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ABSTRACT

Microbial communities have tremendous potential as therapeutics. However, a major bottleneck
is manufacturing high-diversity microbial communities with desired species compositions. We
develop a two-stage, model-guided framework to produce microbial communities with target
species compositions. We apply this method to optimize the diversity of a synthetic human gut
community. The first stage exploits media components to enable uniform growth responses of
individual species and the second stage uses a design-test-learn cycle with initial species
abundance as a control point to manipulate community composition. Our designed culture
conditions yield 91% of the maximum possible diversity. Leveraging these data, we construct a
dynamic ecological model to guide the design of lower-order communities with desired temporal
properties over a longer timescale. In sum, a deeper understanding of how microbial community
assembly responds to changes in environmental factors, initial species abundances, and inter-
species interactions can enable the predictable design of community dynamics.

INTRODUCTION

The potential of microbial communities as human therapeutics is evidenced by the remarkable
efficacy of fecal microbiota transplantation (FMT) in treating recurrent C. difficile infection®. This
strategy of modifying a patient’s dysbiotic microbiome with live, therapeutic organisms (“bugs-as-
drugs”) holds significant promise for treating an ever-lengthening list of microbiome associated
health conditions?. However, FMT also poses the risk of pathogen transmission and other adverse
health outcomes®®. Further difficulties with this procedure include development of regulatory
standards, definition of a precise mechanism of action, and scalability of donor material supply
chain®’. A promising alternative is the use of defined microbial community therapeutics®. The
beneficial properties of these well-characterized mixtures of isolates could be optimized while
avoiding the drawbacks of FMT®"",

A key challenge towards this goal is the scalable production of defined, therapeutic
communities that span the phylogenetic and functional diversity of the healthy adult microbiome'?.
Most of the commercially successful “probiotics” that are commonly recommended by physicians
have gained traction not because of conclusive clinical indications, but rather because they are
relatively easy to produce’'. “Probiotics” tend to be oxygen-tolerant anaerobes like Lactobacilli
and Bifidobacterium, while the healthy adult microbiome tends to be dominated by fastidious,
oxygen-sensitive anaerobes such as Bacteroides, Prevotella, Clostridiaceae, Ruminococcaceae,

and Lachnospiraceae™. “Probiotics” have even been shown to impair post-antibiotic microbiome
recovery'®. The challenge of producing therapeutic communities is a barrier to more than just
commercial manufacturing; it slows scientific progress by limiting pilot-scale drug supply to clinical

trials and precludes low-cost, global health applications' '8,

A major contribution to this
production challenge is the current strain culturing process, in which the constituent organisms of

the community are grown as separate cultures, then subsequently mixed to a desired species
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composition'®. This process is complicated, costly, and scales poorly for communities with large
numbers of organisms'®. Therefore, new methods to produce microbial communities with desired
species compositions could alleviate this manufacturing bottleneck.

Developing model-guided approaches to predict community growth as a function of
specific control inputs would greatly enhance our ability to manipulate community composition
towards a desired state'. Design of experiments with statistical modeling (DoE) has been
increasingly used to study and engineer biological systems. For example, DoE has been used to
explore regulatory sequence space for modulating protein translation and for tuning enzyme
expression to optimize production of a target metabolite?>??. In addition, DoE was used to design
chemically defined media by optimizing microbial growth as a function of various media
components?®?*, Statistical modeling, an integral part of the DoE workflow, has been applied to
predict microbial community composition as a function of dietary inputs, though it has been more
commonly used to predict a given community-level function from species abundance®%'.
Dynamic ecological models, while generally lacking abiotic control points like resources, have
been shown to be predictive of microbial community assembly in a particular media
environment®?°. These studies have demonstrated that inter-species interactions and initial
species abundances strongly affect transient states of community assembly, suggesting that
these parameters could be used to manipulate community dynamics.

We develop a two-stage, model-guided approach for systematically tuning key media
components and initial species densities to optimize the diversity of a synthetic human gut
community. Using statistical modeling, we design a new culture medium that yields a more
uniform distribution of endpoint abundances of the monocultures. This monoculture-based
optimization procedure improves community diversity. Then, in communities cultured on the new
medium, we use a design-test-learn cycle to modulate individual species’ initial population
densities (i.e., inocula) to further optimize community diversity. In both stages, a substantial
degree of community composition (a systems-level property) can be forecasted as the composite
behavior of constituent monocultures (parts-level properties)®. Finally, we use our data to build a
dynamic ecological model that captures inter-species interactions and use this model to guide the
design of communities with distinct classes of dynamic behaviors. In sum, we demonstrate that
model-guided design of experiments can be combined with high-throughput species abundance

measurements to steer community composition towards desired states.


https://doi.org/10.1101/2022.03.14.484355
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.14.484355; this version posted March 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

71  Manipulating media components to enhance community Shannon diversity
72 The diversity of a donor’'s microbiota has been identified as a major factor determining clinical
73 response during the use of FMT to treat inflammatory bowel disease®'*. Since diverse, defined
74  communities are useful therapeutics, we aimed to maximize the Shannon diversity (Methods,
75  equation 1) of a synthetic human gut community’®''. Shannon diversity is an ecological metric
76  used to characterize both the number of species in a community and the evenness of their
77  population sizes*. We designed a representative synthetic 10-member community that spans the
78  phylogenetic and metabolic diversity of the human gut microbiome (Fig. 1a). This community
79  consisted of Blautia hydrogenotrophica (BH), Bifidobacterium longum (BL), Bacteroides uniformis
80 (BU), Collinsella aerofaciens (CA), Dorea longicatena (DL), Eggerthella lenta (EL), Eubacterium
81 rectale (ER), Faecalibacterium prausnitzii (FP), Prevotella copri (PC), and Parabacteroides
82  johnsonii (PJ). Several of these species, including FP, have been shown to be critical to the
83  recovery of a healthy microbiome after childhood malnutrition and thus hold promise as bacterial
84  therapeutics for global health applications®*3°.
85 We characterized the growth of individual species (monocultures) in a baseline defined
86  medium that can support the growth of diverse human gut species (Methods, Supplemental Data
87  1)®. The monocultures displayed a wide range of growth rates and population sizes at steady-
88 state (i.e. carrying capacities) (Fig. S1a, medium 7), suggesting that the species with low
89  monoculture fitness may be outcompeted in the community. Human gut anaerobes have diverse
90 metabolic strategies®**’. Therefore, we exploited the concentrations of key media components to
91  manipulate monoculture growth responses®?8. Sugars and amino acids represented the main
92 fermentable substrates, consistent with their key role in the mammalian gut®. Likewise, pH is a
93  major environmental factor, and can distinctly modify bacterial growth*. In addition, we selected
94  yeast extract since it consists of a complex digest containing vitamins, peptides, and other
95 resources, and supports the growth of FP*'. We used statistical design of experiments (DoE) to
96 identify an optimal concentration profile of these components by manipulating four key variables:
97 (1) a mixture of three sugars, (2) a defined mixture of amino acids, (3) yeast extract, and (4) pH.
98 The "DoE” workflow involves (1) identification of (independent) variables and (dependent)
99 responses of the system, (2) construction of an experimental design matrix of combinations of
100 levels of each variable that satisfies a designated optimality criterion, (3) experimental
101 implementation, (4) statistical modeling of the experimental data, and (5) use of optimization
102  techniques to determine the values of the variables that are predicted to yield a desired system

103  response.
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Figure 1. Model-guided design of media composition to enhance community Shannon diversity. a
Phylogenetic tree of the 10-member synthetic human gut community: Bacteroidetes (upper branch), Firmicutes
(middle branch), and Actinobacteria (lower branch). Phylogenetic analysis was performed using a
concatenated alignment of 37 single-copy marker genes in Phylosift*2. b Media factor experimental design that
varies the concentration of a sugar mixture (glucose, arabinose, and maltose), yeast extract (Y.E.), defined
amino acid mixture (Aminos.), and pH in a common base medium (Methods). Shading indicates design levels:
“high” (black), “intermediate” (gray), and “low” (white), with concentration values labeled in units of g/L or pH.
¢ Bar plots of the steady-state abundance (carrying capacity, Ki) of each species determined by fitting a logistic
differential equation model to the time-series measurements of absorbance at 600 nm (OD600) in each media
condition (Methods, equation 3, Fig. S1). Different colors denote species shown in g. Bar height denotes the
mean carrying capacity and data points denote biological replicates (n=4 with outlier detection, Methods). ¢
Bar plots of “monoculture-diversity” (Methods, equation 4,5) based on the mean carrying capacities for each
medium (Methods). Data points denote monoculture-diversities calculated from each biological replicate.
Dashed line indicates maximum possible monoculture-diversity for ten species. e Bipartite network
representation of linear regression growth models (MR, Table S1), where edge thickness is scaled by mean
parameter value across cross validated parameter sets. Models predict the carrying capacity of each species
(K;) as a function of media component concentrations (X) (Methods, equation 6), and as such, the parameters
(B;) represent the inferred growth effect of a media component on a particular species. Left and right nodes
denote species and media components, respectively. Light gray nodes denote main effects, medium gray
nodes denote interactions, and dark gray nodes denote quadratic main effects. Parameters with mean values
of less than 0.05 are not shown. f Scatter plot of monoculture diversity calculated from fitted carrying capacities
(x-axis) vs. monoculture-diversity calculated from media regression model validation/test predictions
(“predicted”, y-axis, Methods). Pearson correlation (rho) and p-value (P) are indicated. Star indicates optimized
medium. g Heatmap of media component concentrations that maximized monoculture-diversity (Methods,
equation 7, Methods). Color scale is according to (a). h Bar plot of the inferred carrying capacities based on
the logistic model of each species on the optimized medium (Fig. S1b) (f). i Stacked bar plot (left bars) of
community compositions from the even inoculum proportion in the baseline medium (7), the highest
monoculture-diversity screened medium (4), and the optimized medium (10). Bar height indicates mean of 3
biological replicates, error bars indicate 1 s.d., and all replicates are shown in Fig. S14. Shannon diversity of
mean community composition (n=3 biological replicates, Methods, equation 1) is indicated as gray solid bars
(right bars). Shannon diversities as calculated from each set of biological replicates are overlaid as diamonds.
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j Bar plot of the change in media pH for community cultures in the best screened (4) and optimized medium
(10). Bar height indicates mean of biological replicates (diamonds, n=3).
104

