/or clinically advanced mAbs in pseudovirus neutralization assays. P2G3 had
113 potent neutralizing activity against lentiviruses pseudotyped with Spike from initial 2019-nCoV
114 (D614G), Alpha, Beta and Delta VOCs (IC₈₀ value of 0.022, 0.051, 0.038 and 0.035 µg/ml,
115 respectively). Most importantly, P2G3 strongly neutralized the Omicron BA.1 Spike
116 pseudovirus with an IC₈₀ value of 0.038 µg/ml (**Fig. 2a**) and thus showed no loss of activity as
117 compared to the other VOCs. In side-by-side comparisons, P2G3 was >42-fold more potent
118 than ADG-2, AZD1061, AZD8895, REGN10933 and REGN10987 mAbs and 19-fold more
119 potent than Sotrovimab at neutralizing Omicron BA.1 Spike pseudotyped lentiviral particles
120 (**Fig. 2b**). Second most potent was P5C3, with an IC₈₀ value of 0.223 µg/ml, and the
121 P2G3/P5C3 combination revealed a minor-enhanced activity over P2G3 alone in this assay,
122 with an IC₈₀ value of 0.024 µg/ml for the total concentration of the two mAbs. Furthermore,
123 P2G3 and P5C3 maintained full neutralizing activity against the ancestral D614G and Omicron
124 BA.1.1 encoding the R346K Spike pseudovirus (**Extended data Fig. 2a and b**), a mutation
125 present in ~10% of Omicron variant sequences in the GISAID ¹¹.

126 We next profiled P2G3 using the initial D614G strain and all current VOCs in a live virus
127 cytopathic effect assay. P2G3 demonstrated broad and potent neutralizing activity with IC₈₀
128 values of 0.028, 0.010, 0.017, 0.021, 0.024 and 0.035 µg/ml against the 2019-nCoV (D614G)
129 strain, Alpha, Beta, Gamma, Delta and Omicron variants, respectively (IC₈₀ ranging from 67-
130 233 pM) (**Extended data Fig. 2c**). We went on to compare P2G3 with other mAbs alone or in
131 combinations for their ability to block the Delta and currently prevalent Omicron BA.1 and
132 BA.2 SARS-CoV-2 variants (**Fig. 2c-2f**). All tested mAbs displayed good activity against the
133 Delta variant, although Sotrovimab was ~6 times less potent than ADG-2 and >10 times less
134 potent than P2G3, P5C3 and both the AZD and REGN cocktails against this virus. However
135 and most notably, P2G3 was by far the most active mAb against Omicron BA.1 with an IC₈₀
136 value of 0.035 µg/ml, that is ~23-fold, 60-fold and 88-fold more potent than those of
137 AZD1061/AZD8895, Sotrovimab and ADG-2, respectively, the REGN combination being
138 completely ineffective against this variant (**Fig. 2d and 2f**). Of note, while P5C3 alone
139 displayed an IC₈₀ against Omicron in the range of that of the AZD cocktail, the P2G3/P5C3
140 combination showed high neutralization activity comparable to P2G3 alone with an IC₈₀ of
141 0.039 µg/ml total mAb. P2G3 was again the most potent mAb in neutralizing the Omicron BA.2
142 variant with an IC₈₀ values of 0.014 µg/ml, that is 4.9-fold, 14-fold, 907-fold and 607-fold more
143 potent than AZD1061/AZD8895, REGN10933/REGN10987, ADG-2 and Sotrovimab,

144 respectively (**Fig. 2e-2f**). Importantly, although the Spike-ACE2 surrogate neutralization assay
145 correlates well with cell-based neutralization assays¹⁶, P2G3 only blocked ~50-72% of ACE2
146 binding to Omicron Spike proteins (**Fig. 1a**) despite P2G3 reaching 100% of the maximum
147 signal in a direct binding assay (**Extended data Fig. 1e**). This suggests that at least with the
148 Omicron variant, virus inhibition by P2G3 may not be solely mediated through the Spike-ACE2
149 interaction, but rather a mechanism analogous with that of S309/Sotrovimab, reported to be
150 through induction of Spike trimer cross-linking, steric hindrance, aggregation of virions²⁰
151 and/or inhibiting viral membrane attachment through C-type lectin receptors²².

152 Given the potential importance of Fc-mediated antibody effector functions in more efficient
153 virus control and clearance²³⁻²⁵, we investigated P2G3 activities in antibody dependent cellular
154 cytotoxicity (ADCC) and antibody dependent cellular phagocytosis (ADCP) assays. ADCC
155 enables the targeted killing of cells that display SARS-CoV-2 Spike protein at the membrane
156 surface and our *in vitro* assay uses CEM-NKR cells stably expressing 2019-nCoV Spike
157 cultured with primary effector cells from healthy donors in the presence and absence of anti-
158 Spike mAbs. P2G3 mAb exhibited a robust ADCC activity that was superior in killing Spike
159 positive cells compared to all other anti-Spike mAbs tested (**Extended data Fig. 3a**). Although
160 these studies were not performed with an Omicron Spike stable cell line, it is generally accepted
161 that ADCC functional activity is maintained against the different SARS-CoV-2 VOCs for mAbs
162 that conserve Spike variant binding²⁶. We next evaluated ADCP activity using 2019-nCoV or
163 Omicron BA.1 Spike trimer coated fluorescent beads mixed with different concentrations of
164 P2G3 and/or P5C3 then incubated with U937 effector cells. This monocyte cell line expresses
165 high levels of Fc-gamma receptors capable of inducing phagocytosis of opsonized viruses or
166 beads coated with the Spike antigen as in our assay (**Extended data Fig. 3b**). Used alone, P2G3
167 and P5C3 mAbs showed ADCP IC₈₀ activities of 0.074 and 0.010 µg/ml, respectively with
168 P5C3 showing ~7-fold greater potency. Conversely, using Omicron Spike coated beads, P2G3
169 exhibits potent ADCP activity that was 3-fold improved relative to P5C3. In studies performed
170 with both ancestral and Omicron Spike, the P2G3/P5C3 mix shows enhanced ADCP activities
171 compared to mAbs used individually (**Extended data Fig. 3c-d**). Of note, P2G3 and P5C3 used
172 in these Fc-mediated functional activity assays and throughout the manuscript contain the LS
173 mutation in the Fc domain (M428L/N434S), previously demonstrated to confer an extended
174 half-life *in vivo*²⁷, a highly desirable feature for prophylactic use.

175

176 **P2G3 confers strong *in vivo* prophylactic protection from ancestral 2019-nCoV and**
177 **Omicron SARS-CoV-2 infection**

178 Having demonstrated the superior *in vitro* neutralizing activity of P2G3, we next evaluated the
179 neutralizing potency of P2G3 *in vivo* in a prophylactic hamster challenge model of SARS-CoV-
180 2 infection. Antibody dosed animals were challenged two days later with an intranasal
181 inoculation of the original 2019-nCoV SARS-CoV-2 virus (**Extended data Fig. 4 a**) and then
182 four days later, hamster lung tissue was monitored for infectious virus and viral RNA. Infectious
183 virus was undetectable in lungs from almost all P2G3 treated hamsters, with only 1 of 6
184 hamsters in the lowest dosed 0.5 mg/kg group showing reduced though detectable levels of
185 infectious virus (**Extended data Fig. 4 b**). Complete prophylactic protection was observed with
186 P2G3 mAb plasma levels >6.2 µg/ml at the time of viral inoculation and P2G3 treatment groups
187 showed a significant ~4-log reduction of genomic viral RNA levels (**Extended data Fig. 4 c**).

188 We next evaluated P2G3 mediate protection from SARS-CoV-2 Omicron BA.1 infection in a
189 cynomolgus macaques pre-exposure challenge study. Monkeys were administered 10 mg/kg of
190 P2G3 LS intravenously and challenged 72 hrs later via combined intranasal and intratracheal
191 routes with 1×10^5 TCID50 of SARS-CoV-2 B.1.1.519 Omicron BA.1 virus (**Fig. 3a**).
192 Following viral challenge, control animals showed similar genomic (g)RNA levels and kinetics
193 with median peak viral loads (VL) of 6.9- and 6.6-log10 copies/ml gRNA at 2-3 days post
194 challenge in tracheal swabs and bronchoalveolar lavage (BAL) samples, respectively (**Fig. 3b**).
195 Nasopharyngeal swabs showed a higher-level variability in VL between control animals but
196 still showed median peaks of 6.9-log10 copies/ml for gRNA. In comparison, the two P2G3 LS
197 treated monkey had a strong median peak VL reduction of 3.8-, 2.5- and 3.9-log10 copies/ml
198 gRNA for tracheal, nasopharyngeal and BAL samples, respectively.

199 Active viral replication, as assessed by subgenomic (sg)RNA levels, peaked 2-3 days post-
200 challenge with tracheal swabs and BAL showing median values of 4.8- and 4.5-log10 copies
201 per ml, respectively and nasopharyngeal samples showing variable responses from undetectable
202 (<2.9-log10) to 5.4-log10 copies/ml (**Fig. 3c**). P2G3 LS treated monkeys had sgRNA levels
203 that were at or below the limit of detection, exhibiting 1.9-, 2.2- and 1.6-log10 reduced levels
204 in tracheal, nasopharyngeal and BAL samples, respectively. Consistent with viral protection
205 resulting in reduced detection of gRNA and sgRNA, P2G3 treated monkeys exhibited stable
206 lymphocyte levels throughout the study, whereas strong lymphopenia, determined by
207 lymphocyte levels below 2.1×10^3 cells/µl, was observed in all control animals challenged with
208 the Omicron variant of SARS-CoV-2 (**Fig. 3d**).

209 **Structural analysis of P2G3 and P5C3 Fab bound to Omicron Spike trimer.**

210 To decipher the molecular features underlying P2G3 and P5C3 potent neutralization of
211 Omicron Spike, we performed single particle cryo-EM reconstruction of the Omicron Spike
212 trimeric ectodomain^{12,28,29} bound to both Fabs, at a 3.04 Å resolution (**Fig. 4a, Extended Data**
213 **Fig. 5-6 and Extended Data Table 1**). We found the Fabs to bind simultaneously at distinct
214 sites on the trimer with a majority of images revealing three P2G3 Fabs bound to either up- or
215 down-RBD conformations and one P5C3 Fab bound to an up-RBD. The region of the Omicron
216 RBD interacting with the Class 1 P5C3 mAb is identical to that previously described for the
217 D614G Spike (**Extended Data Fig. 5-7**)²¹. P2G3 binds a surface area of around 700 Å² as a
218 Class 3 neutralizing mAb⁴, recognizing an epitope on the SARS-CoV-2 RBD distinct from the
219 receptor-binding motif, with the two mAbs covering together a surface of greater than 1200
220 Å² (**Fig. 4b and Extended Data Fig. 7a, 8a**). To characterize the P2G3 paratope and epitope
221 interface in detail, we performed local refinement of the P2G3 Fab-RBD interacting region and
222 reached a resolution of 3.84 Å with well-defined density, allowing clear interpretation of
223 sidechain positions (**Extended Data Fig. 6, 8-9 and Extended Data Table 1**). The P2G3
224 paratope is composed of four complementarity-determining region (CDR) loops binding at the
225 back of the RBD. The interactions are mediated through electrostatic and hydrophobic contacts
226 (**Fig. 4c-d and Extended Data Fig. 8b-c**) and involve sixteen residues of the RBD, mainly
227 bound by the heavy chain of the P2G3 mAb. The 18-residue-long CDRH3 sits at the top of a
228 loop that comprises residues 344–347, and also contacts the amino-acids at the limits of the 5-
229 stranded β-sheet (residues 440–451), overall accounting for more than 60% of the buried
230 surface area (431 Å²) (**Extended Data Fig. 8a-c**). The interactions between P2G3 and the
231 Omicron RBD are conserved in both RBD-up and RBD-down states (**Extended Data Fig. 8c-
232 d**). CDRH2 extends the epitope by interacting with R346 that is engaged by residue W53 by a
233 potential cation-pi interaction (**Fig. 4d and Extended Data Fig. 8e**), an interaction that is likely
234 conserved with the R346K Spike substitution (**Extended data Fig. 2a-b**). The only potential
235 contact from the light chain derives from the CDRL1 Y32 forming a hydrophobic interaction
236 with V445 of the RBD (**Extended Data Fig. 8c**). Moreover, P2G3 is only observed to contact
237 RBD amino acid residues and the distance to the nearest atom of the glycan branch is ~10 Å
238 from P2G3. Importantly, the epitope defined by our structural studies rationalizes the potent
239 neutralizing activity of P2G3 against the Omicron variant relative to other Class 3 mAbs.
240 Omicron mutations S371L, N440K, G446S and the minor R346K sub-variant are all situated
241 outside of, adjacent to or have little effect on recognition of the P2G3-binding epitope, whereas

242 two or more of these mutations directly impinge on epitopes recognized by REGN10987,
243 AZD1061 and S309/Sotrovimab (**Fig. 4e**). Furthermore, P2G3 displays a unique binding
244 orientation on the RBD with its Fab angling away from most of these Omicron mutations (**Fig.**
245 **4f**). In modelling the observed angles of attack of various Class 3 mAbs, it is likely that
246 REGN10987 only binds to the up-RBD form while AZD1061 binds one up- and one down-
247 RBD form, with steric hindrance blocking the third RBD site on the Omicron Spike trimer
248 (**Extended data Fig. 10**). In contrast, P2G3 and S309/Sotrovimab likely binds both the up and
249 down forms of Omicron RBD without clashes (**Fig. 4g, Extended data Fig. 10c**), a
250 characteristic that may contribute to the largely conserved and high potency of P2G3 across
251 VOCs.

252 **Cross-neutralization of P2G3 and P5C3 escape mutants.**

253 Monoclonal antibodies, as other classes of antivirals, are typically used in combination to
254 prevent the emergence of resistant viruses. To gain insight into the predicted clinical value of
255 our mAbs, we characterized the emergence of mutants escaping their blockade in tissue culture.
256 For this, we grew SARS-CoV-2 Delta and Omicron BA.1 variants in the presence of sub-
257 optimal neutralizing doses of either P2G3 or P5C3 for three passages to generate a
258 heterogeneous viral population, before switching to stringent mAb concentrations in order to
259 select *bona fide* escapees (**Fig. 5a**). Viral genome sequencing of these mAb-resistant mutants
260 pointed to the importance of Spike substitutions G476D, F486S and N487K/D/S for escaping
261 P5C3, and K444T for avoiding P2G3 neutralization. We thus tested the impact of these
262 mutations on viral infectivity using lentivector pseudotypes. P5C3-escaping Spike proteins
263 were significantly less infectious than the wild-type control in both the ancestral D614G and
264 Delta backgrounds, correlating with a drop in affinity for the viral ACE2 receptor in an *in vitro*
265 binding assay, whereas the P2G3-escaping K444T substitution had a milder effect in both
266 assays (**Fig. 4b-c**). Yet, an examination of the GISAID EpiCoV database revealed that
267 mutations G476D, F486S or N487K/D/S found in P5C3 escapees are only exceptionally
268 encountered in SARS-CoV2 isolates, representing together only 0.0087% of the 8'568'006
269 available sequences as of March 2022, and that the K444T mutation is equally rare (0.0024%
270 of compiled sequences), strongly suggesting that the corresponding viruses have a markedly
271 reduced fitness in the wild. Moreover, cross-neutralization studies demonstrated that P2G3
272 completely blocked the infectivity of P5C3-escaping Delta derivatives (**Fig. 4d**), and P5C3 and
273 P2G3 efficiently cross-neutralized each other's escape mutants in both the Delta and Omicron
274 backgrounds (**Fig. 4e and Extended data Fig. 11**).

275 **Discussion**

276 In sum, we report the discovery of P2G3, an anti-SARS-CoV-2 mAb with superior breadth and
277 potency for neutralization of all VOCs, including the recently identified Omicron BA.1 and
278 BA.2 variants. Structural and competitive binding studies demonstrate that P2G3 is a Class 3
279 mAb recognizing an epitope on the RBD different from those bound by all other therapeutic
280 mAbs authorized or at an advanced stage of development^{8,10,11}. Sequence analyses also reveal
281 that the P2G3 HCDR3 presents only 55% identity with any of the 4897 anti-Spike HCDR3
282 described thus far. Cryo-EM studies further demonstrate that P2G3 can bind both the up- and
283 down-RBD conformations of the Spike trimer, burying a large surface area of around 700 Å²
284 in a highly conserved region of RBD. Importantly, the binding epitope is largely non-
285 overlapping with residues mutated in Omicron, a feature unique among almost all potent anti-
286 SARS-CoV-2 mAbs reported so far¹¹. The S371L Omicron mutation alone remarkably reduces
287 neutralization activity of multiple potent mAbs of different binding classes despite not being
288 included in their footprint¹¹, perhaps because local conformational changes in the 370-375 loop
289 impact the up- and down-RBD states and/or interfere with the critical gate opener N343 glycan
290 positioning³⁰, yet this mutation is without effect on P2G3 neutralization. The unique angle of
291 attack of P2G3 on the RBD domain, predicted to allow binding in both up- and down-RBD
292 positions of the Spike trimer, may explain why this antibody remains potently active against
293 the Omicron variant. Interestingly, we predict that S309/Sotrovimab is also sterically free to
294 bind all RBDs within the Omicron trimer, yet we find this antibody to have a marked loss of
295 activity against this variant. Although the epitope bound by P2G3 partly overlaps with the
296 region recognized by S309-Sotrovimab, the latter mAb does not block the RBD/ACE2
297 interaction, and has been proposed to act by alternative mechanisms including the inhibition of
298 cell adhesion through C-type lectins²². Therefore, the improved binding affinity of P2G3
299 combined with the additional inhibitory effect on RBD/ACE2 interaction, explaining its 10 to
300 60-fold improved activity across all VOCs as compared to S309/Sotrovimab. Apart from the
301 *in vitro* neutralization activity, P2G3 confers an excellent *in vivo* prophylactic protection in the
302 SARS-CoV-2 Omicron NHP challenge model. Our NHPs data also confirms studies in mice
303 and hamsters indicating that the Omicron variant has reduced proliferation capacity in several
304 animal models compared to other VOCs^{31,32}.

