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Abstract 20 

 21 

The human auditory system extracts rich linguistic abstractions from the speech signal. 22 

Traditional approaches to understand this complex process have used classical linear feature 23 

encoding models, with limited success. Artificial neural networks have recently achieved 24 

remarkable speech recognition performance and offer potential alternative computational 25 

models of speech processing. We used the speech representations learned by state-of-the-art 26 

deep neural network (DNN) models to investigate neural coding across the ascending auditory 27 

pathway from the peripheral auditory nerve to auditory speech cortex. We found that 28 

representations in hierarchical layers of the DNN correlated well to neural activity throughout the 29 

ascending auditory system. Unsupervised speech models achieve the optimal neural 30 

correlations among all models evaluated. Deeper DNN layers with context-dependent 31 

computations were essential for populations of high order auditory cortex encoding, and the 32 

computations were aligned to phonemic and syllabic context structures in speech.  Accordingly, 33 

DNN models trained on a specific language (English or Mandarin) predicted cortical responses 34 

in native speakers of each language. These results reveal convergence between 35 

representations learned in DNN models and the biological auditory pathway and provide new 36 

approaches to modeling neural coding in the auditory cortex. 37 

 38 

  39 
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 2 

Introduction 1 

 2 

Speech perception involves computations that transform acoustic signals into linguistic 3 

representations. When listening to speech, the acoustic signal activates nearly the entire 4 

auditory pathway in the human brain: from the auditory nerve and subcortical structures to 5 

primary and nonprimary auditory cortices. Natural speech perception is a challenging task with 6 

considerable variability in the acoustic cues for the same linguistic perceptual units such as 7 

phonemes, syllables, and words. This is due to varying contextual factors such as different 8 

speakers, emotions, prosody, coarticulation, speech rate, and lexical context.134 Despite these 9 

challenges, the human auditory system is sensitive to this variability yet robustly extracts 10 

invariant representations of the phonetic and lexical information to support speech 11 

comprehension.3,538 A central goal of speech auditory neuroscience, as well as cognitive 12 

neuroscience in general, is to understand the computations performed in specific neural circuits 13 

and the representations generated by such computations.9  14 

 15 

Classical cognitive models of speech perception, such as the COHORT model,10 the TRACE 16 

model11 and their variants, account for many psychological aspects of speech perception, but do 17 

not explain neural coding or perform well for natural speech recognition. On the other hand, 18 

classical neural encoding models 12315 explain neural coding during speech perception, but 19 

cannot be directly adapted to a unified computational framework of speech perception. Only 20 

recently have modern artificial intelligence (AI) models using deep neural networks (DNN) finally 21 

approached human-level performance in automatic speech recognition.16319 However, these 22 

data-driven models are trained as end-to-end <black boxes= and it is not clear how to interpret 23 

the computations they implement and the representations they generate. Here, we are 24 

interested in understanding how the computations and representations of these DNN models 25 

relate to those found in the human auditory system. Connecting AI models to neural coding of 26 

human sensory systems has important implications on their interpretability and offers new data-27 

driven approaches toward computational models of sensory perception. 28 

 29 

Task-oriented pre-trained DNN models have shown promise as computational models for 30 

sensory neuroscience. In particular, using the internal representation features learned from 31 

supervised learning tasks, such as image recognition or sound classification, encoding models 32 

predict evoked neural population responses in visual and auditory cortices with high 33 

accuracy.20324 Two of the key ingredients in neural network models are the model architecture 34 

and the training objective. Model architecture determines the type of computations performed on 35 

input signals, while the training objective prioritizes specific types of representations that the 36 

model is learning through optimization. The neural coding in the ventral visual cortex is largely 37 

driven by spatial statistics in the retinotopic space,25 therefore convolutional neural networks 38 

built upon a hierarchy of spatial convolutions have had great success in modeling neural 39 

representations in the ventral visual pathway.20,23,24  40 

 41 

Unlike core object recognition in vision modeling which uses static images, speech is inherently 42 

dynamic and can be better modeled with sequence-to-sequence (seq2seq) learning models 43 

rather than spatial pattern recognition. Furthermore, supervised model training, which often 44 
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 3 

requires an enormous amount of labeled data, is not plausible as a generic learning strategy of 1 

the human auditory system. Human infants can learn phonetic and linguistic categories from the 2 

statistical distribution of speech sounds in native languages without explicit word learning.26328 3 

Recent works have suggested that unsupervised models, which do not require labeled data, can 4 

also be used as models of vision and high-level language processing in brain.29331 Therefore, 5 

(unsupervised) speech models which learn the transient (local) features of speech as well as 6 

the statistics of longer sequences and context, may yield more optimal models for speech 7 

perception.32  8 

 9 

In this study, we directly assess the representational and computational similarities between the 10 

state-of-the-art speech neural network models and the human auditory pathway in order to shed 11 

light upon the underlying shared computations in the two systems. On the biological side, neural 12 

responses to natural speech in different parts of the ascending auditory pathway are extracted 13 

from biophysical models determined from neural recordings and direct intracranial 14 

electrophysiological recordings from the human auditory cortex; on the DNN side, different 15 

levels of speech embeddings are extracted from pretrained speech models. Using neural 16 

encoding framework,12,33 we systematically evaluate the similarity between the auditory pathway 17 

and DNN models with different computational architectures, such as convolution, recurrent and 18 

self-attention, and with different training strategies, including both supervised and unsupervised 19 

objectives. Furthermore, by inspecting the context-dependent computations in the DNNs, we 20 

provide interpretable insights into the underlying sequential and contextual computations and 21 

representations that drive the predictions in the neural encoding models. Unlike previous 22 

modeling efforts which mainly focused on one single language, mainly English, we use a cross-23 

linguistic paradigm and test if our DNN based models can reveal language-invariant and 24 

language-specific aspects during speech perception.  25 

 26 

In particular, we demonstrate the following findings: 1) the hierarchy in the DNNs trained to 27 

learn speech representations correlate to the ascending auditory pathway; 2) unsupervised 28 

models without explicit linguistic knowledge are able to learn similar feature representations as 29 

the human auditory pathway; 3) deeper layers in speech DNN correlate to the context-30 

dependent speech-responsive populations in non-primary auditory cortex, and the correlation 31 

can be explained by the specific computations aligned to important linguistically-relevant 32 

temporal structures in speech, such as phonemic and syllabic contexts; 4) the DNN-based 33 

model is able to reveal language-specific properties in cross-language speech perception, which 34 

is not easily captured by traditional linear encoding model. Taken together, we provide new 35 

data-driven approaches to modeling and evaluating neural coding in the auditory cortex. 36 
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 4 

Results 1 

 2 

Overview 3 

Our overall goal is to understand computations and representations that occur and emerge 4 

throughout the auditory system during speech perception. To model the early portion of the 5 

pathway, we used a biophysical model simulation from the auditory periphery and midbrain,34336 6 

which have been highly successful as neural encoding models at the cellular level. The 7 

biophysical model yielded 50 distinct neurons in the auditory nerve (AN) and 100 distinct 8 

neurons in the inferior colliculus (IC). For the later portion of the pathway, we used intracranial 9 

cortical recordings from the human auditory cortex, including both primary and non-primary 10 

cortices.37 High-density grid electrodes were placed on the auditory cortex in nine participants 11 