105 We use this workflow to maximize the similarity between steady-state population sizes (i.e.
106  carrying capacities) of the monocultures as a function of media component concentrations, while
107  also supporting sufficient growth (Fig. 1b, Methods).*®

108 We performed time-series measurements of optical density at 600 nm (OD600) for each
109 monoculture in each media condition (Fig. 1b) and fit a logistic growth model (LM, Table S1) to
110 these data (Fig. S1a). The carrying capacity parameter (K;) of this model indicates population
111  size at steady-state (Fig. 1¢). To quantify the similarity among the growth responses of individual
112 species as a function of media components, we determined the Shannon diversity of the
113  normalized carrying capacities in a particular medium. Normalization was performed by dividing
114 by the sum of the inferred carrying capacities in a particular medium, mirroring how Shannon
115  diversity is calculated from community absolute abundance data (Methods, equation 4). This
116  quantity, hereafter referred to as “monoculture-diversity,” varied widely as a function of media
117  composition (Fig. 1d).

118 Although we identified a medium that enabled high monoculture-diversity in the screening
119  experiment (Fig. 1d, medium 4), we used model-guided optimization for further improvement. We
120 fit linear regression models (MR, Table S1) with quadratic and interaction terms to predict the
121 carrying capacity of each species from the concentrations of the media component variables (Fig.
122 1e, Methods, equation 6). The media regression model parameters provide an interpretable
123  relationship between the concentration of a given media component and its effect on the growth
124  of a given organism. For instance, the main effects regression parameter corresponding to
125  “sugars” was large for the BL and DL growth models, consistent with their substantial growth
126  improvement in the presence of the sugar mixture (Figs. 1b,c,e, S2b,c). Interaction parameters
127 in the regression models captured more subtle trends, as these terms indicate a specific
128 combination of independent variables that results in a distinct effect on the measured response.
129  For example, BH had a substantial growth improvement in media containing both amino acids
130 and sugars (Fig. 1b,c). The large magnitude of this interaction parameter for BH suggested that
131  the simultaneous presence of amino acids and sugars enhanced growth more than the sum of
132 their individual contributions alone (Figs. 1e, S2a).

133 To reduce overfitting and biasing of hyperparameters, we implemented elastic net
134  regularization with nested leave-one-out cross validation (Methods). Goodness of fit was high for
135  all species, while validation predictions on the out-of-fold measurements ranged in accuracy (Fig.

136  S3a). Despite the sparse sampling of the design space using the DoE approach (Fig. S4), the
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137 models were predictive of an aggregate property (monoculture-diversity) on new data, even
138 though they were variably predictive of the constituent species (Fig. 1f, Pearson rho=0.67, P =
139  0.034).

140 An optimization procedure (Methods, equation 7) identified a profile of media factor
141  concentrations that maximized the predicted monoculture-diversity (Methods). The predicted
142  concentrations were similar to medium 4, but contained 3-fold less sugar (Fig. 1b,g). To test this
143  prediction, individual species were grown in the optimized medium. The monoculture-diversity for
144  the optimized medium was close to the maximum possible value, consistent with the model
145  prediction (Fig. 1f,g).

146 To determine if monoculture-diversity could inform the Shannon diversity of the
147  community, we cultured the 10-member community from even initial species proportions in the
148  baseline medium 7, best screened medium 4, and optimized medium (Fig. 1b,g). The model-
149  guided, monoculture-based optimization process yielded a concomitant improvement in
150 community Shannon diversity (Fig. 1h,i). Our results suggest that the reduced sugar
151  concentration in the optimized medium, as compared with the best screened medium 4, mitigated
152  rapid production of high levels of inhibitory organic acids by fast growing sugar fermenters. This
153  was consistent with the substantially higher endpoint pH of a community cultured in the optimized
154  medium 10, compared to the acidified environment of medium 4 (Fig. 1j). A microbial community
155  culture that autonomously maintains non-inhibitory pH levels could be produced in simple vessels
156 (e.g. flasks or tanks), obviating the need for expensive equipment (e.g., bioreactors with pH
157  control).

158 Our model-guided, high-throughput, monoculture-based approach identified a single
159  medium in which all species were capable of similar endpoint growth. As compared to the baseline
160  medium, Shannon diversity of the community was increased from 53% to 80% of its maximum
161  possible value. These results demonstrated that a moderate number of media components are
162  effective control points for manipulating community composition.

163
164 A constrained system of logistic equations predicts trends in community assembly

165 The initial population density of the constituent members of a microbial community has been
166  shown to impact community assembly?®444° Therefore, we reasoned that we could use a design
167  of experiments approach to further optimize community diversity as a function of inoculum density.
168 However, this constituted a large design space for community experiments, as there are many

169  possible combinations of inoculum proportions for a 10-member community. We first studied the
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170  “parts” of our microbial community by characterizing growth kinetics of the monocultures across
171  a wide range of inoculum densities.
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Figure 2. Predicting community assembly using a constrained system of logistic equations. a
Schematic of experimental approach and model equation to predict community assembly as a set of
monoculture logistic models (LI, Table S1) coupled via a total community growth limit, referred to as a
“constrained system of logistic equations” or “CSLE” (Methods, equation 9 and Supplementary Information).
Parameters: monoculture logistic growth rates (;), monoculture carrying capacities (K;), and total
community growth limit (K.,,», community carrying capacity). b Monoculture kinetic data based on
absorbance at 600 nm (ODG600, filled circles) where each species was inoculated at a range of initial
densities (0.01 to 1e-7 OD600 by 10-fold serial dilution). Inoculum densities that did not yield reproducible
growth were omitted (Fig. S5a). Lines denote the logistic differential equation fit to the time-series OD600
measurements (Methods). Colors denote species per legend in (e). ¢ Bar plot of the endpoint growth of a
10-member community culture vs. the sum of the inferred logistic carrying capacities of all 10 monocultures
(bar height indicates mean, diamonds show biological replicates, n=3). Kcomm (denoted by dashed line)
represents the mean of the endpoint OD600 of the 10-member community culture (n=3 biological replicates).
d Scatter plot of the CSLE model predictions (y-axis, left stacked bar) versus the experimentally measured
community relative abundance data (x-axis, right stacked bar). Pearson correlation coefficient and p-value
are indicated by “rho” and “P”, respectively. Dashed “x=y” line represents where predictions from a perfectly
accurate model would fall. Error bars on experimental data denote 1 s.d. of biological replicates (n=3). e
Scatter plot of predicted community composition based on a set of independent, logistic differential
equations (y-axis, right stacked bar) and measured community composition (relative abundance, x-axis, left-
hand stacked bar). Pearson correlation coefficient and p-value are indicated by “rho” and “P”, respectively.
Dashed “x=y” line represents where predictions from a perfectly accurate model would fall. Error bars on
experimental data denote 1 s.d. from the mean of biological replicates (n=3). f Line plot of CSLE simulation
of monospecies growth. Optimization techniques are used to maximize the predicted Shannon diversity as
a function of initial conditions (Methods, equation 10). This set of initial conditions is later used as a reference
point to guide community experimental design (Fig. 3). Colors denote species per legend in (e).


https://doi.org/10.1101/2022.03.14.484355
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.14.484355; this version posted March 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

172 Lower inoculum density delayed the time at which the species entered a measurable
173  exponential growth phase (Fig. 2b). In addition, BH, ER, and FP tended not to grow (or displayed
174  variable growth between biological replicates) at lower inoculum densities. The remaining species
175  displayed consistent growth kinetics at most inoculum densities, which spanned several orders of
176  magnitude. A logistic model (LI, Table S1) with a single parameter set represented each species
177  growth kinetics across the large range of inoculum densities (Fig. 2b, Methods).

178 The 10-member community cultured from an even species inoculum displayed a
179  substantially lower total growth than the sum of the monoculture carrying capacities (Fig. 2c).
180 This implies that negative inter-species interactions dominated the ecological network of the
181 community. The total growth of microbial communities in batch culture was shown to be a
182  saturating function of the number of species in the community?. Therefore, we reasoned that an
183  upper limit on total community growth (independent of species composition) could serve as a
184  useful null-hypothesis governing community assembly, given unknown, but largely negative, inter-
185  species interactions. Further, we assumed that a species with higher fithess in monoculture would
186  display higher abundance in the community.

187 We captured these behaviors by deriving a mathematical model, referred to as a
188  “constrained system of logistic equations” (CSLE) (Supplementary Information). In this model,
189  a species grows according to its monoculture logistic kinetics until total growth is constrained by
190 a “community carrying capacity” (Kcomm). Thus, a species may cease to grow (dx;/dt — 0, arrow
191 represents approaches) either when its population size approaches its monoculture logistic
192  carrying capacity (x;(t) = K;) or when the total community growth approaches the community

193 carrying capacity (X x; () = Kcomm). Keomm was defined as the mean OD600 of biological

194  replicates of the 10-member community culture (Fig. 2c).