305 Despite the exceptional neutralization profile of P2G3 against currently circulating variants,
306 development of resistance is almost inevitable when a virus is under selective pressure. We
307 reveal here that P5C3, a previously described potent and broadly active neutralizing mAb that

308 acts by blocking the Spike-ACE2 interaction, not only targets a highly conserved region of the
309 RBD but also can bind Omicron Spike concomitantly with P2G3. We further identify mutants
310 capable of escaping neutralization by either one of these mAbs, but demonstrate that i) they are
311 lowly infectious, ii) they are extremely rare in the wild, suggesting poor fitness, and iii) P5C3
312 and P2G3 efficiently neutralize each other's escapees, validating their use in combination. It is
313 additionally noteworthy that P5C3 and P2G3 both efficiently neutralize the now prevalent
314 R346K-containing BA.1.1 and BA.2 Omicron sub-variants, which partly or completely escape
315 blockade by other currently available mAbs.

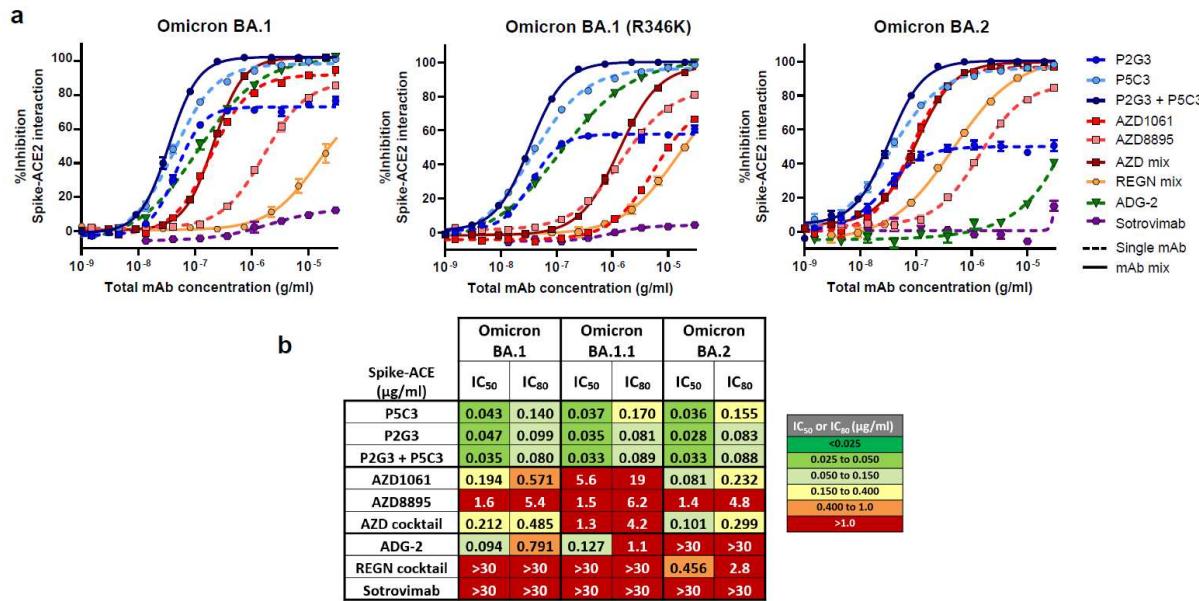
316 Many of the spectacular advances gained in the fight against the pandemics, including COVID-
317 19 vaccines and potent neutralizing mAbs, were largely erased in a matter of months following
318 the emergence of the Delta and Omicron variants. The Omicron variant exhibits markedly
319 reduced sensitivity to vaccine-induced humoral immunity in healthy donors but, more
320 importantly, immunocompromised individual are now almost completely unprotected due to
321 their inability to mount a protective humoral immune response following vaccination ³³. For
322 these vulnerable individuals, we propose that passive immunization through two-to-three
323 injections per year with the extended half-life P2G3 and P5C3 LS mAbs ²⁷, that can
324 simultaneously bind to highly conserved and distinct epitopes on the viral Spike, represents a
325 very attractive prophylaxis option³⁴. With potent neutralization, Fc-mediated functional activity
326 and demonstrated *in vivo* protection, this broadly active combination, subject to successful
327 development and authorization, has the potential to be a superior anti-SARS-CoV-2 mAb
328 cocktail for prophylactic and therapeutic interventions against all current VOCs, and its breadth
329 of activity suggests that it might be capable of neutralizing many future SARS-CoV-2 VOCs.

330

331

332

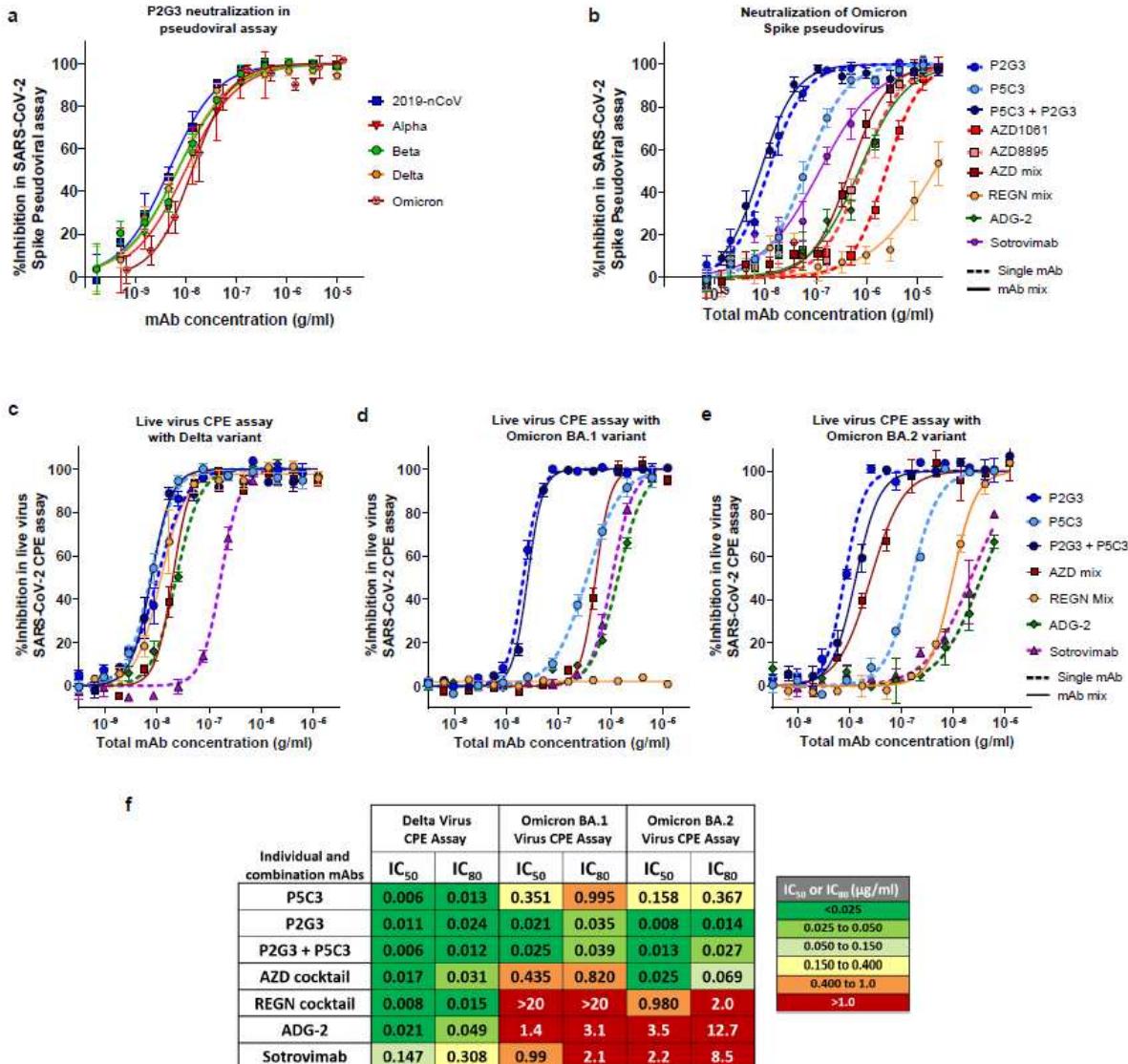
333


334

335

336

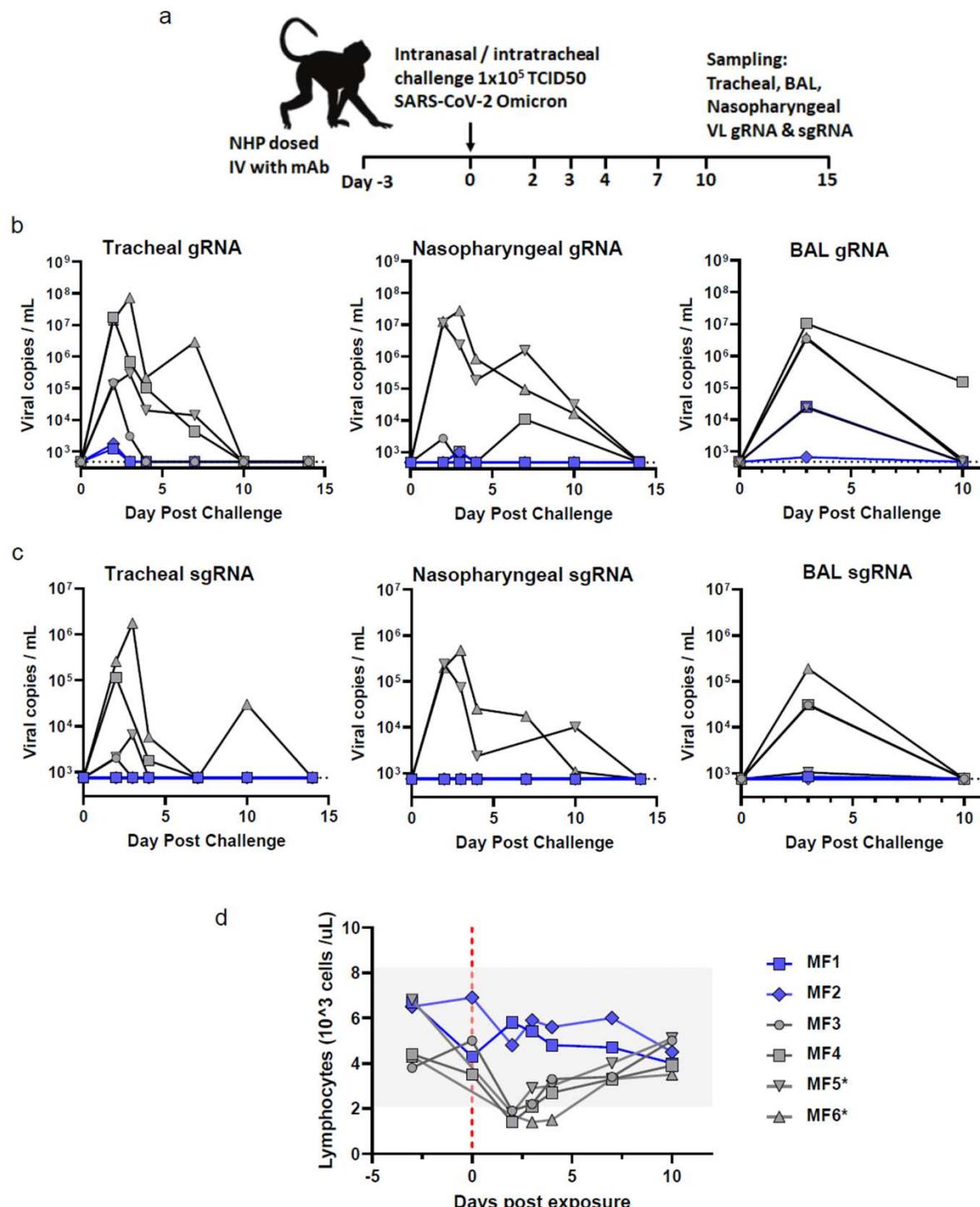
337


338 **Figures**

339

340 **Figure 1: Identification of P2G3, a human mAb with potent activity in a Spike-ACE2**
341 **surrogate neutralization assay performed with Omicron BA.1, BA.1.1 and BA.2 trimeric**
342 **Spike proteins. a)** Blocking activity of individual and combinations of anti-Spike mAbs in a
343 biochemical Spike-ACE2 surrogate neutralization assay using Omicron BA.1, BA.1.1 encoding
344 the R346K mutation and BA.2 variant Spike trimer proteins. **b)** Comparative Spike-ACE2
345 blocking activity of P2G3, P5C3 and the P2G3/P5C3 mix compared to a panel of benchmark
346 anti-SARS-CoV-2 mAbs. P2G3 and P5C3 used in these studies and throughout the manuscript
347 contain the LS mutation in the Fc domain (M428L/N434S), previously demonstrated to confer
348 an extended half-life *in vivo*. Data presented is representative of 2-4 independent experiments
349 with each concentration response tested in duplicate. Mean values \pm SEM are shown in a).

350



351

352 **Figure 2: P2G3 demonstrates potent and broad neutralization of Spike-coated**
 353 **pseudoviruses and live virus SARS-CoV-2 VOCs.** **a)** Neutralization of lentiviral particles
 354 pseudotyped with SARS-CoV-2 Spike expressing variants of concern in a 293T-ACE2
 355 infection assay. All Spike proteins contained the D614G substitution that became dominant
 356 early in the pandemic. **b)** Neutralization of lentiviral particles pseudotyped with the Omicron
 357 variant Spike. Antibody cocktails representing a 1:1 mix of each mAb to give the indicated
 358 total mAb concentration. **c-e)** Neutralization activity of P2G3 performed in a live SARS-CoV-
 359 2 infectious virus cytopathic effect assay (CPE). The indicated SARS-CoV-2 variants were used
 360 to infect Vero E6 *in vitro* in the absence and presence of concentration response of the indicated
 361 mAb. Viral inhibition curves are shown for the **c)** Delta, **d)** Omicron BA.1 and **e)** BA.2 variants
 362 for individual and mAb combinations. **f)** Heatmap showing IC₅₀ and IC₈₀ neutralization
 363 potencies for the indicated mAbs in the live virus CPE assays. Results shown in a-d are the
 364 average of two to three independent experiments with each concentration response tested in

365 duplicate or triplicate. Results in f) are from an individual experiment with each concentration
366 tested in duplicate. Mean values \pm SEM are shown.

