

Model-guided design of the diversity of a synthetic human gut community

Bryce M. Connors^{1,2}, Sarah Ertmer^{1,2}, Ryan L. Clark¹, Jaron Thompson^{1,2}, Brian F. Pfleger²,
Ophelia S. Venturelli^{1,2,3*}

¹Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706

²Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison,
53706

³Department of Bacteriology, University of Wisconsin-Madison, Madison WI 53706

*To whom correspondence should be addressed: venturelli@wisc.edu

1 ABSTRACT

2 Microbial communities have tremendous potential as therapeutics. However, a major bottleneck
3 is manufacturing high-diversity microbial communities with desired species compositions. We
4 develop a two-stage, model-guided framework to produce microbial communities with target
5 species compositions. We apply this method to optimize the diversity of a synthetic human gut
6 community. The first stage exploits media components to enable uniform growth responses of
7 individual species and the second stage uses a design-test-learn cycle with initial species
8 abundance as a control point to manipulate community composition. Our designed culture
9 conditions yield 91% of the maximum possible diversity. Leveraging these data, we construct a
10 dynamic ecological model to guide the design of lower-order communities with desired temporal
11 properties over a longer timescale. In sum, a deeper understanding of how microbial community
12 assembly responds to changes in environmental factors, initial species abundances, and inter-
13 species interactions can enable the predictable design of community dynamics.
14

15 INTRODUCTION

16 The potential of microbial communities as human therapeutics is evidenced by the remarkable
17 efficacy of fecal microbiota transplantation (FMT) in treating recurrent *C. difficile* infection¹. This
18 strategy of modifying a patient's dysbiotic microbiome with live, therapeutic organisms ("bugs-as-
19 drugs") holds significant promise for treating an ever-lengthening list of microbiome associated
20 health conditions². However, FMT also poses the risk of pathogen transmission and other adverse
21 health outcomes^{3–5}. Further difficulties with this procedure include development of regulatory
22 standards, definition of a precise mechanism of action, and scalability of donor material supply
23 chain^{6,7}. A promising alternative is the use of defined microbial community therapeutics⁸. The
24 beneficial properties of these well-characterized mixtures of isolates could be optimized while
25 avoiding the drawbacks of FMT^{9–11}.

26 A key challenge towards this goal is the scalable production of defined, therapeutic
27 communities that span the phylogenetic and functional diversity of the healthy adult microbiome¹².
28 Most of the commercially successful "probiotics" that are commonly recommended by physicians
29 have gained traction not because of conclusive clinical indications, but rather because they are
30 relatively easy to produce^{13,14}. "Probiotics" tend to be oxygen-tolerant anaerobes like *Lactobacilli*
31 and *Bifidobacterium*, while the healthy adult microbiome tends to be dominated by fastidious,
32 oxygen-sensitive anaerobes such as *Bacteroides*, *Prevotella*, *Clostridiaceae*, *Ruminococcaceae*,
33 and *Lachnospiraceae*¹⁵. "Probiotics" have even been shown to impair post-antibiotic microbiome
34 recovery¹⁶. The challenge of producing therapeutic communities is a barrier to more than just
35 commercial manufacturing; it slows scientific progress by limiting pilot-scale drug supply to clinical
36 trials and precludes low-cost, global health applications^{13,17,18}. A major contribution to this
37 production challenge is the current strain culturing process, in which the constituent organisms of
38 the community are grown as separate cultures, then subsequently mixed to a desired species

39 composition¹⁸. This process is complicated, costly, and scales poorly for communities with large
40 numbers of organisms¹⁸. Therefore, new methods to produce microbial communities with desired
41 species compositions could alleviate this manufacturing bottleneck.

42 Developing model-guided approaches to predict community growth as a function of
43 specific control inputs would greatly enhance our ability to manipulate community composition
44 towards a desired state¹⁹. Design of experiments with statistical modeling (DoE) has been
45 increasingly used to study and engineer biological systems. For example, DoE has been used to
46 explore regulatory sequence space for modulating protein translation and for tuning enzyme
47 expression to optimize production of a target metabolite^{20–22}. In addition, DoE was used to design
48 chemically defined media by optimizing microbial growth as a function of various media
49 components^{23,24}. Statistical modeling, an integral part of the DoE workflow, has been applied to
50 predict microbial community composition as a function of dietary inputs, though it has been more
51 commonly used to predict a given community-level function from species abundance^{25–27}.
52 Dynamic ecological models, while generally lacking abiotic control points like resources, have
53 been shown to be predictive of microbial community assembly in a particular media
54 environment^{28,29}. These studies have demonstrated that inter-species interactions and initial
55 species abundances strongly affect transient states of community assembly, suggesting that
56 these parameters could be used to manipulate community dynamics.

57 We develop a two-stage, model-guided approach for systematically tuning key media
58 components and initial species densities to optimize the diversity of a synthetic human gut
59 community. Using statistical modeling, we design a new culture medium that yields a more
60 uniform distribution of endpoint abundances of the monocultures. This monoculture-based
61 optimization procedure improves community diversity. Then, in communities cultured on the new
62 medium, we use a design-test-learn cycle to modulate individual species' initial population
63 densities (i.e., inocula) to further optimize community diversity. In both stages, a substantial
64 degree of community composition (a systems-level property) can be forecasted as the composite
65 behavior of constituent monocultures (parts-level properties)³⁰. Finally, we use our data to build a
66 dynamic ecological model that captures inter-species interactions and use this model to guide the
67 design of communities with distinct classes of dynamic behaviors. In sum, we demonstrate that
68 model-guided design of experiments can be combined with high-throughput species abundance
69 measurements to steer community composition towards desired states.

70

71 **Manipulating media components to enhance community Shannon diversity**

72 The diversity of a donor's microbiota has been identified as a major factor determining clinical
73 response during the use of FMT to treat inflammatory bowel disease^{31,32}. Since diverse, defined
74 communities are useful therapeutics, we aimed to maximize the Shannon diversity (Methods,
75 equation 1) of a synthetic human gut community^{10,11}. Shannon diversity is an ecological metric
76 used to characterize both the number of species in a community and the evenness of their
77 population sizes³³. We designed a representative synthetic 10-member community that spans the
78 phylogenetic and metabolic diversity of the human gut microbiome (**Fig. 1a**). This community
79 consisted of *Blautia hydrogenotrophica* (BH), *Bifidobacterium longum* (BL), *Bacteroides uniformis*
80 (BU), *Collinsella aerofaciens* (CA), *Dorea longicatena* (DL), *Eggerthella lenta* (EL), *Eubacterium*
81 *rectale* (ER), *Faecalibacterium prausnitzii* (FP), *Prevotella copri* (PC), and *Parabacteroides*
82 *johsonii* (PJ). Several of these species, including FP, have been shown to be critical to the
83 recovery of a healthy microbiome after childhood malnutrition and thus hold promise as bacterial
84 therapeutics for global health applications^{34,35}.

85 We characterized the growth of individual species (monocultures) in a baseline defined
86 medium that can support the growth of diverse human gut species (Methods, Supplemental Data
87 1)²⁵. The monocultures displayed a wide range of growth rates and population sizes at steady-
88 state (i.e. carrying capacities) (**Fig. S1a**, medium 7), suggesting that the species with low
89 monoculture fitness may be outcompeted in the community. Human gut anaerobes have diverse
90 metabolic strategies^{36,37}. Therefore, we exploited the concentrations of key media components to
91 manipulate monoculture growth responses^{36,38}. Sugars and amino acids represented the main
92 fermentable substrates, consistent with their key role in the mammalian gut³⁹. Likewise, pH is a
93 major environmental factor, and can distinctly modify bacterial growth⁴⁰. In addition, we selected
94 yeast extract since it consists of a complex digest containing vitamins, peptides, and other
95 resources, and supports the growth of FP⁴¹. We used statistical design of experiments (DoE) to
96 identify an optimal concentration profile of these components by manipulating four key variables:
97 (1) a mixture of three sugars, (2) a defined mixture of amino acids, (3) yeast extract, and (4) pH.
98 The "DoE" workflow involves (1) identification of (independent) variables and (dependent)
99 responses of the system, (2) construction of an experimental design matrix of combinations of
100 levels of each variable that satisfies a designated optimality criterion, (3) experimental
101 implementation, (4) statistical modeling of the experimental data, and (5) use of optimization
102 techniques to determine the values of the variables that are predicted to yield a desired system
103 response.

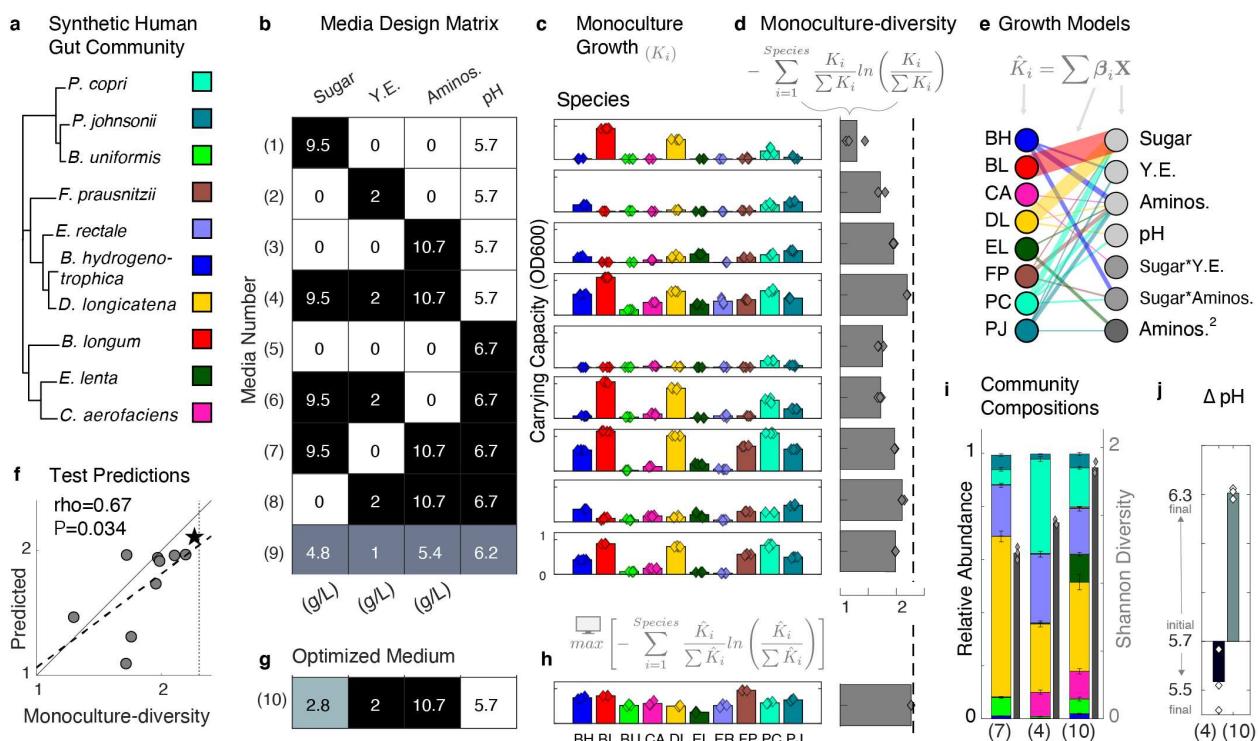


Figure 1. Model-guided design of media composition to enhance community Shannon diversity. **a** Phylogenetic tree of the 10-member synthetic human gut community: Bacteroidetes (upper branch), Firmicutes (middle branch), and Actinobacteria (lower branch). Phylogenetic analysis was performed using a concatenated alignment of 37 single-copy marker genes in Phylosoft⁴². **b** Media factor experimental design that varies the concentration of a sugar mixture (glucose, arabinose, and maltose), yeast extract (Y.E.), defined amino acid mixture (Aminos.), and pH in a common base medium (Methods). Shading indicates design levels: “high” (black), “intermediate” (gray), and “low” (white), with concentration values labeled in units of g/L or pH. **c** Bar plots of the steady-state abundance (carrying capacity, K_i) of each species determined by fitting a logistic differential equation model to the time-series measurements of absorbance at 600 nm (OD600) in each media condition (Methods, equation 3, **Fig. S1**). Different colors denote species shown in g. Bar height denotes the mean carrying capacity and data points denote biological replicates (n=4 with outlier detection, Methods). **c** Bar plots of “monoculture-diversity” (Methods, equation 4,5) based on the mean carrying capacities for each medium (Methods). Data points denote monoculture-diversities calculated from each biological replicate. Dashed line indicates maximum possible monoculture-diversity for ten species. **e** Bipartite network representation of linear regression growth models (MR, Table S1), where edge thickness is scaled by mean parameter value across cross validated parameter sets. Models predict the carrying capacity of each species (\hat{K}_i) as a function of media component concentrations (\mathbf{X}) (Methods, equation 6), and as such, the parameters (β_i) represent the inferred growth effect of a media component on a particular species. Left and right nodes denote species and media components, respectively. Light gray nodes denote main effects, medium gray nodes denote interactions, and dark gray nodes denote quadratic main effects. Parameters with mean values of less than 0.05 are not shown. **f** Scatter plot of monoculture diversity calculated from fitted carrying capacities (x-axis) vs. monoculture-diversity calculated from media regression model validation/test predictions (“predicted”, y-axis, Methods). Pearson correlation (ρ) and p-value (P) are indicated. Star indicates optimized medium. **g** Heatmap of media component concentrations that maximized monoculture-diversity (Methods, equation 7, Methods). Color scale is according to (a). **h** Bar plot of the inferred carrying capacities based on the logistic model of each species on the optimized medium (**Fig. S1b**) (f). **i** Stacked bar plot (left bars) of community compositions from the even inoculum proportion in the baseline medium (7), the highest monoculture-diversity screened medium (4), and the optimized medium (10). Bar height indicates mean of 3 biological replicates, error bars indicate 1 s.d., and all replicates are shown in Fig. S14. Shannon diversity of mean community composition (n=3 biological replicates, Methods, equation 1) is indicated as gray solid bars (right bars). Shannon diversities as calculated from each set of biological replicates are overlaid as diamonds. **j** Δ pH

104 **j** Bar plot of the change in media pH for community cultures in the best screened (4) and optimized medium (10). Bar height indicates mean of biological replicates (diamonds, n=3).