195 The CSLE model captured major trends in measured relative species abundances of the
196  community (Pearson rho=0.71, P=0.021, Fig. 2d). Conversely, predicting community assembly
197 as a set of independent logistic models (assuming no inter-species interactions) failed to describe
198 community composition (Pearson rho=0.085, P=0.82, Fig. 2e). In the CSLE model, species that
199  grow faster in monoculture are more likely to negatively impact the growth of other community
200 members, resulting in a trade-off in the species’ endpoint abundances. For example, the CSLE
201  model accurately predicted that the species with the highest monoculture growth rate (DL, yellow)
202  would occupy a substantially larger fraction of the community than the other species (Figs. 2d,e,

203 S1c). However, the set of independent logistic models failed to predict this trend. This
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204  demonstrates that the CSLE model, which was not informed by community data, could predict
205  trends in community assembly.

206 The CSLE model reaches equilibrium for any community composition in which species’
207  absolute abundances sum to the total growth limit (X x; (t) = K.omm)- Thus, in contrast to the
208 logistic model, which has a single positive steady-state, the steady-state population size of a
209  species in the CSLE model is a continuous function of initial conditions (as long as Y. K; > Kcomm,
210 i.e., in a large community). This model allowed us to computationally explore how community
211 composition changes as a function of species inoculum prior to collecting community data (Fig.
212 2f).

213

214  Tuning species inoculum densities to optimize community Shannon diversity.

215  To further optimize the endpoint Shannon diversity of the 10-member community, we used a
216  model-guided design-test-learn (DTL) cycle to modulate the inoculum densities of each species
217  (Fig. 3a). The iterative DTL approach uses models, trained on community composition data
218 collected in previous cycles, to guide the design of experimental conditions for the subsequent
219  cycle®. The “design” step was initiated with the construction of an experimental design matrix.
220 Inoculum density values were assigned to the levels of the matrix using model predictions when
221  possible. The “test” step used automated liquid handling to array the designed inocula conditions
222  (Methods). Community cultures were grown to approximately stationary phase, and species
223  abundances were analyzed using multiplexed NGS (Methods). The “learn” step inferred
224  parameters from experimental data and evaluated the predictive capability of the statistical
225  models.

226 The assignment of inoculum density values to the levels of the DoE design matrix for the
227  first community inoculum experiment was guided by the CSLE model (Fig. 2a,d). We used
228  optimization to solve for a set of initial conditions that maximized the predicted Shannon diversity
229  (Fig. 2f). This set of initial conditions was used as a central reference point (“center-point”),
230 representing the “medium” level for all species, around which the rest of the experimental design
231  was constructed (Fig. 3a). These designs were constructed for the dual purpose of identifying a
232 high diversity condition and collecting structured training data to improve the model’s predictive
233 ability.

234 Community compositions varied widely as a function of the experimental design conditions
235 (Fig. 3c, DTL 1), confirming that inoculum density was a useful control point for manipulating
236 community assembly. Despite a modest monoculture growth rate and carrying capacity (Fig. 2b,

237 81c), ER overgrew in many conditions (Fig. 3c, light purple). The CSLE model had
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238  underpredicted ER in the test community grown from an even inoculum (Fig. 2d), suggesting that
239  ER benefits from positive inter-species interactions that were not captured in the CSLE model.

a P b Centertpoint inoculum levels for all cycles
- 1071 . ; . . . : , .
Yi = E BX 5102
*{ = - §
—— 8
X Learn Predict <1073
- ~--.-¥ |Design Composition From oy
CSLE Prediction Inoculum Levels Inoculum 2
8104
. -
=]
p— g10°
£
ol High ————— Low ]
10 Inoculum Similarity across cycles v
Scale Up Test Endpoint 07 ‘ ) ) ) . ) ) ,
Species Compositions FP DL ER BU BH PJ EL PC BL CA
Test o
a7
c @’ DTL 1 DTL2 d Model Predictions

Rl e e on withheld data
I H g 0.6
8 o8 ; MeH rh°=°'8‘1"
‘(és l HsL 45 s p=4.5e-14 7
3 EBu ke Vs
3 06 f Wca B v @
2 a oL o ’
3 I HEe T02le 25
& o4 HEer S 29" %0
g | Il WrpP ?
g Erc 0
T 02 Il WI i WP 0 0.2 0.4 06
w | =
pa Mean Abundance (16s*OD)
0
Experimental conditions (sorted by resulting Shannon Diversity)
e Diversity distributions ¢ Overallimprovement g CSLE Predicted Inoculum h Scale Up
across DTLecycles |  ~ 7777777 vs. DTL Best
rho=0.96
1 2 p=8e-6
7
2 . > g 4 {1 —
> g @ g 1072 rho=0.66 ° ,/ =
§ 15 S e 3 pm0030 8
= < ) o s S
5 3 - c ~ g
s Conditions < 12 2 10" o’ E
g __ Maximum g S 3 e 2
E Possible IS 5 i< ., ® o G
» 05 © ; =
- Even Inoc. T o N e kS
i [5}
(Baseline) 8 10 // 1o &
0
1 2 3 0 0 107 107 1072 0
DTL Cycle Number Media: ‘:; & DTL 3 Best Inoculum (OD600) 200 100

Inoculm: (

(CR )]

Figure 3. Tuning species inoculum densities to optimize community Shannon diversity in a design-
test-learn cycle. a Schematic illustrating the design-test-learn (DTL) cycle for maximizing community
diversity as a function of species inocula. The “center point” of each experimental design corresponds to the
inoculum (colored circles) predicted to yield the highest community Shannon diversity. DTL 1 center point
is predicted with the CSLE model, thereby exploiting monoculture growth data to design the first community
experiment. Subsequent DTL cycle center points are predicted according to inoculum regression models
(IR, Table S1), which are trained on community data collected during the DTL process. Scale-up of the
culture is performed for potential bioprocessing applications (bottom left). b Categorial scatter plot of center
point inoculum conditions for each DTL cycle, which are informed by model predictions when possible
(Methods). For visualization, species are sorted by the magnitude of the difference between the log
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transformed inoculum densities of the first and last DTL cycles. The dotted line indicates the even inoculum
baseline condition. Full design matrices are shown in Supplementary Data 3. ¢ Stacked bar plots of endpoint
community compositions for each DTL cycle, sorted left to right by community Shannon diversity. Stacked
bars and error bars represent mean and 1 s.d. of the mean of biological replicates (n=3), respectively, for
each condition; all replicates are shown in Fig. S13. d Scatter plot of the experimentally measured absolute
abundance of each species versus the linear regression models’ predictions of endpoint species absolute
abundance on the test set. The model was trained on community composition measurements from the first
two DTL cycles. The dependent variable is the endpoint species abundance, and the independent variables
are the initial OD600 of each species from the inoculum design matrix. Pearson correlation coefficient (rho),
and p-value (P) are shown. The validation (out-of-fold) predictions with species-specific correlation
coefficients are shown in Fig S6. e Distributions of Shannon diversities calculated from the mean
composition of biological replicates (n=3) for conditions of each DTL cycle (blue circles). Red line in each
box denotes the median, upper and lower edges denote 75 and 25™ percentiles, respectively, and whiskers
denote range of non-outlier datapoints. Dashed line indicates maximum possible Shannon diversity for a
10-member community. Dotted line indicates the diversity from even inoculum in the optimized medium
(Fig. 1i). f Stacked bar plot of the community composition from media optimization (Fig. 1) and inoculum
optimization (Fig. 3). Species composition (stacked bars, left-axis) and Shannon diversities as calculated
from mean of species abundances (gray solid bar); diamonds show diversities calculated from individual
sets of biological replicates (right-axis), and all biological replicates are shown in Fig. S14. Even inoculum
and baseline medium (pre-optimization) are indicated with (-), while (+) indicates that the community
resulted from media or inoculum optimization in this study. g Scatter plot of the log transform of inoculum
densities predicted by the CSLE model (DTL1 center point levels) vs. the experimentally identified best
inoculum (condition yielding highest diversity after three DTL cycles). Pearson correlation is calculated
between the logarithm of the inoculum densities. h Stacked bar plot of species relative abundance of the
10-member community cultured in a 200 uL microtiter plate versus a 100 mL flask, bar height and error bars
represent mean and 1 s.d. of 3 biological replicates, all biological replicates are plotted in Fig. S14.
240

241 Consequently, the CSLE model overpredicted the initial density of ER, which in turn resulted in
242 overgrowth in the community.

243 This community data to was leveraged to quantify inter-species interactions beyond global
244  competition. Regression models with linear, quadratic, and interaction terms (IR1, Table S1) were
245  trained to predict the absolute abundance of each species in the community from the inoculum
246  values of the experimental design (Methods). After the first DTL cycle, the inoculum regression
247  models accurately predicted half of the species (Pearson rho > 0.7, P < 1e-6, Fig. S7a). However,
248  three species (CA, EL and PC) with predictive models displayed low overall growth (average
249  relative abundance less than 2.5% across design conditions, Fig. 3¢ “DTL1”,). As such, these
250 models were not practically useful, since predicting maximum diversity (i.e., 10% relative
251  abundance) would result in significant extrapolation of the model.

252 In DTL 2, the new center point inoculum value for species that were poorly predicted or
253  displayed low overall growth was qualitatively determined based on community data. If a species
254  tended to overgrow (ER) in the previous cycle, the new center point value was set at the previous
255  cycle’s low value. By contrast, if a species tended to undergrow (BL, CA, DL, EL, PC and PJ), its
256  new center point value was set to the previous high value (Fig. S8, Methods). We performed

257  model-guided optimization of the inoculum values to maximize the predicted Shannon diversity
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258 for species that were accurately predicted by the model and displayed substantial growth
259  (Methods).