(Supplement Fig. 1) and local field potentials were recorded as these participants listened to an 12 

English speech corpus. From the total of 553 electrode sites along the auditory cortex, 81 13 

electrodes were located in the primary auditory cortex (Heschl9s gyrus; HG) and 472 were 14 

located in the non-primary auditory cortex (superior temporal gyrus; STG). The amplitude of the 15 

local field potential in the high-gamma band (70-150 Hz) was computed and used as a measure 16 

of the local neuronal activity.38 Neural responses across the early and later auditory systems 17 

were assessed using a set of 599 English sentences from the TIMIT corpus.39 18 

 19 

We used four deep neural networks as computational models to extract speech representations 20 

from speech stimuli. A critical factor that differentiates these models is their training objectives. 21 

In particular, we employed two unsupervised models and two supervised models: 1) the 22 

HuBERT model is a transformer-based self-supervised model trained to perform prediction of 23 

masked portions in speech;19 2) the Wav2Vec 2.0 unsupervised model (W2V unsup) is a 24 

transformer-based self-supervised model trained to perform a contrastive learning task that 25 

distinguishes spans of the speech utterance from distractors;17 3) the Wav2Vec 2.0 supervised 26 

model (W2V ASR) is a transformer-based supervised model based upon fine-tuning the 27 

unsupervised model using automatic speech recognition objective;17 4) the Deep Speech 2 28 

model (DS2) is an LSTM-based supervised model trained with automatic speech recognition 29 

objective.16 These models share a similar hierarchical framework composed of a multi-layer 30 

convolutional feature encoder and a multi-layer sequential context representation encoder. The 31 

convolutional feature encoder takes raw speech audio (raw waveform or spectrogram) as input 32 

and extracts latent speech representations using 1D and 2D convolutions. These latent 33 

representations are hypothesized to reflect temporally constrained lower-level acoustic features. 34 

The sequential context representation encoder, which consists of multiple Transformer encoder 35 

layers or multiple recurrent layers (long short-term memory layers), takes in the output from the 36 

convolutional feature encoder and extracts contextual information from the sequence, which is 37 

hypothesized to reflect higher-level context dependent phonetic information. We pre-trained the 38 

speech learning models on Librispeech, a standard corpus of 960h continuous naturalistic 39 

English speech.40 (Table 1)  40 

 41 

The speech responses from both the auditory pathway and DNNs were aligned in time, and 42 

linear encoding models were trained using different representation layers in the DNNs to predict 43 

neural responses in the auditory pathway (Fig 1). The performance of these neural encoding 44 
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 5 

models (prediction R2) quantifies the similarity between the learned speech representation in the 1 

DNNs and the underlying neural representation in the auditory pathway. In this way, we test the 2 

hypothesis that the speech DNN models converge to a similar representation hierarchy as the 3 

ascending auditory pathway.  4 

 5 

To account for the heterogeneous signal-to-noise ratio in different parts of the auditory pathway, 6 

we first set up benchmark baselines for each individual electrode and neuron in our recordings. 7 

Specifically, for each recording site, we trained two baseline models: 1) a linear temporal 8 

receptive model using spectrogram features;12 2) a linear temporal receptive field model using a 9 

heuristic set of acoustic-phonetic features that include spectrogram, speech envelope, and 10 

temporal landmarks, pitch, and phonetic features.37 (Supplement Fig 2) The performance of the 11 

neural encoding models using DNN features was normalized to these baselines in each 12 

individual recording site in order to make evaluations and comparisons across recording sites 13 

and areas. This normalized prediction R2 is termed as the brain prediction score (BPS), and 14 

used as the major metric for prediction accuracy for each recording site. 15 

 16 

 17 

 18 
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 6 

Figure 1. The overall framework for comparing representations in deep neural networks 1 

and the auditory pathway. The architecture of a family of deep neural network models, the 2 

Wav2Vec2.0/HuBERT, is illustrated on the left. The auditory pathway is illustrated on the right, 3 

with highlighted areas indicating the locations of the recorded/simulated electrophysiology 4 

signals. The same natural speech stimuli were presented to both the human subjects and the 5 

DNN models, and the internal activations of each DNN layer were extracted and aligned to the 6 

corresponding neural activity from each recording site of the auditory pathway. A ridge 7 

regression model was fitted to predict the neural activity from time-windowed DNN 8 

representations, and the correlation R2 between the predicted and actual neural activity was 9 

used as a metric of prediction accuracy (brain prediction score; BPS). 10 

 11 

 12 

Table 1. Summary of network training objectives, architectures, and dimensionality. 13 

 14 

Models Unsupervised 
objective 

Supervised 
objective 

Architecture # of dimensions 
in each layer 

HuBERT (Hsu et 
al., 2021) 

Masked 
prediction 

N/A 7 CNN layers + 
12 Transformer 
encoder layers 

512 (CNN) 
768 (Transformer) 

Wav2Vec 2 
(unsupervised) 
(Baevski et al., 
2020) 

Contrastive 
learning 

N/A 7 CNN layers + 
12 Transformer 
encoder layers 

512 (CNN) 
768 (Transformer)  

Wav2Vec 2 
(Supervised) 
(Baevski et al., 
2020) 

Contrastive 
learning 

Automatic 
speech 
recognition 

7 CNN layers + 
12 Transformer 
encoder layers 

512 (CNN) 
768 (Transformer) 

Deep Speech 2 
(Amodei et al., 
2016) 

N/A Automatic 
speech 
recognition 

3 CNN layers + 
5 LSTM layers 

1312 (CNN) 
1024 (LSTM) 

 15 

 16 

The hierarchy of layers in DNNs correlate with the ascending auditory pathway 17 

We test whether DNNs that are trained to learn speech representation converge on the same 18 

standard auditory serial feedforward hierarchy of AN-IC-HG-STG. To do this, we compared the 19 

DNN hierarchy and the ascending auditory pathway from three different perspectives: 1) are the 20 

feature representations learnt by DNNs more strongly correlated with the neural coding than 21 

linguistically-derived acoustic-phonetic feature sets? 2) Does the hierarchy of layers in DNNs 22 

mirror a similar hierarchy in the ascending auditory pathway? 3) Do DNN encoding models 23 

reflect different temporal integration profiles along the auditory pathway? 24 

 25 
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 7 

First we took a representative state-of-the-art self-supervised DNN, the HuBERT model.19 For 1 

each single-layer representation model in HuBERT, we computed the averaged brain prediction 2 

score (normalized prediction R2) across all recording sites within each anatomical area (Fig 2a). 3 

Compared to the linear model with heuristic acoustic-phonetic features, the DNN encoding 4 

model explained 39.9% more variance in AN at Transformer layer 1 (t(50) = 13.97, p = 2.5e-44, 5 

two-sided), 76.3% more variance in IC at Transformer layer 1 (t(100) = 13.75, p = 5e-43, two-6 

sided), 3.4% more variance in HG at Transformer layer 1 (t(53) = 1.20, p = 0.23, two-sided), and 7 