105 We use this workflow to maximize the similarity between steady-state population sizes (i.e. 106 carrying capacities) of the monocultures as a function of media component concentrations, while 107 also supporting sufficient growth (**Fig. 1b**, Methods).⁴³

108 We performed time-series measurements of optical density at 600 nm (OD600) for each 109 monoculture in each media condition (**Fig. 1b**) and fit a logistic growth model (LM, **Table S1**) to 110 these data (**Fig. S1a**). The carrying capacity parameter (K_i) of this model indicates population 111 size at steady-state (**Fig. 1c**). To quantify the similarity among the growth responses of individual 112 species as a function of media components, we determined the Shannon diversity of the 113 normalized carrying capacities in a particular medium. Normalization was performed by dividing 114 by the sum of the inferred carrying capacities in a particular medium, mirroring how Shannon 115 diversity is calculated from community absolute abundance data (Methods, equation 4). This 116 quantity, hereafter referred to as “monoculture-diversity,” varied widely as a function of media 117 composition (**Fig. 1d**).

118 Although we identified a medium that enabled high monoculture-diversity in the screening 119 experiment (**Fig. 1d**, medium 4), we used model-guided optimization for further improvement. We 120 fit linear regression models (MR, **Table S1**) with quadratic and interaction terms to predict the 121 carrying capacity of each species from the concentrations of the media component variables (**Fig.** 122 **1e**, Methods, equation 6). The media regression model parameters provide an interpretable 123 relationship between the concentration of a given media component and its effect on the growth 124 of a given organism. For instance, the main effects regression parameter corresponding to 125 “sugars” was large for the BL and DL growth models, consistent with their substantial growth 126 improvement in the presence of the sugar mixture (**Figs. 1b,c,e, S2b,c**). Interaction parameters 127 in the regression models captured more subtle trends, as these terms indicate a specific 128 combination of independent variables that results in a distinct effect on the measured response. 129 For example, BH had a substantial growth improvement in media containing both amino acids 130 and sugars (**Fig. 1b,c**). The large magnitude of this interaction parameter for BH suggested that 131 the simultaneous presence of amino acids and sugars enhanced growth more than the sum of 132 their individual contributions alone (**Figs. 1e, S2a**).

133 To reduce overfitting and biasing of hyperparameters, we implemented elastic net 134 regularization with nested leave-one-out cross validation (Methods). Goodness of fit was high for 135 all species, while validation predictions on the out-of-fold measurements ranged in accuracy (**Fig.** 136 **S3a**). Despite the sparse sampling of the design space using the DoE approach (**Fig. S4**), the

137 models were predictive of an aggregate property (monoculture-diversity) on new data, even
138 though they were variably predictive of the constituent species (**Fig. 1f**, Pearson rho=0.67, P =
139 0.034).

140 An optimization procedure (Methods, equation 7) identified a profile of media factor
141 concentrations that maximized the predicted monoculture-diversity (Methods). The predicted
142 concentrations were similar to medium 4, but contained 3-fold less sugar (**Fig. 1b,g**). To test this
143 prediction, individual species were grown in the optimized medium. The monoculture-diversity for
144 the optimized medium was close to the maximum possible value, consistent with the model
145 prediction (**Fig. 1f,g**).

146 To determine if monoculture-diversity could inform the Shannon diversity of the
147 community, we cultured the 10-member community from even initial species proportions in the
148 baseline medium 7, best screened medium 4, and optimized medium (**Fig. 1b,g**). The model-
149 guided, monoculture-based optimization process yielded a concomitant improvement in
150 community Shannon diversity (**Fig. 1h,i**). Our results suggest that the reduced sugar
151 concentration in the optimized medium, as compared with the best screened medium 4, mitigated
152 rapid production of high levels of inhibitory organic acids by fast growing sugar fermenters. This
153 was consistent with the substantially higher endpoint pH of a community cultured in the optimized
154 medium 10, compared to the acidified environment of medium 4 (**Fig. 1j**). A microbial community
155 culture that autonomously maintains non-inhibitory pH levels could be produced in simple vessels
156 (e.g. flasks or tanks), obviating the need for expensive equipment (e.g., bioreactors with pH
157 control).

158 Our model-guided, high-throughput, monoculture-based approach identified a single
159 medium in which all species were capable of similar endpoint growth. As compared to the baseline
160 medium, Shannon diversity of the community was increased from 53% to 80% of its maximum
161 possible value. These results demonstrated that a moderate number of media components are
162 effective control points for manipulating community composition.

163
164 **A constrained system of logistic equations predicts trends in community assembly**

165 The initial population density of the constituent members of a microbial community has been
166 shown to impact community assembly^{28,44,45}. Therefore, we reasoned that we could use a design
167 of experiments approach to further optimize community diversity as a function of inoculum density.
168 However, this constituted a large design space for community experiments, as there are many
169 possible combinations of inoculum proportions for a 10-member community. We first studied the

170 “parts” of our microbial community by characterizing growth kinetics of the monocultures across
 171 a wide range of inoculum densities.

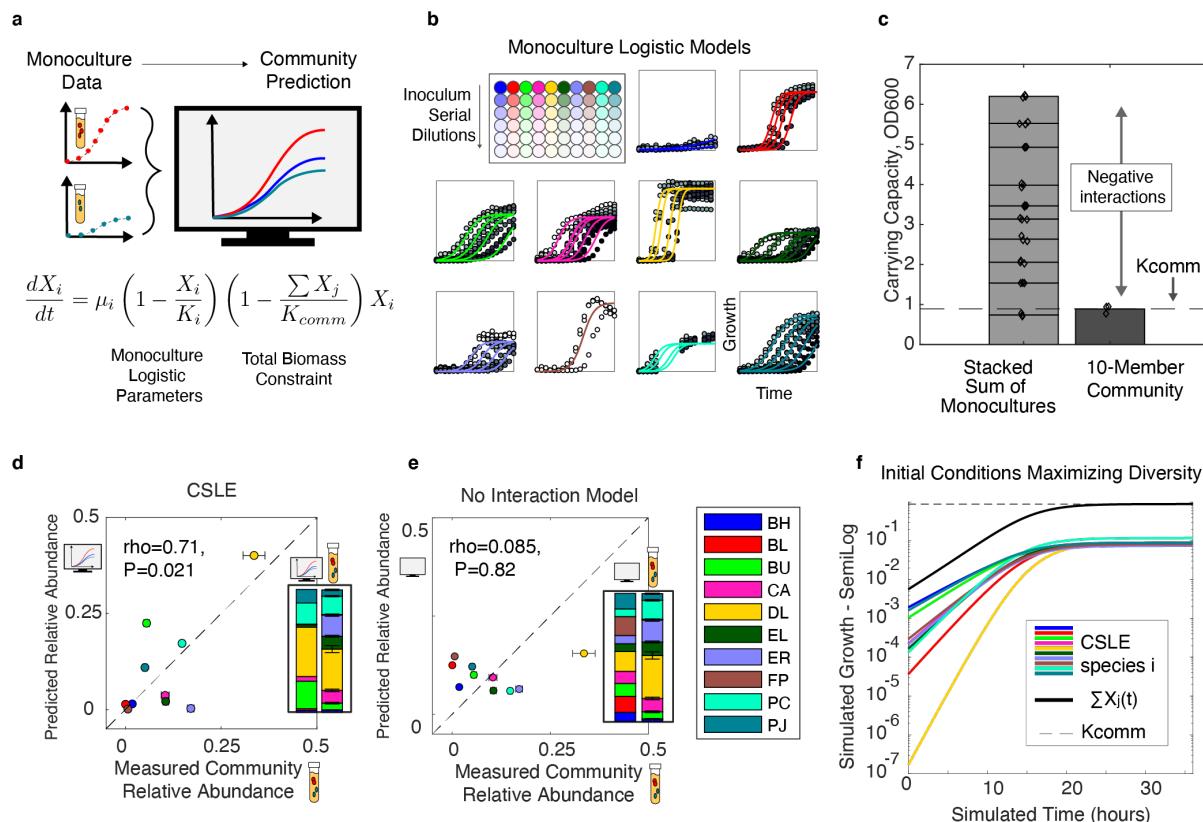


Figure 2. Predicting community assembly using a constrained system of logistic equations. **a** Schematic of experimental approach and model equation to predict community assembly as a set of monoculture logistic models (LI, Table S1) coupled via a total community growth limit, referred to as a “constrained system of logistic equations” or “CSLE” (Methods, equation 9 and Supplementary Information). Parameters: monoculture logistic growth rates (μ_i), monoculture carrying capacities (K_i), and total community growth limit (K_{comm} , community carrying capacity). **b** Monoculture kinetic data based on absorbance at 600 nm (OD600, filled circles) where each species was inoculated at a range of initial densities (0.01 to 1e-7 OD600 by 10-fold serial dilution). Inoculum densities that did not yield reproducible growth were omitted (Fig. S5a). Lines denote the logistic differential equation fit to the time-series OD600 measurements (Methods). Colors denote species per legend in (e). **c** Bar plot of the endpoint growth of a 10-member community culture vs. the sum of the inferred logistic carrying capacities of all 10 monocultures (bar height indicates mean, diamonds show biological replicates, $n=3$). K_{comm} (denoted by dashed line) represents the mean of the endpoint OD600 of the 10-member community culture ($n=3$ biological replicates). **d** Scatter plot of the CSLE model predictions (y-axis, left stacked bar) versus the experimentally measured community relative abundance data (x-axis, right stacked bar). Pearson correlation coefficient and p-value are indicated by “rho” and “P”, respectively. Dashed “x=y” line represents where predictions from a perfectly accurate model would fall. Error bars on experimental data denote 1 s.d. of biological replicates ($n=3$). **e** Scatter plot of predicted community composition based on a set of independent, logistic differential equations (y-axis, right stacked bar) and measured community composition (relative abundance, x-axis, left-hand stacked bar). Pearson correlation coefficient and p-value are indicated by “rho” and “P”, respectively. Dashed “x=y” line represents where predictions from a perfectly accurate model would fall. Error bars on experimental data denote 1 s.d. from the mean of biological replicates ($n=3$). **f** Line plot of CSLE simulation of monospecies growth. Optimization techniques are used to maximize the predicted Shannon diversity as a function of initial conditions (Methods, equation 10). This set of initial conditions is later used as a reference point to guide community experimental design (Fig. 3). Colors denote species per legend in (e).

172 Lower inoculum density delayed the time at which the species entered a measurable
173 exponential growth phase (**Fig. 2b**). In addition, BH, ER, and FP tended not to grow (or displayed
174 variable growth between biological replicates) at lower inoculum densities. The remaining species
175 displayed consistent growth kinetics at most inoculum densities, which spanned several orders of
176 magnitude. A logistic model (LI, **Table S1**) with a single parameter set represented each species
177 growth kinetics across the large range of inoculum densities (**Fig. 2b, Methods**).

178 The 10-member community cultured from an even species inoculum displayed a
179 substantially lower total growth than the sum of the monoculture carrying capacities (**Fig. 2c**).
180 This implies that negative inter-species interactions dominated the ecological network of the
181 community. The total growth of microbial communities in batch culture was shown to be a
182 saturating function of the number of species in the community²⁵. Therefore, we reasoned that an
183 upper limit on total community growth (independent of species composition) could serve as a
184 useful null-hypothesis governing community assembly, given unknown, but largely negative, inter-
185 species interactions. Further, we assumed that a species with higher fitness in monoculture would
186 display higher abundance in the community.

187 We captured these behaviors by deriving a mathematical model, referred to as a
188 “constrained system of logistic equations” (CSLE) (**Supplementary Information**). In this model,
189 a species grows according to its monoculture logistic kinetics until total growth is constrained by
190 a “community carrying capacity” (K_{comm}). Thus, a species may cease to grow ($dx_i/dt \rightarrow 0$, arrow
191 represents approaches) either when its population size approaches its monoculture logistic
192 carrying capacity ($x_i(t) \rightarrow K_i$) or when the total community growth approaches the community
193 carrying capacity ($\sum x_j(t) \rightarrow K_{comm}$). K_{comm} was defined as the mean OD600 of biological
194 replicates of the 10-member community culture (**Fig. 2c**).

195 The CSLE model captured major trends in measured relative species abundances of the
196 community (Pearson rho=0.71, P=0.021, **Fig. 2d**). Conversely, predicting community assembly
197 as a set of independent logistic models (assuming no inter-species interactions) failed to describe
198 community composition (Pearson rho=0.085, P=0.82, **Fig. 2e**). In the CSLE model, species that
199 grow faster in monoculture are more likely to negatively impact the growth of other community
200 members, resulting in a trade-off in the species’ endpoint abundances. For example, the CSLE
201 model accurately predicted that the species with the highest monoculture growth rate (DL, yellow)
202 would occupy a substantially larger fraction of the community than the other species (**Figs. 2d,e,**
203 **S1c**). However, the set of independent logistic models failed to predict this trend. This

204 demonstrates that the CSLE model, which was not informed by community data, could predict
205 trends in community assembly.