260 These optimized values were used as the center point values for DTL 2 (Methods). In DTL
261 2, most species were well-represented, and ER was present at a lower abundance in the
262  community than in DTL 1 (Fig. 3c). The median community diversity was substantially higher in
263 DTL 2than DTL 1, indicating that data obtained in DTL 1 were informative for enhancing Shannon
264  diversity (Fig. 3e). Inoculum regression models were re-trained on community composition data
265 from both DTL 1 and 2 (IR2, Table S1), and the models accurately predicted the absolute
266  abundance of all species except BL during cross validation (Pearson rho > 0.70, P < 1e-8, S7b).
267  Further, the model accurately predicted test communities that were withheld from the training and
268  validation process (Fig. 3d, Pearson rho=0.84, P=2.5e-14).

269 To determine if the Shannon diversity could be enhanced further, we used optimization
270 techniques using the nine predictive regression models to determine a new inoculum center point
271 for DTL 3. The high and low levels probed a smaller design space than previous cycles reflecting
272 higher confidence based on the substantial improvement in Shannon diversity in DTL 2. Since
273  BL consistently undergrew and was poorly predicted, its inoculum density was set to a maximum
274  designated value (Methods). Despite having the largest inoculum and high monoculture fitness,
275 BL was low abundance in DTL 3, indicating that BL was inhibited by other members of the
276  community (Fig. 3c). Notably, the beneficial species FP was higher abundance in DTL 3
277  communities than in the community inoculated with an even inoculum (Fig. 3f)***8. Overall, the
278  highest Shannon diversity condition was identified in DTL 3, representing 91% of the maximum
279  possible value for a 10-member community (Fig. 3e,f). This was a substantial improvement from
280 the already high 80% of the maximum diversity achieved by medium optimization alone (Fig. 3f).
281 The set of inoculum densities that yielded the highest Shannon diversity in DTL 3 was
282  correlated to the CLSE optimized inoculum prediction (Pearson rho between logarithm of
283  inoculum values = 0.66, P = 0.039, Fig. 3g). Further, for half of the species, inocula for the highest
284  diversity condition were within three-fold of the CSLE predicted values (Figs. 2f, 3b). These data
285  show the CSLE model prediction was a useful starting point for the DTL cycle, as it substantially
286 narrowed the inoculum design space that yielded assembly of a highly diverse community.

287 Biomanufacturing of microbial communities in a real-world setting would require (1)
288  robustness of endpoint community composition to technical variability in species inocula, (2)
289 translation to production-scale equipment, and (3) viability of organisms harvested at the
290 endpoint. Despite the four-fold variation in inoculum in DTL 3, the coefficient of variation of the

291  endpoint Shannon diversity across design conditions was less than 6% (Fig. 3e). This
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292  demonstrates that our process was robust to variation in species inocula. The community
293  compositions in 200 uL and 100 mL batch cultures were similar, demonstrating that a 500-fold
294  difference in batch culture scale did not substantially alter community assembly (Fig. 3h, Pearson
295 rho=0.96, P=8e-6). To evaluate the viability of species in the endpoint community cultures, we
296 transferred a small aliquot (25-fold volume/volume dilution) of the communities measured at the
297  endpoint into fresh media and grew them to approximately stationary phase (Methods). All
298 species in all conditions yielded greater than three-fold increase in absolute abundance during
299 the second passage, demonstrating that these species were viable (Fig. S9f).

300

301 Model-guided design of microbial community dynamics

302 Positive and negative inter-species interactions are major determinants of microbial community
303 assembly®>#°. Therefore, we constructed a dynamic ecological model that captured specific inter-
304 species interactions (Fig. 2d,e). The generalized Lotka-Volterra (gLV) model (Methods, equation
305 13)is a set of coupled ordinary differential equations that describes a specie’s growth dynamics
306 as a function of its basal growth rate and interactions with each constituent community member.
307 This model has accurately predicted complex community dynamics, and its interpretable
308 parameters have revealed significant inter-species interactions?2°4°,

309 We trained a gLV model on monoculture kinetics and community stationary phase
310 measurements (including three additional passaging timepoints of DTL1 and one additional
311 passaging timepoint of DTL3) to characterize the communities over longer timescales (Figs. 2b,
312 3¢, S9b-e, Methods)'"*°**°. To minimize overfitting of model parameters to the data, we
313 implemented L1 regularization with cross-validation (Methods, Fig. S10a). The gLV model was
314  predictive of randomly withheld training data (Pearson rho=0.91, P=3e-83, Fig. S10b). In the
315 inferred parameter set, BH positively impacted the growth of ER (Fig. S10c,d). This result is
316 consistent with the underprediction of ER by the CSLE model, in which species interact only via
317 competition (Fig. 2d). This suggests that the overgrowth of ER in DTL 1 may be a result of the
318 high inoculum densities of ER and BH in comparison to the relatively low inoculum densities of
319 several species (BU, CA, DL and PC) with which ER competes (aer ; < -0.25) (Figs. 3¢, S10a).
320 BH, an acetogen, has been shown to enhance the growth of a similar butyrate producing Firmicute
321 species via metabolite cross feeding®'. BL received negative interactions from all species
322  excluding PJ, and these interactions summed to the largest negative value among all species
323 (Fig. S10e). This suggested that the persistent low abundance of BL, despite its robust
324  monoculture growth and high inoculum densities, can be attributed to the aggregate effect of

325 many negative interactions in the inter-species interaction network.
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Figure 4 Model-guided design of high and low temporal variability of species composition. a
Schematic of the experimental workflow where the generalized Lotka-Volterra (gLV, Methods, equation 13)
model is trained on monoculture and 10-member community passaging timepoint data (Methods). The gLV
model is used to design sub-communities (3-to-9-members) that display low temporal variability of species
composition across four simulated passages. Optimization techniques are used to solve for passage 1 initial
conditions (i.e., inocula) that maximize the ratio of the summed Shannon diversities to summed Euclidean
distances between consecutive stationary phase timepoint measurements (Methods, equation 14, 15).
Based on this metric, a set of communities were selected for experimental characterization. b Categorial
scatter plot of the changes in community composition between passages for DTL1 training data (Fig. S9a-
c), designed low, and designed high temporal variability communities. Data points denote Euclidean
distances between stationary phase community compositions (mean of n=3 biological replicates with outlier
detection, Methods) of consecutive passages (Methods, equation 14). Box plot red central line denotes
median, upper and lower edges denote 75" and 25" percentiles, respectively, whiskers denote range of
non-outlier datapoints, and red “+” denotes outlier. Unpaired, two sample t-test is used to calculate p-value
between groups of communities. ¢,d Stacked bar plots of gLV model predictions of stationary phase species
composition (top row), experimental measurements (middle row), and inferred gLV inter-species interaction
networks (bottom row) for a set of high (¢) and low (d) temporal variability sub-communities. Species color
legend follows node labels. Each subplot denotes the relative species abundance at stationary phase of
the four passages; for experimental data bar height and error bars denote mean and 1 s.d. of biological
replicates (n=3 with outlier detection, Methods). Solid and dashed edges indicate negative and positive
inter-species interaction parameters (a;;), respectively. Edge width is proportional to the magnitude of the
inter-species interaction parameter and node size is proportional to the specific growth rate parameters in
the gLV model (y;). All biological replicates and omission of 5 cross-contaminated replicates are indicated
in Fig S14.
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326 We designed low and high temporal variability sub-communities over the timescale of four
327 passages to evaluate whether the gLV model could predict distinct classes of dynamic longer-
328 term behaviors. Communities with low temporal variability in community composition could be
329 useful to reduce the frequency of species takeover and/or extinction during dynamic bioprocess
330 strategies, such as fed-batch or continuous cultures, which are commonly used to improve
331  production efficiency®?->*. Temporal variability was defined as the sum of the Euclidean distances
332  of the relative species abundance between adjacent passages (Methods, equation 14). Low
333  temporal variability communities were identified by maximizing an objective function of the ratio
334  of the Shannon diversity to the Euclidean distance across passages (Methods, equation 15). We
335 used optimization techniques to maximize this objective function across a wide range of initial
336 conditions for all possible (967 total) 3—-9-member sub-communities. Notably, among the 967
337 optimal solutions, only 33 sets of initial conditions displayed unique endpoint species
338 compositions within a small numerical tolerance (Fig. S11). We selected a subset of higher
339  diversity unique solutions for experimental validation that represented all species. To determine
340 if the model could distinguish between low and high temporal variability behaviors, we included
341 three representative communities with predicted high temporal variability (i.e., high Euclidean
342  distances) (Methods).

343 Consistent with the model prediction, communities designed for low temporal variability
344  had significantly lower Euclidean distances between passages than communities designed for
345  high temporal variability (p=8e-6, unpaired t-test) (Fig. 4b). In addition, the model accurately
346  predicted several qualitative characteristics of the high temporal variability communities, including
347 the highest abundance species at each endpoint (Fig. 4c). The model forecasted that FP is
348 outcompeted (greater than 10-fold lower relative abundance in final passage than the initial
349 passage) in the two high-temporal variability communities containing FP (Fig. 4c). Notably, the
350 model also identified a low temporal variability subcommunity (Fig. 4d, BH-EL-FP) in which FP
351 persisted at a constant relative abundance over passages two through four. BL persisted at a
352  constant relative abundance across the last three passages when cultured with BU and CA (Fig.
353  4d, BU-BL-CA). By contrast, BL displayed low relative abundance in the first passage and high
354  relative abundance in later passages of the 10-member community training data (Fig. 3c, S9e).
355  The model predicted four sub-communities in which at least three species persisted at relatively
356 constant relative abundance for at least three passages (BH-EL-FP, BL-BU-CA, CA-EL-ER-PJ,
357 and BU-CA-EL). This demonstrates the gLV model can be used to design communities that

358 display species coexistence over longer timescales.
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359 The gLV model trained on monoculture and 10-member community data was moderately
360 predictive of the absolute species abundance in the experimentally characterized 2-4 member
361 communities (Pearson rho=0.56, P=9.6e-10, Fig. $12). The unexplained variance in the dataset
362 could be attributed to differences in species richness in the training (10-species) and test data (2-
363 4 species)®>®. In sum, these data demonstrate that the gLV model can guide the design of
364 communities that exploit inter-species interactions to support the persistence of lower fitness
365  species over longer timescales, as well as mitigate overgrowth of high fitness species. Therefore,
366 the gLV model informed by variation in inoculum densities of constituent community members of
367 afixed community size was useful in the prediction and design of community temporal behaviors.