367

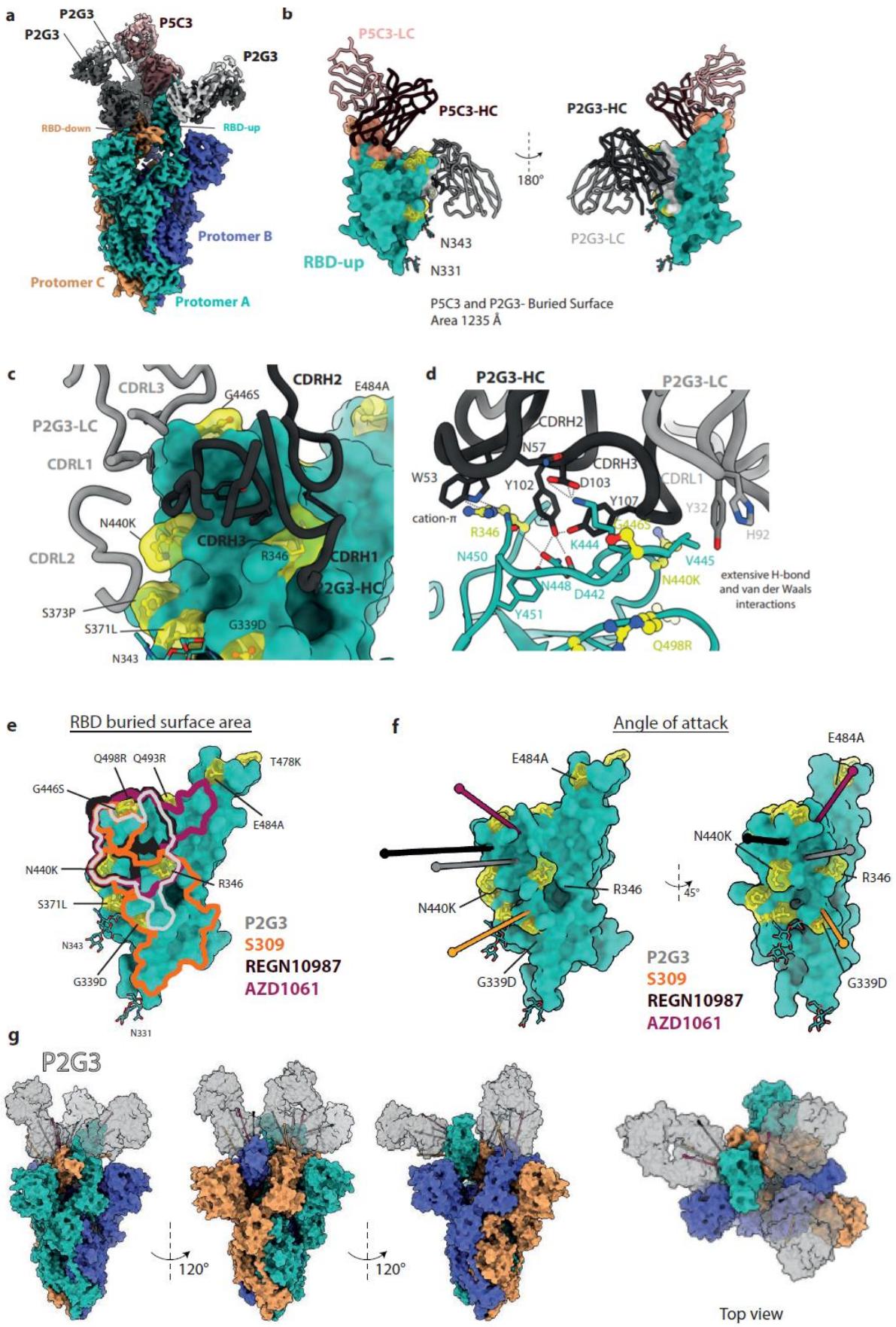
368

369 **Figure 3. P2G3 LS confers potent *in vivo* efficacy in the non-human primate (NHP)**
370 **challenge model for Omicron BA.1 SARS-CoV-2 infection. a)** Overview of study design for
371 the SARS-CoV-2 NHP challenge model. Animals MF1 and MF2 were administered

372 intravenous 10 mg/kg of P2G3 and challenged three days later (Day 0) along with control
373 animals MF3 and MF4 via intranasal and intratracheal inoculation of the Omicron BA.1 SARS-
374 CoV-2 virus (1×10^5 TCID₅₀). Tracheal swabs, nasopharyngeal swabs and bronchoalveolar
375 lavages (BAL) performed during the course of the study were evaluated for viral copies per ml
376 of genomic (g)RNA **b**) and subgenomic RNA **c**) with data plotted to include two historical
377 control animals (MF5* and MF6*) infected with the same inoculum of Omicron virus. **d**) Flow
378 cytometry analysis of blood samples from NHPs collected throughout the study shows strong
379 lymphopenia in control animals following challenge with Omicron SARS-CoV-2 while P2G3
380 LS treated monkeys shows stable levels of lymphocytes. Dotted line indicates lower limit of
381 detection at 2.68- and 2.87-log copies per ml for viral gRNA and sgRNA, respectively.

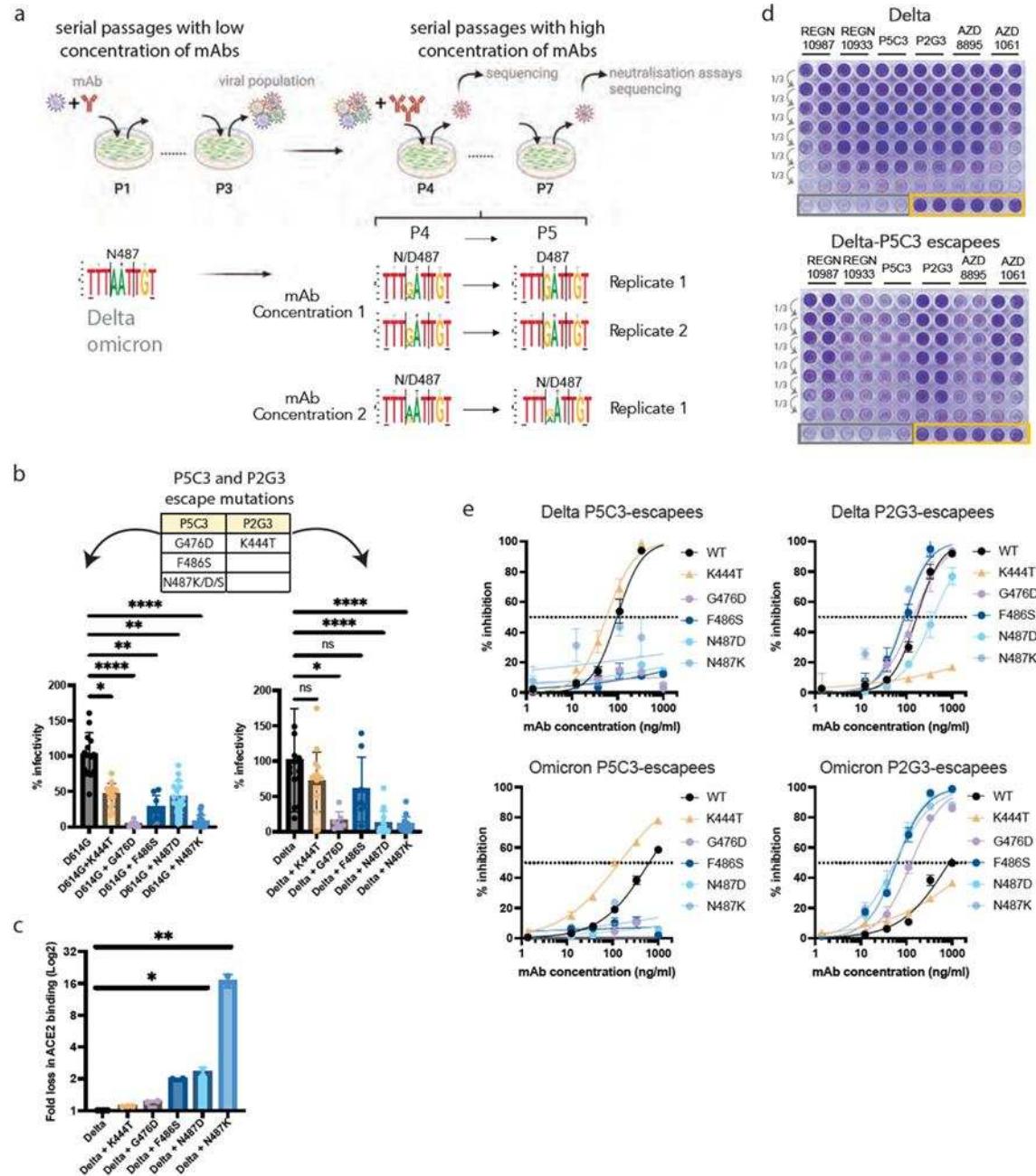
382

383


384

385

386


387

388

391 **Figure 4. Two potent neutralizing antibodies P2G3 and P5C3 bind the full-length**
392 **Omicron Spike.**

393 **a)** Cryo-EM composite density map of the full-length Omicron Spike bound to one P5C3 and
394 three P2G3 Fab fragments. Spike protomers are colored in green, orange and blue, P5C3 Fabs
395 in dark and light pink, P2G3 in black and grey. **b)** Surface representation of the RBD in the up
396 configuration (green) bound to both P5C3 and P2G3 with heavy and light chains depicted as
397 liquorice ribbons. The buried surface area formed by the Fabs are depicted on the RBD surface
398 and coloured in grey for P2G3 and pink P5C3. The Omicron mutations are shown in yellow as
399 balls-and-sticks and transparent surfaces. The N-linked glycans at asparagine 331 and 343 are
400 shown as sticks. **c)** Zoomed-in view of the interacting region of P2G3 with CDR loops of the
401 heavy and light chains specified. Omicron mutations are highlighted in yellow. **d)** Detailed
402 analysis of the interactions between the Omicron RBD shown as ribbons (green) and the P2G3
403 Fab heavy and light chains shown as liquorice (black and grey). Residues at the interface are
404 shown as sticks with potential interactions of interest as dashed lines. Omicron mutations are
405 shown as balls-and-sticks in yellow. **e)** Structures of the several class 3 antibodies (Fabs) bound
406 to RBDs were superimposed on the Omicron RBD. The buried surface area formed by the
407 indicated Fabs are outlined on the RBD surface and coloured correspondingly (Fab-RBD
408 structures AZD1061, PDB-7L7E; REGN10987, PDB-6XDG; S309, PDB-7BEP). The Omicron
409 mutations are shown in yellow as balls-and-sticks and transparent surfaces. **f)** Fab binding angle
410 of attack to the RBD is defined as the line connecting the centroid of the Fab to the centroid of
411 the surface area of the RBD that the Fabs bury. Angle of attack of P2G3 compared to other
412 class 3 antibodies viewed from multiple angles. RBD is in green, Omicron mutations in yellow.
413 **g)** P2G3 binding to the full Omicron trimer was modelled by superimposing the Fabs on to the
414 RBD of each protomer. The complex is shown from different sides and top view. P2G3 Fabs
415 are able to bind all RBD-up and RBD-down conformations simultaneously.

416

417 **Figure 5: Identification and characterization of escape mutations to P2G3 and P5C3**

418 **a)** Schematic representation of escapees selection. Delta and Omicron replicative isolates were
419 used to infect VeroE6 cells (MOI of 0.2) each in duplicates in presence of suboptimal
420 concentrations of antibodies. Supernatants were collected, diluted 40-fold and used to infect
421 cells for two more passages in the same conditions (P1 to P3). Putative viral escapees were
422 further selected by serial passages of 2-fold diluted supernatants pre-incubated with high
423 concentrations of antibodies (three concentrations, each tested in duplicates). Viral RNA
424 extracted from supernatants collected at each passage was deep-sequenced and P5 viral
425 supernatant used for CPE-based neutralization assays. **b)** Mutations identified across escape

426 selection experiments are indicated in the table. Lentivectors pseudotyped with Spikes mutated
427 on the identified residues were produced in parallel (n=1 to 4 productions replicates). Lentiviral
428 stocks were adjusted for p24 content and the same amount of each lentivector used to transduce
429 293T ACE2 cells (n=8 technical replicates for each transduction). Transduction efficiency was
430 monitored by Luciferase activity in the transduced cells. **c)** The direct binding of ACE2 to
431 mutated trimeric Spikes was monitored by Luminex-based binding assays. **d)** VeroE6 cells
432 were infected in duplicates with normalized amounts of Delta- or Delta P5C3-escapees
433 collected from escapees selection experiments and pre-incubated or not with 3-fold serial
434 dilutions of mAbs as indicated. Cytopathic effect was monitored 2 days later with crystal violet
435 staining of the live cells. Grey and yellow squares: respectively cells infected with viruses in
436 absence of mAbs and non-infected cells. **e)** Luminex-based cross-neutralization assays were
437 performed with either P5C3 or P2G3 antibodies on delta- or omicron- Spike derivatives.
438 Kruskal-Wallis tests with Dunn's multiple-comparison correction was performed to compare
439 wild type and mutants in panels b and c; *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.