23.0% more variance in STG at Transformer layer 10 (t(144) = 16.1, p = 5e-58) (Fig 2a). 8 

Moreover, out of all layers in the same unsupervised DNN model, AN and IC responses were 9 

best predicted by the CNN layers as well as the first 4 Transformer layers in the hierarchy (Fig. 10 

2a). The speech responsive STG population was best predicted by the later part of the DNN 11 

model, and peaked at the 10th layer out of all 12 Transformer layers (Fig. 2a). HG responses 12 

were predicted by all Transformer layers equally well. However, none of these speech DNN 13 

layers out-performed the baseline acoustic model for HG (Fig. 2a). 14 

 15 

Next, we tested the hypothesis that the auditory hierarchy is characterized by increasingly long 16 

temporal integration windows. The Transformer-encoding models demonstrated distinct 17 

temporal integration profiles for different areas: AN and IC encoding models all showed 18 

dominant delay time window length of 50 ms. HG delay time window lengths were around 100-19 

200 ms, while STG delay time window lengths were larger than 200 ms (Fig 2b). Using the 20 

baseline spectrogram model, we found the temporal receptive fields estimated for each area 21 

showed a hierarchy of progressive temporal integration of acoustic inputs: temporal responses 22 

in peripheral areas AN and IC were mostly transient within 100ms, while neural responses in the 23 

cortex showed integration time windows longer than 100ms. More specifically, HG on average 24 

had a consistent temporal integration window of 200 ms, while STG showed more diversified 25 

profiles, some with transient integration windows less than 200ms and some with significant 26 

sustained temporal integration longer than 400ms (Fig 2c).  27 

 28 

Finally, we generalized the evaluations to a set of different DNN models in Table 1. We found 29 

that for all areas, all DNN encoding models outperformed the baseline linear models. On 30 

average, compared to the linear model with heuristic acoustic-phonetic features, DNN encoding 31 

models explained 29.3%-40.0% more variance in AN, 61.7%-76.3% more variance in IC, -3.5%-32 

11.4% more variance in HG, and 3.1%-23.0% more variance in STG (Fig 2d). In particular, the 33 

Transformer layers in the unsupervised HuBERT model achieved highest average performance 34 

in all areas except for HG. Moreover, we found that neural responses to speech in the auditory 35 

periphery (AN & IC) and primary auditory cortex (HG) were also largely characterized by locally 36 

resolved filters such as CNN representations, which had a fixed finite receptive field in time (p > 37 

0.05 compared to HuBERT, two-sided t-test, Fig. 2d). On the other hand, speech responses in 38 

the non-primary auditory cortex (STG) were better predicted using context-dependent feature 39 

representations layers (Transformer layers) of the DNNs (Fig. 2d), which dynamically track the 40 

context information in the sequential speech input.  41 

 42 

To sum up from the above three perspectives, the early to later layers in the deep neural 43 

networks trained to learn speech representations correlate to the successive processing in the 44 
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 8 

ascending auditory pathway. HG representation is not modeled well by speech DNNs (p > 0.1 in 1 

all layers compared to baseline, Fig 1a) despite the latencies and temporal integration window 2 

for TRFs would suggest a serial processing pathway. 3 

 4 

 5 

 6 
Figure 2. The hierarchy of layers in DNNs correlate to the AN-Midbrain-STG ascending 7 

auditory pathway. a) The averaged normalized brain prediction score of the best-performing 8 

neural encoding model based on each single layer in the HuBERT model (maximum over delay 9 

window length). Magenta bars indicate CNN output layers, cyan bars indicate Transformer 10 

layers. Red star (*) indicates the best model for each area, black dot (.) indicates other models 11 

that are not statistically different from the best model (p > 0.05, two-sided paired t-test), from left 12 

to right: AN, IC, HG and STG, same for each row in b-d. b) The histogram of the optimal delay 13 

window lengths corresponding to models in a. c) The averaged temporal receptive ûeld 14 

(absolute beta weights of the spectrotemporal encoding model) in speech-responsive 15 

units/electrodes of each area. (mean ± s.e.m., light shaded areas indicate random permuted 16 

distributions). d) The averaged normalized brain prediction score of the best-performing neural 17 

encoding model types (maximum over single layers and delay window lengths) for different 18 
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 9 

areas of the pathway. Color key indicates different layer type. Red star (*) indicates the best 1 

model for each area, black dot (.) indicates other models that are not statistically different from 2 

the best model (p > 0.05, two-sided paired t-test). Dashed horizontal line indicates baseline 3 

model using full acoustic-phonetic features.   4 

 5 

 6 

Sustained speech responses in STG are explained by deeper contextual layers in DNN 7 

Previous studies have identified neural populations in STG that show distinct speech responsive 8 

profiles, including onset and sustained responses.37,41 Here, we evaluated whether these 9 

functionally distinct speech-responsive populations corresponded to different layers of 10 

contextual dependent representations in the same DNN model.  11 

 12 

Among the 144 speech-responsive electrodes in STG, we found 2 clusters that showed distinct 13 

transient and sustained response profiles, based on averaged high-gamma responses across 14 

sentences (Fig 3a, 3b, and Fig S2). We then looked into the best STG-prediction model, the 15 

HuBERT model, and compared the brain prediction scores of different layers with regard to 16 

these functional clusters. As shown in Fig. 3c, for the more sustained clusters (Clusters 1), the 17 

best prediction model came from the deep layers of the Transformer-encoder in the DNN 18 

(Clusters 1: peak BPS = 1.26 at Transformer layer 10), which were also significantly higher than 19 

the early layers in the DNN (p < 0.05, two-sided paired t-test, df=83, no statistical difference 20 

between layers 6-12). For the more transient cluster (Cluster 2), the best prediction model was 21 

from the Transformer layer 5 in the DNN (peak BPS = 1.20 at layer 5). However, the peak 22 

prediction layer did not significantly outperform any other Transformer layers in the network, 23 

only except the very first one (p > 0.05 for all two-sided paired t-test, df=61 for cluster 2). Both 24 

clusters 1 and 2 showed a similar optimal delayed-time window length of around 200-250ms 25 

(Fig 3d). As a result, the sustained speech-responsive neural activity prevalent in STG can be 26 

predicted from the deeper contextual representation layers in DNN, while the more transient 27 

speech-responsive neural activity, such as the onset response, can be predicted in both the 28 

early and late part of the Transformer hierarchy in DNN. This indicates that these different 29 

neural populations do not correspond to a simple serial feedforward process in the DNN 30 

hierarchy, where the more transient population is mapped to early layers and the more 31 

sustained population is mapped to the later layers. On the other hand, the DNN maintains the 32 

transient onset representation throughout the processing hierarchy, and the later layers 33 

represent both transient and sustained representations in parallel.  34 

  35 
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 10 

 1 

 2 
 3 

 4 

Figure 3. Functional subpopulations in STG correlate to different contextual 5 

representation layers in DNN. a) Anatomical locations of all speech responsive electrodes, 6 

mapped onto a common cortical space. Different colors indicate different functional clusters. b) 7 