206 The CSLE model reaches equilibrium for any community composition in which species'
207 absolute abundances sum to the total growth limit ($\sum x_i(t) = K_{comm}$). Thus, in contrast to the
208 logistic model, which has a single positive steady-state, the steady-state population size of a
209 species in the CSLE model is a continuous function of initial conditions (as long as $\sum K_i > K_{comm}$,
210 i.e., in a large community). This model allowed us to computationally explore how community
211 composition changes as a function of species inoculum prior to collecting community data (**Fig.**
212 **2f**).

213

214 **Tuning species inoculum densities to optimize community Shannon diversity.**

215 To further optimize the endpoint Shannon diversity of the 10-member community, we used a
216 model-guided design-test-learn (DTL) cycle to modulate the inoculum densities of each species
217 (**Fig. 3a**). The iterative DTL approach uses models, trained on community composition data
218 collected in previous cycles, to guide the design of experimental conditions for the subsequent
219 cycle²⁵. The “design” step was initiated with the construction of an experimental design matrix.
220 Inoculum density values were assigned to the levels of the matrix using model predictions when
221 possible. The “test” step used automated liquid handling to array the designed inocula conditions
222 (Methods). Community cultures were grown to approximately stationary phase, and species
223 abundances were analyzed using multiplexed NGS (Methods). The “learn” step inferred
224 parameters from experimental data and evaluated the predictive capability of the statistical
225 models.

226 The assignment of inoculum density values to the levels of the DoE design matrix for the
227 first community inoculum experiment was guided by the CSLE model (**Fig. 2a,d**). We used
228 optimization to solve for a set of initial conditions that maximized the predicted Shannon diversity
229 (**Fig. 2f**). This set of initial conditions was used as a central reference point (“center-point”),
230 representing the “medium” level for all species, around which the rest of the experimental design
231 was constructed (**Fig. 3a**). These designs were constructed for the dual purpose of identifying a
232 high diversity condition and collecting structured training data to improve the model’s predictive
233 ability.

234 Community compositions varied widely as a function of the experimental design conditions
235 (**Fig. 3c**, DTL 1), confirming that inoculum density was a useful control point for manipulating
236 community assembly. Despite a modest monoculture growth rate and carrying capacity (**Fig. 2b**,
237 **S1c**), ER overgrew in many conditions (**Fig. 3c**, light purple). The CSLE model had

238 underpredicted ER in the test community grown from an even inoculum (**Fig. 2d**), suggesting that
 239 ER benefits from positive inter-species interactions that were not captured in the CSLE model.

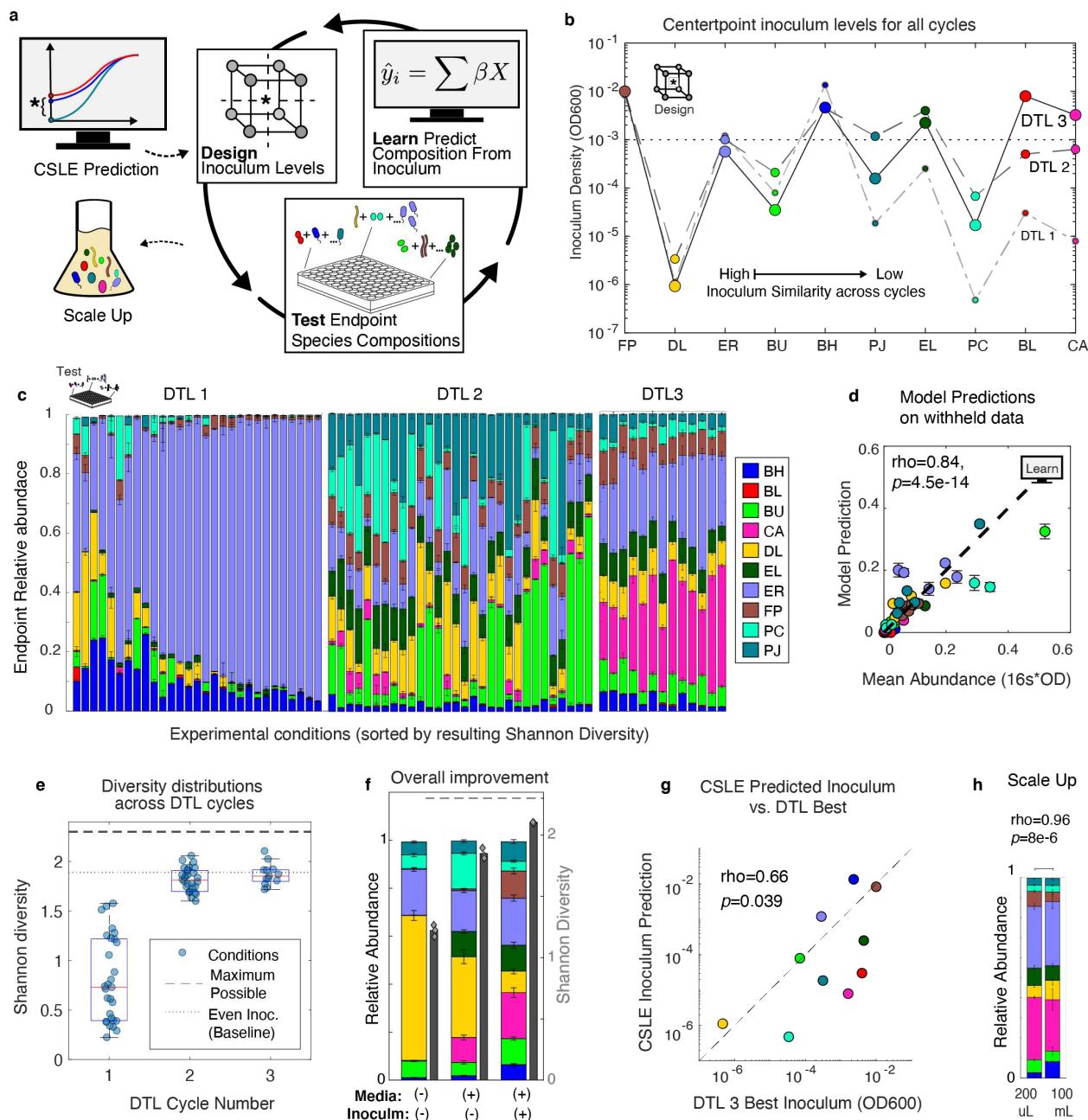


Figure 3. Tuning species inoculum densities to optimize community Shannon diversity in a design-test-learn cycle. **a** Schematic illustrating the design-test-learn (DTL) cycle for maximizing community diversity as a function of species inocula. The “center point” of each experimental design corresponds to the inoculum (colored circles) predicted to yield the highest community Shannon diversity. DTL 1 center point is predicted with the CSLE model, thereby exploiting monoculture growth data to design the first community experiment. Subsequent DTL cycle center points are predicted according to inoculum regression models (IR, **Table S1**), which are trained on community data collected during the DTL process. Scale-up of the culture is performed for potential bioprocessing applications (bottom left). **b** Categorical scatter plot of center point inoculum conditions for each DTL cycle, which are informed by model predictions when possible (Methods). For visualization, species are sorted by the magnitude of the difference between the log

transformed inoculum densities of the first and last DTL cycles. The dotted line indicates the even inoculum baseline condition. Full design matrices are shown in Supplementary Data 3. **c** Stacked bar plots of endpoint community compositions for each DTL cycle, sorted left to right by community Shannon diversity. Stacked bars and error bars represent mean and 1 s.d. of the mean of biological replicates (n=3), respectively, for each condition; all replicates are shown in Fig. S13. **d** Scatter plot of the experimentally measured absolute abundance of each species versus the linear regression models' predictions of endpoint species absolute abundance on the test set. The model was trained on community composition measurements from the first two DTL cycles. The dependent variable is the endpoint species abundance, and the independent variables are the initial OD600 of each species from the inoculum design matrix. Pearson correlation coefficient (rho), and p-value (P) are shown. The validation (out-of-fold) predictions with species-specific correlation coefficients are shown in **Fig S6**. **e** Distributions of Shannon diversities calculated from the mean composition of biological replicates (n=3) for conditions of each DTL cycle (blue circles). Red line in each box denotes the median, upper and lower edges denote 75th and 25th percentiles, respectively, and whiskers denote range of non-outlier datapoints. Dashed line indicates maximum possible Shannon diversity for a 10-member community. Dotted line indicates the diversity from even inoculum in the optimized medium (**Fig. 1i**). **f** Stacked bar plot of the community composition from media optimization (**Fig. 1**) and inoculum optimization (**Fig. 3**). Species composition (stacked bars, left-axis) and Shannon diversities as calculated from mean of species abundances (gray solid bar); diamonds show diversities calculated from individual sets of biological replicates (right-axis), and all biological replicates are shown in Fig. S14. Even inoculum and baseline medium (pre-optimization) are indicated with (-), while (+) indicates that the community resulted from media or inoculum optimization in this study. **g** Scatter plot of the log transform of inoculum densities predicted by the CSLE model (DTL1 center point levels) vs. the experimentally identified best inoculum (condition yielding highest diversity after three DTL cycles). Pearson correlation is calculated between the logarithm of the inoculum densities. **h** Stacked bar plot of species relative abundance of the 10-member community cultured in a 200 μ L microtiter plate versus a 100 mL flask, bar height and error bars represent mean and 1 s.d. of 3 biological replicates, all biological replicates are plotted in Fig. S14.

240

241 Consequently, the CSLE model overpredicted the initial density of ER, which in turn resulted in
242 overgrowth in the community.

243 This community data was leveraged to quantify inter-species interactions beyond global
244 competition. Regression models with linear, quadratic, and interaction terms (IR1, **Table S1**) were
245 trained to predict the absolute abundance of each species in the community from the inoculum
246 values of the experimental design (Methods). After the first DTL cycle, the inoculum regression
247 models accurately predicted half of the species (Pearson rho > 0.7, P < 1e-6, **Fig. S7a**). However,
248 three species (CA, EL and PC) with predictive models displayed low overall growth (average
249 relative abundance less than 2.5% across design conditions, **Fig. 3c** "DTL1"). As such, these
250 models were not practically useful, since predicting maximum diversity (i.e., 10% relative
251 abundance) would result in significant extrapolation of the model.

252 In DTL 2, the new center point inoculum value for species that were poorly predicted or
253 displayed low overall growth was qualitatively determined based on community data. If a species
254 tended to overgrow (ER) in the previous cycle, the new center point value was set at the previous
255 cycle's low value. By contrast, if a species tended to undergrow (BL, CA, DL, EL, PC and PJ), its
256 new center point value was set to the previous high value (**Fig. S8**, Methods). We performed
257 model-guided optimization of the inoculum values to maximize the predicted Shannon diversity

258 for species that were accurately predicted by the model and displayed substantial growth
259 (Methods).

260 These optimized values were used as the center point values for DTL 2 (Methods). In DTL
261 2, most species were well-represented, and ER was present at a lower abundance in the
262 community than in DTL 1 (**Fig. 3c**). The median community diversity was substantially higher in
263 DTL 2 than DTL 1, indicating that data obtained in DTL 1 were informative for enhancing Shannon
264 diversity (**Fig. 3e**). Inoculum regression models were re-trained on community composition data
265 from both DTL 1 and 2 (IR2, **Table S1**), and the models accurately predicted the absolute
266 abundance of all species except BL during cross validation (Pearson rho > 0.70, P < 1e-8, **S7b**).
267 Further, the model accurately predicted test communities that were withheld from the training and
268 validation process (**Fig. 3d**, Pearson rho=0.84, P=2.5e-14).

269 To determine if the Shannon diversity could be enhanced further, we used optimization
270 techniques using the nine predictive regression models to determine a new inoculum center point
271 for DTL 3. The high and low levels probed a smaller design space than previous cycles reflecting
272 higher confidence based on the substantial improvement in Shannon diversity in DTL 2. Since
273 BL consistently undergrew and was poorly predicted, its inoculum density was set to a maximum
274 designated value (Methods). Despite having the largest inoculum and high monoculture fitness,
275 BL was low abundance in DTL 3, indicating that BL was inhibited by other members of the
276 community (**Fig. 3c**). Notably, the beneficial species FP was higher abundance in DTL 3
277 communities than in the community inoculated with an even inoculum (**Fig. 3f**)⁴⁶⁻⁴⁸. Overall, the
278 highest Shannon diversity condition was identified in DTL 3, representing 91% of the maximum
279 possible value for a 10-member community (**Fig. 3e,f**). This was a substantial improvement from
280 the already high 80% of the maximum diversity achieved by medium optimization alone (**Fig. 3f**).

281 The set of inoculum densities that yielded the highest Shannon diversity in DTL 3 was
282 correlated to the CLSE optimized inoculum prediction (Pearson rho between logarithm of
283 inoculum values = 0.66, P = 0.039, **Fig. 3g**). Further, for half of the species, inocula for the highest
284 diversity condition were within three-fold of the CSLE predicted values (**Figs. 2f, 3b**). These data
285 show the CSLE model prediction was a useful starting point for the DTL cycle, as it substantially
286 narrowed the inoculum design space that yielded assembly of a highly diverse community.