440

441

442

443

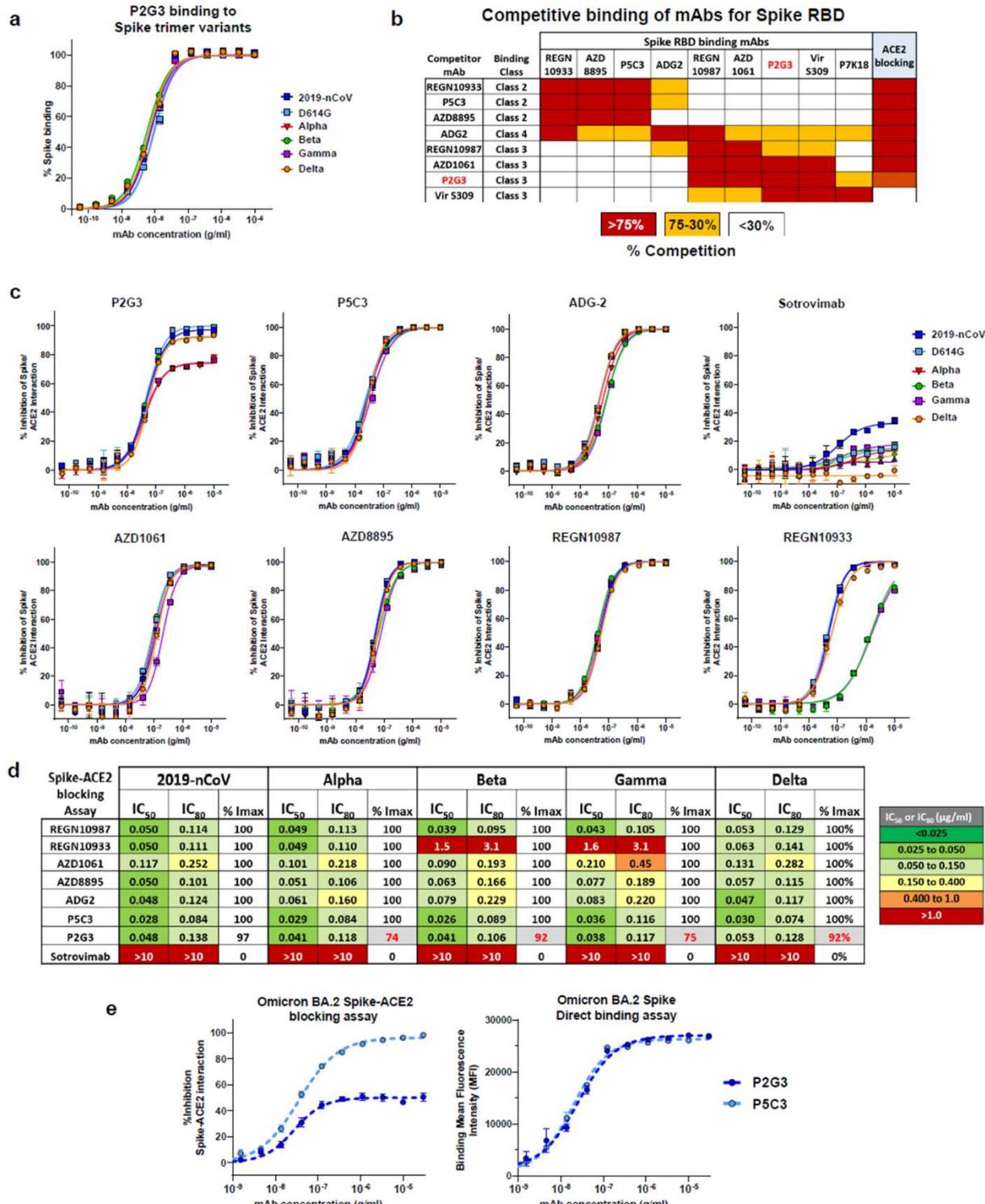
444

445

446

447

448

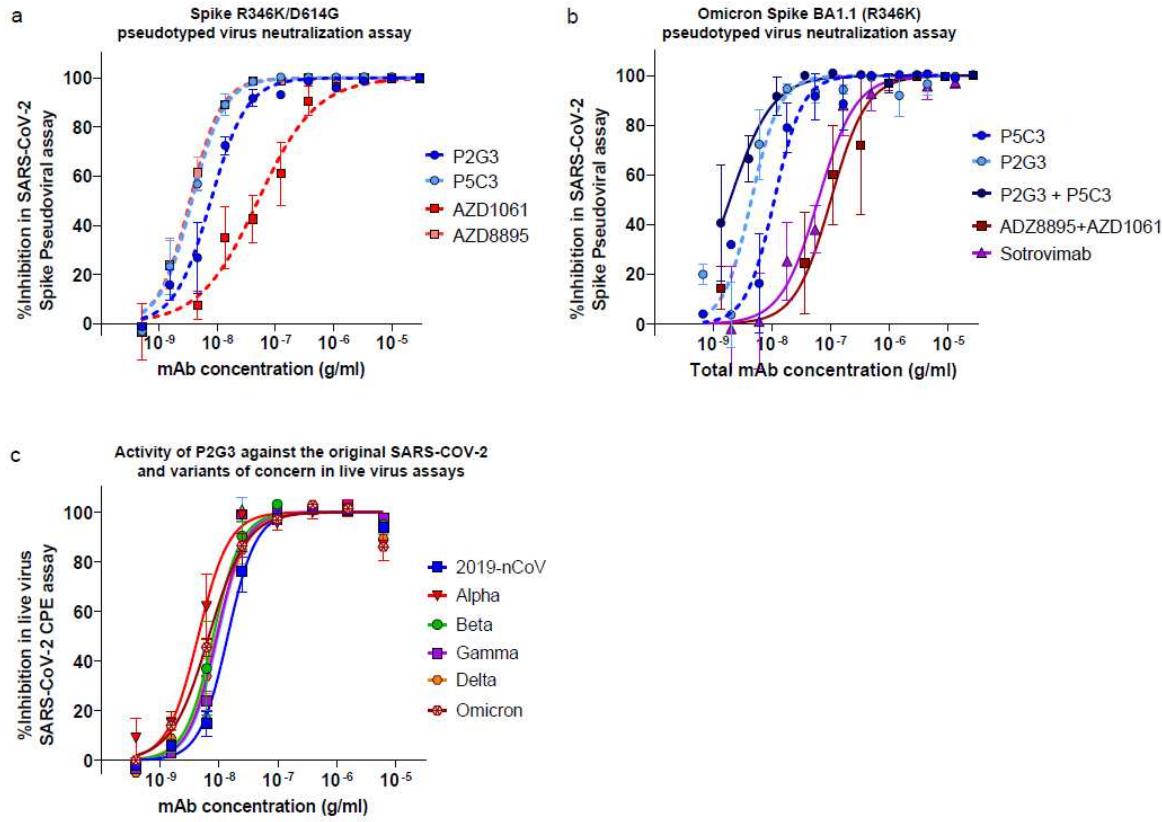

449

450

451

452

453 **Extended data**

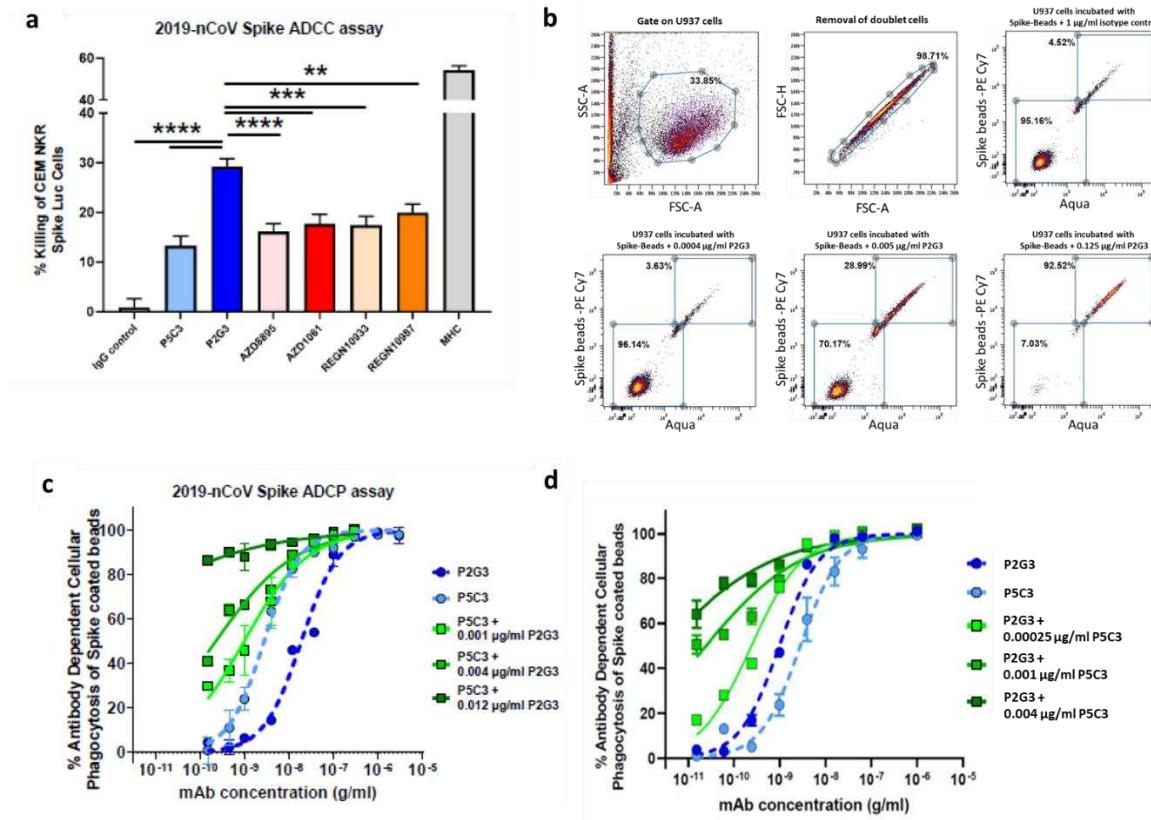


454

455 **Extended data Fig 1. Binding properties of P2G3 and other anti-SARS-CoV-2 antibodies for recombinant Spike trimer proteins from 2019-nCoV and variants of concern in direct binding and Spike-ACE2 interaction assays.**

458 **a)** Spike binding curves and **b)** Competitive binding studies between antibodies binding to the
459 2019-nCoV Spike RBD protein. RBD coupled beads pre-incubated with saturating
460 concentrations of competitor antibody were used for binding studies with mAbs or ACE2.
461 Competitors induced either strong blocking (Red boxes), partial competition (orange boxes) or
462 non-competitive (white boxes) binding with the corresponding mAb to RBD. Red and yellow-
463 hashed lines indicate incomplete blocking of the Spike-ACE2 interaction with Alpha, Gamma
464 and Omicron Spike variant proteins. **c)** Spike-ACE2 blocking activity of a panel of in-house,
465 authorized and clinically advanced anti-Spike mAbs and **d)** heatmap showing IC₅₀, IC₈₀ and
466 Imax values for our panel of mAbs in the Spike-ACE2 assay. These Luminex based assays were
467 performed with beads coupled with Spike trimer proteins from the original 2019-nCoV, D614G
468 mutant, Alpha, Beta, Gamma, and Omicron SARS-CoV-2 variants of concern. Sotrovimab was
469 included as a control mAb that binds the RBD without blocking the Spike-ACE2 interaction.
470 **e)** Representative data for Spike-ACE2 blocking activity and Spike binding for P2G3 and P5C3
471 mAbs using the same Omicron BA.2 Spike trimer coated Luminex beads. Data presented is
472 representative of 2-4 independent experiments with each concentration response tested in
473 duplicate. Mean values ± SEM are shown.

474



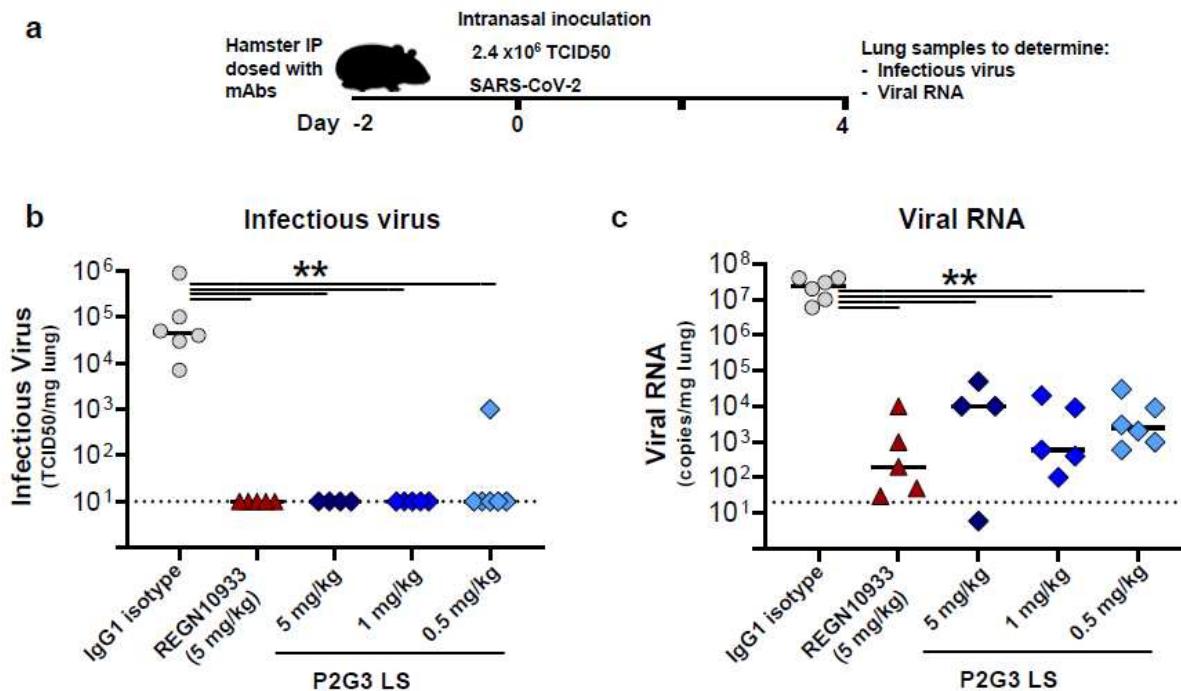
475

476 **Extended data Fig 2: P2G3 retains neutralizing activity against R346K Spike-coated**
477 **pseudoviruses and all SARS-CoV-2 variants in a live virus cytopathic effect assay**

478 Neutralization of lentiviral particles pseudotyped with: **a)** SARS-CoV-2 Spike encoding
479 R346K mutation and the D614G substitution that became dominant early in the pandemic and
480 **b)** Omicron BA1.1 with the R346K substitution in a 293T-ACE2 infection assay. **c)** P2G3
481 evaluated in live virus cytopathic effect neutralization assays with the original 2019-nCoV
482 and Alpha, Beta, Gamma, Delta and Omicron BA.1 variants of concern. Results shown are
483 representative of two independent experiments in pseudovirus assays with each concentration
484 response tested in triplicate. Live virus results are representative of 2-4 experiments with
485 each concentration tested in duplicate. Mean values \pm SEM are shown.

486

487

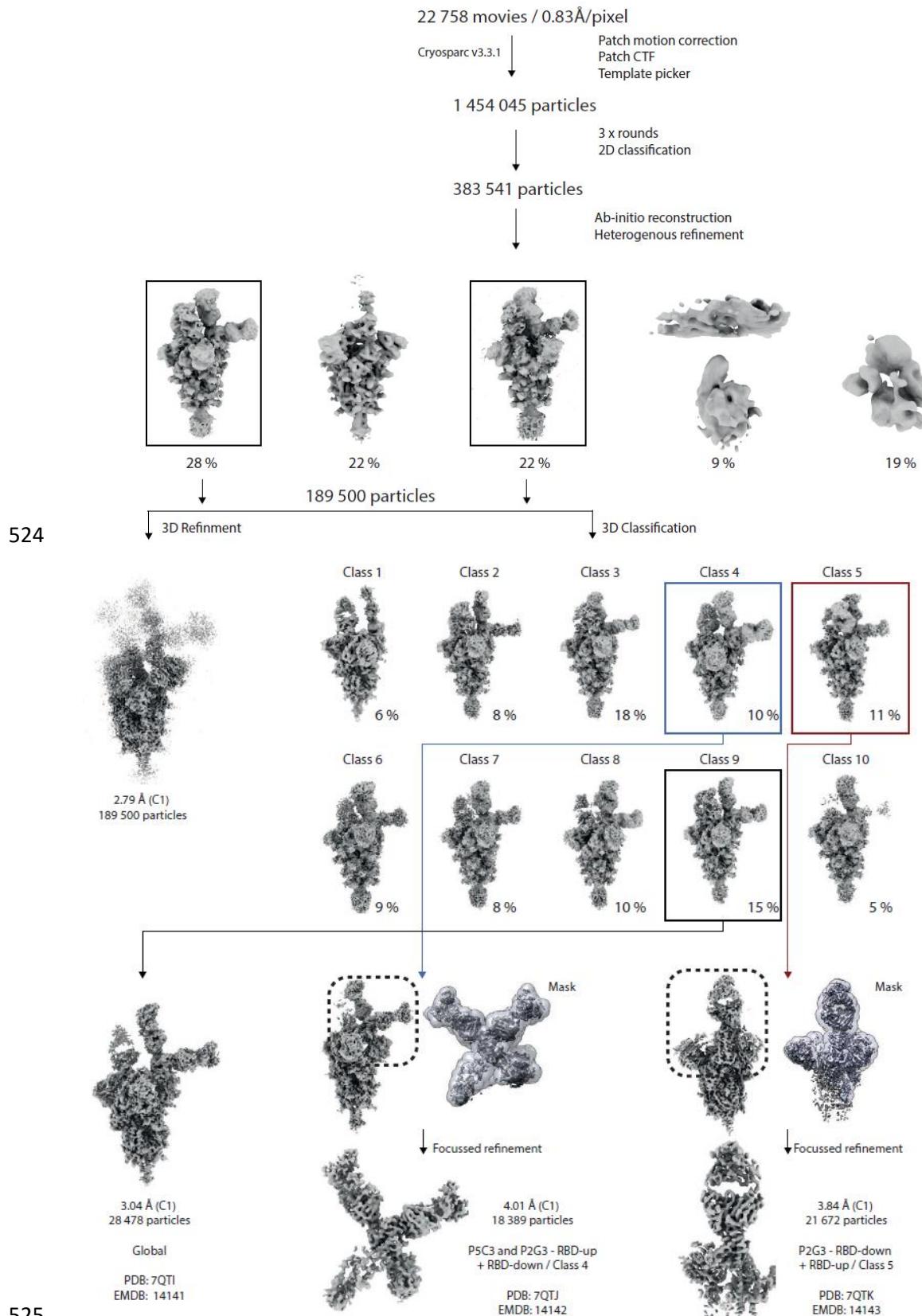

488 **Extended Data Figure 3- P2G3 LS shows strong Fc-mediated functional activity in ADCC**
489 **cell killing and ADCP assays**

490 **a)** Antibody dependent cellular cytotoxicity assay (ADCC) performed with CEM NKR
491 Luciferase cells stably expressing cell surface 2019-nCoV Spike. P2G3 exhibits potent ADCC
492 activity in killing Spike positive cells. ADCC experiments performed with five replicates per
493 condition using effector cells from five different healthy donors. CEM NKR Spike cells were
494 incubated with 0.30 µg/ml of the indicated human IgG mAbs. Statistical difference evaluated
495 by Two-way ANOVA with p-values presented as *p<0.05, **p<0.01, ***p<0.001,
496 ****p<0.0001. **b)** Flow cytometry gating strategy for the selection of U937 cells, the removal
497 of cell doublets and the evaluation of cells for which Spike-coated fluorescent beads have
498 undergone phagocytosis. The threshold gate for Spike-specific phagocytosis of beads was set
499 using and isotope control antibody and representative dot plots for P2G3 mediated ADCP of
500 2019-nCoV Spike-coated beads by U937 are shown with >4000 cells analysed per condition.
c-d) Antibody dependent cellular cytotoxicity assay performed ancestral 2019-nCoV and with
502 Omicron BA.1 variant Spike protein biotinylated and bound to streptavidin coated fluorescent
503 beads. Beads mixed with the indicated antibody concentrations were incubated with the U937
504 monocyte effector cell line and antibody dependent cellular phagocytosis of the Spike coated

505 beads was evaluated by flow cytometry. Dashed lines correspond to individual antibodies and
506 solid lines indicate combinations of P2G3 and P5C3. Results shown are representative data for
507 three separate experiments with each concentration response tested in duplicates or triplicates.
508 Mean values \pm SEM are shown.