The averaged event-related potential of each functional cluster. All time aligned to sentence 8 

onsets, and normalized to resting-state baseline. (mean ± s.e.m) c) The averaged normalized 9 

brain prediction score of the encoding model based on every single layer in HuBERT for each 10 

functional cluster (maximum over delay window length). Red star (*) indicates the layer with 11 

highest score, black dot (.) indicates other layers that are not statistically different from the best 12 

model (p > 0.05, paired t-test). d) The histogram of the optimal delay window lengths 13 

corresponding to models in c. 14 

  15 
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 11 

DNN context-dependent processing explains encoding predictions in human cortex.  1 

We next examined the computational mechanism underlying contextual representations in the 2 

DNN. We asked whether certain types of contextual computation for speech in DNN explain the 3 

ability to predict brain responses.  4 

 5 

Specifically, we extracted the attention weight matrices in each Transformer layer of the 6 

HuBERT model, which quantified the contributions from different parts in the context to the 7 

feature representation at each time. Critically, these contextual attention weight matrices were 8 

not static filters but rather dynamically changed according to the specific speech sequences. 9 

Therefore, it reflected the stimulus-dependent dynamic extraction of contextual information in 10 

each speech sequence. Such computations would be critical for resolving contextual effects,42 11 

such as allophonic variation,43 and extracting invariant representation of lexical information from 12 

acoustic signals.  13 

 14 

As a result, for each sentence in the speech corpus, we defined templates of attention matrices 15 

corresponding to different levels of contextual information representation in speech, including 16 

contextual information within the same phoneme, contextual information from previous 17 

phoneme(s), contextual information within the same syllable, and contextual information from 18 

previous syllable(s) (Fig 4a, b). We then computed the averaged correlation coefficient between 19 

the actual attention weight matrices in each DNN layer and the templates across all sentences, 20 

which we termed as the attention score for each layer in DNN (Fig 4c). We found a general 21 

trend that deeper layers showed an increased amount of contextual attention to linguistic 22 

structures (previous phoneme(s) and syllable(s)) (Fig 4c, bar plots). A randomized DNN model 23 

with the same architecture but no pre-training on speech data did not show such progressive 24 

contextual attention along the hierarchy (Fig 4c, black lines). Therefore, the alignment of 25 

attention to contextual structures was not just a direct consequence of the hierarchical 26 

architecture of the DNN model that emerges with depth but reflecting computations adapted to 27 

extracting speech-specific linguistic-relevant representations through training on natural speech. 28 

(Fig 4c).  29 

 30 

We then tested if such trends in contextual computations would predict the brain-prediction 31 

performance for different layers in the DNN. Specifically, we correlated the attention score to the 32 

brain prediction score for each brain area in different DNN layers. We found that the phonemic 33 

and syllabic level attention to the linguistic context in speech was positively correlated to the 34 

ability to predict brain activity only in the non-primary auditory cortex (Fig 4g), but not in the 35 

auditory periphery or the primary auditory cortex (Fig 4d-f). In other words, for a given 36 

Transformer layer in the model, the better the attention weights aligned to linguistic contextual 37 

structure, the better the layer9s learned representation would be able to predict speech response 38 

in STG. On the other hand, the more contextual information attended, the less the learned 39 

representation would be correlated to AN/IC/HG response. Since the latent representation in a 40 

Transformer layer is a combination of locally constraint representation and its contextual 41 

representations, these results also indicate that neural code in STG is reflective of contextual 42 

linguistic information, while the neural code in AN/IC/HG is more reflective of temporally-43 

constrained acoustic representations.  44 
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 1 

 2 
Figure 4. Context-dependent computations explain brain correspondence across layers 3 

in DNN. a) Sample speech sentence text, waveform, and phonemic annotations are shown. The 4 

segmentations of phonemic and syllabic context to the current time frame (black arrow) are 5 

marked in different colors. phoneme(0): current phoneme (grey); phoneme(-1): previous 6 

phoneme (purple); phoneme(-2): second-to-previous phoneme (blue); syllable(0): current 7 

syllable (excluding current phoneme, green); syllable(-1): previous syllable (orange), syllable(-8 

2): second-to-previous syllable (red). b) The template attention weight matrices for different 9 

contextual structures as shown in a). Query: the target sequence: key: the source sequence. 10 

Colored blocks correspond to different contexts. c) The averaged attention score (Pearson9s 11 

correlation coefficient between attention weights and template) across all English sentences for 12 
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each Transformer layer corresponding to each type of attention template. r values in the top left 1 

of each panel indicate the correlation between attention score and layer index (df = 12). Black 2 

line indicating averaged attention score from the same DNN architecture with randomized 3 

weights (mean +/- s.e.m.). d-g) Scatter plots of attention score vs. brain prediction score across 4 

layers, each dot indicates a Transformer layer, each panel corresponds to one type of attention 5 

pattern. The r and p values correspond to the AS-BPS correlation across layers (Pearson9s 6 

correlation, df = 12). Each row corresponds to a different area (d - AN, e - IC, f - HG, g - STG).  7 

 8 

 9 

DNN context-dependent representations capture language-specific information 10 

Next, we tested whether the contextual dependent computation was language-specific and 11 

reflected higher-level language processing beyond just the acoustics, such as phonotactic, 12 

phonological, or lexical representations. To do this, we took a cross-linguistic approach, 13 

comparing English and Mandarin (Fig. 5a). Mandarin shares many of the consonants and 14 

vowels of English but differs drastically in how phonetic and prosodic features are combined to 15 

give rise to words. In addition to the English-speaking participants, we also analyzed cortical 16 

recordings from native Mandarin speakers. Both groups were monolingual and had no 17 

comprehension of the foreign language. We adopted the same paradigm and materials as our 18 

previous study which mainly focused on cross-linguistic pitch perception44. The two groups were 19 

instructed to listen to both naturalistic English speech and Mandarin speech in separate 20 

recording blocks. In addition to the previous HuBERT model pretrained on English speech, we 21 

also pretrained the same HuBERT model with naturalistic Mandarin speech. We then compared 22 

the performance of the two models on the two groups when they listened to different languages 23 

(Fig. 5a).   24 

 25 

To explicitly test our hypotheses of linguistically relevant context dependent processing in the 26 

auditory pathway as shown in the previous section (Fig. 4), we conducted cross-lingual 27 

perception and DNN prediction tests. In particular, we hypothesized that the contextual 28 

dependent computation in DNN capture language-specific higher-level processing beyond 29 

acoustics in STG, and therefore we would expect English-pretrained model shows higher brain 30 

prediction performance in STG of native English speakers, and the prediction performance is 31 

better aligned to contextual attention to the phonemic and syllabic structures in English than 32 

Mandarin. On the contrary, the Mandarin-pretrained model would show higher brain prediction 33 

and better correlation to contextual attention for Mandarin speech in native Mandarin speakers.  34 

 35 

First, we looked at the results with an English-pretrained model and native English speakers. At 36 

the acoustic level, the linear STRF model, which only included spectrogram features, showed 37 

similar performance in predicting neural responses in STG when listening to different languages 38 