287 Biomanufacturing of microbial communities in a real-world setting would require (1)
288 robustness of endpoint community composition to technical variability in species inocula, (2)
289 translation to production-scale equipment, and (3) viability of organisms harvested at the
290 endpoint. Despite the four-fold variation in inoculum in DTL 3, the coefficient of variation of the
291 endpoint Shannon diversity across design conditions was less than 6% (**Fig. 3e**). This

292 demonstrates that our process was robust to variation in species inocula. The community
293 compositions in 200 μ L and 100 mL batch cultures were similar, demonstrating that a 500-fold
294 difference in batch culture scale did not substantially alter community assembly (**Fig. 3h**, Pearson
295 rho=0.96, P=8e-6). To evaluate the viability of species in the endpoint community cultures, we
296 transferred a small aliquot (25-fold volume/volume dilution) of the communities measured at the
297 endpoint into fresh media and grew them to approximately stationary phase (**Methods**). All
298 species in all conditions yielded greater than three-fold increase in absolute abundance during
299 the second passage, demonstrating that these species were viable (**Fig. S9f**).
300

301 **Model-guided design of microbial community dynamics**

302 Positive and negative inter-species interactions are major determinants of microbial community
303 assembly^{25,49}. Therefore, we constructed a dynamic ecological model that captured specific inter-
304 species interactions (**Fig. 2d,e**). The generalized Lotka-Volterra (gLV) model (**Methods**, equation
305 13) is a set of coupled ordinary differential equations that describes a specie's growth dynamics
306 as a function of its basal growth rate and interactions with each constituent community member.
307 This model has accurately predicted complex community dynamics, and its interpretable
308 parameters have revealed significant inter-species interactions^{25,29,49}.

309 We trained a gLV model on monoculture kinetics and community stationary phase
310 measurements (including three additional passaging timepoints of DTL1 and one additional
311 passaging timepoint of DTL3) to characterize the communities over longer timescales (**Figs. 2b,**
312 **3c, S9b-e, Methods**)^{17,49,50}. To minimize overfitting of model parameters to the data, we
313 implemented L1 regularization with cross-validation (**Methods, Fig. S10a**). The gLV model was
314 predictive of randomly withheld training data (Pearson rho=0.91, P=3e-83, **Fig. S10b**). In the
315 inferred parameter set, BH positively impacted the growth of ER (**Fig. S10c,d**). This result is
316 consistent with the underprediction of ER by the CSLE model, in which species interact only via
317 competition (**Fig. 2d**). This suggests that the overgrowth of ER in DTL 1 may be a result of the
318 high inoculum densities of ER and BH in comparison to the relatively low inoculum densities of
319 several species (BU, CA, DL and PC) with which ER competes ($a_{ER,j} < -0.25$) (**Figs. 3c, S10a**).
320 BH, an acetogen, has been shown to enhance the growth of a similar butyrate producing Firmicute
321 species via metabolite cross feeding⁵¹. BL received negative interactions from all species
322 excluding PJ, and these interactions summed to the largest negative value among all species
323 (**Fig. S10e**). This suggested that the persistent low abundance of BL, despite its robust
324 monoculture growth and high inoculum densities, can be attributed to the aggregate effect of
325 many negative interactions in the inter-species interaction network.

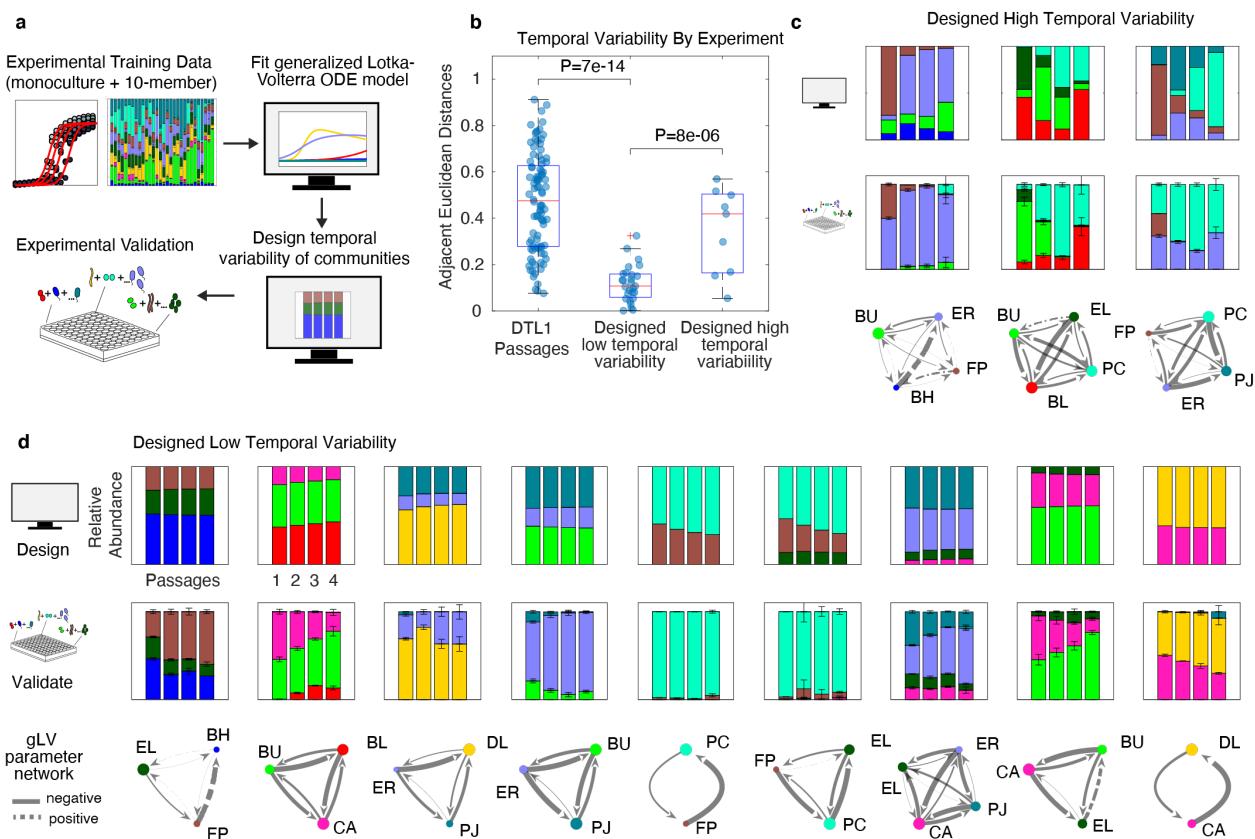


Figure 4 Model-guided design of high and low temporal variability of species composition. a Schematic of the experimental workflow where the generalized Lotka-Volterra (gLV, Methods, equation 13) model is trained on monoculture and 10-member community passaging timepoint data (Methods). The gLV model is used to design sub-communities (3-to-9-members) that display low temporal variability of species composition across four simulated passages. Optimization techniques are used to solve for passage 1 initial conditions (i.e., inocula) that maximize the ratio of the summed Shannon diversities to summed Euclidean distances between consecutive stationary phase timepoint measurements (Methods, equation 14, 15). Based on this metric, a set of communities were selected for experimental characterization. **b** Categorical scatter plot of the changes in community composition between passages for DTL1 training data (Fig. S9a-c), designed low, and designed high temporal variability communities. Data points denote Euclidean distances between stationary phase community compositions (mean of n=3 biological replicates with outlier detection, Methods) of consecutive passages (Methods, equation 14). Box plot red central line denotes median, upper and lower edges denote 75th and 25th percentiles, respectively, whiskers denote range of non-outlier datapoints, and red "+" denotes outlier. Unpaired, two sample t-test is used to calculate p-value between groups of communities. **c,d** Stacked bar plots of gLV model predictions of stationary phase species composition (top row), experimental measurements (middle row), and inferred gLV inter-species interaction networks (bottom row) for a set of high (c) and low (d) temporal variability sub-communities. Species color legend follows node labels. Each subplot denotes the relative species abundance at stationary phase of the four passages; for experimental data bar height and error bars denote mean and 1 s.d. of biological replicates (n=3 with outlier detection, Methods). Solid and dashed edges indicate negative and positive inter-species interaction parameters (a_{ij}), respectively. Edge width is proportional to the magnitude of the inter-species interaction parameter and node size is proportional to the specific growth rate parameters in the gLV model (μ_i). All biological replicates and omission of 5 cross-contaminated replicates are indicated in Fig S14.

326 We designed low and high temporal variability sub-communities over the timescale of four
327 passages to evaluate whether the gLV model could predict distinct classes of dynamic longer-
328 term behaviors. Communities with low temporal variability in community composition could be
329 useful to reduce the frequency of species takeover and/or extinction during dynamic bioprocess
330 strategies, such as fed-batch or continuous cultures, which are commonly used to improve
331 production efficiency⁵²⁻⁵⁴. Temporal variability was defined as the sum of the Euclidean distances
332 of the relative species abundance between adjacent passages (Methods, equation 14). Low
333 temporal variability communities were identified by maximizing an objective function of the ratio
334 of the Shannon diversity to the Euclidean distance across passages (Methods, equation 15). We
335 used optimization techniques to maximize this objective function across a wide range of initial
336 conditions for all possible (967 total) 3–9-member sub-communities. Notably, among the 967
337 optimal solutions, only 33 sets of initial conditions displayed unique endpoint species
338 compositions within a small numerical tolerance (**Fig. S11**). We selected a subset of higher
339 diversity unique solutions for experimental validation that represented all species. To determine
340 if the model could distinguish between low and high temporal variability behaviors, we included
341 three representative communities with predicted high temporal variability (i.e., high Euclidean
342 distances) (**Methods**).

343 Consistent with the model prediction, communities designed for low temporal variability
344 had significantly lower Euclidean distances between passages than communities designed for
345 high temporal variability ($p=8e-6$, unpaired t-test) (**Fig. 4b**). In addition, the model accurately
346 predicted several qualitative characteristics of the high temporal variability communities, including
347 the highest abundance species at each endpoint (**Fig. 4c**). The model forecasted that FP is
348 outcompeted (greater than 10-fold lower relative abundance in final passage than the initial
349 passage) in the two high-temporal variability communities containing FP (**Fig. 4c**). Notably, the
350 model also identified a low temporal variability subcommunity (**Fig. 4d**, BH-EL-FP) in which FP
351 persisted at a constant relative abundance over passages two through four. BL persisted at a
352 constant relative abundance across the last three passages when cultured with BU and CA (**Fig.**
353 **4d**, BU-BL-CA). By contrast, BL displayed low relative abundance in the first passage and high
354 relative abundance in later passages of the 10-member community training data (**Fig. 3c, S9e**).
355 The model predicted four sub-communities in which at least three species persisted at relatively
356 constant relative abundance for at least three passages (BH-EL-FP, BL-BU-CA, CA-EL-ER-PJ,
357 and BU-CA-EL). This demonstrates the gLV model can be used to design communities that
358 display species coexistence over longer timescales.

359 The gLV model trained on monoculture and 10-member community data was moderately
360 predictive of the absolute species abundance in the experimentally characterized 2-4 member
361 communities (Pearson rho=0.56, P=9.6e-10, **Fig. S12**). The unexplained variance in the dataset
362 could be attributed to differences in species richness in the training (10-species) and test data (2-
363 4 species)^{25,55}. In sum, these data demonstrate that the gLV model can guide the design of
364 communities that exploit inter-species interactions to support the persistence of lower fitness
365 species over longer timescales, as well as mitigate overgrowth of high fitness species. Therefore,
366 the gLV model informed by variation in inoculum densities of constituent community members of
367 a fixed community size was useful in the prediction and design of community temporal behaviors.
368

369 **DISCUSSION**

370 We demonstrate that, despite their complexity, microbial communities are engineerable systems
371 that respond predictably to changes in media formulation and inoculum densities. We develop a
372 data-driven dynamic and statistical modeling framework for tuning these control inputs to optimize
373 the endpoint Shannon diversity of a synthetic human gut community. Using this approach, we
374 increased the Shannon diversity of a representative 10-member synthetic gut community from
375 53% to 91% of its maximum possible value (**Fig. 3f**). Our DoE and ecological modeling
376 approaches map control inputs to community composition without the need for characterizing
377 detailed biochemical mechanisms (e.g., specific metabolic pathways or metabolites mediating
378 inter-species interactions). As such, the workflow can be generalized to a wide range of
379 communities. Future work could examine effects of monoculture versus community production of
380 live microbial therapeutics on strain engraftment in the host. Since the ecology of the community
381 culture restricts species to their most favorable niches, and can even recapitulate *in vivo* functional
382 profiles, therapeutic communities produced via community culture could be better primed to
383 colonize the competitive gut environment than those produced in monoculture⁵⁶⁻⁵⁸.

384 Our designed media and inoculum conditions yield similar community composition at 500-
385 fold volumetric scale up, suggesting that lab-scale results could translate to production. Though
386 community dynamics are complex, our culture strategy is simple (static, batch culture, no pH
387 control), thus reducing the number of key scale-up parameters. We note that we maintained
388 equivalent headspace gas composition and surface-to-volume ratio during scale up; future studies
389 could confirm whether these are important parameters for anaerobic community scale up. Overall,
390 this efficient, scalable blueprint for designing community assembly should help to alleviate the
391 production bottleneck that limits manufacturing of therapeutic communities at clinical, commercial,
392 and global health scales.

393 In each stage, we exploit high-throughput, monoculture experiments to first understand
394 the “parts” of our ecosystem, and show that this information is useful for guiding community
395 design. We demonstrate that maximizing monoculture-diversity substantially increases
396 community diversity (**Fig. 1h,i**), and that major trends in community assembly can be explained
397 by constraining monoculture kinetic models with an upper limit on total growth (**Fig. 2**). Model-
398 guided prediction of community assembly from monoculture kinetics allowed us to achieve our
399 design objectives while limiting the number of community measurements. Due to the DNA
400 sequencing pipeline required to analyze species-level composition, community experiments are
401 laborious in comparison to their fully-automated monoculture counterparts. Monoculture-informed
402 prediction of a narrowed initial design space resulted in identification of a high diversity condition
403 within three design-test-learn cycles (**Fig. 3h**).