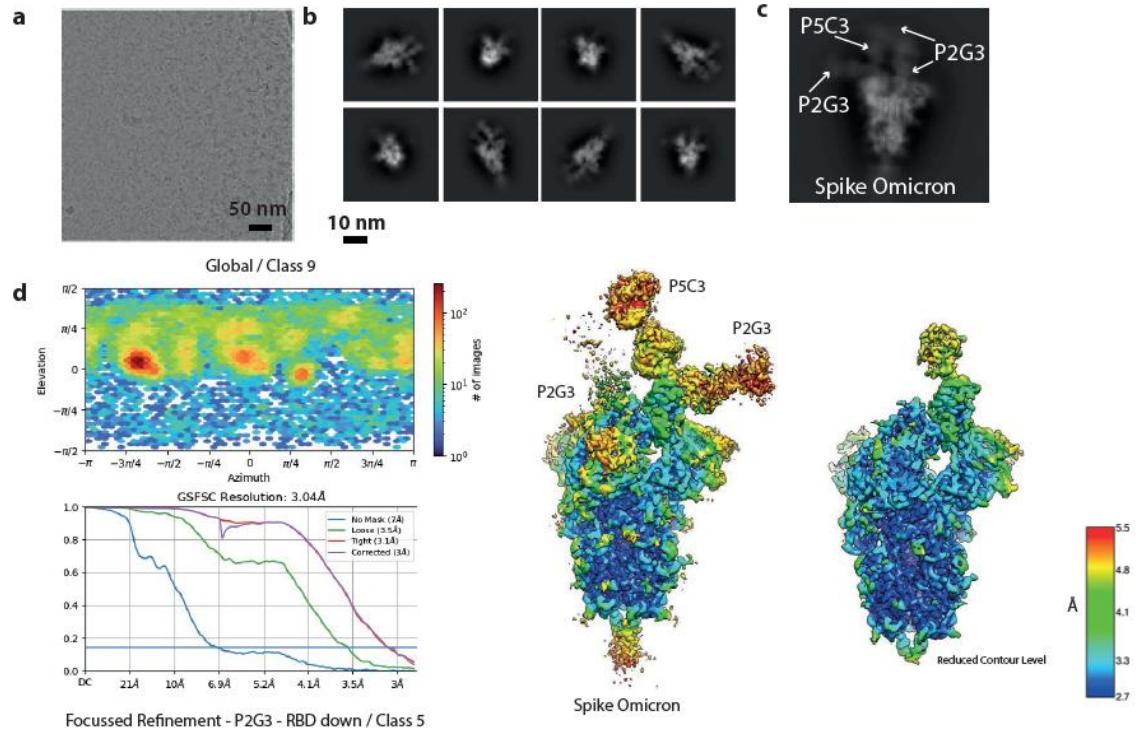
509

510

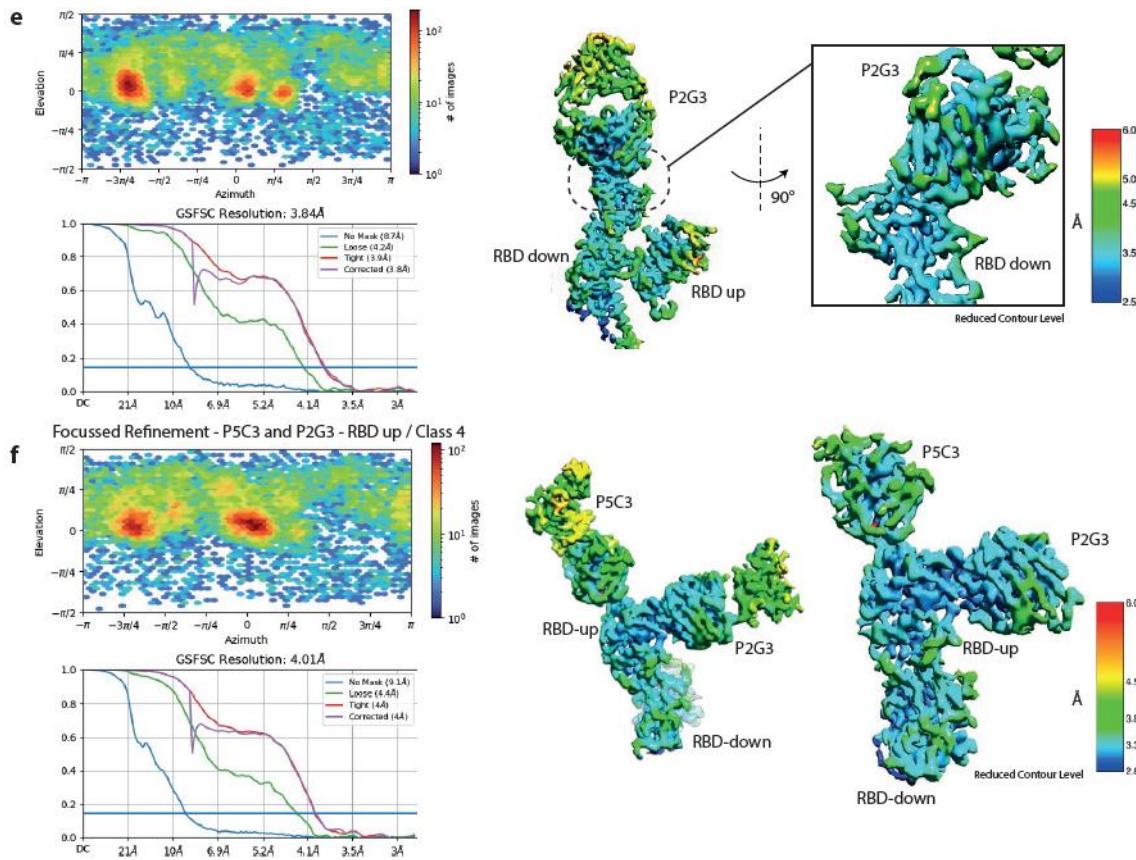


511

512


513 **Extended Data Figure 4. P2G3 LS confers potent *in vivo* efficacy in the hamster challenge**
514 **model for SARS-CoV-2 infection. a)** Overview of study design for the SARS-CoV-2 hamster
515 challenge model. Animals were administered intraperitoneally 5.0, 1.0 or 0.5 mg/kg of P2G3,
516 5 mg/kg of REGN10933 positive control or 5 mg/kg of an IgG1 isotype control and challenged
517 two days later (Day 0) with an intranasal inoculation of the original 2019-nCoV SARS-CoV-2
518 virus (2.4 x 10⁶ TCID₅₀). **b)** Median levels of infectious virus and **c)** viral RNA copies/mg lung
519 tissue in each of the study arms are shown on day 4 post-inoculation with SARS-CoV-2 virus.
520 A total of 4-6 hamsters were used per P2G3 treatment arm. Non-parametric Mann-Whitney U-
521 tests were used to evaluate the statistical difference between the treatment conditions with
522 p<0.009 (**).

523


526 **Extended data Fig 5. - Cryo-EM processing of the Omicron Spike**

527 Cryo-EM processing workflow performed in CryoSPARC v.3.3.1.

528

Focussed Refinement - P2G3 - RBD down / Class 5

529

530 **Extended data Fig 6. -Details of Cryo-EM processing and Resolution of Cryo-EM maps**

531 **a)** Raw representative micrograph. **b)** Representative 2D class averages. **c)** Enlarged 2D class
532 showing the Omicron Spike with bound Fabs. **d)** Direction distribution plot and FSC curves

533 indicating a resolution of 3.04 Å (FSC 0.143) of the Global (Class 9) map off the full-length
534 Omicron Spike bound to Fabs. **e)** Direction distribution plot and FSC curves indicating a
535 resolution of 3.84 Å (FSC 0.143) of the P2G3-bound-RBD-down (Class 5) locally refined map
536 **f)** Direction distribution plot and FSC curves indicating a resolution of 4.01 Å (FSC 0.143) of
537 the P5C3-P2G3-bound-RBD-up (Class 4) locally refined map. Global and focused refined maps
538 coloured by local resolution.

539

540

541

542

543

544

545

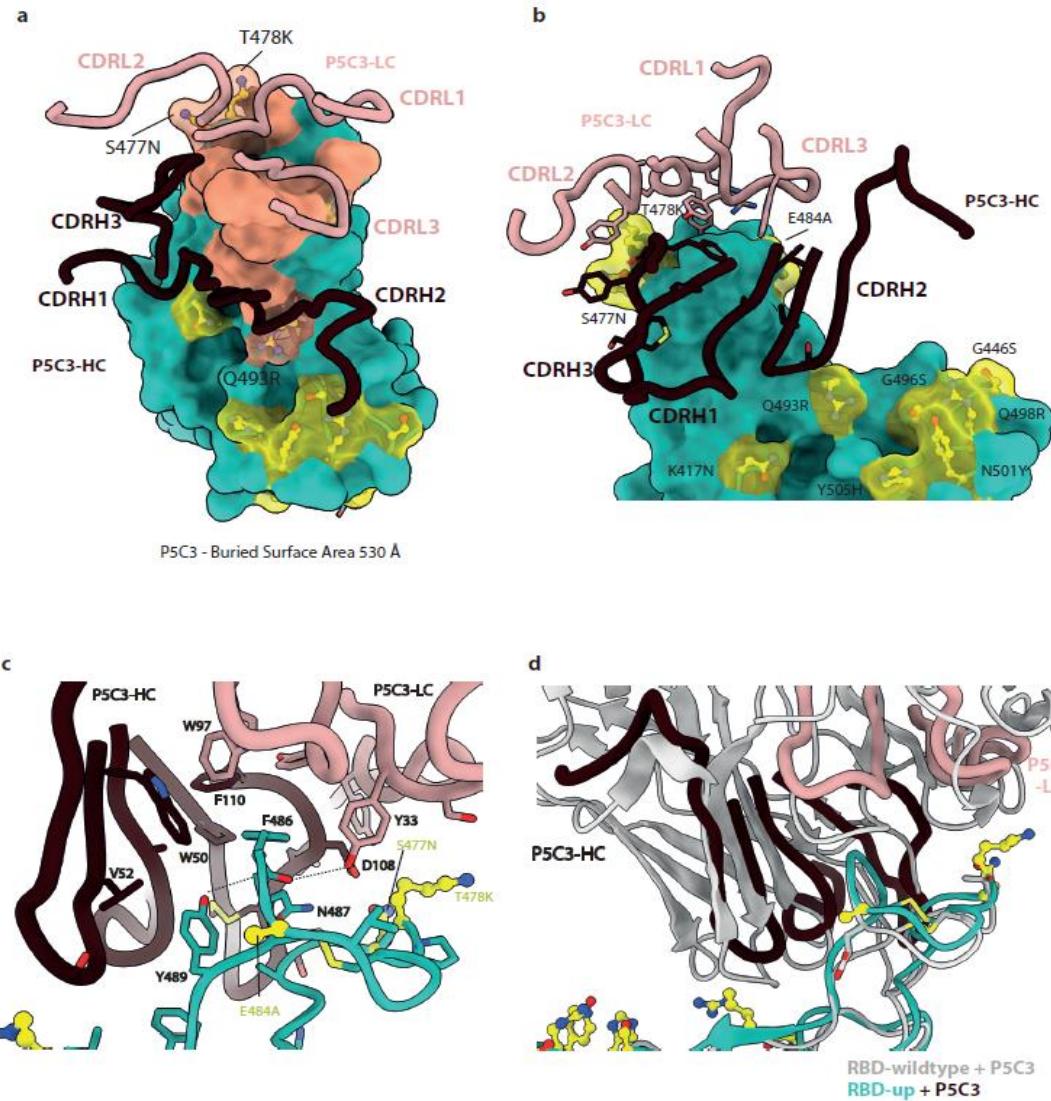
546

547

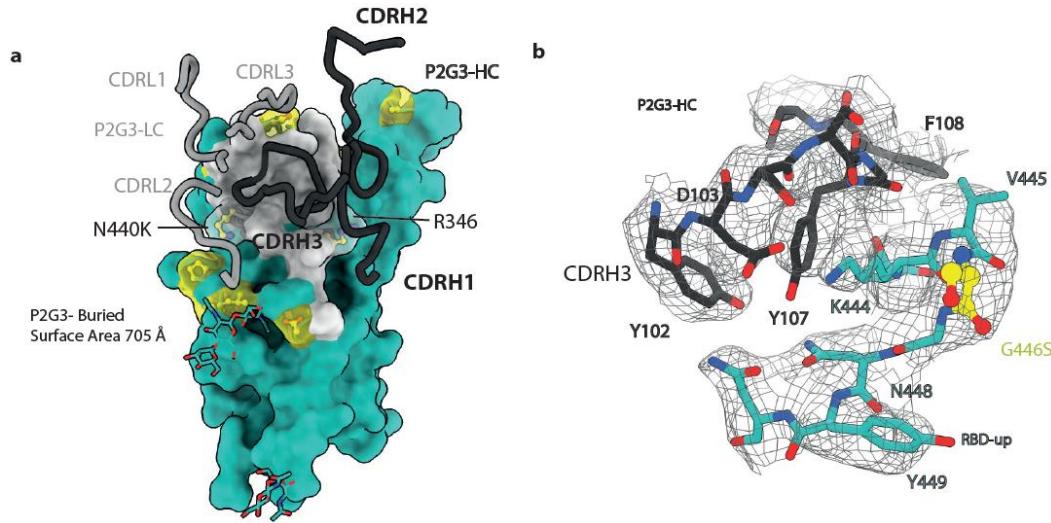
548

549

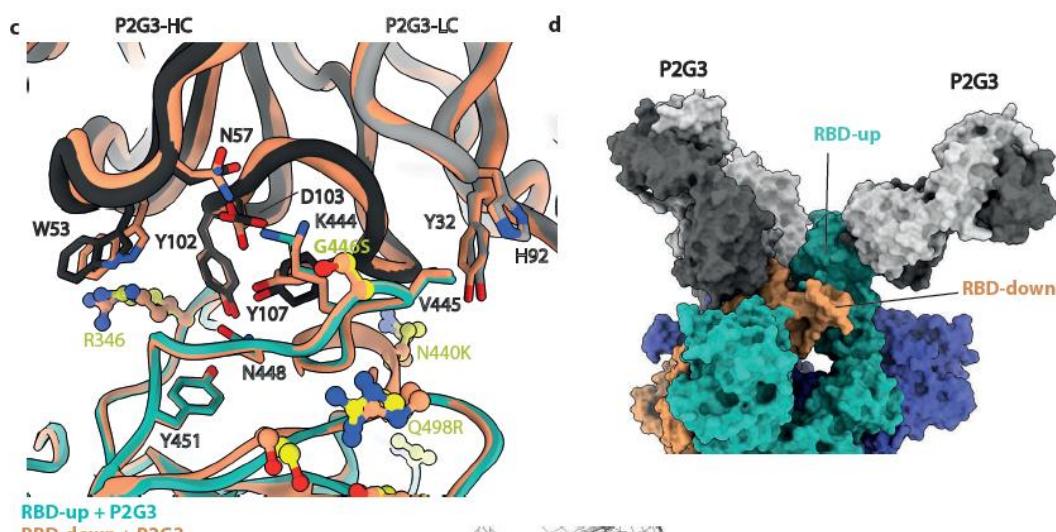
550


551

552

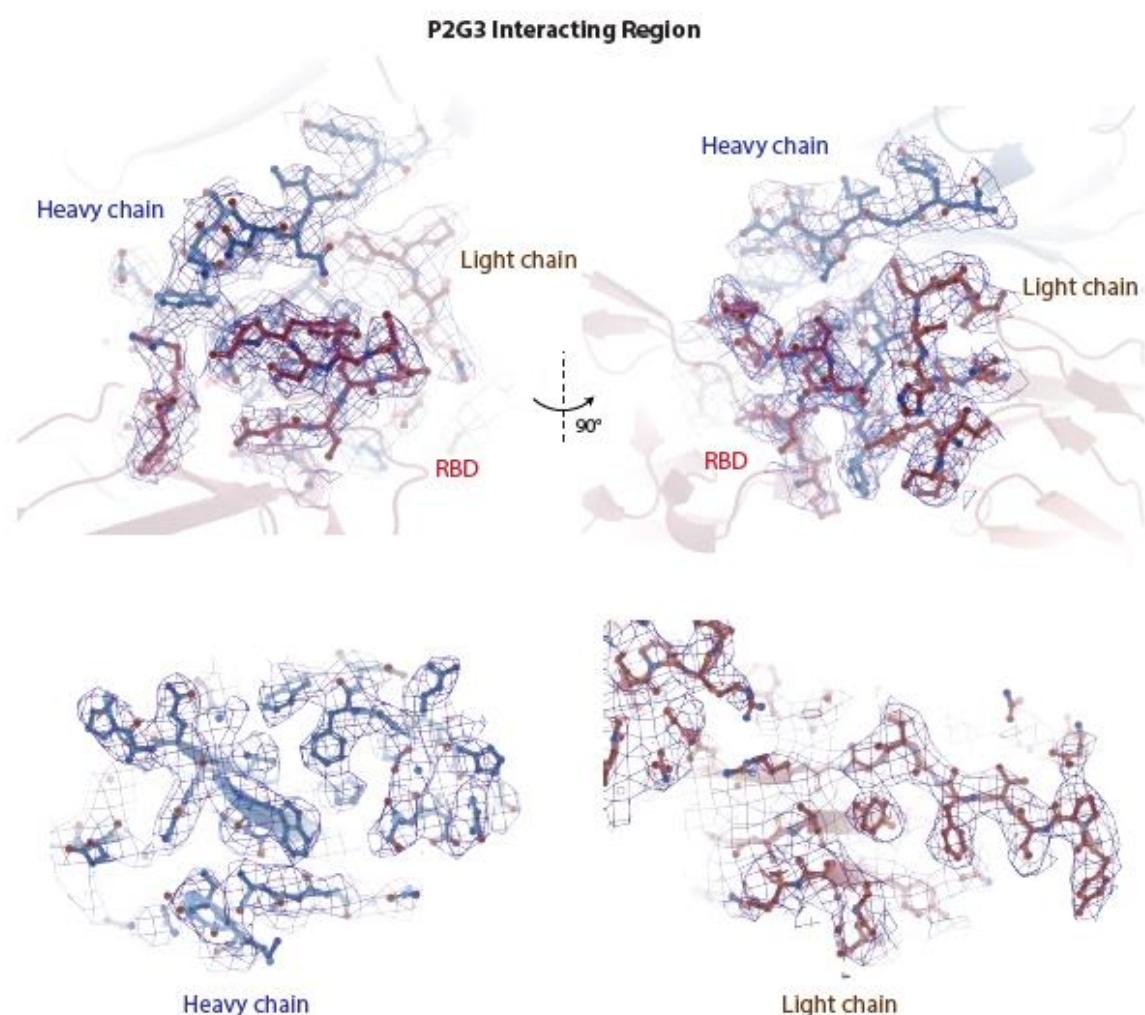
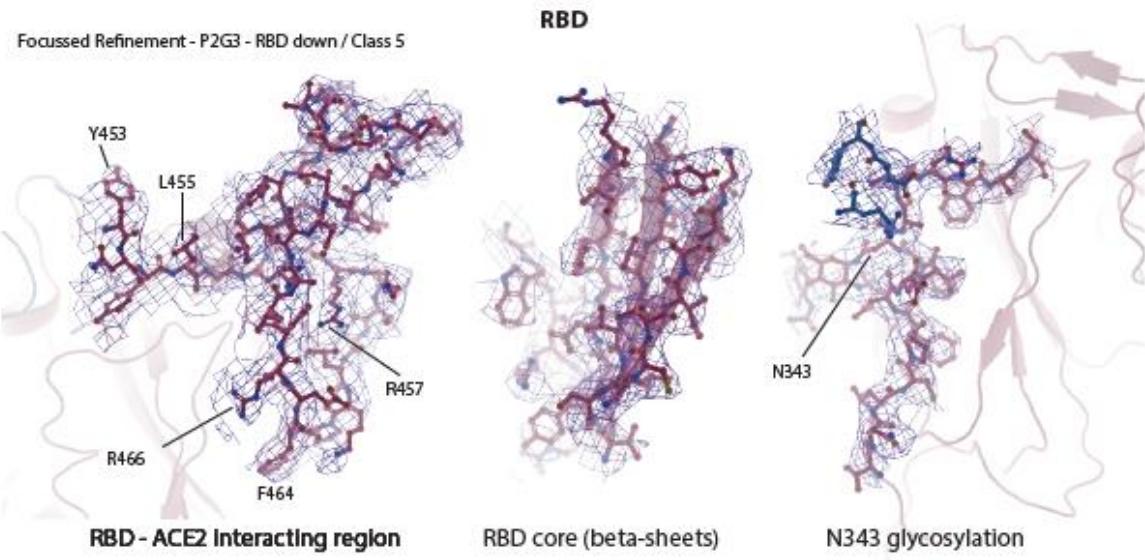