368
369 DISCUSSION

370 We demonstrate that, despite their complexity, microbial communities are engineerable systems
371  that respond predictably to changes in media formulation and inoculum densities. We develop a
372  data-driven dynamic and statistical modeling framework for tuning these control inputs to optimize
373 the endpoint Shannon diversity of a synthetic human gut community. Using this approach, we
374  increased the Shannon diversity of a representative 10-member synthetic gut community from
375 53% to 91% of its maximum possible value (Fig. 3f). Our DoE and ecological modeling
376  approaches map control inputs to community composition without the need for characterizing
377  detailed biochemical mechanisms (e.g., specific metabolic pathways or metabolites mediating
378 inter-species interactions). As such, the workflow can be generalized to a wide range of
379 communities. Future work could examine effects of monoculture versus community production of
380 live microbial therapeutics on strain engraftment in the host. Since the ecology of the community
381 culture restricts species to their most favorable niches, and can even recapitulate in vivo functional
382  profiles, therapeutic communities produced via community culture could be better primed to
383  colonize the competitive gut environment than those produced in monoculture®®-8,

384 Our designed media and inoculum conditions yield similar community composition at 500-
385 fold volumetric scale up, suggesting that lab-scale results could translate to production. Though
386 community dynamics are complex, our culture strategy is simple (static, batch culture, no pH
387  control), thus reducing the number of key scale-up parameters. We note that we maintained
388 equivalent headspace gas composition and surface-to-volume ratio during scale up; future studies
389  could confirm whether these are important parameters for anaerobic community scale up. Overall,
390 this efficient, scalable blueprint for designing community assembly should help to alleviate the
391  production bottleneck that limits manufacturing of therapeutic communities at clinical, commercial,

392  and global health scales.
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393 In each stage, we exploit high-throughput, monoculture experiments to first understand
394 the “parts” of our ecosystem, and show that this information is useful for guiding community
395 design. We demonstrate that maximizing monoculture-diversity substantially increases
396 community diversity (Fig. 1h,i), and that major trends in community assembly can be explained
397 by constraining monoculture kinetic models with an upper limit on total growth (Fig. 2). Model-
398 guided prediction of community assembly from monoculture kinetics allowed us to achieve our
399 design objectives while limiting the number of community measurements. Due to the DNA
400 sequencing pipeline required to analyze species-level composition, community experiments are
401 laborious in comparison to their fully-automated monoculture counterparts. Monoculture-informed
402  prediction of a narrowed initial design space resulted in identification of a high diversity condition
403  within three design-test-learn cycles (Fig. 3h).

404 This ability to rationally inform community experiments with high-throughput monoculture
405 data should make our approach useful for larger communities, potentially even up to 100
406 members®. As species richness increases, the degree of metabolic similarity among species
407 would increase (i.e., metabolic redundancy), leading to potential challenges in identifying specific
408 nutrients that can tune the growth of individual species in the community. However, media design
409 variables could be selected to favor resources such as fibers, peptones, and mucins, which have
410  been shown to support high richness cultures from stool sample inocula®" . In addition, the ability
411 to control the endpoint abundance of each species as a function of its initial density may decrease
412  due to enhanced strength of ecological competition. In this case, our computational modeling and
413  optimization workflow could be modified to identify optimal strategies for partitioning a high
414  richness community into a minimal number of sub-communities that enable control of species via
415 media factors and inocula.

416 One limitation of our approach was that inoculum density was an insufficient control point
417  for BL, which was subjected to a disproportionate number of strong negative interactions in the
418 community (Fig 3c). Despite the robust growth of BL in monoculture (Fig. 2b) and a high inoculum
419 density (Fig. 3b), this species did not grow well in communities (Fig. 3c). To address this
420 limitation, future efforts could use dynamic modeling to leverage multiple inoculation timings as
421 an additional control point for community composition. Design of species-specific inoculation
422  timings would allow for precise manipulation of inter-species interactions over time. In the simplest
423  case, a species that does not grow well in communities due to negative interactions could be
424  given a “head start” by inoculating at an earlier timepoint. Further, a “temporary support

425 community” could be designed to boost the initial growth of a low fithess species prior to
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426  inoculating the remaining community members at a later timepoint. Similar approaches could be
427  used to control an organism that tends to overgrow.

428 As a proof of concept that inter-species interactions can be leveraged to design temporal
429  behaviors, we used a data-driven generalized Lotka-Volterra (gLV) model to guide the design of
430 communities with low variability of species composition over time (Fig. 4). We note that our
431 implementation of the gLV model describes batch culture growth (including stationary phase) with
432  non-equilibrium trajectories. Endpoint community composition of batch culture was predicted
433  quite accurately as a function of initial conditions by fitting these transient dynamics to
434  experimental data (Fig. S9b). By contrast, theoretical analyses of the gLV model tend to focus on
435 long-term behaviors (e.g. stable steady-states or limit cycles), to which many different initial
436  conditions converge®'. This nuance between our data-driven implementation and most ecological
437  analyses illustrates that in spite of the constrained long-term behaviors of the gLV model, it is
438  useful for designing specific community compositions as a function of initial conditions.

439 Defined microbial communities hold significant promise for many applications including
440  agriculture, biofuels, and medicine®>. We developed a general control strategy for complex
441  microbial communities and applied these strategies to address the challenge of manufacturing
442  defined human gut communities for therapeutic applications. Beyond therapeutic community
443  production, our method will be broadly useful for defined microbial community bioprocesses. For
444  example, in metabolic engineering applications wherein designed pathways are distributed
445  among distinct community members to exploit division-of-labor, our method could be applied to
446  tune community member proportions and thus optimize metabolite product yields®* 5. Eventually,
447  the ability to identify influential control parameters for steering microbial community composition
448  and functions could be used to modulate an unhealthy patient's microbiome towards a healthy
449  state. For instance, mirroring media component manipulation, changes in diet are well
450 documented to shape gut microbiome composition. It was also recently shown that dosage
451  strength (i.e. inoculum density) was a critical factor in the successful redesign of the first phase
452  three clinical trial of a donor-derived live microbial therapeutic for treating recurrent C. difficile
453  infection?"®*%5, Overall, initial species densities, environmental resources, and inter-species
454  interactions are key design parameters for engineering microbial community dynamics, from
455  community bioprocessing to potentially designing an ecological restoration of a dysbiotic gut
456  microbiome.

457

458
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459 METHODS

460

461  Strain maintenance, precultures, and growth media

462  The following methods are adapted Hromada 2021, Clark 2021 and Venturelli 201822866 Al
463  anaerobic culturing was carried out in a custom anaerobic chamber (Coy Laboratory Products,
464  Inc) with an atmosphere of 2.5 £ 0.5% H2, 15 + 1% CO2 and balance N2. All prepared media,
465  stock solutions, and materials were placed in the chamber at least overnight before use to
466  equilibrate with the chamber atmosphere. The strains used in this work were obtained from the
467  sources listed in Supplementary File 1 and permanent stocks of each were stored in 25% glycerol
468 at —80 °C. Batches of single-use glycerol stocks were produced for each strain by first growing a
469  culture from the permanent stock in anaerobic basal broth (ABB) media (HiMedia or Oxoid) to
470  stationary phase, mixing the culture in an equal volume of 50% glycerol, and aliquoting 400 uL
471 into Matrix Tubes (ThermoFisher) for storage at —80 °C. Quality control for each batch of single-
472  use glycerol stocks included (1) plating a sample of the aliquoted mixture onto LB media (Sigma-
473  Aldrich) for incubation at 37 °C in ambient air to detect aerobic contaminants and (2) next-
474  generation DNA sequencing of 16S rDNA isolated from pellets of the aliquoted mixture to verify
475  the identity of the organism (lllumina). For each experiment, precultures of each species were
476  prepared by thawing a single-use glycerol stock and combining the inoculation volume and media
477  listed in Supplementary File 1 to a total volume of 5 mL for stationary incubation at 37 °C.
478 Incubation times are also listed in Supplementary File 1. Prior to inoculating starter cultures, the
479  workspace and pipettes were cleaned with Spor-klenz (STERIS), and again with 70% ethanol
480 between strain inoculations. A clean Kim-wipe (Kimberly-Clark) was held above the workspace
481 to check for air currents from equipment fans that could lead to cross contaminations, and
482  equipment was turned off or rearranged as needed. Anaerobic work was conducted in a spatially
483 linear workflow from cleanest to least clean materials (e.g.) tips, clean reagents, cell containing
484  media, then trash, as ordered from dominant to non-dominant hand. Motions above open, sterile
485  containers is restricted to minimum necessary actions.

486

487  Genomic DNA extraction, DNA library preparation, sequencing, primer design, and data analysis
488 DNA extraction, library preparation, and sequencing were performed according to methods
489  described in Hromada 2021 and Clark 20212°%. In brief, cell pellets from about 150 uL of culture
490 were stored at -80C following experiments. Genomic DNA was extracted using a 96-well plate
491  adaption of the DNeasy protocol (Qiagen). Genomic DNA was normalized to 1 ng/uL in molecular

492  grade water, and stored at -20C. Dual-indexed primers for multiplexed amplicon sequencing of
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493  the v3-v4 region of the 16S gene were designed as described previously, and arrayed in 96-well,
494  skirted PCR plates (Thomas Scientific) using an acoustic liquid handling robot (Echo LabCyte).
495  Genomic DNA and PCR master mix were added to primer plates and amplified prior to sequencing
496  on an lllumina MiSeq platform.