404 This ability to rationally inform community experiments with high-throughput monoculture
405 data should make our approach useful for larger communities, potentially even up to 100
406 members⁵⁹. As species richness increases, the degree of metabolic similarity among species
407 would increase (i.e., metabolic redundancy), leading to potential challenges in identifying specific
408 nutrients that can tune the growth of individual species in the community. However, media design
409 variables could be selected to favor resources such as fibers, peptones, and mucins, which have
410 been shown to support high richness cultures from stool sample inocula^{57,60}. In addition, the ability
411 to control the endpoint abundance of each species as a function of its initial density may decrease
412 due to enhanced strength of ecological competition. In this case, our computational modeling and
413 optimization workflow could be modified to identify optimal strategies for partitioning a high
414 richness community into a minimal number of sub-communities that enable control of species via
415 media factors and inocula.

416 One limitation of our approach was that inoculum density was an insufficient control point
417 for BL, which was subjected to a disproportionate number of strong negative interactions in the
418 community (**Fig 3c**). Despite the robust growth of BL in monoculture (**Fig. 2b**) and a high inoculum
419 density (**Fig. 3b**), this species did not grow well in communities (**Fig. 3c**). To address this
420 limitation, future efforts could use dynamic modeling to leverage multiple inoculation timings as
421 an additional control point for community composition. Design of species-specific inoculation
422 timings would allow for precise manipulation of inter-species interactions over time. In the simplest
423 case, a species that does not grow well in communities due to negative interactions could be
424 given a “head start” by inoculating at an earlier timepoint. Further, a “temporary support
425 community” could be designed to boost the initial growth of a low fitness species prior to

426 inoculating the remaining community members at a later timepoint. Similar approaches could be
427 used to control an organism that tends to overgrow.

428 As a proof of concept that inter-species interactions can be leveraged to design temporal
429 behaviors, we used a data-driven generalized Lotka-Volterra (gLV) model to guide the design of
430 communities with low variability of species composition over time (**Fig. 4**). We note that our
431 implementation of the gLV model describes batch culture growth (including stationary phase) with
432 non-equilibrium trajectories. Endpoint community composition of batch culture was predicted
433 quite accurately as a function of initial conditions by fitting these transient dynamics to
434 experimental data (**Fig. S9b**). By contrast, theoretical analyses of the gLV model tend to focus on
435 long-term behaviors (e.g. stable steady-states or limit cycles), to which many different initial
436 conditions converge⁶¹. This nuance between our data-driven implementation and most ecological
437 analyses illustrates that in spite of the constrained long-term behaviors of the gLV model, it is
438 useful for designing specific community compositions as a function of initial conditions.

439 Defined microbial communities hold significant promise for many applications including
440 agriculture, biofuels, and medicine⁶². We developed a general control strategy for complex
441 microbial communities and applied these strategies to address the challenge of manufacturing
442 defined human gut communities for therapeutic applications. Beyond therapeutic community
443 production, our method will be broadly useful for defined microbial community bioprocesses. For
444 example, in metabolic engineering applications wherein designed pathways are distributed
445 among distinct community members to exploit division-of-labor, our method could be applied to
446 tune community member proportions and thus optimize metabolite product yields^{54,63}. Eventually,
447 the ability to identify influential control parameters for steering microbial community composition
448 and functions could be used to modulate an unhealthy patient's microbiome towards a healthy
449 state. For instance, mirroring media component manipulation, changes in diet are well
450 documented to shape gut microbiome composition. It was also recently shown that dosage
451 strength (i.e. inoculum density) was a critical factor in the successful redesign of the first phase
452 three clinical trial of a donor-derived live microbial therapeutic for treating recurrent *C. difficile*
453 infection^{27,64,65}. Overall, initial species densities, environmental resources, and inter-species
454 interactions are key design parameters for engineering microbial community dynamics, from
455 community bioprocessing to potentially designing an ecological restoration of a dysbiotic gut
456 microbiome.

457

458

459 **METHODS**

460

461 *Strain maintenance, precultures, and growth media*

462 The following methods are adapted Hromada 2021, Clark 2021 and Venturelli 2018^{25,28,66}. All
463 anaerobic culturing was carried out in a custom anaerobic chamber (Coy Laboratory Products,
464 Inc) with an atmosphere of 2.5 ± 0.5% H₂, 15 ± 1% CO₂ and balance N₂. All prepared media,
465 stock solutions, and materials were placed in the chamber at least overnight before use to
466 equilibrate with the chamber atmosphere. The strains used in this work were obtained from the
467 sources listed in Supplementary File 1 and permanent stocks of each were stored in 25% glycerol
468 at -80 °C. Batches of single-use glycerol stocks were produced for each strain by first growing a
469 culture from the permanent stock in anaerobic basal broth (ABB) media (HiMedia or Oxoid) to
470 stationary phase, mixing the culture in an equal volume of 50% glycerol, and aliquoting 400 µL
471 into Matrix Tubes (ThermoFisher) for storage at -80 °C. Quality control for each batch of single-
472 use glycerol stocks included (1) plating a sample of the aliquoted mixture onto LB media (Sigma-
473 Aldrich) for incubation at 37 °C in ambient air to detect aerobic contaminants and (2) next-
474 generation DNA sequencing of 16S rDNA isolated from pellets of the aliquoted mixture to verify
475 the identity of the organism (Illumina). For each experiment, precultures of each species were
476 prepared by thawing a single-use glycerol stock and combining the inoculation volume and media
477 listed in Supplementary File 1 to a total volume of 5 mL for stationary incubation at 37 °C.
478 Incubation times are also listed in Supplementary File 1. Prior to inoculating starter cultures, the
479 workspace and pipettes were cleaned with Spor-klenz (STERIS), and again with 70% ethanol
480 between strain inoculations. A clean Kim-wipe (Kimberly-Clark) was held above the workspace
481 to check for air currents from equipment fans that could lead to cross contaminations, and
482 equipment was turned off or rearranged as needed. Anaerobic work was conducted in a spatially
483 linear workflow from cleanest to least clean materials (e.g.) tips, clean reagents, cell containing
484 media, then trash, as ordered from dominant to non-dominant hand. Motions above open, sterile
485 containers is restricted to minimum necessary actions.

486

487 *Genomic DNA extraction, DNA library preparation, sequencing, primer design, and data analysis*
488 DNA extraction, library preparation, and sequencing were performed according to methods
489 described in Hromada 2021 and Clark 2021^{25,66}. In brief, cell pellets from about 150 µL of culture
490 were stored at -80C following experiments. Genomic DNA was extracted using a 96-well plate
491 adaption of the DNeasy protocol (Qiagen). Genomic DNA was normalized to 1 ng/µL in molecular
492 grade water, and stored at -20C. Dual-indexed primers for multiplexed amplicon sequencing of

493 the v3-v4 region of the 16S gene were designed as described previously, and arrayed in 96-well,
494 skirted PCR plates (Thomas Scientific) using an acoustic liquid handling robot (Echo LabCyte).
495 Genomic DNA and PCR master mix were added to primer plates and amplified prior to sequencing
496 on an Illumina MiSeq platform.

497 Sequencing data were analyzed as described in Hromada 2021. In brief, basespace
498 Sequencing Hub's FastQ Generation demultiplexed the indices and generated FastQ files. Paired
499 reads were merged using PEAR (Paired-End reAd mergeR) v0.9.0 (Zhang et al, 2014)⁶⁷. Reads
500 were mapped to a reference database of species used in this study, using the mothur v1.40.5,
501 and the Wang method (Wang et al, 2007; Schloss et al, 2009)^{68,69}. Relative abundance was
502 calculated by dividing the read counts mapped to each organism by the total reads in the sample.
503 Absolute abundance was calculated by multiplying the relative abundance of an organism by the
504 OD600 of the sample. Samples were excluded from further analysis if > 1% of the reads were
505 assigned to a species not expected to be in the community (indicating contamination).
506

507 *Monoculture media screening experiment*

508 The media screening experiment was designed to improve monoculture-diversity (equation 4) on
509 DM38, a chemically defined medium developed in our laboratory, and referenced as the
510 “baseline” medium in the text. Supplementary File 2 contains the medium and stock solution
511 recipes referenced in this section. A four-factor, two-level half factorial screening design with
512 appended center point condition was constructed in JMP 15 (SAS institute). “High” absolute
513 design levels for sugar mixture, amino acid mixture, and pH variables (these are key components
514 in DM38) were set at their respective DM38 concentrations. Yeast extract (sterile filtered, not
515 autoclaved) was included to support monoculture growth of *F. prausnitzii*, as keenly observed by
516 D’Hoe et al ⁴¹. “Low” design levels were set at 0 g/L for sugars, amino acids, and yeast extract,
517 and 5.7 for pH (according to generally reported ranges for the human large intestine⁷⁰). Stock
518 solutions of sugars, amino acid mixture, and yeast extract were prepared at 20x v/v of their target
519 “high” concentrations, and sterile filtered. The nine media were arrayed according to the
520 experimental design in 2mL deep-well blocks (Nest), using a Tecan Evo liquid handling robot to
521 aliquot the appropriate volume of 20x stocks into 1.4x base medium. The final concentration was
522 brought to 1x using sterile water. The deep well blocks, containing ten sets of the media
523 experimental design, were inoculated from the ten precultures to a 600nm optical density value
524 of 0.01. Optical density was measured using 200 uL of sample in a Tecan F200 plate reader in
525 standard clear, flat bottom 96-well microplates (Grenier). Inoculation volumes were calculated as
526 $Volume_{(inoc)} = Volume_{(well)} * 0.01 OD / (Preculture OD)$. Inoculation was performed from a sterile

527 trough with a multichannel pipette. Four 200 μ L replicates were mixed and aliquoted to sterile,
528 clear, flat bottomed, 96-well microplates (Grenier), covered with a transparent seal (Breath EZ,
529 Diversified Biotech), and incubated at 37°C in the Tecan Evo incubator. Automated OD600
530 measurements were recorded every two hours for about 60 hours with a Tecan F200 plate reader.
531

532 *Modeling monoculture growth*

533 Model-guided optimization of community Shannon diversity (equations 1,2) was performed by
534 modeling monoculture growth response (3) on various media. "Monoculture-diversity" (equations
535 4,5) was used as a proxy function for Shannon diversity, enabling a monoculture-based approach
536 for manipulating community Shannon diversity.

537
$$\text{Shannon diversity: } - \sum_{i=1}^{\text{Species}} X_{fr,i} \ln X_{fr,i} \quad (1)$$

538 $X_{fr,i}$ – fractional abundance of species "i" in a community

539

540
$$\text{Fractional Abundance: } X_{fr,i} = \frac{X_i}{\sum_{i=1}^{\text{Species}} X_i} \quad (2)$$

541 X_i – absolute abundance of species "i"

542

543

544 Logistic differential equation:
$$\frac{dX}{dt} = \mu \left(1 - \frac{X}{K}\right) \quad (3)$$

545 dX/dt – rate of population growth

546 μ – specific growth rate parameter

547 K – carrying capacity (i.e., steady-state population size)

548

549

550
$$\text{Monoculture-Diversity} = \sum_{i=1}^{\text{Species}} K_{fr,i} \ln K_{fr,i} \quad (4)$$

551 $K_{fr,i}$ – Normalized carrying capacity of species "i"

552

553
$$\text{Normalized carrying capacity of species "i": } K_{fr,i} = \frac{K_i}{\sum_{j=1}^{\text{Species}} K_j} \quad (5)$$

554 $\sum K_j$ – Sum of logistic carrying capacities in a particular medium

555
556
557 Monoculture timeseries growth data from the media screening experiment was fit with logistic
558 differential equations (equation 3), and the carrying capacity parameter was used as a readout of
559 growth response. Carrying capacity serves as a “smoothed,” time independent maximum growth
560 value. Smoothing is required because raw data may contain outlier values due to condensation
561 on the transparent plate seal or other technical variability. If computational resources or expertise
562 are limited, the growth response could also be taken as the maximum value of a smoothed
563 timeseries (e.g. after applying a running average filter). The baseline of the OD600 timeseries
564 data was computationally “blanked” (i.e. normalized) to the known inoculum density by subtracting
565 the difference between the time-zero measured value and known inoculum from the entire
566 timeseries. Each fitting was performed independently using bounded, nonlinear regression with
567 MATLAB’s “fmincon” function, which returns the logistic parameter set (μ, K) that minimizes the
568 sum of squared errors between the model predictions and the experimental data. All timeseries
569 were truncated to 30 hours to remove death phases. Outlier detection was performed by
570 comparing the z-score of the mean OD600 across replicates, to omit replicates that did not grow.

571 Multivariate polynomial regression models (equation 6) were fit to predict each specie’s
572 carrying capacity parameter (growth response) as a function of the scaled media design matrix
573 (predictors).