(mean R2 = 0.162 and 0.143 for Mandarin and English speech respectively, paired t(45) = 1.65, 39 

p = 0.105, two-sided, Fig 5b). This suggests that the lower-level acoustic representation is 40 

largely shared across languages. However, a performance gap was found in the DNN encoding 41 

models between languages, where the brain-prediction score for English speech was 42 

significantly higher than Mandarin speech (Fig 5c). Moreover, the gap between the two 43 

languages monotonically increased in deeper layers of the network. �BPS = 0.160 at CNN 44 
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output layer (p=0.007, paired t-test, two-sided), �BPS = 0.211 at the first Transformer encoder 1 

layer (p=0.005, paired t-test, two-sided), �BPS = 0.314 at the 10th encoder layer (p=2e-5, 2 

paired t-test, two-sided) (Fig 5c). This suggests that the representation in the network 3 

demonstrates an increasing level of language-specific information. We also evaluated the 4 

relationship between the phonemic and syllabic contextual information computation in DNN 5 

layers and the corresponding brain-prediction performance for Mandarin speech in STG. As 6 

opposed to the previous results (Fig 4g), no significant correlation was found in either phonemic 7 

or syllabic level between the attention patterns in DNN layers and brain-prediction scores when 8 

listening to Mandarin speech (Fig 5d).  9 

 10 

In contrast, we found opposite results with a Mandarin-pretrained model and native Mandarin 11 

speakers. At the acoustic level, the linear STRF model also showed similar performance for 12 

both Mandarin and English speech (mean R2 = 0.056 and 0.058 for Mandarin and English 13 

speech respectively, paired t(92) = -0.501, p = 0.617, two-sided, Fig 5e). The DNN encoding 14 

models showed consistently higher performance for neural response to Mandarin speech than 15 

English, and the gap also increased in deeper layers.  �BPS = 0.293 at CNN output layer 16 

(p=2e-6, paired t-test, two-sided), and �BPS = 0.405 at the 9th Transformer encoder layer 17 

(p=5e-8, paired t-test, two-sided) (Fig 5f). Moreover, as opposed to the English-pretrained 18 

model and native English speakers combination, we found consistently significant correlations 19 

between phonemic or syllabic level attention scores and brain-prediction scores when listening 20 

to Mandarin speech, and no significant correlation when listening to English speech, in these 21 

native Mandarin speakers (Fig. 5g).  22 

 23 

Therefore, our results demonstrated a double-dissociation pattern between pre-trained models 24 

and native languages, suggesting that the contextual dependent computations in the DNN 25 

model captured higher-level language-specific linguistic information in STG that are learned 26 

depending on language experience.  27 

  28 
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 1 

 2 
Figure 5. Cross-language encoding comparisons reveal language-specific representation 3 

and computations aligned between DNN and STG. a) Schematic of the cross-language 4 

paradigm. Both English (darker color) and Mandarin (lighter color) speech were fed into models 5 
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pretrained on English or Mandarin. The extracted representations were used to predict neural 1 

responses recorded in STG from native English speakers or native Mandarin speakers when 2 

they listened to the corresponding speech. b) The averaged prediction R2 of linear STRF model 3 

in STG electrodes from native English speakers using English or Mandarin speech. Two-sided 4 

paired t-test. c) The averaged normalized brain prediction score of the encoding model based 5 

on every single layer in English-pretrained HuBERT model in native English speakers when 6 

listening to English vs Mandarin speech. All comparisons are significant with p < 0.01, paired 7 

two-sided t-test. d) The AS-BPS correlation across layers in English-pretrained HuBERT model 8 

and STG in native English speakers (Pearson9s correlation, df = 12). Each panel corresponds to 9 

one type of attention pattern. (See also Fig. 4). e-g) Same as b-d, but using Mandarin-10 

pretrained HuBERT model and recordings from STG in native Mandarin speakers.  11 

 12 

 13 

Acoustic-phonetic feature representation in DNN explains brain prediction performance 14 

The last question we asked is whether the brain-prediction performance of the DNN layers can 15 

be accounted for by an acoustic-to-phonetic processing hierarchy. We tested the feature 16 

representations of acoustic, phonetic and prosodic information in the DNN layers. Specifically, 17 

we applied similar linear feature encoding models to predict the activations of the hidden units in 18 

different DNN layers and computed the unique variance explained by each set of features. It is 19 

worth pointing out that these features are statically coded and do not vary according to different 20 

contexts. Therefore, our analysis here intentionally reflects the static non-contextual part of 21 

acoustic/phonetic/prosodic representations in the DNN layers, as addressed in the previous 22 

analyses. 23 

 24 

Overall, the results indeed demonstrated an acoustic-to-phonetic transformation along the 25 

hierarchy (Fig 6A). In the CNN output layer, the spectrogram features uniquely accounted for 26 

20.0% of the total variance, while phonetic features only accounted for 1.70% (paired t(768) = 27 

47.6, p < 1e-10, two-sided). However, after the 3rd Transformer encoder, phonetic features 28 

consistently explained more unique variance than the acoustic features in the network. The 29 

unique variance explained by static phonetic features peaked at the 11th Transformer encoder 30 

layer with unique R2 = 3.98% (paired t(768) = 9.12, p < 1e-10, two-sided t-test against acoustic 31 

features). On the other hand, temporal landmark features, such as speech envelope and 32 

onsets, and prosodic pitch features (absolute and relative pitch) were more uniformly distributed 33 

along the hierarchy of the network (Fig 6a).  34 

 35 

Furthermore, when correlated to the brain-prediction score of individual layers, spectrogram and 36 

phonetic feature encoding only showed significant positive correlation in the peripheral areas 37 

(AN: Pearson9s r = 0.65, p = 0.012; IC: Pearson9s r = 0.72, p = 0.0039; Fig 6b). Furthermore, the 38 

phonetic feature encoding also correlates with brain-prediction score in STG (Pearson9s r = 39 

0.77, p = 0.0013; Fig 6B), but not the other areas (p > 0.05 for all other 3 areas; Fig 6B). Taking 40 

these together, a similar acoustic-to-phonetic hierarchy was found and correlated in both the 41 

self-supervised DNN model and the ascending AN-IC-STG pathway. 42 

 43 

 44 
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 1 
Figure 6. The representations in neural networks demonstrate an acoustic-to-phonetic 2 

transformation hierarchy, yet preservation of prosodic cues through DNN layers. a) The 3 

average unique variance explained by each set of features across units in each DNN layer. b) 4 

First row: the correlation between brain prediction score and unique variance explained by 5 

spectrogram features in each layer. Second row: the correlation between brain prediction score 6 

and unique variance explained by phonetic features in each layer. Each panel corresponds to 7 

one area. From left to right: AN, IC, HG, STG. 8 

 9 

 10 

 11 

  12 
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Discussion 1 

 2 

We have demonstrated that computational representations of speech learned in state-of-the-art 3 

deep neural networks resemble important aspects of information processing through the human 4 

auditory system. The feature representations learned by DNNs significantly outperform theory-5 

driven acoustic-phonetic feature sets in predicting neural responses to natural speech 6 

throughout the auditory pathway. We find that the hierarchy of layers in DNNs correlate to the 7 

AN-Midbrain-STG ascending auditory pathway. Contextualized representations learned by 8 