553

554


555

558 **a)** The buried surface area of P5C3 (pink) overlaid on the RBD surface (green). P5C3 buries
559 around 500 Å of the surface of the Omicron RBD. Specific CDR loops of the heavy and light
560 chains are indicated. Omicron mutations are shown as balls-and-sticks and transparent
561 surfaces in yellow. **b)** Zoomed-in view of the interacting region of P2G3. Specific CDR loops
562 of the heavy and light chains are indicated. Omicron mutations in the region of the Fab are
563 highlighted in yellow. Interacting residues of the Fab are shown as sticks. **c)** Detailed atom
564 level analysis of the interactions between the Omicron RBD shown as ribbons (green) and the
565 P5C3 Fab heavy and light chains shown as liquorice (dark red and pink). Residues at the
566 interface are shown as sticks with potential interactions of interest as dashed lines. Omicron
567 mutations are shown in yellow. **d)** Superposition of the P5C3-Omicron-RBD interface with
568 the P5C3-wild-type-RBD interface (PDB; 7PHG)

569

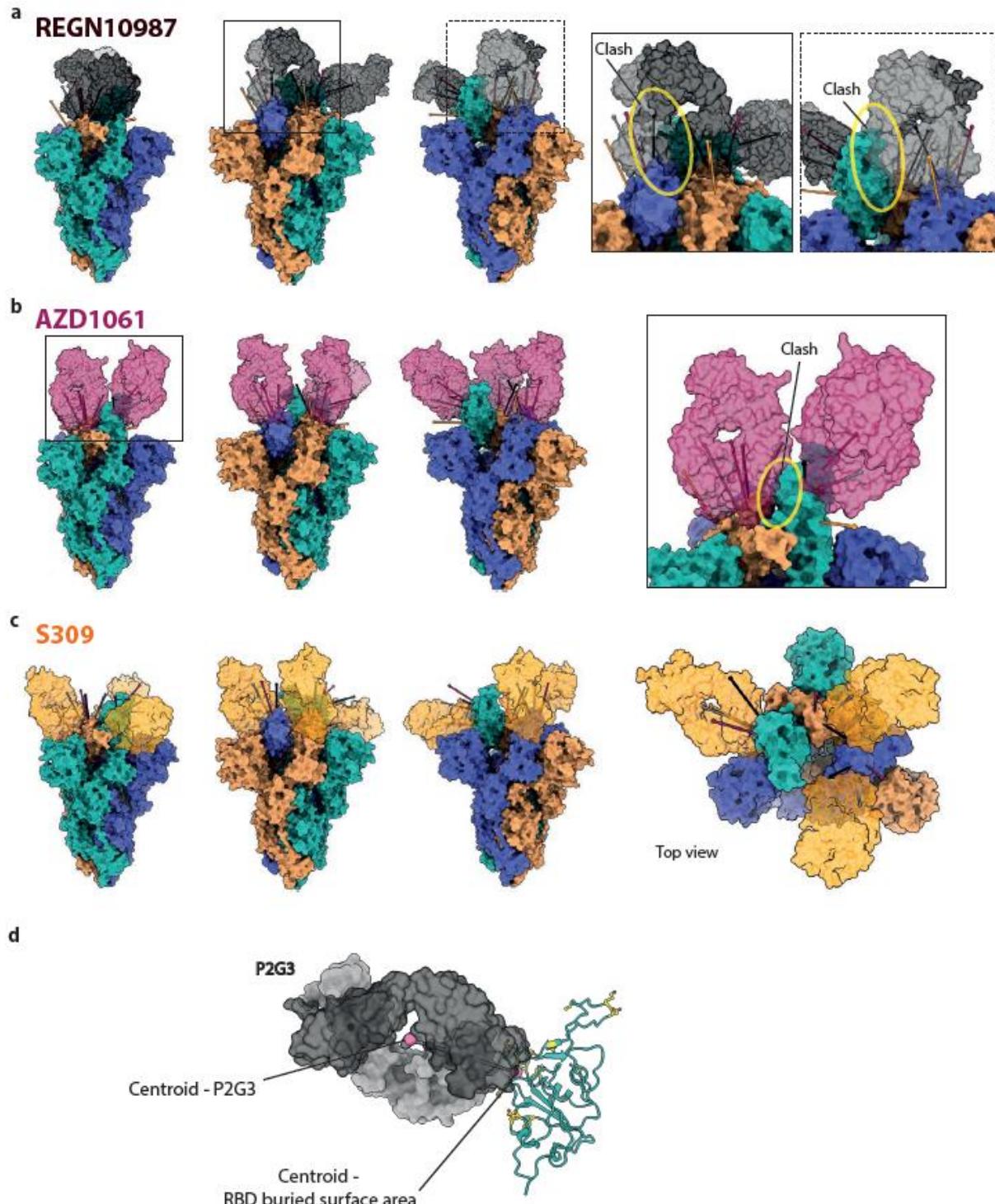


570

571 **Extended data Fig 8. Additional views of the P2G3 Fab-Omicron RBD interacting**
572 **surfaces.**

573 a) The buried surface area of P2G3 (grey) overlaid on the RBD surface (green). P2G3 buries
574 705 Å of surface of the Omicron RBD. Specific CDR loops of the heavy and light chains are

575 indicated. Omicron mutations are shown as balls-and-sticks and transparent surfaces in yellow.
576 **b)** Stick representation of the P2G3 interface of CDRH3 and the RBD region containing
577 residues 440-451. The mesh represents the Cryo-EM density. **c)** Superposition of the P2G3-
578 RBD-up interface with the P2G3-RBD-down interface shows no significant differences with
579 interactions conserved. **d)** Binding of P2G3 Fabs to the RBD-up domain in green and RBD-
580 down domain in orange within the trimeric Spike. **e)** Stick representation of the P2G3 interface
581 of CDRH2 residue W53 that forms a potential cation-pi interaction with RBD residue R346.
582 The mesh represents the Cryo-EM density.

583


585

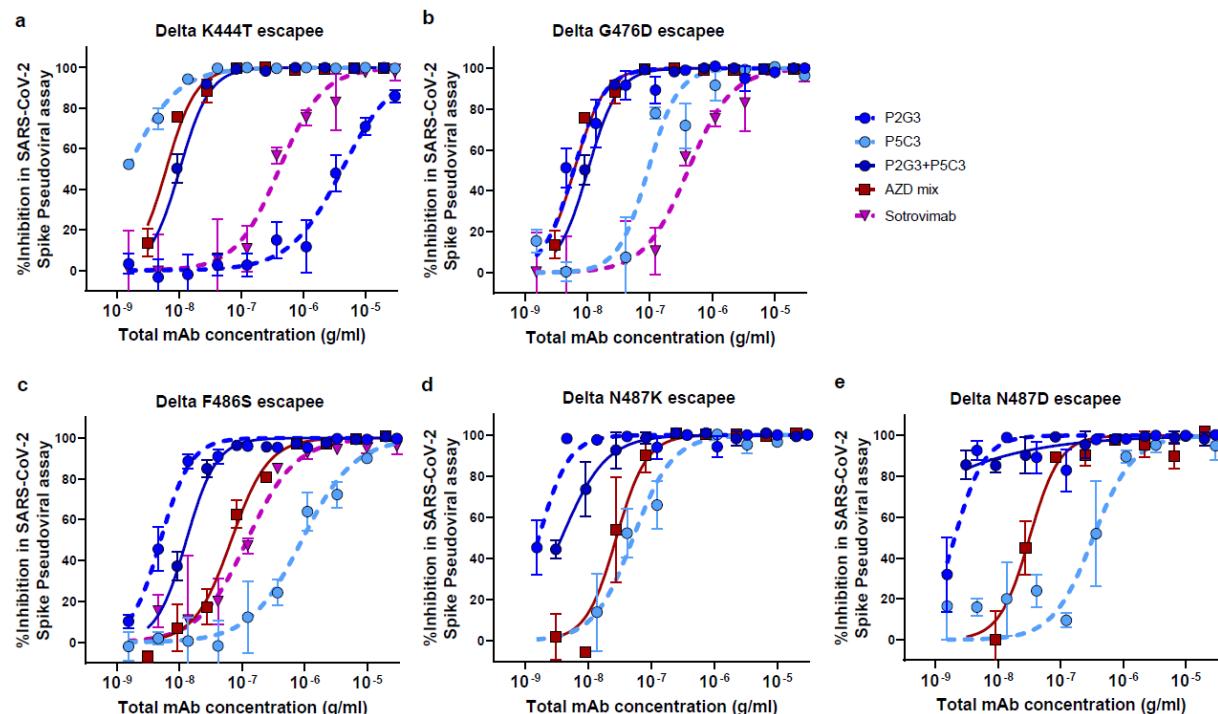
586 **Extended Data Fig. 9- Highlights of regions of the Omicron Spike and Fabs with Cryo-
587 EM density maps.**

588 The Cryo-EM density is rendered as a mesh. The atomic model is shown as ribbon or stick
589 representation.

590

591

592


593 **Extended Data Figure 10- Angle of attack of Fabs for authorized and clinically
594 advanced anti-SARS-CoV-2 mAbs modelled to the Omicron Spike trimer**

595 Model of Fabs for Class 3 antibodies, REGN10987, AZD1061 and S309/Sotrovimab binding
596 each of the RBD protomers for the full Omicron trimer. Trimmers are shown from multiple
597 perspectives to visualize the different angles of attack the Fabs have depending on the Spike
598 protomer. **a)** REGN10987 Fab bind to the green RBD-up conformation but modelled

599 REGN10987 Fab bound to either the RBD-down of the orange or blue protomer would clash
600 sterically with the adjacent blue RBD-down or green RBD-up protomers, respectively.
601 Together it is predicted REGN10987 is able to bind only RBD-up. **b)** AZD1061 is predicted to
602 bind the RBD-up form and RBD-down form of the blue protomer but AZD1061 Fab modelled
603 binding to the RBD-down of the orange protomer would potentially clash with the adjacent
604 green RBD-up. **c)** S309/Sotrovimab is able to bind all RBDs simultaneously as shown for P2G3.
605 **d)** Angle of attack of Fabs to the RBD is defined as the line connecting the centroid of the Fab
606 to the centroid of the surface area of the RBD that the Fabs bury.

607

608

609

610 **Extended Data Figure 11- P2G3 and P5C3 efficiently cross-neutralize Spike-coated 611 pseudoviruses with mutations encoding one another's escapees**

612 Neutralization of lentiviral particles pseudotyped with Delta variant SARS-CoV-2 Spike encoding: a)
613 the P2G3-escaping K444T Spike substitution and P5C3-escaping b) G476D c) F486S, d) N487K and
614 e) N487D Spike substitutions. Results shown are representative of one experiment in pseudovirus
615 assays with each concentration response tested in triplicate. Mean values \pm SEM are shown.

616

617

618

619
620

Extended Data Table 1 - Cryo-EM data collection, refinement and validation statistics

	SARS-CoV-2 S Omicron Spike B.1.1.529-P2G3-P5C3 (Global map)	SARS-CoV-2 S Omicron Spike B.1.1.529-P2G3 bound to RBD-down + RBD-up (Local map)	SARS-CoV-2 S Omicron Spike B.1.1.529-P2G3-P5C3 bound to RBD-up + RBD-down (Local map)
Microscope	TFS Titan Krios G4 + E-CFEG		
Detector	Falcon 4		
Magnification	165kx		
Voltage (kv)	300		
Electron exposure (e- \AA^2)	60		
Defocus range (um)	-0.8 to -2.5		
Pixel size (Å)	0.83		
Symmetry	C1		
Micrographs	22 758		
Initial particle images (No.) (After manual 2D class curation)	383 540		
Final particle images (No.)	28 478	21 672	18 839
Map resolution (Å) (FSC 0.143)	3.04	3.84	4.01
Map resolution range (Å)	25.9-2.76	10.5-3.02	30.0-3.02
Refinement			
Model resolution (Å) (FSC 0.5)	3.72	4.14	4.38
Initial model used	7QO7	---	---
Map sharpening B factor (Å ²)	-24.4	-38.5	-44.1
Protein residues	5 061	643	1 280
RMSD deviations			
Bond lengths (Å) [#Z>5]	0.003 [0]	0.002 [0]	0.003 [1]
Bond angles (°) [#Z>5]	0.620 [16]	0.609 [2]	0.579 [4]
Validation			
MolProbity score	1.82	1.85	1.77
Clashscore	7.95	9.04	8.08
% Poor rotamers (%)	0.02	0.00	0.00
C-beta outliers (%)	0.00	0.00	0.00
Ramachandran plot			
Favored (%)	94.34	94.63	95.25
Allowed (%)	5.46	5.21	4.51
Disallowed (%)	0.20	0.16	0.24
PDB	7QTI	7QTK	7QTJ
EMDB	14141	14143	14142

621

622 **METHODS**

623 **Method details**

624 **Study COVID-19 donors**

625 Serum and blood mononuclear cell samples were from donors participating in the ImmunoCov
626 and ImmunoVax studies performed by the Immunology and Allergy Service, Lausanne
627 University Hospital. Study design and use of subject samples were approved by the
628 Institutional Review Board of the Lausanne University Hospital and the ‘Commission
629 d’éthique du Canton de Vaud’ (CER-VD).

630 **Production of SARS-CoV-2 Spike proteins**

631 SARS-CoV2 Spike mutations are similar for all the cloned Spike variants and the corresponding
632 viral isolates and are listed in Table 2. Production of 2019-nCoV (D614G), B.1.17, B.1.351 and
633 P.1 variants has already been described²¹. RNA isolated from an anonymized leftover sample
634 of an individual suspected to be SARS-CoV-2 Omicron strain infected was reverse transcribed
635 into cDNA. The Omicron Spike ectodomain was amplified by PCR with primers (listed in Table
636 3) designed on consensus sequence from available Omicron sequences, and introduced by In-
637 Fusion cloning into the nCoV-2P-F3CH2S plasmid, replacing the original wild-type Spike²⁹.
638 The 2 prolines (P986-P987) and the furin cleavage site mutations (residues 682-685 mutated to
639 GSAS) stabilizing the Spike protein in the trimeric prefusion state were further introduced
640 simultaneously by PCR and In-Fusion- mediated site directed mutagenesis using primers listed
641 in Table 3 as previously described², and the full Omicron ORF was sequence verified. The Delta
642 B1.617.2 variant clone was generated by gene synthesis with a codon optimized Spike ORF
643 (GenScript). The final constructs encode the Spike ectodomains, containing a native signal
644 peptide, the 2P and furin cleavage site mutations, a C-terminal T4 foldon fusion domain to
645 stabilize the trimer complex followed by C-terminal 8x His and 2x Strep tags for affinity
646 purification. The trimeric Spike variants were produced and purified as previously described¹⁶.
647 The purity of Omicron Spike trimers used for cryo-EM was determined to be >99% pure by
648 SDS-PAGE analysis. Biotinylation of Spike or RBD proteins was performed using the EZ-
649 LinkTM NHS-PEG4-Biotin (Life Technologies) using a 3-fold molar excess of reagent and
650 using the manufacturer’s protocol. Biotinylated proteins were buffer exchanged with PBS using
651 an Amicon Ultra-0.5 with a 3 kDa molecular weight cut-off. Spike and RBD tetramers were
652 prepared fresh before use and formed by combining biotinylated proteins with PE-
653 conjugated Streptavidin (BD Biosciences) at a molar ratio of 4:1.

654 **Binding and ACE2 blocking studies with SARS-CoV-2 Spike**

655 Luminex beads used for the serological and purified antibody binding assays were prepared by
656 covalent coupling of SARS-CoV-2 proteins with MagPlex beads using the manufacturer's
657 protocol with a Bio-Plex Amine Coupling Kit (Bio-Rad, France). Each of the SARS-CoV-2
658 Spike proteins expressed with different mutations were coupled with different colored MagPlex
659 beads so that tests could be performed with a single protein bead per well or in a multiplexed
660 Luminex binding assay. Binding curves for antibody affinity measurements and the Spike-
661 ACE2 interaction assay were performed as previously described ^{16,35}. Competitive binding
662 studies were performed by pre-incubating 25 µg/ml of the indicated competitor antibody with
663 the original 2019-nCoV RBD protein coupled Luminex beads for 30 minutes. Biotinylated
664 P5C3, P2G3, REGN10933, REGN10987, AZD8895, AZD1061, ADG-2 or S309 antibodies
665 (prepared as described above) were added to each well at 1 µg/ml followed by a further 20-
666 minute incubation. Biotinylated antibody bound to RBD in the presence of competitor was
667 stained with Streptavidin-PE at a 1:1000 dilution (BD Biosciences) and analysed on a 200
668 Bioplex instruments. COVID-19 serum samples from >100 donors were monitored for levels
669 of IgG antibody binding to the SARS-CoV-2 Spike trimer proteins from 2019-nCoV, D614G,
670 Alpha, Beta and Gamma in the Luminex bead based assay.