497 Sequencing data were analyzed as described in Hromada 2021. In brief, basespace
498  Sequencing Hub’s FastQ Generation demultiplexed the indices and generated FastQ files. Paired
499  reads were merged using PEAR (Paired-End reAd mergeR) v0.9.0 (Zhang et al, 2014)%”. Reads
500 were mapped to a reference database of species used in this study, using the mothur v1.40.5,
501 and the Wang method (Wang et al, 2007; Schloss et al, 2009)®*%. Relative abundance was
502 calculated by dividing the read counts mapped to each organism by the total reads in the sample.
503  Absolute abundance was calculated by multiplying the relative abundance of an organism by the
504 ODG600 of the sample. Samples were excluded from further analysis if > 1% of the reads were
505 assigned to a species not expected to be in the community (indicating contamination).
506

507  Monoculture media screening experiment

508 The media screening experiment was designed to improve monoculture-diversity (equation 4) on
509 DM38, a chemically defined medium developed in our laboratory, and referenced as the
510 “baseline” medium in the text. Supplementary File 2 contains the medium and stock solution
511 recipes referenced in this section. A four-factor, two-level half factorial screening design with
512  appended center point condition was constructed in JMP 15 (SAS institute). “High” absolute
513  design levels for sugar mixture, amino acid mixture, and pH variables (these are key components
514 in DM38) were set at their respective DM38 concentrations. Yeast extract (sterile filtered, not
515 autoclaved) was included to support monoculture growth of F. prausntitzii, as keenly observed by
516 D’Hoe et al *'. “Low” design levels were set at 0 g/L for sugars, amino acids, and yeast extract,
517 and 5.7 for pH (according to generally reported ranges for the human large intestine’). Stock
518  solutions of sugars, amino acid mixture, and yeast extract were prepared at 20x v/v of their target
519  “high” concentrations, and sterile filtered. The nine media were arrayed according to the
520 experimental design in 2mL deep-well blocks (Nest), using a Tecan Evo liquid handling robot to
521  aliquot the appropriate volume of 20x stocks into 1.4x base medium. The final concentration was
522 brought to 1x using sterile water. The deep well blocks, containing ten sets of the media
523  experimental design, were inoculated from the ten precultures to a 600nm optical density value
524  of 0.01. Optical density was measured using 200 uL of sample in a Tecan F200 plate reader in
525  standard clear, flat bottom 96-well microplates (Grenier). Inoculation volumes were calculated as

526  Volume(noc) = Volumewen*0.01 OD / (Preculture OD). Inoculation was performed from a sterile
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trough with a multichannel pipette. Four 200 uL replicates were mixed and aliquoted to sterile,
clear, flat bottomed, 96-well microplates (Grenier), covered with a transparent seal (Breath EZ,
Diversified Biotech), and incubated at 37c in the Tecan Evo incubator. Automated OD600

measurements were recorded every two hours for about 60 hours with a Tecan F200 plate reader.

Modeling monoculture growth

Model-guided optimization of community Shannon diversity (equations 1,2) was performed by
modeling monoculture growth response (3) on various media. “Monoculture-diversity” (equations
4,5) was used as a proxy function for Shannon diversity, enabling a monoculture-based approach

for manipulating community Shannon diversity.
Species

Shannon diversity: — 2 XeriInXpry o (1)
i=1

n;n
1

X¢ri — fractional abundance of species "i" in a community

X;
Zspecies X, (2)

i=1 i

Fractional Abundance: Xg,; =

nen

X; — absolute abundance of species "i

dX X
Logistic differential equation: T U (1 - E) 3)

dX/dt — rate of population growth
U — specific growth rate parameter

K — carrying capacity (i.e.,steady — state population size)

Species
Monoculture-Diversity — 2 KerilnKer; o (4)
i=1

Kf, i — Normalized carrying capacity of species "i

K.
Normalized carrying capacity of species "i": K¢ ; = W (5)
; K;
j=1 J

Y. K; — Sum of logistic carrying capacities in a particular medium
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555

556

557  Monoculture timeseries growth data from the media screening experiment was fit with logistic
558 differential equations (equation 3), and the carrying capacity parameter was used as a readout of
559  growth response. Carrying capacity serves as a “smoothed,” time independent maximum growth
560 value. Smoothing is required because raw data may contain outlier values due to condensation
561 on the transparent plate seal or other technical variability. If computational resources or expertise
562 are limited, the growth response could also be taken as the maximum value of a smoothed
563 timeseries (e.g. after applying a running average filter). The baseline of the OD600 timeseries
564  data was computationally “blanked” (i.e. normalized) to the known inoculum density by subtracting
565 the difference between the time-zero measured value and known inoculum from the entire
566 timeseries. Each fitting was performed independently using bounded, nonlinear regression with
567 MATLAB’s “fmincon” function, which returns the logistic parameter set (i, K) that minimizes the
568 sum of squared errors between the model predictions and the experimental data. All timeseries
569 were truncated to 30 hours to remove death phases. Outlier detection was performed by
570  comparing the z-score of the mean OD600 across replicates, to omit replicates that did not grow.
571 Multivariate polynomial regression models (equation 6) were fit to predict each specie’s
572  carrying capacity parameter (growth response) as a function of the scaled media design matrix
573  (predictors).

574

575 Media Regression Models (MR) :

576 =" prEg 4N B 2+2 2 X2
=1 1=14=m=1+1

577 + 2 2 2 X3y XX (6)

=1 4=m=1+1é=n=m+1

578

579 K; — predicted carrying capacity of species "i"

580 BME- — main ef fects parameters

581 x; — predictors (media component variables)

582 lQ B quadratic main ef fects parameters

583 1% — interaction parameters, 2nd order

584 o X3 — interaction parameters, 3rd order

585


https://doi.org/10.1101/2022.03.14.484355
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.14.484355; this version posted March 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

586  We note that although the model is a multivariate polynomial function of the design variables, the
587  regression is linear with respect to the parameters, as the higher order predictors are treated as
588  “new” variables whose value is calculated prior to regression. The polynomial structure (equation
589  6) contained main effects (X1), quadratic main effects (X1?), and both second and third order
590 interaction terms (X1*Xzand X1*X2*X3). The double and triple sum terms in this equation represent
591 the upper triangular matrix of unique two-factor interaction parameters and three-dimensional
592  upper triangular matrix of third order interaction parameters (X1*X2=X2*Xs so only one of these
593  predictor terms should be included). The estimation of quadratic terms is contingent on the
594  inclusion of a center point condition in the otherwise two-level experimental design. Because the
595  models are data limited, elastic net regularization and nested cross validation were performed to
596 reduce overfitting. The elastic net and regularization coefficient hyperparameters were selected
597  using a “grid search” approach, and MATLAB’s “lasso” function. For each species, the 9-condition
598 dataset (9x16 predictor matrix and 9x1 growth response vector) was partitioned into all nine
599 possible combinations of eight conditions (rows) using MATLAB’s “crossvalind” function (first
600 partitioning). The “lasso” function is called with the cross-validation argument, wherein it internally
601  performs a second round of leave-one-out cross validation to identify the regularization and elastic
602 net coefficients (hyperparameters) that minimize the out-of-fold mean sum of squared errors for
603 the “internal” cross validation sets. Only the hyperparameters, but not the regression parameters,
604 are returned at this stage. The Lasso function is then called again without the cross-validation
605 arguments, receiving the previously identified hyperparameters as arguments to find a best fit
606 parameter set for the “first partitioning” of the original dataset. This is performed for each partition
607 of the original dataset, such that each regression model is an ensemble model with nine
608 parameter sets, each corresponding to one “leave-one-out” partitioning of the data. Each
609 parameter set has its own, independently identified hyperparameters, such that none of the
610 hyperparameters are biased by training on the entirety of the dataset. The models are validated
611 by making “out-of-fold predictions”, meaning using the parameters trained on each of the nine
612  partitions of eight datapoints to predict the one datapoint that is not contained in that partition.
613  When the models are called to make a new prediction (e.g. for the optimization script), the nine
614  predictions of the “ensemble” are averaged to a scalar value.

615

616  Media optimization

617 A constrained optimization problem was solved using MATLAB’s “fmincon” function to solve for
618 the concentration profile of sugar mixture, amino acid mixture, yeast extract, and pH that

619 maximized the monoculture-diversity (equations 6, 7, and 8).
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620
621 Objective function for media optimization:
Species
622 maximize | — 2 Efr,i In Efr.i (7)
i=1
623
624 Predicted normalized carrying capacity of species i :
625 Efr,i = ZSIJEI<TLESR (8)
j=1 j
626

627  The upper and lower bound arguments to the “fmincon” function are set such to constrain the
628  solution within the original experimental design levels (sugars between 0 and 9.45 g/L, yeast
629  extract between 0 and 2 g/L, amino acids between 0 and 10.7 g/L, and pH between 5.7 and 6.7).
630  The function is initialized with a random guess of the sugars, amino acids, yeast extract, and pH
631 concentrations. The “objective function” references the received concentration inputs and calls
632 the linear regression models to make a prediction of each specie’s carrying capacity from this set
633  of media component concentrations. From these ten carrying capacity predictions, the predicted
634  monoculture-diversity is calculated. The “fmincon” function then iteratively solves for the single
635 concentration of the resources that maximizes the predicted monoculture diversity, using the
636  default interior point algorithm.