DNNs correlate to functionally distinct speech-tuned populations in the non-primary auditory 9 

cortex. Furthermore, by inspecting the core contextual computation components in DNNs, we 10 

demonstrate that DNN models are able to learn critical linguistically-relevant temporal structure, 11 

such as phoneme and syllable contexts, from natural speech even with unsupervised training. 12 

Such ability to learn language-specific linguistic information also predicts the correlation 13 

between the learned representation in DNN and the neural coding in non-primary auditory 14 

cortex. The DNN-based neural encoding model is able to reveal language-specific coding in 15 

STG during cross-language perception, which is not sensitive 16 

 17 

Encoding models are the prevalent method to approach the neural coding of sensory 18 

perception.12,33,45 Despite the success in accounting for the neural coding of lower-level 19 

acoustic-phonetic features,12,13,37,46348 linear encoding models have not performed as well for 20 

higher-order speech information, and often fail to reveal information beyond acoustic stimulus 21 

encoding (Fig 5b, e). To account for the nonlinear transformations of the pure acoustic cues in 22 

the auditory system, higher-order features are included as predictors, such as phonetic, 23 

phonemic, syllabic, and lexical features.13,37,44,49351 However, these feature representations rely 24 

on strong presumptions of hierarchical neural coding of these exact divisions and may not cover 25 

the intermediate representations in the non-primary auditory cortex.52354 Furthermore, these 26 

models posit the auditory system as a passive finite response filter, which does not reflect the 27 

non-onset recurrent activity prevalent in high-order speech auditory areas.37,52,55  28 

 29 

Traditional hierarchical models of neurobiology imply that specific brain areas are specialized for 30 

a particular representational level and that the transformation of information occurs across a 31 

anatomically defined <stream=, i.e. sound to phoneme to syllable to word and semantics.11,56 Our 32 

emerging findings challenge this traditional view. Instead, our results support that while there is 33 

a transformation from spectrogram to phonetic features, instead of phonemes and syllables as 34 

discretely encoded representations, we find complex, distributed higher-order representations 35 

that also carry forward prosodic information that may originate at earlier auditory levels and that 36 

processing is highly context dependent in later layers of computation. This may explain why we 37 

see not only phonetic feature tuning in STG,13 but also many <lower= level representations, such 38 

as onset, peakrate, frequency tuning,37,50 and <higher= level representations, such as context 39 

dependent, normalization, lexical effects.15,44,49,51   40 

 41 

Our results revealed two critical factors determining the superior performances of the data-42 

driven DNN models over the heuristic linear models with static speech feature sets. 1) The 43 

nonlinearity of the DNN models: specifically, almost all DNN layers consistently outperform the 44 
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feature TRF models, even in the auditory periphery. This is indeed consistent with 1 

demonstrations of nonlinear processing in the auditory periphery.57 Given that both DNN and 2 

feature encoding models have roughly similar amounts of predictors (on the order of 100), this 3 

suggests that DNNs are learning nonlinear representations that are critical for extracting 4 

relevant phonetic features. 2) The dynamic temporal integration of contextual information in the 5 

DNN models: this is particularly critical for higher-order speech responses in the non-primary 6 

auditory cortex. Neural responses in STG were better predicted using deeper contextual 7 

representation layers in DNN with an extended delay time window. Furthermore, simply using 8 

nonlinear features in CNN layers with an even longer delay time window was not sufficient to 9 

achieve similar brain prediction performance for STG (Fig. 2). This indicates that specific 10 

dynamic temporal integration, which is aligned to the contextual information in speech and can 11 

be parametrized by computations such as Transformer-encoders or recurrent neural networks, 12 

is critical for characterizing neural responses to speech in STG. This finding provides evidence 13 

for STG speech processing units at dynamic timescales, which is possibly a mechanism for 14 

temporal binding of phonological sequences to form context-dependent acoustic-phonetic 15 

representations and ultimately perceptual representations of speech.55  16 

 17 

Our results offer new perspectives for the underlying computations in the auditory pathway. A 18 

critical factor in deep neural network models is the model architecture, which determines the 19 

capability of computation and representation in the network.58 We found that different types of 20 

computational architectures were best correlated to different parts of the auditory pathway: the 21 

auditory periphery and subcortical areas were better characterized by locally-resolved static 22 

filters such as the convolution layers in DNN; the speech auditory cortex was better 23 

characterized by the sequential contextual representation layers, such as Transformer encoders 24 

and LSTM layers in DNN, which have more complex stimulus-dependent temporal dynamics 25 

than static spectrotemporal filters. These computations can be seen as signature features for 26 

different parts of the pathway: the auditory periphery and subcortical structures mainly consist of 27 

ascending feedforward synaptic connections, facilitating fast feedforward filtering of the signal;35 28 

the speech auditory cortex, on the other hand, has multi-layer architecture with reciprocal 29 

connections that would facilitate sustained computations similar to recurrence and attentions.59 30 

Of note, many previous studies have focused on cortex alone, suggesting that the main 31 

computations for speech along the path from primary to non-primary cortex. Here, through the 32 

lens of speech representation learning DNNs, we show that speech-relevant computations 33 

occur throughout the auditory pathway, and the periphery may play the more important 34 

computational role than primary auditory cortex.   35 

 36 

This possibility has major implications for interpreting the functional roles of primary and non-37 

primary auditory cortices. In particular, we found that dynamic computations that account for 38 

context-dependent representations did not contribute to predicting speech responses in the 39 

primary auditory cortex beyond the static convolutional filters (Figs. 2&4). On the contrary, the 40 

ability to predict the sustained neural response to speech in the non-primary auditory cortex 41 

STG is strongly correlated to dynamic computations in the neural networks (Figs. 2,3,4). This 42 

discrepancy is in line with a recent study that suggests phonological and complex sound 43 

processing in STG is fundamentally different from the tonotopic, narrow-tuned sound processing 44 
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in primary auditory cortex.37 Indeed, the STG receives direct inputs from thalamic nuclei that are 1 

part of the non-tonotopic, non-lemniscal pathway,60362 and does not appear to be dependent on 2 

the functional primary auditory cortex.63 The findings from this work suggest that representations 3 

found in the primary auditory cortex are not necessarily contributors to advanced computational 4 

models of speech processing, despite previous assumptions that it causally functions like the 5 

primary visual cortex in ventral stream object recognition processing.56,64  6 

 7 

Our results also demonstrate that networks trained with self-supervised methods achieve equal 8 

or better performance in predicting speech responses in the cortex, compared to the more 9 

prevalent supervised models. The choice of training objective is critical for representation 10 

learning in deep neural networks. Previous works have found that supervised discriminant 11 

learning, such as word classification,21,22 leads to feature representation that correlates to 12 

auditory neural responses in the cortex. Our results are consistent with these findings. However, 13 

instead of using a discrete classification task, we show that a specific type of supervised 14 

sequence-to-sequence learning task, automatic speech recognition, can be used to provide the 15 

inductive bias towards neurally correlated feature representations for speech. Furthermore, self-16 

supervised learning objectives, including contrastive and predictive learning, also yield similar 17 

representation and correspondence to the actual speech responses in STG. Supervised 18 

classification task has a direct link to categorical selectivity in higher-level visual areas, hence 19 

becoming a natural target for learning visual representations in the cortex.24,25 For naturalistic 20 

speech perception, on the other hand, previous studies do not support discrete selective coding 21 

for word forms in STG populations, but rather a collection of local populations tuned to multiple 22 

complex acoustic-phonetic cues and temporal landmarks in speech.13,15,37,50,55,65367 Therefore, a 23 

single supervised task, such as word decoding, may not capture all the underlying computations 24 

and representations in STG. Self-supervised learning, on the other hand, is able to learn richer 25 

representations that are beyond the requirement of pure speech recognition, such as prosodic 26 

information, speaker identity etc. Our results found that fine-tuning using a supervised ASR task 27 

on top of the unsupervised training did not further improve the overall brain-encoding 28 

performance in STG. On the contrary, the brain-prediction performance for the non-primary 29 

auditory cortex decreased in the deep layers after supervised fine-tuning (Supplement Fig. 3).  30 