671 **Anti-Spike B cell sorting, immortalization and cloning**

672 The blood from a ImmunoVax study donors were collected in EDTA tubes and the isolation of
673 blood mononuclear cell was performed using Leucosep centrifuge tubes (Greiner Bio-one)
674 prefilled with density gradient medium (Ficoll-PaqueTM PLUS, GE Healthcare) according to
675 the manufacturer's instructions. Freshly isolated cells were stained with the cocktail of
676 fluorescent conjugated antibodies containing anti-CD19 APC-Cy7, anti-CD3-BV510, anti-
677 IgM-FITC, anti-IgD PE-CF594, anti-CD27-APC, anti-CD38-V450 (BD Biosciences) along
678 with the pre-complexed Beta variant Spike tetramer (2 µg in 100µl) coupled to PE-streptavidin
679 (BD Biosciences). All other aspects with cell sorting, immortalization and cloning were as
680 described in Fenwick et al ²¹.

681 **SARS-CoV-2 live virus stocks**

682 All the biosafety level 3 procedures were approved by the Swiss Federal Office of Public
683 Health. The SARS-CoV2 D614G isolate and B.1.1.7 clone have previously been described ²¹.
684 Beta (EPI_ISL_981782), Gamma (EPI_ISL_981707), Delta B1.617.2 (EPI_ISL_1811202) and
685 Omicron B.1.1.529.1 (EPI_ISL_7605546) early isolates were a kind gift from I. Eckerle,

686 Geneva University Hospitals. Viral stocks were prepared in EPISERF on VeroE6 or Calu-3 (for
687 Omicron), aliquoted, frozen and titrated on VeroE6 cells.

688 **SARS-CoV-2 live virus cell based cytopathic effect neutralization assay**

689 Neutralization assay was performed as previously described except for Delta and Omicron
690 isolates were EPISERF instead of DMEM 2% FCS was used to prepare antibodies serial
691 dilutions. Equal amount of different viruses was used in all experiments (1200 plaque forming
692 units per well), except for the less cytopathic Omicron strain, where 2.5 times more virus was
693 incubated with each antibody tested in parallel.

694 **Selection of resistant virus in presence of mAbs**

695 The day before infection, 293T + ACE2 (+/- TMPRSS2) cells were seeded in 6-well plates
696 coated with poly-Lysin at a density of 1×10^6 cells per well. To generate a viral population under
697 mAb pressure, early passage virus was diluted in 1 ml EPISERF 2% FCS and incubated with
698 0.25ng/ml mAb for 1hrs at 37°C in duplicates. Each mixture was added to the cells and P1
699 (passage 1) supernatants were harvested 3 days later and clarified on 0.45um SpinX filters
700 centrifuged at 4000×g for 4 minutes. Aliquots of cleared P1 supernatants were diluted 1:40 in
701 DMEM 2%, incubated with mAbs as described above and used to infect fresh cells for 4 days.
702 P2 supernatants were treated as P1 and P3 supernatants were collected for RNA extraction and
703 subsequent selection step. To select for mAb resistant viruses, 100 μ l of the cleared undiluted
704 P3 heterogeneous viral population was incubated with 100 μ l mAbs at 2.5 μ g/ml, 0.625 μ g/ml
705 or 0.155 μ g/ml final concentration for 1hrs at 37°C. Mixture was then applied on cells in 400
706 μ l DMEM 2% (1:2 volume) for 3 to 4 days. Viruses were propagated for a few more passages
707 and aliquots of each passage was used for RNA extraction and sequencing. Virus produced in
708 absence of mAb was collected and treated the same way in parallel to control for appearance of
709 mutations due to cell culture conditions.

710 **Spike-pseudotyped lentivectors production and neutralization assays**

711 HDM-IDTSpike-fixK plasmid (BEI catalogue number NR-52514, obtained from J.D. Bloom,
712 Fred Hutchinson Cancer Research Center) was used as backbone for all the clonings. For Alpha
713 and Beta clones, the HDM-IDTSpike-fixK NotI/SmaI fragments were swapped with the
714 respective Alpha and Beta fragments from the previously described pTwist plasmids²¹. Alpha
715 P681H, T716I, S982A, D1118H and Beta A701V were further added in respective ORFs as
716 well as R346K in D614G plasmid by In-Fusion- mediated site directed mutagenesis using
717 primers described in Table 3. Delta B1.617.2 clone was generated by gene synthesis with a

718 codon-optimized Spike ORF (GenScript). The Omicron ORF was amplified from an RNA as
719 described for protein production with primers listed in Table 3. Pseudoviruses were
720 alternatively produced with the original 2019-nCoV (Cat #100976), Alpha / B.1.1.7 (Cat
721 #101023) and Beta/B.1.351 (Cat #101024) pCAGGS-SARS2-Spike vectors obtained from
722 NIBSC. These vectors were co-transfected with pMDL p.RRE, pRSV.Rev and pUltra-Chili-
723 Luc vectors (Addgene) into 293T cells in DMEM medium + 10% FCS using Fugene 6
724 (Promega) for pseudoviruses production. Neutralization assays were performed as previously
725 described²¹.

726 **NHP challenge model for SARS-CoV-2 Omicron BA.1 infection**

727 Cynomolgus macaques (*Macaca fascicularis*) originating from Mauritian AAALAC certified
728 breeding centers were used in this study. All animals were housed within IDMIT animal
729 facilities at CEA, Fontenay-aux-Roses under BSL-2 and BSL-3 containment when necessary
730 (Animal facility authorization #D92-032-02, Préfecture des Hauts de Seine, France) and in
731 compliance with European Directive 2010/63/EU, the French regulations and the Standards for
732 Human Care and Use of Laboratory Animals, of the Office for Laboratory Animal Welfare
733 (OLAW, assurance number #A5826-01, US). Animals tested negative for Campylobacter,
734 Yersinia, Shigella and Salmonella before being use in the study.

735 The protocols were approved by the institutional ethical committee “Comité d’Ethique en
736 Expérimentation Animale du Commissariat à l’Energie Atomique et aux Energies Alternatives”
737 (CEtEA #44) under statement number A20-011. The study was authorized by the “Research,
738 Innovation and Education Ministry” under registration number APAFIS#24434-
739 2020030216532863. All information on the ethics committee is available at
740 [https://cache.media.enseignementsup-recherche.gouv.fr/file/utilisation_des_animaux_fins_](https://cache.media.enseignementsup-recherche.gouv.fr/file/utilisation_des_animaux_fins_scientifiques/22/1/comiteethiqueea17_juin2013_257221.pdf)
741 [scientifiques/22/1/comiteethiqueea17_juin2013_257221.pdf](https://cache.media.enseignementsup-recherche.gouv.fr/file/utilisation_des_animaux_fins_scientifiques/22/1/comiteethiqueea17_juin2013_257221.pdf).

742 Four female cynomolgus macaques aged 3–6 years were randomly assigned between the control
743 and treated groups to evaluate the efficacy of P2G3 LS in the prophylaxis challenge study. The
744 treated group (n = 2 [MF1 and MF2]) received one dose at 10 mg/kg of P2G3 LS human IgG1
745 monoclonal antibody delivered by intravenous injection three day prior to challenge, while
746 control animals (n = 2 in parallel [MF3 and MF4] and n=2 historical [MF5 and MF6]) received
747 no treatment. All animals were then exposed to a total dose of 10⁵ TCID50 of Omicron
748 B.1.1.529 SARS-CoV-2 virus produced in Calu-3 cells (NIH/BEI reference: NR-56462) via the

749 combination of intranasal and intratracheal routes (day 0) with sample collection and testing
750 performed as previously described ³⁶.

751 **Hamster challenge model SARS-CoV-2 infection**

752 Hamster studies were performed at KU LEUVEN R&D as previously described ²¹. A
753 pathologist at KU LEUVEN R&D performed lung histology at Day 4 post-challenge with
754 individual scores attributed to: 1) lung congestion, 2) intra alveolar haemorrhage, 3) apoptotic
755 bodies in bronchus wall, 4) necrotizing bronchiolitis, 5) perivascular edema,
756 bronchopneumonia, 6) perivascular inflammation, 7) peribronchial inflammation and 8)
757 vasculitis. Cumulative pathology scores showed that all challenged hamsters in IgG control
758 groups had positive histological signs of pathology, while the P2G3 and REGN10933 treatment
759 groups showed no significantly different pathology scores relative to average cumulative scores
760 for non-infected animals.

761 **Antibody Fc-mediated functional activity assays**

762 Antibody dependent cellular cytotoxicity (ADCC) and antibody dependent phagocytosis
763 (ADCP) assays were performed as previously described with minor changes ³⁷. Cryopreserved
764 peripheral blood mononuclear cells from healthy patient were thawed and resuspended at 1
765 million/ml in RPMI medium (Gibco, Life Technologies) supplemented with 10% heat-
766 inactivated fetal bovine serum (FBS), 100 IU/ml penicillin and 100 µg/ml streptomycin
767 (BioConcept). Cells were stimulated with 25 ng/ml IL-15 (Miltenyi Biotec) for 6 hours and
768 ADCC effector cells were enriched from PBMCs by depletion of T cells using anti-CD3
769 coupled magnetic beads from the EasySep™ Human T Cell Isolation Kit (Stemcell). Target
770 cells used for the ADCC assay were a CEM-NK resistant cell line that was stably transfected
771 to express the original 2019-nCoV Spike protein at the cell surface and with constitutive
772 expression of the Luciferase gene (CEM-NKR-Spike-Luc cells). In the ADCC assay, CEM-
773 NKR-Spike-Luc cells were incubations with anti-Spike antibody at 0.3 µg/ml, isotype control
774 antibodies at 0.3 µg/ml or an anti-HLA class I (MHC) positive control antibody (Invivogen) at
775 0.005 µg/ml. Following 5 minutes at room temperature, the CEM-NKR-Spike-Luc cells /
776 antibody mixes were then co-cultured overnight at a 1:10 ratio of CD3-depleted PBMC effector
777 cells in RPMI medium supplemented with 5% low-IgG FBS and 1% penicillin-streptomycin in
778 U-bottom 96-well plate (SARSTEDT). The following day, cell killing was monitored either
779 directly by flow cytometry or indirectly by monitoring the decrease in luciferase activity
780 associated with cell death. In flow cytometry analysis, Spike-transfected CEM NKR- Luc cells

781 were stained with PKH26 kit according the manufacturers protocol (Sigma) prior to performing
782 the ADCC assay. To monitor cell killing, co-cultured cells were washed and stained with
783 fluorescent conjugated antibodies, CD56-AF488 (BD Biosciences,), CD16-FITC (BD
784 Biosciences), Aqua Live/Dead cell stain (Invitrogen), CD4-PECF594 (BD Biosciences) and
785 Annexin V- APC (BD Biosciences), and then analysed using a FACS LSR II cytometer
786 instrument. Spike CEM-NKR-Luc cells were gated on with the PKH26 fluorochrome and then
787 dead (Aqua positive) and apoptotic/dying (AnnexinV positive) cells were evaluated for the
788 positive (anti-HLA class I), negative (isotope control) and test (anti-Spike antibodies) antibody
789 conditions to establish ADCC activity. In the luciferase readout assay, co-cultured cells were
790 transferred in white-Elmer 96-well plate and luciferase activity were measured using One-Step
791 Luciferase assay kit (BPS Biosciences) on a Synergy plate reader instrument. Co-cultured Spike
792 CEM-NKR-Luc cells incubated with isotope control antibodies generally gave 5-10% reduced
793 luminescence signal compared to CEM-NKR-Luc cells incubated in the absence of effector
794 cells. Positive control anti-MHC (anti-HLA class I) antibody gave strong antibody dependent
795 cell killing of 60-80% and anti-Spike antibodies gave intermediate responses.

796 In the ADCP assay, TransFluoSpheres™ Carboxylate-Modified Microspheres (1.0 μ m
797 diameter, 488nm/560nm excitation/emission, ThermoFisher) were coupled directly with 2019-
798 nCoV trimeric Spike protein or with streptavidin according to the manufactures protocol. Spike
799 coupled beads were washed, incubated in the presence or absence of the different concentrations
800 of anti-Spike antibody for 30 minutes and then the mix was added directly to the U937
801 monocyte cell line plated in a 96-well U-bottom 96-well plate (Sarstedt). Following an
802 overnight incubation, cells were analysed using a FACS LSR II cytometer instrument to identify
803 cells with Spike bead fluorescence. U937 cells incubated with Spike beads in the absence of
804 antibody generally showed <5% phagocytic activity while increased ADCP activity was
805 observed with increasing concentration of anti-Spike antibody with a maximum of 100% of
806 cells exhibiting fluorescence associated with Spike bead phagocytosis. ADCP activity of
807 Omicron Spike coated beads was performed by pre-incubating Streptavidin coupled
808 TransFluoSpheres™ beads with biotinylated Omicron Spike protein, produced as described
809 above. Beads were washed after 30 minutes and used in the ADCP assay as described for the
810 directly coupled 2019-nCoV trimeric Spike beads.

811 **Cryo-electron microscopy**

812 Cryo-EM grids were prepared with a Vitrobot Mark IV (Thermofisher Scientific (TFS)).
813 Quantifoil R1.2/1.3 Au 400 holey carbon grids were glow-discharged for 120 s at 15mA using

814 a PELCO easiGlow device (Ted Pella, Inc.). 3.0 μ L of a 0.7 mg/ml Omicron Spike mixed with
815 0.16 mg/mL each of P5C3 and P2G3 Fab fragments (Final 3.2 μ M Omicron Spike:1.5 μ M
816 P5C3:1.5 μ M P2G3) was applied to the glow-discharged grids, and blotted for 6 s under blot
817 force 10 at 100% humidity and 4 °C in the sample chamber, and the blotted grid was plunge-
818 frozen in liquid nitrogen-cooled liquid ethane.

819 Grids were screened for particle presence and ice quality on a TFS Glacios microscope
820 (200kV), and the best grids were transferred to TFS Titan Krios G4. Cryo-EM data was
821 collected using TFS Titan Krios G4 transmission electron microscope (TEM), equipped with a
822 Cold-FEG on a Falcon IV detector in electron counting mode. Falcon IV gain references were
823 collected just before data collection. Data was collected using TFS EPU v2.12.1 using
824 aberration-free image shift protocol (AFIS), recording 4 micrographs per ice hole.

825 Movies were recorded at magnification of 165kx, corresponding to the 0.83 Å pixel size at the
826 specimen level, with defocus values ranging from -0.8 to -2.5 μ m. Exposures were adjusted
827 automatically to 60 e⁻/Å² total dose, resulting in an exposure time of approximately 3 seconds
828 per movie. In total, 22 758 micrographs in EER format were collected.

829 **Cryo-EM image processing**

830 On-the-fly processing was first performed during data acquisition for evaluating the data quality
831 during screening by using cryoSPARC live v3.3.1³⁸. The obtained ab-initio structures were
832 used for better particle picking for template creation. Motion correction was performed on raw
833 stacks without binning using the cryoSPARC implementation of motion correction³⁹. 1 454 045
834 particles were template-picked automatically picked. Three rounds of 2D classification were
835 performed, resulting in a particle set of 383 541 particles. Selected particles resulting from the
836 2D classification were used for ab-initio reconstruction and hetero-refinement. After hetero-
837 refinement, 189 500 particles contributed to an initial 3D reconstruction of 2.79 Å resolution
838 (FSC 0.143) with C1 symmetry. These particles were subjected to 3D classification resulting
839 in 10 classes. Class 9 resulted in a global map of the Omicron Spike with an RBD-up bound to
840 a P5C3 and P2G3 Fab at a resolution of 3.04 Å (FSC 0.143) with C1 symmetry. Focussed
841 refinement of Class 4 with a soft mask volume encompassing an RBD-up and its bound Fab
842 and an adjacent RBD-down resulted in a map at 4.01 Å (FSC 0.143) with C1 symmetry. Finally,
843 focussed refinement of Class 5 with a soft mask volume encompassing an RBD-down its bound
844 P2G3 and an adjacent NTD resulted in a map at 3.84 Å (FSC 0.143) with C1 symmetry. The
845 soft mask volume were generated manually in UCSF Chimera and cryoSPARC⁴⁰.

846 **Cryo-electron microscopy model building**

847 A model of a Spike trimer (PDB ID 7QO7) or AlphaFold2 (ColabFold implementation) models
848 of the P5C3 and P2G3 Fabs were fit into the cryo-EM maps with UCSF Chimera. These docked
849 models were extended and rebuilt manually with refinement, using Coot and Phenix^{41,42}.
850 Figures were prepared in UCSF Chimera, UCSF ChimeraX and Pymol⁴⁰. Numbering of the
851 full-length Spike models within the global map is based on Omicron numbering. Numbering of
852 models containing just the RBD within the local maps are based on wild-type numbering. Fab
853 numbering of both heavy and light chains start at one from the CH1 and CL domains
854 respectively. Buried surface area measurements and centroid measurements were calculated
855 within ChimeraX.