574

575 *Media Regression Models (MR) :*

$$576 \hat{K}_i = \sum_{l=1}^4 \beta_l^{M.E.} x_l + \sum_{l=1}^4 \beta_l^{Q.E.} x_l^2 + \sum_{l=1}^3 \sum_{m=l+1}^4 \beta_p^{I.X.2} x_l x_m \dots \\ 577 + \sum_{l=1}^2 \sum_{m=l+1}^3 \sum_{n=m+1}^4 \beta_q^{I.X.3} x_l x_m x_n \quad (6)$$

578

579 \hat{K}_i – predicted carrying capacity of species “*i*”

580 $\beta_l^{M.E.}$ – main effects parameters

581 x_l – predictors (media component variables)

582 $\beta_l^{Q.E.}$ – quadratic main effects parameters

583 $\beta_p^{I.X.2}$ – interaction parameters, 2nd order

584 $\beta_q^{I.X.3}$ – interaction parameters, 3rd order

585

586 We note that although the model is a multivariate polynomial function of the design variables, the
587 regression is linear with respect to the parameters, as the higher order predictors are treated as
588 “new” variables whose value is calculated prior to regression. The polynomial structure (equation
589 6) contained main effects (X_1), quadratic main effects (X_1^2), and both second and third order
590 interaction terms ($X_1 \cdot X_2$ and $X_1 \cdot X_2 \cdot X_3$). The double and triple sum terms in this equation represent
591 the upper triangular matrix of unique two-factor interaction parameters and three-dimensional
592 upper triangular matrix of third order interaction parameters ($X_1 \cdot X_2 = X_2 \cdot X_1$ so only one of these
593 predictor terms should be included). The estimation of quadratic terms is contingent on the
594 inclusion of a center point condition in the otherwise two-level experimental design. Because the
595 models are data limited, elastic net regularization and nested cross validation were performed to
596 reduce overfitting. The elastic net and regularization coefficient hyperparameters were selected
597 using a “grid search” approach, and MATLAB’s “lasso” function. For each species, the 9-condition
598 dataset (9x16 predictor matrix and 9x1 growth response vector) was partitioned into all nine
599 possible combinations of eight conditions (rows) using MATLAB’s “crossvalind” function (first
600 partitioning). The “lasso” function is called with the cross-validation argument, wherein it internally
601 performs a second round of leave-one-out cross validation to identify the regularization and elastic
602 net coefficients (hyperparameters) that minimize the out-of-fold mean sum of squared errors for
603 the “internal” cross validation sets. Only the hyperparameters, but not the regression parameters,
604 are returned at this stage. The Lasso function is then called again without the cross-validation
605 arguments, receiving the previously identified hyperparameters as arguments to find a best fit
606 parameter set for the “first partitioning” of the original dataset. This is performed for each partition
607 of the original dataset, such that each regression model is an ensemble model with nine
608 parameter sets, each corresponding to one “leave-one-out” partitioning of the data. Each
609 parameter set has its own, independently identified hyperparameters, such that none of the
610 hyperparameters are biased by training on the entirety of the dataset. The models are validated
611 by making “out-of-fold predictions”, meaning using the parameters trained on each of the nine
612 partitions of eight datapoints to predict the one datapoint that is not contained in that partition.
613 When the models are called to make a new prediction (e.g. for the optimization script), the nine
614 predictions of the “ensemble” are averaged to a scalar value.

615

616 *Media optimization*

617 A constrained optimization problem was solved using MATLAB’s “fmincon” function to solve for
618 the concentration profile of sugar mixture, amino acid mixture, yeast extract, and pH that
619 maximized the monoculture-diversity (equations 6, 7, and 8).

620

621 *Objective function for media optimization:*

622
$$\text{maximize} \left(- \sum_{i=1}^{\text{Species}} \hat{K}_{fr,i} \ln \hat{K}_{fr,i} \right) \quad (7)$$

623

624 *Predicted normalized carrying capacity of species i :*

625
$$\hat{K}_{fr,i} = \frac{\hat{K}_i}{\sum_{j=1}^{\text{Species}} \hat{K}_j} \quad (8)$$

626

627 The upper and lower bound arguments to the “fmincon” function are set such to constrain the
628 solution within the original experimental design levels (sugars between 0 and 9.45 g/L, yeast
629 extract between 0 and 2 g/L, amino acids between 0 and 10.7 g/L, and pH between 5.7 and 6.7).
630 The function is initialized with a random guess of the sugars, amino acids, yeast extract, and pH
631 concentrations. The “objective function” references the received concentration inputs and calls
632 the linear regression models to make a prediction of each specie’s carrying capacity from this set
633 of media component concentrations. From these ten carrying capacity predictions, the predicted
634 monoculture-diversity is calculated. The “fmincon” function then iteratively solves for the single
635 concentration of the resources that maximizes the predicted monoculture diversity, using the
636 default interior point algorithm.

637

638 *Monoculture growth kinetics over a range of inoculum densities*

639 Deep well blocks (96-well, 2mL, Nest) were filled with 1000uL of the optimized medium. Species
640 were precultured and inoculated into each of the first ten wells of the first row of the block at a
641 density of .01 OD600 as previously described. A multichannel pipet was used to mix and perform
642 six 10-fold volume/volume serial dilutions of the first row down the rows of the plate. Three
643 replicate 96-well microtiter plates with 200uL in each well were aliquoted from the deep well block
644 and covered with a transparent seal, breathable seal. Plates were incubated and timeseries
645 OD600 was recorded as previously described.

646 Timeseries data from inoculum conditions that did not result in reproducible growth were
647 omitted from the dataset, and data was normalized as previously described. The low inoculum
648 densities resulted in growth curves that “appeared” to have a long lag phase, but were much more
649 likely to be in exponential growth phase at a biomass density that was far below the limit of
650 detection of the plate reader. The exponential and stationary phase data from each specie’s set

651 growth curves was isolated as values greater than the assumed 0.05 lower limit of detection for
652 the plate reader. The true limit of detection of the reader is .001, but data below ~.05 has high
653 signal-to-noise ratios for automated microbial growth. As such, the “measured” initial conditions
654 were omitted from the dataset, as they generally reflected the low limit of detection of the
655 platereader. Nonlinear regression was used to solve for the single logistic parameter set (μ, K)
656 and the set of initial conditions (one for each growth curve in the set) that minimized the sum of
657 squared errors between the model predictions and the exponential phase data. A vector of two
658 logistic parameters and one-to-six initial conditions (depending on how many dilutions grew
659 reproducibly) was passed as variables to the “fmincon” solver. The objective function then parsed
660 the vector into initial conditions and ODE parameters, then called an ODE solver to generate
661 model predictions. The value of the objective function is the sum of mean squared errors between
662 the model predictions and the exponential phase data for all growth curves in the set. The
663 “fmincon” function returns the vector of parameters and initial conditions that minimize the
664 objective function. The computationally fitted initial conditions were plotted in log-log space
665 against the experimental initial conditions, and a first order linear regression was performed to
666 map the log transformed experimental initial conditions to the log transformed, computationally
667 fitted initial conditions, using sets of values that fell in the linear range.

668

669 *Design of the first community inoculum density experiment (DTL1)*

670 The experimental design chosen for the first inoculum screening was a nine-factor, three-level
671 definitive screening design⁷¹. These designs have three levels for each variable, improving
672 estimation of the quadratic effects that are likely important for approximating the endpoint of
673 exponential microbial growth with a polynomial function. The scaled design matrix was
674 constructed in JMP 15. Inoculum concentrations were assigned to the scaled experimental
675 design levels using solutions from the constrained system of logistic equations model. The
676 constrained system of logistic equations was simulated in MATLAB, using the growth rate and
677 carrying capacity parameters as fitted to monoculture data (described in the previous section).

678

679 *Constrained System of Logistic Equations:*

680
$$\frac{dX_i}{dt} = f(\mathbf{X}) = \mu_i \left(1 - \frac{X_i}{K_i}\right) \left(1 - \frac{\sum X_j}{K_{comm}}\right) X_i \quad (9)$$

681
$$\text{and: } \hat{X}_{F,i} = \int_{t_0}^{t_F} f(\mathbf{X}) dt$$

682

683 dX_i/dt – rate of change of species "i"
684 μ_i – specific growth rate
685 K_i – logistic carrying capacity
686 K_{comm} – community carrying capacity (total growth constraint)
687 $\hat{X}_{F,i}$ – predicted endpoint abundance of species "i"

688
689 The community carrying capacity parameter K_{comm} was taken as the maximum OD600 of a full
690 community culture inoculated from an even inoculum (all species inoculated to .001 OD600). To
691 find the set of initial conditions that maximized the Shannon diversity of the CSLE model at steady
692 state, a constrained optimization problem was solved with MATLAB's "fmincon" function. The
693 variables optimized by the "fmincon" solver consisted of the set of all species' initial conditions.
694 The objective function internally maps these initial conditions to the computational space
695 equivalent (using the linear regression functions previously described), and simulates community
696 growth by calling a CSLE ODE function. The "fmincon" solver solves for the set of initial conditions
697 that maximize the Shannon diversity (equation 1) of the steady state population abundances using
698 the default interior point algorithm.

699
700 *Objective Function Maximizing Shannon diversity of CSLE prediction*

701
$$\text{maximize} \left(- \sum_{i=1}^{\text{Species}} \hat{X}_{F,fr,i} \ln \hat{X}_{F,fr,i} \right) \quad (10)$$

702 $\hat{X}_{F,fr,i}$ – predicted endpoint fractional abundance of species "i" by the CSLE model
703

704 The initial condition solutions are constrained by lower bounds of the experimental inoculum
705 conditions that did not grow, such that the solver does not return initial condition that are too low
706 to use in practice (an issue that can arise when modeling populations as continuous numerical
707 variables). The total inoculum is constrained using a linear inequality argument such that the sum
708 of all initial conditions did not exceed 0.02 (*F. prausnitzii* was fixed at 0.01; the sum of the other
709 nine species was constrained to below 0.01). The high inoculum level for each species was
710 solved for by fixing all other species' initial conditions at the maximum diversity solution (center
711 point), then finding the initial condition for that species which yielded a 3.3-fold higher steady state
712 abundance than the center point condition. Specifically, "fmincon" was called to minimize the
713 squared error between the simulation and 3.3 times the steady state abundance of that species' maximum
714 diversity solution as a function of that species initial condition. This was iteratively

715 performed to find all species' "high" initial condition levels for the experimental design. The low
716 levels were set symmetrically to the "high" levels in log space, (e.g. the center point was multiplied
717 and divided by the same x-fold factor), such that a CSLE simulation of the experimental design
718 conditions predicted maximum diversity at the center point, and an approximate a 10-fold range
719 of steady state abundances of each species occurred between "high" and "low" design levels.
720 This approach accounts for the fact that a species with a very fast exponential growth rate will
721 likely need a much larger perturbation (in comparison to a species with a low exponential growth
722 rate) to its initial condition to achieve a similar change in the endpoint growth.

723

724 *Community inoculum density experiments*

725 Experimental designs were arrayed with a Tecan Evoware liquid handling robot. Before
726 inoculation, precultures were centrifuged at 4000 rpm, 7.5 minutes in a Sorvall ST 16R centrifuge
727 (Thermo Scientific). Anaerobically, the supernatant was decanted, the pellet was dry-vortexed,
728 and resuspended in fresh optimized medium using a serological pipette (Drummond). Two 24-
729 well blocks were used to array various densities of the precultures. The top row contained a high-
730 density preculture, the second row contained a mid-density preculture, and the third row contained
731 a low-density preculture. The concentration of the high-density preculture well for each species
732 was calculated by finding the number of ten-fold dilutions of the measured preculture OD which
733 resulted in the smallest inoculation volume greater than 7 μ L. In other words, we calculated the
734 lowest volume that can be accurately pipetted by the robot to inoculate the deep well block to its
735 target "high" experimental level. For example, if species A grew to a preculture OD of .2 and was
736 to be inoculated to a target "high" level of .0001 in a volume of 700 μ L, then the high-density
737 preculture well would contain a hundred-fold dilution of the preculture (.002 OD600), such that
738 "high" experimental condition would be inoculated with $V = .0001 \text{ OD} * 700 \mu\text{L} / (.002) = 35 \mu\text{L}$.
739 This strategy was implemented because any volume less than 7 μ L could not be pipetted
740 accurately, while larger inoculum volumes would quickly accumulate and result in a scenario
741 where the sum of all species' inoculum volumes exceeds the target culture volume. The "mid"
742 and "low" preculture wells were filled by diluting the "high" preculture well by the same x-fold ratio
743 of the high to center point design levels (and equivalently the ratio between the center point and
744 low levels). Two serial dilutions at this ratio were performed from high to mid, and mid to low
745 preculture wells for each species, such that each species' high, center point, and low design levels
746 were inoculated with a constant volume from the high, mid, and low preculture wells, respectively.
747 A 200 μ L aliquot of the inoculated deep well block was transferred to a 200 μ L microplate, covered
748 with a breathable seal, and incubated in the Tecan F200 plater reader at 37C. Labware and

749 culture conditions were consistent between monospecies and coculture, as it should be noted
750 that differences in labware geometries, particularly surface to volume ratios, can affect anaerobic
751 microbial growth dynamics. Optical density measurements were recorded at 28 +/- 1 hour in the
752 platereader. 150 uL of the endpoint culture was transferred to a sterile 1mL deep well block and
753 centrifuged at 2400xg for 10 minutes. The supernatant was removed, and the pellet was stored
754 at -80c. 20 uL of the supernatant was used to measure pH using a spectrophotometric phenol
755 red assay, as described in Clark 2021²⁵.

756

757 *Design of subsequent inoculum experiments*

758 Linear regression was used to fit polynomial models (equation 11) to predict each specie's
759 community abundance from the inoculum design matrix, using the nested cross validation
760 approach detailed in the media design methods section.