 31 

From a computational modeling perspective, our results extend previous successes in the 32 

literature that employ deep neural networks as models of sensory systems.24,68 Several recent 33 

studies have taken a straight end-to-end approach and directly trained DNNs to predict neural 34 

responses.69,70 While this approach directly optimizes the brain-prediction performance, it may 35 

require a significant amount of data to train such deep models. For instance, the sequence-to-36 

sequence DNN models we use here have around 90 million parameters and are trained with 37 

~1000h of speech data to achieve competitive performance.16,17,19 It is not feasible to collect a 38 

similar amount of neural data within our clinical settings. Furthermore, due to the nature of 39 

intracranial recordings, we are only able to have a sparse sample, on the order of 100 40 

electrodes, of the auditory cortex from each participant. As a result, the learned representations 41 

from a straight end-to-end optimization to brain activity may be biased by the individual 42 

difference in electrode sampling. Fundamentally, we take a transfer learning paradigm, 43 

pretraining DNNs without any neural data as inputs, and demonstrate that speech 44 
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representations learned by these DNN models are also transferable to the neural coding in the 1 

human auditory pathway. It is worth pointing out that the deep neural networks used in this 2 

study are all trained on a completely independent dataset from the one used for neural signals. 3 

Moreover, the unsupervised models have not used any explicit information about the speech 4 

content or any linguistic knowledge of the speech. Unlike classical computational models of 5 

speech perception, such as TRACE,11 which assume a strict acoustic-phonetic-lexical hierarchy 6 

and explicit top-down inference, we find that acoustic-phonetic hierarchy also emerge from pure 7 

data-driven self-supervised models. The fact that such a self-supervised framework yields a 8 

similar and correlated representation hierarchy as the human auditory system suggests that the 9 

two systems may share similar computations that extract critical statistical structures in speech.  10 

 11 

There are a few important limitations in our current approach. Our results suggest how different 12 

levels of speech representations emerge from hierarchical bottom-up recurrent or self-13 

attentional operations and how these representations correlate to the auditory cortex. However, 14 

our models do not include top-down modules, nor do we include cortical coverage of areas 15 

beyond the auditory cortex, such as the frontal areas. Therefore, it remains to be delineated 16 

how other areas in the language network interact with the auditory cortex and if these 17 

interactions modulate local and populational representations of speech, and furthermore, to 18 

what extent can these interactions be characterized by our proposed framework. Aside from the 19 

scale of coverage, we have also limited ourselves to analyzing the temporal dynamics within 20 

individual electrodes. How feature representations in deep neural networks are aligned to the 21 

distributed population-level neurodynamics71 in the auditory cortex remains to be investigated in 22 

future work.  23 

 24 

A potential limitation is the biological plausibility of the computational models used in this study. 25 

We focused on the learned feature representations rather than the actual parametrization and 26 

implementations of the computing algorithm such as self-attention or long short-term memory 27 

mechanism. It is of course hard to claim that any of these computations are actually 28 

implemented in the cortex, or the gradient-based learning rule is adopted by the brain. However, 29 

it is promising is that the in silico models converge on a similar representational basis of speech 30 

sequences as the auditory cortex, with a learning algorithm that does not require millions of 31 

labeled examples and has been shown to be a potentially strong candidate for a biologically 32 

plausible theory of sensory learning,29 or higher-level language processing in general.30   33 

 34 

In sum, using a comparative approach, we show important representational and computational 35 

similarities between speech learning DNNs and the human auditory pathway. From a 36 

neuroscientific perspective, our results demonstrate that data-driven computational models can 37 

extract relevant intermediate features from statistical structure of speech that outperform 38 

traditional feature-based encoding models. Furthermore, our results challenge the concept of 39 

auditory ventral stream which is based on hierarchical feedforward processing across 40 

successive cortical areas, but suggests contextual and time dependent processes are more 41 

important. On the other hand, from the deep neural network perspective, we provide a new 42 

avenue to open up the <black box= representations of DNNs by comparing them with neural 43 
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responses and selectivity. We show that modern DNNs may have converged on algorithms and 1 

representations that approximate processing in the human auditory system.   2 
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Methods 1 

 2 

The experimental protocol was approved by the Institutional Review Board at the University of 3 

California, San Francisco (UCSF) and by the Huashan Hospital Institutional Review Board of 4 

Fudan University. All participants gave their written, informed consent prior to testing. All patient 5 

data were stored and analyzed on computing servers within UCSF, and Facebook AI Research 6 

only performed DNN model pre-training using publicly available speech corpora, without any 7 

access to the patient data.  8 

 9 

Participants 10 

This study included 12 monolingual participants (6 Male, 6 Female, age from 31 to 55, all right-11 

handed) who were neurosurgical patients at either UCSF Medical Center or Huashan Hospital. 12 

The nine native English-speaking participants from UCSF (E1-E9) were either eloquent brain 13 

tumor patients (4 patients) undergoing awake language mapping as part of their surgery or 14 

patients with intractable epilepsy (5 patients) who had high-density electrode grids implanted for 15 

clinical monitoring of seizure activity (all left hemisphere coverage). We only included those 16 

participants with tumors that did not obviously invade the auditory cortex. Three native 17 

Mandarin-speaking participants from Huashan Hospital (M1-M3) were eloquent brain tumor 18 

patients undergoing awake language mapping as part of their surgery (3 left hemisphere 19 

coverage). The placements of the grids were determined solely by clinical needs. All patients 20 

were clearly informed (as detailed in the IRB-approved written consent document signed by the 21 

participant) that the participation in the scientific research was completely voluntary and would 22 

not directly impact their clinical care. Additional verbal consent was also acquired at the 23 

beginning and during the breaks of each experiment session. 24 

 25 

Experiment paradigm 26 

During the experiments, the participants were instructed to passively listen to continuous 27 

speech stimuli. The acoustic stimuli used in this study consisted of natural, continuous speech 28 

in both American English and Mandarin. The English speech stimuli consisted of materials from 29 

the TIMIT dataset.39 The TIMIT set consisted of 499 English sentences selected from the TIMIT 30 

corpus, spoken by 402 different speakers (286 males and 116 females). The sentences were 31 

separated with 0.4 sec of silence. The task was broken into 5 blocks with each block ~5 min in 32 

time. The Mandarin speech was a subset of the Annotated Speech Corpus of Chinese 33 