637

638  Monoculture growth kinetics over a range of inoculum densities

639  Deep well blocks (96-well, 2mL, Nest) were filled with 1000uL of the optimized medium. Species
640 were precultured and inoculated into each of the first ten wells of the first row of the block at a
641  density of .01 OD600 as previously described. A multichannel pipet was used to mix and perform
642  six 10-fold volume/volume serial dilutions of the first row down the rows of the plate. Three
643  replicate 96-well microtiter plates with 200uL in each well were aliquoted from the deep well block
644  and covered with a transparent seal, breathable seal. Plates were incubated and timeseries
645 ODG600 was recorded as previously described.

646 Timeseries data from inoculum conditions that did not result in reproducible growth were
647  omitted from the dataset, and data was normalized as previously described. The low inoculum
648  densities resulted in growth curves that “appeared” to have a long lag phase, but were much more
649 likely to be in exponential growth phase at a biomass density that was far below the limit of

650 detection of the plate reader. The exponential and stationary phase data from each specie’s set
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651  growth curves was isolated as values greater than the assumed 0.05 lower limit of detection for
652 the plate reader. The true limit of detection of the reader is .001, but data below ~.05 has high
653  signal-to-noise ratios for automated microbial growth. As such, the “measured” initial conditions
654 were omitted from the dataset, as they generally reflected the low limit of detection of the
655 platereader. Nonlinear regression was used to solve for the single logistic parameter set (u, K)
656 and the set of initial conditions (one for each growth curve in the set) that minimized the sum of
657  squared errors between the model predictions and the exponential phase data. A vector of two
658 logistic parameters and one-to-six initial conditions (depending on how many dilutions grew
659  reproducibly) was passed as variables to the “fmincon” solver. The objective function then parsed
660 the vector into initial conditions and ODE parameters, then called an ODE solver to generate
661  model predictions. The value of the objective function is the sum of mean squared errors between
662 the model predictions and the exponential phase data for all growth curves in the set. The
663  “fmincon” function returns the vector of parameters and initial conditions that minimize the
664  objective function. The computationally fitted initial conditions were plotted in log-log space
665 against the experimental initial conditions, and a first order linear regression was performed to
666 map the log transformed experimental initial conditions to the log transformed, computationally
667 fitted initial conditions, using sets of values that fell in the linear range.

668

669  Design of the first community inoculum density experiment (DTL1)

670 The experimental design chosen for the first inoculum screening was a nine-factor, three-level
671  definitive screening design’’. These designs have three levels for each variable, improving
672  estimation of the quadratic effects that are likely important for approximating the endpoint of
673  exponential microbial growth with a polynomial function. The scaled design matrix was
674  constructed in JMP 15. Inoculum concentrations were assigned to the scaled experimental
675 design levels using solutions from the constrained system of logistic equations model. The
676  constrained system of logistic equations was simulated in MATLAB, using the growth rate and
677  carrying capacity parameters as fitted to monoculture data (described in the previous section).
678

679 Constrained System of Logistic Equations:
680 Wi _ roxy = (1 Xi) PRS0 DA
dt - f - lJ'l Kl Kcomm L ( )
~ tF
681 and: Xp; = f(X)dt
to

682
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683 dX;/dt —rate of change of species "i"

684 U; — specific growth rate

685 K; — logistic carrying capacity

686 K omm — community carrying capacity (total growth constraint)
687 )?F,i — predicted endpoint abundance of species "i"

688

689  The community carrying capacity parameter Keomm was taken as the maximum ODG600 of a full
690 community culture inoculated from an even inoculum (all species inoculated to .001 OD600). To
691 find the set of initial conditions that maximized the Shannon diversity of the CSLE model at steady
692 state, a constrained optimization problem was solved with MATLAB'’s “fmincon” function. The
693  variables optimized by the “fmincon” solver consisted of the set of all species’ initial conditions.
694 The objective function internally maps these initial conditions to the computational space
695  equivalent (using the linear regression functions previously described), and simulates community
696  growth by calling a CSLE ODE function. The “fmincon” solver solves for the set of initial conditions
697 that maximize the Shannon diversity (equation 1) of the steady state population abundances using

698 the default interior point algorithm.

699
700 Objective Function Maximizing Shannon diversity of CSLE prediction
Species
701 maximize | — 2 )?F,fr,i In )?F,fr,i (10)
i=1
702 Xg fri — predicted endpoint fractional abundance of species "i" by the CSLE model
703

704 The initial condition solutions are constrained by lower bounds of the experimental inoculum
705  conditions that did not grow, such that the solver does not return initial condition that are too low
706 to use in practice (an issue that can arise when modeling populations as continuous numerical
707  variables). The total inoculum is constrained using a linear inequality argument such that the sum
708  of all initial conditions did not exceed 0.02 (F. prausnitzii was fixed at 0.01; the sum of the other
709 nine species was constrained to below 0.01). The high inoculum level for each species was
710 solved for by fixing all other species’ initial conditions at the maximum diversity solution (center
711  point), then finding the initial condition for that species which yielded a 3.3-fold higher steady state
712  abundance than the center point condition. Specifically, “fmincon” was called to minimize the
713 squared error between the simulation and 3.3 times the steady state abundance of that specie’s

714  maximum diversity solution as a function of that species initial condition. This was iteratively
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715  performed to find all species’ “high” initial condition levels for the experimental design. The low
716 levels were set symmetrically to the “high” levels in log space, (e.g. the center point was multiplied
717  and divided by the same x-fold factor), such that a CSLE simulation of the experimental design
718  conditions predicted maximum diversity at the center point, and an approximate a 10-fold range
719 of steady state abundances of each species occurred between “high” and “low” design levels.
720  This approach accounts for the fact that a species with a very fast exponential growth rate will
721  likely need a much larger perturbation (in comparison to a species with a low exponential growth
722  rate) to its initial condition to achieve a similar change in the endpoint growth.

723

724  Community inoculum density experiments

725  Experimental designs were arrayed with a Tecan Evoware liquid handling robot. Before
726  inoculation, precultures were centrifuged at 4000 rpm, 7.5 minutes in a Sorvall ST 16R centrifuge
727  (Thermo Scientific). Anaerobically, the supernatant was decanted, the pellet was dry-vortexed,
728  and resuspended in fresh optimized medium using a serological pipette (Drummond). Two 24-
729  well blocks were used to array various densities of the precultures. The top row contained a high-
730 density preculture, the second row contained a mid-density preculture, and the third row contained
731  alow-density preculture. The concentration of the high-density preculture well for each species
732 was calculated by finding the number of ten-fold dilutions of the measured preculture OD which
733 resulted in the smallest inoculation volume greater than 7 uL. In other words, we calculated the
734  lowest volume that can be accurately pipetted by the robot to inoculate the deep well block to its
735  target “high” experimental level. For example, if species A grew to a preculture OD of .2 and was
736  to be inoculated to a target “high” level of .0001 in a volume of 700 uL, then the high-density
737  preculture well would contain a hundred-fold dilution of the preculture (.002 OD600), such that
738  “high” experimental condition would be inoculated with V = .0001 OD * 700 uL / (.002) = 35 uL.
739  This strategy was implemented because any volume less than 7 uL could not be pipetted
740  accurately, while larger inoculum volumes would quickly accumulate and result in a scenario
741  where the sum of all species’ inoculum volumes exceeds the target culture volume. The “mid”
742  and “low” preculture wells were filled by diluting the “high” preculture well by the same x-fold ratio
743 of the high to center point design levels (and equivalently the ratio between the center point and
744  low levels). Two serial dilutions at this ratio were performed from high to mid, and mid to low
745  preculture wells for each species, such that each specie’s high, center point, and low design levels
746  were inoculated with a constant volume from the high, mid, and low preculture wells, respectively.
747 A 200 uL aliquot of the inoculated deep well block was transferred to a 200 uL microplate, covered

748  with a breathable seal, and incubated in the Tecan F200 plater reader at 37C. Labware and
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749  culture conditions were consistent between monospecies and coculture, as it should be noted
750 that differences in labware geometries, particularly surface to volume ratios, can affect anaerobic
751  microbial growth dynamics. Optical density measurements were recorded at 28 +/- 1 hour in the
752  platereader. 150 uL of the endpoint culture was transferred to a sterile 1mL deep well block and
753  centrifuged at 2400xg for 10 minutes. The supernatant was removed, and the pellet was stored
754  at-80c. 20 uL of the supernatant was used to measure pH using a spectrophotometric phenol
755  red assay, as described in Clark 2021%.

756

757  Design of subsequent inoculum experiments

758 Linear regression was used to fit polynomial models (equation 11) to predict each specie’s
759  community abundance from the inoculum design matrix, using the nested cross validation

760  approach detailed in the media design methods section.