856 **Statistical analysis**

857 Statistical parameters including the exact value of n, the definition of center, dispersion, and
858 precision measures (Mean or Median \pm SEM) and statistical significance are reported in the
859 Figures and Figure Legends. Data were judged to be statistically significant when $p < 0.05$. In
860 Figures, asterisks denote statistical significance as calculated using the two-tailed non-
861 parametric Mann-Whitney U test for two groups' comparison. Analyses were performed in
862 GraphPad Prism (GraphPad Software, Inc.) and Microsoft Excel.

863

864 **DATA AVAILABILITY**

865 The reconstructed maps of the global Omicron Spike with Fabs bound are available from the
866 EMDB database, C1 symmetry, EMDB-14141. The atomic model for the full-length Omicron
867 Spike with Fabs bound is available from the PDB database, PDB-7QTI. The local focussed-
868 refinement map of the RBD-up with two Fabs bound is available from the EMDB database,
869 EMDB-14142. The atomic model for the RBD-up with two Fabs bound in the locally refined
870 map is available from the PDB database, PDB-7QTJ. The local focussed-refinement map of the
871 RBD-down with P2G3 Fab bound is available from the EMDB database, EMDB-14143. The
872 atomic model for the RBD-down with P2G3 Fab bound in the locally refined map is available
873 from the PDB database, PDB-7QTK. All plasmids made in this study are available upon request
874 to the corresponding authors.

875

876

877

878 **Table 2:**

879 **Spike mutations**

Alpha B.1.1.7	Δ69-70, Δ144, N501Y, A570D, D614G, P681H, T716I, S982A, D1118H
Beta B.1.351	L18F, D80A, D215G, Δ242-244, R246I, K417N, E484K, N501Y, D614G, A701V
Gamma P.1	L18F, T20N, P26S, D138Y, R190S, K417T, E484K, N501Y, D614G, H655Y, T1027I, V1176F
Delta B.1.617.2	T19R, Δ156-157, R158G, L452R, T478K, D614G, P681R, D950N
Omicron B.1.1.529.1	A67V, Δ69-70, T95I, G142D, Δ143-145, Δ211, L212I, ins214EPE, G339D, S371L, S373P, S375F, K417N, N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, Y505H, T547K, D614G, H655Y, N679K, P681H, N764K, D796Y, N856K, Q954H, N969K, L981F

880

881 **Table 3 :**

Primers used to clone spike mutations

HDM-IDT-S-Fix variants cloning for lentivectors pseudotypes

Alpha	O.HDM.1(f)	CTGGCCCATCACTTGGCAAAG
	O.Ksprimer.2(b)	CGAGGTCGACGGTATCG
	O.T716I.1(f)	CAATAGCTATCCAATAAATTCACTATTTC
	O.T716I.2(b)	GAAATAGTGAAATTATTGGGATAGCTATTG
	O.S982A.1(f)	GAATGATATCCTGGCACGGTTGGACAAG
	O.S982A.2(b)	CTTGTCCAACCGTGCCAGGATATCATTG
	O.D1118H.1(f)	ATTATTACCACCCACAATACCTTG
	O.D1118H.2(b)	CAAAGGTATTGTGGGTGGAATAAT
	O.del144 1(f)	CCTTCCTGGCGTCTATCACAAGAAC
	O.del144 2(b)	GTTCTTGTGATAGACGCCAGGAAGG
	O.A570D 1(f)	CTTCCAACAATTGGCGGGACATAGATGATACCACTGACG
	O.A570D 2(b)	CGTCAGTGGTATCATCTATGTCCGCCGAATTGTTGGAAAG

Beta	O.HDM.1(f)	CTGGCCCACACTTGGCAAAG
	O.HDM.2(b)	GGCAGAACCTCAGTGGTGACCGAAATAGTG
	O.A701V.3(f)	GAGCCTCGGAGTAGAGAACAGCG
	O.A701V.4(b)	CGCTGTTCTACTCCGAGGCTC
R346K	O.R346K.3(f)	CTTCAATGCTACTAAATTGCCCTCAG
	O.R346K.4(b)	CTGAGGCGAATTAGTAGCATTGAAG
Omicron	O.21K.1(f)	AGAATTCCCGGGCGGCCATGTTGTTTTCTTG
	O.21K.2(b)	ACGGTATCGATAAGCTTATGTGTAATGTAATTG
	O.21K.3(f)	GTCAACAACTCATATGAGTGTGA
	O.21K.4(b)	TCACACTCATATGAGTTGTTGAC

nCov S variants cloning for proteins purification

Omicron	O.21K.5(f)	AGGCCGAGTTGGTACCGCCACCATGTTGTTTTCTTG
	O.21K.6(b)	CTCGGGGATGTATCCGGATCCTGCTCATACTTCCAAG
	O.21K.7(f)	CACGTCTTGACCCCTCCAGAGGCTGAAGTG
	O.21K.8(b)	CACTTCAGCCTCTGGAGGGTCAAGACGTG
	O.21K.9(f)	GACTAAGTCTATGGGAGCGCAAGTAGTGTAGCTAGT
	O.21K.10(b)	ACTAGCTACACTTGCCTCCCATGAGACTTAGTC

882

883

884 **Acknowledgements**

885 We thank the Service of Immunology and Allergy at the Lausanne University Hospital for
886 analysis of serum samples for levels of anti-Spike protein IgG antibodies. We thank Isabella
887 Eckerle, Meriem Bekliz and the Virology laboratory of Geneva University Hospital for the
888 Omicron RNA sample and variant isolates collection, the Geneva Genome Center for
889 sequencing and Julien Duc for the development of in house scripts for analyses. We thank
890 Laurence Durrer, Rosa Schier, Michaël François and Soraya Quinche from the EPFL Protein
891 Production and Structure Core Facility for mammalian cell production and purification of
892 proteins, Alexander Myasnikov, Bertrand Beckert and Sergey Nazarov from the Dubochet
893 Center for Imaging (an EPFL, UNIGE, UNIL initiative) for cryoEM grids preparation and data
894 collection and Davide Demurtas for set up of cryo-EM condition for automated acquisition in
895 related studies not included in this manuscript. We would also like to thank David Wyatt and
896 members of the CARE-IMI work package 4 team for helpful discussions. G.P. received a grant
897 from the Corona Accelerated R&D in Europe (CARE) project funded by the Innovative
898 Medicines Initiative 2 Joint Undertaking (JU) under grant agreement No 101005077. The JU
899 receives support from the European Union's Horizon 2020 research and innovation program,
900 the European Federation of Pharmaceutical Industries Associations (EFPIA), the Bill &

901 Melinda Gates Foundation, Global Health Drug Discovery Institute and the University of
902 Dundee. The content of this publication only reflects the author's view and the JU is not
903 responsible for any use that may be made of the information it contains. Additional funding
904 was provided through the Lausanne University Hospital (to G.P.), the Swiss Vaccine Research
905 Institute (to G.P. and NCCR TransCure to H.S.), Swiss National Science Foundation Grants (to
906 G.P.) and through the EPFL COVID fund (to D.T.).

907

908 **Author contributions**

909 C.F. designed the strategy for isolating and profiling anti-Spike antibodies, designed the
910 functional assays, coordinated the research activities, analysed the data, wrote the initial draft
911 and contributed to the editing of the manuscript. P.T. established designed and performed the
912 experiments with live SARS-CoV-2 virus cytopathic effect neutralization assay, designed
913 engineered and tested the Spike protein mutations and cloning with the help of C.R., analysed
914 the results and contributed to the editing of the manuscript. L.P., D.N., K.L., F.P. and H.S.
915 coordinated the cryo-EM analysis, analysed the structural data, wrote the manuscript structural
916 section and contributed to the editing of the manuscript. Other contributed as follows: L.E.-L. ,
917 performed the B cells sorting, immortalization, binding studies and mAb functional assays; A.F.
918 and E.L., cloning of cloned mAb VH and HL; J.C., binding studies, production of select
919 lentiviruses and pseudoviral assays; C.P., in vitro characterization of serum antibodies from
920 donor samples; F.F. mAb purification, mAb characterization and molecular biology.; C.R.
921 performed site directed mutagenesis of the Spike constructs; F.P. coordinated production of
922 recombinant Spike protein and mAb. P.L., Y.L. and R.L. designed the in vivo study, which was
923 executed by C.H, R.M., R.A., C.S.F., G.V. and J.N. G.P. and D.T. conceived the study design,
924 analysed the results and wrote the manuscript.

925

926 **Competing Interest Statement**

927 C.F., G.P., P.T. and D.T. are co-inventors on a patent application that encompasses the
928 antibodies and data described in this manuscript (EP 22153464.7 and PCT/IB2022/050731).
929 DT and GP are amongst the founders of and own equity in Aerium Therapeutics, which has
930 rights to and is pursuing the development of the antibodies described in the publication, and has
931 Sponsored Research Agreements with the Lausanne University Hospital (CHUV) and the Ecole
932 Polytechnique Fédérale de Lausanne (EPFL).

933

934

935

936

937

938

939

940

941

942 **References**

- 943 1. WHO. Weekly epidemiological update on COVID-19 - 18 January 2022. Vol. July 12th, 2020
944 (ed. 75, E.) (2022).
- 945 2. Elbe, S. & Buckland-Merrett, G. Data, disease and diplomacy: GISAID's innovative
946 contribution to global health. *Glob Chall* **1**, 33-46 (2017).
- 947 3. Viana, R., et al. Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern
948 Africa. *Nature* (2022).
- 949 4. Barnes, C.O., et al. Structures of Human Antibodies Bound to SARS-CoV-2 Spike Reveal
950 Common Epitopes and Recurrent Features of Antibodies. *Cell* **182**, 828-842 e816 (2020).
- 951 5. Piccoli, L., et al. Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike
952 Receptor-Binding Domain by Structure-Guided High-Resolution Serology. *Cell* **183**, 1024-1042
953 e1021 (2020).
- 954 6. Wang, P., et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. *Nature* **593**,
955 130-135 (2021).
- 956 7. Garcia-Beltran, W.F., et al. Multiple SARS-CoV-2 variants escape neutralization by vaccine-
957 induced humoral immunity. *Cell* **184**, 2372-2383 e2379 (2021).
- 958 8. Iketani, S., et al. Antibody evasion properties of SARS-CoV-2 Omicron sublineages. *Nature*
959 (2022).
- 960 9. Cao, Y.W., J.; Jian, F.; Xiao, T.; Song, W.; Yisimayi, A.; Huang, W.; Li, Q.; Wang, P.; An, R.;
961 Wang, J.; Wang, Y.; Niu, X.; Yang, S.; Liang, H.; Sun, H.; Li, T.; Yu, Y.; Cui, Q.; Liu, S.; Yang, X.;
962 Du, S.; Zhang, Z.; Hao, X.; Shao, F.; Jin, R.; Wang, X.; Xiao, J.; Wang, Y.; Xie, X.S.;. Omicron
963 escapes the majority of existing SARS-CoV-2 neutralizing antibodies. *Biorxiv* (2022).
- 964 10. VanBlargan, L.A., et al. An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes
965 neutralization by therapeutic monoclonal antibodies. *Nat Med* (2022).
- 966 11. Liu, L., et al. Striking Antibody Evasion Manifested by the Omicron Variant of SARS-CoV-2.
967 *Nature* (2021).
- 968 12. Mannar, D., et al. SARS-CoV-2 Omicron variant: Antibody evasion and cryo-EM structure of
969 spike protein-ACE2 complex. *Science*, eabn7760 (2022).
- 970 13. Planas, D., et al. Considerable escape of SARS-CoV-2 Omicron to antibody neutralization.
971 *Nature* (2021).
- 972 14. Wang, Z., et al. mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants.
973 *Nature* **592**, 616-622 (2021).
- 974 15. Chen, R.E., et al. Resistance of SARS-CoV-2 variants to neutralization by monoclonal and
975 serum-derived polyclonal antibodies. *Nat Med* (2021).
- 976 16. Fenwick, C., et al. A high-throughput cell- and virus-free assay shows reduced neutralization
977 of SARS-CoV-2 variants by COVID-19 convalescent plasma. *Sci Transl Med* **13**(2021).
- 978 17. Baum, A., et al. Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational
979 escape seen with individual antibodies. *Science* **369**, 1014-1018 (2020).
- 980 18. Dong, J., et al. Genetic and structural basis for SARS-CoV-2 variant neutralization by a two-
981 antibody cocktail. *Nat Microbiol* **6**, 1233-1244 (2021).
- 982 19. Rappazzo, C.G., et al. An Engineered Antibody with Broad Protective Efficacy in Murine
983 Models of SARS and COVID-19. *bioRxiv* (2020).
- 984 20. Pinto, D., et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV
985 antibody. *Nature* **583**, 290-295 (2020).
- 986 21. Fenwick, C., et al. A highly potent antibody effective against SARS-CoV-2 variants of concern.
987 *Cell Rep* **37**, 109814 (2021).
- 988 22. Lempp, F.A., et al. Lectins enhance SARS-CoV-2 infection and influence neutralizing
989 antibodies. *Nature* **598**, 342-347 (2021).
- 990 23. Yamin, R., et al. Fc-engineered antibody therapeutics with improved anti-SARS-CoV-2
991 efficacy. *Nature* **599**, 465-470 (2021).

992 24. Schafer, A., *et al.* Antibody potency, effector function, and combinations in protection and
993 therapy for SARS-CoV-2 infection *in vivo*. *J Exp Med* **218**(2021).

994 25. Winkler, E.S., *et al.* Human neutralizing antibodies against SARS-CoV-2 require intact Fc
995 effector functions for optimal therapeutic protection. *Cell* **184**, 1804-1820 e1816 (2021).

996 26. Yu, Y., *et al.* Antibody-dependent cellular cytotoxicity response to SARS-CoV-2 in COVID-19
997 patients. *Signal Transduct Target Ther* **6**, 346 (2021).

998 27. Zalevsky, J., *et al.* Enhanced antibody half-life improves *in vivo* activity. *Nat Biotechnol* **28**,
999 157-159 (2010).

1000 28. Ni, D.L., K.; Turelli, P.; Raclot, C.; Beckert, B.; Nazarov, S.; Pojer, F.; Myasnikov, A.; Stahlberg,
1001 H.; Trono, D.; Structural analysis of the Spike of the Omicron SARS-CoV-2 variant by cryo-EM
1002 and implications for immune evasion. *Biorxiv* (2021).

1003 29. Wrapp, D., *et al.* Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation.
1004 *Science* **367**, 1260-1263 (2020).

1005 30. Sztain, T., *et al.* A glycan gate controls opening of the SARS-CoV-2 spike protein. *Nat Chem*
1006 **13**, 963-968 (2021).

1007 31. Halfmann, P.J., *et al.* SARS-CoV-2 Omicron virus causes attenuated disease in mice and
1008 hamsters. *Nature* (2022).

1009 32. Abdehnabi, R., *et al.* The omicron (B.1.1.529) SARS-CoV-2 variant of concern does not readily
1010 infect Syrian hamsters. *Antiviral Res* **198**, 105253 (2022).

1011 33. Obeid, M., *et al.* Humoral Responses Against Variants of Concern by COVID-19 mRNA
1012 Vaccines in Immunocompromised Patients. *JAMA Oncol* (2022).

1013 34. Mohammed, A.H., Blebil, A., Dujaili, J. & Rasool-Hassan, B.A. The Risk and Impact of COVID-
1014 19 Pandemic on Immunosuppressed Patients: Cancer, HIV, and Solid Organ Transplant
1015 Recipients. *AIDS Rev* **22**, 151-157 (2020).

1016 35. Fenwick, C., *et al.* Changes in SARS-CoV-2 Spike versus Nucleoprotein Antibody Responses
1017 Impact the Estimates of Infections in Population-Based Seroprevalence Studies. *J Virol*
1018 **95**(2021).

1019 36. Maisonnasse, P., *et al.* COVA1-18 neutralizing antibody protects against SARS-CoV-2 in three
1020 preclinical models. *Nat Commun* **12**, 6097 (2021).

1021 37. Richardson, S.I., *et al.* HIV Broadly Neutralizing Antibodies Expressed as IgG3 Preserve
1022 Neutralization Potency and Show Improved Fc Effector Function. *Front Immunol* **12**, 733958
1023 (2021).

1024 38. Punjani, A., Rubinstein, J.L., Fleet, D.J. & Brubaker, M.A. cryoSPARC: algorithms for rapid
1025 unsupervised cryo-EM structure determination. *Nat Methods* **14**, 290-296 (2017).

1026 39. Rubinstein, J.L. & Brubaker, M.A. Alignment of cryo-EM movies of individual particles by
1027 optimization of image translations. *J Struct Biol* **192**, 188-195 (2015).

1028 40. Pettersen, E.F., *et al.* UCSF ChimeraX: Structure visualization for researchers, educators, and
1029 developers. *Protein Sci* **30**, 70-82 (2021).

1030 41. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. *Acta*
1031 *Crystallogr D Biol Crystallogr* **66**, 486-501 (2010).

1032 42. Liebschner, D., *et al.* Macromolecular structure determination using X-rays, neutrons and
1033 electrons: recent developments in Phenix. *Acta Crystallogr D Struct Biol* **75**, 861-877 (2019).

1034