761

762 *Inoculum Regression Models (IR) :*

763
$$\hat{X}_{F,i} = \sum_{l=1}^{10} \beta_l^{M.E.} X_{0,l} + \sum_{l=1}^{10} \beta_l^{Q.E.} X_{0,l}^2 + \sum_{l=1}^9 \sum_{m=l+1}^{10} \beta_p^{I.X.2} X_{0,l} X_{0,m} \quad (11)$$

764

765 $\hat{X}_{F,i}$ – predicted endpoint abundance of species "i" in community culture

766 X_0 – predictors (designed inoculum values)

767 $\beta_l^{M.E.}$ – main effects parameters

768 $\beta_l^{Q.E.}$ – quadratic main effects parameters

769 $\beta_p^{I.X.2}$ – interaction parameters

770

771

772 The inoculum design matrix was log10 transformed to scale the values prior to fitting. The models
773 trained on cycles 1+2 community data were evaluated on withheld test data (5 of 59 total
774 conditions) to demonstrate predictivity of the approach (Fig 3B). Replicates were averaged prior
775 to fitting to avoid biasing test/validation data with conditions contained in training data. Validation
776 predictions and Pearson correlation coefficients for both cycles' models are shown in
777 supplemental materials. Models that were deemed predictive were used in a multi-objective
778 optimization problem (equation 12, details in following paragraph) to predict an updated center
779 point for the new experimental design. Any desired target composition (not only even endpoint,
780 i.e. maximum diversity) can be designed with this approach by updating this target vector with the
781 desired endpoint abundances. Species whose models were not deemed predictive were adjusted

782 using a rational “frameshift” strategy (a graphical representation is provided in supplemental
783 figures). The “frameshift” involves selection of new design level absolute setpoints as follows: if
784 a species overgrew (saturated response) in the previous experiment, the new center point level
785 is set at the previous low level. If a species undergrew (non-measurable or very low growth in
786 comparison to other species), its updated center point inoculum level is set at the previous “high”
787 level. These new center point levels were thus equivalent to the extrema of the previous design
788 space, and could be used as inputs to the regression models (without forcing the models to
789 extrapolate beyond the bounds of training data). We note that the DTL process could probably
790 be carried out using only the “frameshift” strategy to approach a design goal. The magnitude of
791 the levels (x-fold of center point) were maintained between cycles one and two, unless the total
792 range between high and low exceeded two orders of magnitude, in which case it was constrained
793 to two orders of magnitude. In cycle three, the experimental design was modified to a twelve-run
794 Plackett-Burman screening with center point, with levels set at two-fold above and below center
795 point. This adjustment of the levels initially informed by the CSLE model (cycle 1 levels) is a
796 qualitative decision that reflects the purpose of the designs. Cycle one had large magnitude levels
797 because it was meant to explore a large design space. Cycle two levels were constrained to two
798 orders of magnitude or less to balance searching the design space with the probability of finding
799 a high diversity condition. Cycle three levels were constrained to only two-fold because the
800 purpose of the design was to demonstrate the robustness of a high confidence prediction to small
801 variations, rather than to explore the design space and gather data for further model training.

802 A constrained multi-objective optimization problem was solved to minimize the error
803 between target abundances and regression model predictions. This objective function is a more
804 strict definition of maximizing Shannon diversity at a particular total species abundance, and was
805 chosen because maximizing the Shannon diversity can return very low total growth solutions.
806 Additionally, it is also a more flexible approach, as it allows the user to define an exact target
807 community composition. We targeted an even endpoint abundance for each organism of
808 magnitude (average community OD) / (# of species), where the average community OD was the
809 average endpoint OD across all the conditions of the previous experiment.

810

811 *Objective Function for inoculum optimization:*

812
$$\text{minimize} \sum_{i=1}^{\text{species}} (X_{\text{Targ},i} - \hat{X}_{F,i})^2 \quad (12)$$

813 $X_{\text{Targ},i}$ – target endpoint absolute abundance of species “*i*”(set to even abundances
814 in this work to maximize diversity)

815

816 *Passaging experiments*

817 A serial subculture is performed by mixing well and diluting 20 uL of the endpoint community
818 culture into 500 uL of fresh medium (25-fold v/v). The new culture is then aliquoted (200 uL) into
819 a microplate and incubated as previously described. This process was performed three times for
820 the first inoculum design (DLT cycle 1) and once for DTL cycle 2. The data is available in
821 supplemental materials.

822

823 *Generalized Lotka-Volterra model training and validation*

824 The parameters of a generalized Lotka-Volterra (gLV) model were fit to monoculture timeseries
825 data and 10-member community initial and stationary phase data.

826

827 *generalized Lotka-Volterra model:*

$$828 \frac{dX_i}{dt} = \left(\mu_i + \sum_{j=1}^n a_{ij} X_j \right) X_i \quad (13)$$

829 dX_i/dt – rate of change of species "i"

830 μ_i – specific growth rate

831 a_{ii} – intra-species interaction parameter (note, $a_{ii} = -\mu_i/K_i$)

832 $a_{ij, i \neq j}$ – inter-species interaction terms

833

834

835 The training data additionally included three passages of the first inoculum screening and one
836 passage of the third, passaging method is described in the previous paragraph. The passages
837 were treated as independent experiments with initial conditions calculated from the previous
838 culture's endpoint abundances divided by the 25 (corresponding to the volumetric dilution
839 performed to inoculate). The gLV model was fit to experimental data using MATLAB's "fmincon"
840 solver to minimize a cost function as a function of the model parameter values. The cost function
841 consisted of the sum of squared errors between the model predictions and data, with an L1
842 regularization penalty to minimize overfitting, as previously described²⁸. The upper bounds for
843 growth rate terms μ_i , self interaction terms a_{ii} , and interspecies interaction terms $a_{ij, i \neq j}$, were 3,
844 10, and 0, respectively. The lower bounds for these quantities were 0, -10, and -10, respectively.
845 Self-interaction terms must be non-positive and growth rate terms must be non-negative to avoid
846 divergence and maintain biological meaning. The "MaxFunctionEvaluation" and "MaxIterations"

847 arguments for “fmincon” were both set to “Inf” via the “optimoptions” function to allow the solver
848 sufficient time to converge. The solver was initialized with the monoculture growth rates,
849 monoculture derived self-interaction terms, and zeros as respective initial guesses for the gLV
850 growth rates, gLV self-interaction terms, and gLV interspecies interaction terms. Zero is a logical
851 initial guess for unknown parameters subject to L1 regularization, which pushes poorly
852 constrained parameters towards zero. The community data was randomly partitioned into test
853 and training+validation datasets consisting of 10% and 90% of the data, respectively, using
854 MATLAB’s “randsample” function. Monoculture data was not included in validation or test sets
855 because it is collected at high-resolution time intervals, and thus not as strong of a challenge to
856 the model’s predictivity as community data. The regularization coefficient was found by scanning
857 a logarithmic range of values and identifying the value that corresponded to the lowest averaged
858 sum of squared errors across out-of-fold predictions (5-fold cross validation, training+validation
859 data partitioned using MATLAB’s “crossvalind” function). A best-fit parameter set was then re-
860 fitted to the training+validation dataset using the identified regularization coefficient. The model
861 was evaluated for predictivity on the randomly withheld test data. The parameter value heatmap,
862 histogram and, predicted vs. measured scatter plot are shown in supplemental materials Fig S10.
863

864 *Design of temporal variability in subcommunities*

865 The best-fit gLV model was used to design communities with low temporal variability over the
866 course of four simulated passages. For all 967 possible 3-to-9-member subcommunities (i.e. sum
867 of 10 choose k for k=3 to 9), a constrained optimization problem was solved to minimize an
868 objective function as a function of the initial conditions of the species present in the subcommunity.
869

$$870 \quad EuclideanDistance: \left(\sum_i^n (X_{p,i} - X_{(p-1),i})^2 \right)^{1/2} \quad (14)$$

871 $X_{p,i}$ – fractional abundance of species “i” at (simulated) stationary phase of passage “p”
872

$$873 \quad maximize \frac{\sum_{p=1}^4 Sd_p}{\sum_{p=2}^4 Eu_p} \quad (15)$$

874 Sd_p – Shannon diversity at (simulated) stationary phase of passage p

875 Eu_p – Euclidean distance between (simulated) stationary phase compositions
876 of passages “p” and “p – 1”
877

878

879 Species absence in subcommunities were simulated by forcing both upper and lower bounds of
880 the omitted species' population sizes to zero. Initial condition solutions were bounded between
881 zero and 0.01 simulated OD600 for species present in a subcommunity. The endpoint
882 compositions of resulting from all initial condition solutions were sorted into unique results using
883 MATLAB's "uniquetol" function (within a numerical tolerance of 0.05 for each species). Nine of
884 these communities were chosen for experimental validation on the qualitative criteria of having all
885 species present in the set of subcommunities. These nine communities were of size 2-4
886 members. As a comparison, we designed four-member high temporal variability subcommunities
887 by maximizing the product, rather than the ratio, of the diversity and distance terms in equation
888 15. The nine low temporal variability subcommunities and three high temporal subcommunities
889 were inoculated at densities according to the computational predictions. These inoculum
890 conditions spanned orders of magnitude with no symmetry between conditions. The following
891 strategy was used to inoculate these conditions: an "inoculum" 96-well 2mL deep well block was
892 prepared in which each species' preculture material was diluted to 0.1 in row one. Tenfold serial
893 dilutions were then performed such that preculture material was available for pipetting at a range
894 of .1 to 10^{-5} OD600. The liquid handling robot was assigned to aspirate from whichever well would
895 result in the smallest aspiration volume greater than 7 μ L, for each species in each condition. The
896 culture was incubated, passaged, and sampled as previously described.

897

898 **Data Exclusion**

899 The following replicates were omitted from NGS analysis due to cross-contamination of >1% of
900 total reads and/or low total sequencing reads <10% of average: **Fig S14d.i** passage 2 replicate 1
901 and passage 4 replicate 3, **Fig S14d.vi** replicate 2 passages 2-4. The following growth curve
902 replicates were omitted from logistic analysis in **Fig. 1b** due to lack of growth or suspected
903 contamination, using a z-score threshold of 1.5: BH M5 r1, BH M8 r4, BL M9 r4, BU M3 r1, CA
904 M1 r1, EL M1 r1, ER M1 r1, ER M2 r1, ER M3 r1, FP M3 r4, FP M6 r1, and PC M8 r4. In total, 12
905 of the 360 replicates across 10 species, 9 media, and 4 replicates were omitted, no more than
906 one replicate was omitted per species/media condition.

907 **Data Availability**

908 The processed sequencing data and raw optical density data for all experiments are deposited in
909 a Github Repository (<https://github.com/bryceconnors/DesignOfCommunityDiversity>), which will
910 be made public upon publication. Raw DNA sequencing data will be made available via Zenodo
911 prior to publication.

912

913 **Code Availability**

914 Code will be available from GitHub upon publication
915 (<https://github.com/bryceconnors/DesignOfCommunityDiversity>). Data analysis scripts utilize
916 MATLAB R2020a. Python 3 is used for processing sequencing data. In brief, the data and
917 analyses are organized into sub-folders corresponding to each experiment, each of which
918 contains a ReadMe file. Analysis scripts are contained in "modeling" sub-folders, and load raw or
919 processed data from the "rawData" sub-folders. The "02_ReadMe" file contains instructions for
920 navigating to sections of scripts that produce the plots in the figure panels.

921

922

923

924 **References**

- 925 1. Giles, E. M., D'Adamo, G. L. & Forster, S. C. The future of faecal transplants. *Nat. Rev. Microbiol.* **17**, 719 (2019).
- 926 2. Lamoussé-Smith, E., Kelly, D. & De Cremoux, I. Designing bugs as drugs: exploiting the gut microbiome. *Am. J. Physiol. Liver Physiol.* (2020) doi:10.1152/ajpgi.00381.2019.
- 927 3. DeFilipp, Z. *et al.* Drug-Resistant *E. coli* Bacteremia Transmitted by Fecal Microbiota Transplant. *N. Engl. J. Med.* **381**, 2043–2050 (2019).
- 928 4. Sheth, R. U., Cabral, V., Chen, S. P. & Wang, H. H. Manipulating Bacterial Communities by in situ Microbiome Engineering. *Trends Genet.* **32**, 189–200 (2016).
- 929 5. Alang, N. & Kelly, C. R. Weight Gain After Fecal Microbiota Transplantation. *Open Forum Infect Dis.* (2015) doi:10.1093/ofid/ofv00.
- 930 6. Merrick, B. *et al.* Regulation, risk and safety of Faecal Microbiota Transplant. *Infect. Prev. Pract.* **2**, 100069 (2020).
- 931 7. Olle, B. Medicines from microbiota. *Nat. Biotechnol.* **31**, 309–315 (2013).
- 932 8. Ainsworth, C. Engineering the microbiome. *Nature* **577**, S20-22 (2020).
- 933 9. Fischbach, M. A., Bluestone, J. A. & Lim, W. A. Cell-based therapeutics: The next pillar of medicine. *Sci. Transl. Med.* **5**, 1–7 (2013).
- 934 10. Tanoue, T. *et al.* A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. *Nature* **565**, 600–605 (2019).
- 935 11. Petrof, E. O. *et al.* Stool substitute transplant therapy for the eradication of *Clostridium difficile* infection: 'RePOOPulating' the gut. *Microbiome* **1**, 1 (2013).
- 936 12. Denault, J. Standardization and Opportunities in Manufacturing Microbiome Therapeutics.
- 937 13. O'Toole, P. W., Marchesi, J. R. & Hill, C. Next-generation probiotics : the spectrum from probiotics to live biotherapeutics. *Nat. Publ. Gr.* **2**, 1–6 (2017).
- 938 14. Sniffen, J. C., McFarland, L. V., Evans, C. T. & Goldstein, E. J. C. Choosing an appropriate probiotic product for your patient: An evidence-based practical guide. *PLoS One* **13**, 1–22 (2018).