761

762 Inoculum Regression Models (IR) :
10 10 9 10

763 Rei= ) BMEXo+ ) BREXE Y D BEXom (D
1=1 1=1 1=14=m=1+1

764

765 )?F,i — predicted endpoint abundance of species "i" in community culture

766 Xy — predictors (designed inoculum values)

767 M-E- — main ef fects parameters

768 ﬁlQ B quadratic main ef fects parameters

769 X2 — interaction parameters

770

771

772 The inoculum design matrix was log10 transformed to scale the values prior to fitting. The models
773  trained on cycles 1+2 community data were evaluated on withheld test data (5 of 59 total
774  conditions) to demonstrate predictivity of the approach (Fig 3B). Replicates were averaged prior
775  tofitting to avoid biasing test/validation data with conditions contained in training data. Validation
776  predictions and Pearson correlation coefficients for both cycles’ models are shown in
777  supplemental materials. Models that were deemed predictive were used in a multi-objective
778  optimization problem (equation 12, details in following paragraph) to predict an updated center
779  point for the new experimental design. Any desired target composition (not only even endpoint,
780 i.e. maximum diversity) can be designed with this approach by updating this target vector with the

781  desired endpoint abundances. Species whose models were not deemed predictive were adjusted
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782  using a rational “frameshift” strategy (a graphical representation is provided in supplemental
783  figures). The “frameshift” involves selection of new design level absolute setpoints as follows: if
784  a species overgrew (saturated response) in the previous experiment, the new center point level
785 is set at the previous low level. If a species undergrew (non-measurable or very low growth in
786  comparison to other species), its updated center point inoculum level is set at the previous “high”
787 level. These new center point levels were thus equivalent to the extrema of the previous design
788  space, and could be used as inputs to the regression models (without forcing the models to
789  extrapolate beyond the bounds of training data). We note that the DTL process could probably
790  be carried out using only the “frameshift” strategy to approach a design goal. The magnitude of
791 the levels (x-fold of center point) were maintained between cycles one and two, unless the total
792  range between high and low exceeded two orders of magnitude, in which case it was constrained
793  to two orders of magnitude. In cycle three, the experimental design was modified to a twelve-run
794  Placket-Burman screening with center point, with levels set at two-fold above and below center
795 point. This adjustment of the levels initially informed by the CSLE model (cycle 1 levels) is a
796  qualitative decision that reflects the purpose of the designs. Cycle one had large magnitude levels
797  because it was meant to explore a large design space. Cycle two levels were constrained to two
798  orders of magnitude or less to balance searching the design space with the probability of finding
799 a high diversity condition. Cycle three levels were constrained to only two-fold because the
800 purpose of the design was to demonstrate the robustness of a high confidence prediction to small
801 variations, rather than to explore the design space and gather data for further model training.
802 A constrained multi-objective optimization problem was solved to minimize the error
803  between target abundances and regression model predictions. This objective function is a more
804  strict definition of maximizing Shannon diversity at a particular total species abundance, and was
805 chosen because maximizing the Shannon diversity can return very low total growth solutions.
806  Additionally, it is also a more flexible approach, as it allows the user to define an exact target
807 community composition. We targeted an even endpoint abundance for each organism of
808  magnitude (average community OD) / (# of species), where the average community OD was the
809 average endpoint OD across all the conditions of the previous experiment.

810

811 Objective Function for inoculum optimization:
species R P
812 minimize 2 (XTarg,i - XF,l-) (12)
i=1
813 Xrarg,; — target endpoint absolute abundance of species "i"(set to even abundances

814 in this work to maximize diversity)
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815

816  Passaging experiments

817 A serial subculture is performed by mixing well and diluting 20 uL of the endpoint community
818  culture into 500 uL of fresh medium (25-fold v/v). The new culture is then aliquoted (200 uL) into
819 a microplate and incubated as previously described. This process was performed three times for
820 the first inoculum design (DLT cycle 1) and once for DTL cycle 2. The data is available in
821  supplemental materials.

822

823  Generalized Lotka-Volterra model training and validation

824  The parameters of a generalized Lotka-Volterra (gLV) model were fit to monoculture timeseries

825 data and 10-member community initial and stationary phase data.

826
827 generalized Lotka-Volterra model:
n
dX;
828 i ui+2ai,-xj X, (13)
j=1
829 dX;/dt — rate of change of species "i"
830 U; — specific growth rate
831 a;; — intra-species interaction paramter (note,a; = —;/K;)
832 a;ji=j — inter-species interaction terms
833
834

835 The training data additionally included three passages of the first inoculum screening and one
836  passage of the third, passaging method is described in the previous paragraph. The passages
837 were treated as independent experiments with initial conditions calculated from the previous
838 culture’s endpoint abundances divided by the 25 (corresponding to the volumetric dilution
839 performed to inoculate). The gLV model was fit to experimental data using MATLAB’s “fmincon”
840  solver to minimize a cost function as a function of the model parameter values. The cost function
841 consisted of the sum of squared errors between the model predictions and data, with an L1
842  regularization penalty to minimize overfitting, as previously described®. The upper bounds for
843  growth rate terms y;, self interaction terms a;;, and interspecies interaction terms a;; ;.. ;, were 3,
844 10, and 0, respectively. The lower bounds for these quantities were 0, -10, and -10, respectively.
845  Self-interaction terms must be non-positive and growth rate terms must be non-negative to avoid

846  divergence and maintain biological meaning. The “MaxFunctionEvaluation” and “Maxlterations”
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847  arguments for “fmincon” were both set to “Inf’ via the “optimoptions” function to allow the solver
848  sufficient time to converge. The solver was initialized with the monoculture growth rates,
849  monoculture derived self-interaction terms, and zeros as respective initial guesses for the gLV
850 growth rates, gLV self-interaction terms, and gLV interspecies interaction terms. Zero is a logical
851 initial guess for unknown parameters subject to L1 regularization, which pushes poorly
852  constrained parameters towards zero. The community data was randomly partitioned into test
853 and training+validation datasets consisting of 10% and 90% of the data, respectively, using
854  MATLAB'’s “randsample” function. Monoculture data was not included in validation or test sets
855 because it is collected at high-resolution time intervals, and thus not as strong of a challenge to
856 the model’s predictivity as community data. The regularization coefficient was found by scanning
857 alogarithmic range of values and identifying the value that corresponded to the lowest averaged
858 sum of squared errors across out-of-fold predictions (5-fold cross validation, training+validation
859 data partitioned using MATLAB’s “crossvalind” function). A best-fit parameter set was then re-
860 fitted to the training+validation dataset using the identified regularization coefficient. The model
861  was evaluated for predictivity on the randomly withheld test data. The parameter value heatmap,
862  histogram and, predicted vs. measured scatter plot are shown in supplemental materials Fig S10.
863

864  Design of temporal variability in subcommunities

865  The best-fit gLV model was used to design communities with low temporal variability over the
866  course of four simulated passages. For all 967 possible 3-to-9-member subcommunities (i.e. sum
867 of 10 choose k for k=3 to 9), a constrained optimization problem was solved to minimize an
868  objective function as a function of the initial conditions of the species present in the subcommunity.
869

n 1/2
870 EuclideanDistance: ( 2 (Xp‘l- — X(p_l),i)z ) (14)
i
871 X, — fractional abundance of species "i" at (simulated) stationary phase of passage "p"
872
4
873  maximize M (15)
p=2EUp
874 Sd,, — Shannon diversity at (simulated) stationary phase of passage p
875 Eu, — Euclidean distance between (simulated)stationary phase compositions
876 of passages "p" and "p — 1"
877

878
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879  Species absence in subcommunities were simulated by forcing both upper and lower bounds of
880 the omitted species’ population sizes to zero. Initial condition solutions were bounded between
881 zero and 0.01 simulated OD600 for species present in a subcommunity. The endpoint
882  compositions of resulting from all initial condition solutions were sorted into unique results using
883  MATLAB'’s “uniquetol” function (within a numerical tolerance of 0.05 for each species). Nine of
884  these communities were chosen for experimental validation on the qualitative criteria of having all
885  species present in the set of subcommunities. These nine communities were of size 2-4
886 members. As a comparison, we designed four-member high temporal variability subcommunities
887 by maximizing the product, rather than the ratio, of the diversity and distance terms in equation
888 15. The nine low temporal variability subcommunities and three high temporal subcommunities
889 were inoculated at densities according to the computational predictions. These inoculum
890 conditions spanned orders of magnitude with no symmetry between conditions. The following
891 strategy was used to inoculate these conditions: an “inoculum” 96-well 2mL deep well block was
892  prepared in which each species’ preculture material was diluted to 0.1 in row one. Tenfold serial
893  dilutions were then performed such that preculture material was available for pipetting at a range
894  of.1t010°0D600. The liquid handling robot was assigned to aspirate from whichever well would
895 resultin the smallest aspiration volume greater than 7 uL, for each species in each condition. The
896 culture was incubated, passaged, and sampled as previously described.

897

898 Data Exclusion

899 The following replicates were omitted from NGS analysis due to cross-contamination of >1% of
900 total reads and/or low total sequencing reads <10% of average: Fig S14d.i passage 2 replicate 1
901 and passage 4 replicate 3, Fig S14d.vi replicate 2 passages 2-4. The following growth curve
902 replicates were omitted from logistic analysis in Fig. 1b due to lack of growth or suspected
903 contamination, using a z-score threshold of 1.5: BH M5 r1, BH M8 r4, BL M9 r4, BU M3 r1, CA
904 M1r1,ELM1r1,ERM1r1,ERM2r1, ERM3 11, FP M3 r4, FP M6 r1, and PC M8 r4. In total, 12
905 of the 360 replicates across 10 species, 9 media, and 4 replicates were omitted, no more than

906 one replicate was omitted per species/media condition.
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907 Data Availability

908 The processed sequencing data and raw optical density data for all experiments are deposited in
909 a Github Repository (https://github.com/bryceconnors/DesignOfCommunityDiversity), which will
910 be made public upon publication. Raw DNA sequencing data will be made available via Zenodo

911  prior to publication.

912
913 Code Availability
914 Code will be available from GitHub upon publication

915  (https://github.com/bryceconnors/DesignOfCommunityDiversity). Data analysis scripts utilize
916 MATLAB R2020a. Python 3 is used for processing sequencing data. In brief, the data and
917 analyses are organized into sub-folders corresponding to each experiment, each of which
918 contains a ReadMe file. Analysis scripts are contained in "modeling" sub-folders, and load raw or
919 processed data from the "rawData" sub-folders. The "02_ReadMe" file contains instructions for
920 navigating to sections of scripts that produce the plots in the figure panels.

921
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