952 15. Rinninella, E. *et al.* What is the Healthy Gut Microbiota Composition? A Changing
953 Ecosystem across Age, Environment, Diet, and Diseases. *Microorganisms* **7**, (2019).

954 16. Suez, J. *et al.* Post-Antibiotic Gut Mucosal Microbiome Reconstitution Is Impaired by
955 Probiotics and Improved by Autologous FMT. *Cell* **174**, 1406-1423.e16 (2018).

956 17. Blanton, L. V., Barratt, M. J., Charbonneau, M. R., Ahmed, T. & Gordon, J. I. Childhood
957 undernutrition, the gut microbiota, and microbiota-directed therapeutics. *Science* (80-).
958 **352**, (2016).

959 18. Bill and Melinda Gates Foundation. Microbial Biotherapeutics | Global Grand Challenges.
960 *Online Article* [https://gcgh.grandchallenges.org/challenge/new-approaches-](https://gcgh.grandchallenges.org/challenge/new-approaches-manufacturing-gut-microbial-biotherapeutics-round-22)
961 manufacturing-gut-microbial-biotherapeutics-round-22 (2018).

962 19. Kumar, M., Ji, B., Zengler, K. & Nielsen, J. Modelling approaches for studying the
963 microbiome. *Nat. Microbiol.* **4**, 1253–1267 (2019).

964 20. Gilman, J., Walls, L., Bandiera, L. & Menolascina, F. Statistical Design of Experiments for
965 Synthetic Biology. *ACS Synth. Biol.* **10**, 1–18 (2021).

966 21. Cambray, G., Guimaraes, J. C. & Arkin, A. P. Evaluation of 244,000 synthetic sequences
967 reveals design principles to optimize translation in *Escherichia coli*. *Nat. Biotechnol.* **36**,
968 1005 (2018).

969 22. Xu, P., Rizzoni, E. A., Sul, S. Y. & Stephanopoulos, G. Improving metabolic pathway
970 efficiency by statistical model-based multivariate regulatory metabolic engineering. *ACS*
971 *Synth. Biol.* **6**, 148–158 (2017).

972 23. Singleton, C. *et al.* A design of experiments approach for the rapid formulation of a
973 chemically defined medium for metabolic profiling of industrially important microbes.
974 *PLoS One* **14**, 7–11 (2019).

975 24. Azubuike, C. C., Edwards, M. G., Gatehouse, A. M. R. & Howard, T. P. Applying statistical
976 design of experiments to understanding the effect of growth medium components on
977 *cupriavidus necator* H16 Growth. *Appl. Environ. Microbiol.* **86**, (2020).

978 25. Clark, R. L. *et al.* Design of synthetic human gut microbiome assembly and butyrate
979 production. *Nat. Commun.* **12**, 1–16 (2021).

980 26. Medlock, G. L. *et al.* Inferring Metabolic Mechanisms of Interaction within a Defined Gut

981 Microbiota. *Cell Syst.* **7**, 245–257 (2018).

982 27. Faith, J. J., McNulty, N. P., Rey, F. E. & Gordon, J. I. Predicting a human gut microbiota's
983 response to diet in gnotobiotic mice. *Science (80-.).* **333**, 101–104 (2011).

984 28. Venturelli, O. S. *et al.* Deciphering microbial interactions in synthetic human gut
985 microbiome communities. *Mol. Syst. Biol.* **14**, e8157 (2018).

986 29. De Vos, M. G. J., Zagorski, M., McNally, A. & Bollenbach, T. Interaction networks,
987 ecological stability, and collective antibiotic tolerance in polymicrobial infections. *Proc.*
988 *Natl. Acad. Sci. U. S. A.* **114**, 10666–10671 (2017).

989 30. Zaramela, L. S. *et al.* The sum is greater than the parts: exploiting microbial communities
990 to achieve complex functions. *Curr. Opin. Biotechnol.* **67**, 149–157 (2021).

991 31. Vermeire, S. *et al.* Donor Species Richness Determines Faecal Microbiota Transplantation
992 Success in Inflammatory Bowel Disease. *J. Crohn's Colitis* **10**, 387–394 (2016).

993 32. Kump, P. *et al.* The taxonomic composition of the donor intestinal microbiota is a major
994 factor influencing the efficacy of faecal microbiota transplantation in therapy refractory
995 ulcerative colitis. *Aliment. Pharmacol. Ther.* **47**, 67–77 (2018).

996 33. Wagner, B. D. *et al.* On the use of diversity measures in longitudinal sequencing studies
997 of microbial communities. *Front. Microbiol.* **9**, (2018).

998 34. Raman, A. S. *et al.* A sparse covarying unit that describes healthy and impaired human
999 gut microbiota development. *Science* **365**, (2019).

1000 35. Lopez-Siles, M., Duncan, S. H., Garcia-Gil, L. J. & Martinez-Medina, M. *Faecalibacterium*
1001 *prausnitzii* : from microbiology to diagnostics and prognostics. 841–852 (2017)
1002 doi:10.1038/ismej.2016.176.

1003 36. Fischbach, M. A. & Sonnenburg, J. L. Eating For Two: How Metabolism Establishes
1004 Interspecies Interactions in the Gut. *CHOM* **10**, 336–347 (2011).

1005 37. Thauer, R. K., Jungermann, K. & Decker, K. Energy Conservation in Chemotrophic
1006 Anaerobic Bacteria. *Bacteriol. Rev.* **41**, 100–180 (1977).

1007 38. Carmody, R. N. *et al.* Diet Dominates Host Genotype in Shaping the Murine Gut
1008 Microbiota. *Cell Host Microbe* **17**, 72–84 (2015).

1009 39. Smith, E. A. & Macfarlane, G. T. Dissimilatory amino acid metabolism in human colonic

1010 bacteria. *Anaerobe* **3**, 327–337 (1997).

1011 40. Cremer, J., Arnoldini, M. & Hwa, T. Effect of water flow and chemical environment on
1012 microbiota growth and composition in the human colon. *Proc. Natl. Acad. Sci. U. S. A.*
1013 **114**, 6438–6443 (2017).

1014 41. D'hoe, K. *et al.* Integrated culturing, modeling and transcriptomics uncovers complex
1015 interactions and emergent behavior in a three-species synthetic gut community. *Elife* **7**,
1016 1–29 (2018).

1017 42. Darling, A. E. *et al.* PhyloSift: Phylogenetic analysis of genomes and metagenomes. *PeerJ*
1018 **2014**, 1–28 (2014).

1019 43. Goos, P. & Jones, B. *Optimal Design of Experiments: A Case Study Approach*. (John Wiley
1020 & Sons, Ltd, 2011).

1021 44. Gao, C. H., Cao, H., Cai, P. & Sørensen, S. J. The initial inoculation ratio regulates bacterial
1022 coculture interactions and metabolic capacity. *ISME J.* **15**, 29–40 (2021).

1023 45. Friedman, J., Higgins, L. M. & Gore, J. Community structure follows simple assembly rules
1024 in microbial microcosms. *Nat. Ecol. Evol.* **1**, 109 (2017).

1025 46. Rossi, O. *et al.* *Faecalibacterium prausnitzii* A2-165 has a high capacity to induce IL-10 in
1026 human and murine dendritic cells and modulates T cell responses. *Nat. Publ. Gr.* 1–12
1027 (2015) doi:10.1038/srep18507.

1028 47. Louis, P. & Flint, H. J. Diversity, metabolism and microbial ecology of butyrate-producing
1029 bacteria from the human large intestine. *FEMS Microbiol. Lett.* **294**, 1–8 (2009).

1030 48. Heinken, A. *et al.* Functional Metabolic Map of *Faecalibacterium prausnitzii*, a Beneficial
1031 Human Gut Microbe. *J. Bacteriol.* **196**, 3289–3302 (2014).

1032 49. Venturelli, O. S. *et al.* Deciphering microbial interactions in synthetic human gut
1033 microbiome communities. 1–35 (2017).

1034 50. Goldford, J. E. *et al.* Emergent simplicity in microbial community assembly. *Science (80-.).*
1035 **361**, 469–474 (2018).

1036 51. Bui, T. P. N. *et al.* Mutual Metabolic Interactions in Co-cultures of the Intestinal
1037 *Anaerostipes rhamnosivorans* With an Acetogen, Methanogen, or Pectin-Degrader
1038 Affecting Butyrate Production. *Front. Microbiol.* **10**, 1–12 (2019).

1039 52. Peng, X. "Nick", Gilmore, S. P. & O'Malley, M. A. Microbial communities for
1040 bioprocessing: lessons learned from nature. *Curr. Opin. Chem. Eng.* **14**, 103–109 (2016).

1041 53. Zhang, H. & Wang, X. Modular co-culture engineering, a new approach for metabolic
1042 engineering. *Metab. Eng.* **37**, 114–121 (2016).

1043 54. Roell, G. W. *et al.* Engineering microbial consortia by division of labor. *Microb. Cell Fact.*
1044 **18**, 1–11 (2019).

1045 55. Baranwal, M. *et al.* Deep Learning Enables Design of Multifunctional Synthetic Human
1046 Gut Microbiome Dynamics. *bioRxiv* 2021.09.27.461983 (2021).

1047 56. Scheuerl, T. *et al.* Bacterial adaptation is constrained in complex communities. *Nat.*
1048 *Commun.* **11**, (2020).

1049 57. Li, L. *et al.* An in vitro model maintaining taxon-specific functional activities of the gut
1050 microbiome. *Nat. Commun.* **10**, (2019).

1051 58. Aranda-Díaz, A. *et al.* Establishment and characterization of stable, diverse, fecal-derived
1052 in vitro microbial communities that model the intestinal microbiota. *Cell Host Microbe* 1–
1053 13 (2022) doi:10.1016/j.chom.2021.12.008.

1054 59. Cheng, A. G. *et al.* Systematic dissection of a complex gut bacterial community. *bioRxiv*
1055 2021.06.15.448618 (2021).

1056 60. Raba, G., Adamberg, S. & Adamberg, K. Acidic pH enhances butyrate production from
1057 pectin by faecal microbiota. *FEMS Microbiol. Lett.* **368**, 1–8 (2021).

1058 61. Coyte, K. Z. & Schluter, J. The ecology of the microbiome: Networks, competition, and
1059 stability. *350*, (2015).

1060 62. Lawson, C. E. *et al.* Common principles and best practices for engineering microbiomes.
1061 *Nat. Rev. Microbiol.* **17**, 725–741 (2019).

1062 63. Zhou, K., Qiao, K., Edgar, S. & Stephanopoulos, G. Distributing a metabolic pathway
1063 among a microbial consortium enhances production of natural products. *Nat. Biotechnol.*
1064 **33**, 377–383 (2015).

1065 64. David, L. A. *et al.* Diet Rapidly and Reproducibly Alters the Human Gut Microbiome.
1066 *Nature* **505**, 559–563 (2014).

1067 65. Garber, K. First microbiome-based drug clears phase III, in clinical trial turnaround. *Nat.*

1068 *Rev. Drug Discov.* **19**, 655–656 (2020).

1069 66. Hromada, S. *et al.* Negative interactions determine *Clostridioides difficile* growth in
1070 synthetic human gut communities. *Mol. Syst. Biol.* **17**, (2021).

1071 67. Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: A fast and accurate Illumina Paired-
1072 End reAd mergeR. *Bioinformatics* **30**, 614–620 (2014).

1073 68. Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid
1074 assignment of rRNA sequences into the new bacterial taxonomy. *Appl. Environ.*
1075 *Microbiol.* **73**, 5261–5267 (2007).

1076 69. Schloss, P. D. *et al.* Introducing mothur: Open-source, platform-independent,
1077 community-supported software for describing and comparing microbial communities.
1078 *Appl. Environ. Microbiol.* **75**, 7537–7541 (2009).

1079 70. Cremer, J., Arnoldini, M. & Hwa, T. Effect of water flow and chemical environment on
1080 microbiota growth and composition in the human colon. 2–7 (2017)
1081 doi:10.1073/pnas.1619598114.

1082 71. Jones, B. & Nachtsheim, C. J. A class of three-level designs for definitive screening in the
1083 presence of second-order effects. *J. Qual. Technol.* **43**, 1–15 (2011).

1084

1085

1086 **Acknowledgements**

1087 We would like to thank Susan E. Hromada and Yili Qian for helpful discussions. We thank Justin
1088 Anderson and Daniel Blasiole of the Wisconsin Alumni Research Foundation for their work in filing
1089 the provisional patent application based on this research. Research was sponsored by the Bill
1090 and Melinda Gates Foundation and was accomplished under grant number OPP1211893 and
1091 National Institutes of Health under grant number R35GM124774.

1092

1093 **Author contributions**

1094 B.M.C., O.S.V. and R.L.C. conceived the study. B.M.C carried out the experiments. B.M.C.
1095 implemented computational modeling. J.T. assisted with model development. B.M.C., O.S.V. and
1096 B.F.P. analyzed data. B.M.C. and O.S.V. wrote the paper and all authors provided feedback on
1097 the manuscript. S.J.E. and R.L.C. assisted in experimental data collection. O.S.V. and B.F.P.
1098 secured funding.

1099

1100 **Competing interests**

1101 B.M.C., O.S.V. and B.F.P. are inventors on a provisional patent application filed by the Wisconsin
1102 Alumni Research Foundation (WARF) with the US Patent and Trademark Office, which describes
1103 and claims concepts disclosed herein (Application No. 63/306,691 Filing Date: 2/4/2022).

1104