Discourse (ASCCD) from the Chinese Linguistic Data Consortium,72 which included read texts 34 

of a variety of discourse structures, such as narrative and prose. The stimuli set consisted of 68 35 

passages of Mandarin speech selected from the ASCCD corpus, spoken by 10 different 36 

speakers (5 males, 5 females). The length of single passage varied between 10 to 60 sec. The 37 

passages were separated with 0.5 sec of silence. The task was broken into 6 blocks with each 38 

block ~5 min in time. 39 

 40 

Depending on their clinical conditions, each participant finished 3 to 11 blocks of all tasks. In 41 

particular, 8 English speaking participants (E1-E8) finished all 5 TIMIT blocks, E9 finished 3 42 

TIMIT blocks, and 3 Mandarin speaking participants (M1-M3) finished 2 TIMIT blocks. 3 English 43 
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speaking participants (E1-E3) and 3 Mandarin speaking participants (M1-M3) finished all 6 1 

ASCCD blocks. E4 finished 5 ASCCD blocks.  2 

 3 

Data acquisition and preprocessing 4 

In all patients, the same types of high-density ECoG grids (manufactured by Integra or PMT) 5 

with identical specifications (4 mm center-to-center spacing and 1.17 mm diameter exposed 6 

contact lateral) were placed on the lateral surface of the temporal lobe. Depending on the exact 7 

clinical need, the grid may have 32 (8 x 4), 128 (16 x 8) or 256 (16 x 16) contact channels in 8 

total. In 4 patients (E6-E9), an extra 32 channel (8 x 4) grid with 4mm center-to-center spacing 9 

and 1.17 mm diameter exposed contact lateral grids (Integra) was placed on the temporal plane 10 

for each patient. During experimental tasks, neural signals were recorded from the ECoG grids 11 

using a multichannel amplifier optically connected to a digital signal processor (Tucker-Davis 12 

Technologies). The TDT OpenEx software was used for data recording. The local field potential 13 

at each electrode contact was amplified and sampled at 3052Hz. The raw voltage waveform 14 

was visually examined, and channels containing signal variation too low to be detectable from 15 

noise or continuous epileptiform activity were removed. Time segments on remaining channels 16 

that contained electrical or movement-related artifacts were manually marked and excluded. 17 

The signal was then notch-filtered to remove line noise (at 60Hz, 120Hz, and 180Hz for English-18 

speaking participants and at 50Hz, 100Hz, and 150Hz for Mandarin-speaking participants) and 19 

re-referenced to the common average across channels sharing the same connector to the 20 

preamplifier. 21 

  22 

Using the Hilbert transform, the analytic amplitude of eight Gaussian filters (center frequencies: 23 

70-150Hz) was computed. The high-gamma signal was taken as the average analytic amplitude 24 

across these eight bands. The signal was down-sampled to 100Hz. The tasks were broken into 25 

recording blocks of ~5 minutes in length. The high-gamma signal was z-scored across the 26 

recording block. 27 

 28 

Electrode localization 29 

For the chronic monitoring cases, electrodes were localized by aligning preimplantation MRI and 30 

post-implantation CT scans. For the awake cases, high-density electrode grids were temporarily 31 

placed onto the temporal lobe intraoperatively to record cortical local potentials. The three-32 

dimensional positions of the corners of the grid were recorded using the Medtronic 33 

neuronavigation system and then aligned to the pre-surgery MRI. Intraoperative photographs 34 

were used as references. The remaining electrodes were localized using interpolation and 35 

extrapolation from those points.73  36 

 37 

Data analysis software 38 

All analyses were carried out using custom software written in Python and Matlab. Custom 39 

Matlab code was used for data preprocessing. Open-source scientific Python packages used 40 

included pytorch, fairseq, huggingface transformers, numpy, scipy, pandas, librosa, and scikit-41 

learn. Cortical surface reconstruction was performed using Freesurfer and electrodes were co-42 

registrated using Python package img-pipe. Praat74 was used to extract pitch features. Figures 43 

were created with matplotlib and seaborn in Python.  44 
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 1 

Biophysical models for auditory peripheral and mid-brain 2 

We used neuronal models of the midbrain and auditory periphery.34336 The model consists of a 3 

phenomenological model of the auditory nerve (AN) responses, which includes nonlinear 4 

properties such as rate saturation, adaptation, and synchrony capture and an extended same-5 

frequency inhibition-excitation model of inferior colliculus (IC), which includes both band-pass 6 

and low-pass/band-reject IC cells. The synaptic outputs from 50 auditory nerve neurons with 7 

characteristic frequency uniformly distributed on log scale within [150, 8000] hz were extracted 8 

as the AN signal. These synaptic output signals were used as inputs to the two different types of 9 

midbrain neurons in area IC, which resulted in 50 band-pass IC neurons and 50 low-pass/band-10 

reject IC cells.   11 

 12 

For each speech sentence, the raw waveform was sent into the model as input, and the 13 

corresponding response sequences from AN and IC cells were extracted and down-sampled to 14 

100 hz to match the high-gamma signals from the cortex. 15 

 16 

Acoustic, phonetic and prosodic feature definitions 17 

We use a heuristic set of 208 features as the baseline prediction model (161 spectrum, 13 18 

phonetics, 31 pitch/prosodic, 3 envelope).  19 

 20 

The spectrogram features of the speech were calculated using short-time Fourier transform, 21 

with 161 frequency components ranging from 0 to 8KHz in log-scale. 22 

 23 

The phonetic features were 13-dimensional binary time series similar to previous works.13,37 24 

These features describe single phonemes as a combination of the places of articulation (dorsal, 25 

coronal, labial), manners of articulation (plosive, fricative, nasal), and voicing of consonants, as 26 

well as vowel place (high, mid, low, front, back), and indicator of consonant/vowel.  27 

 28 

The pitch features were extracted in the same way as in our previous work,44 including absolute 29 

pitch, speaker-normalized relative pitch and pitch change, and a binary variable when pitch 30 

values were present, indicating voicing in the speech. The fundamental frequency (F0) was 31 

calculated using an automated autocorrelation method in Praat and corrected for halving and 32 

doubling errors. The absolute pitch was defined as the natural logarithm of F0 values in Hz. The 33 

relative pitch was computed by z-scoring the absolute pitch values (log F0) within each 34 

sentence/passage (within speaker). The pitch change was computed by taking the first-order 35 

derivative (finite difference) in time for logF0. We discretized absolute pitch, relative pitch and 36 

pitch change into 10 bins, equally spaced from the 2.5 percentile to the 97.5 percentile value. 37 

The bottom and top 2.5% of the values were placed into the bottom and top bins respectively. 38 

As a result, absolute pitch, relative pitch and pitch change were represented as three 10-39 

dimensional binary feature vectors. For non-pitch periods, these feature vectors would have all 40 

0s. 41 

 42 
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The envelope features included intensity, sentence onsets, and peak rates. Intensity is a 1 

continuous scalar sequence representing the envelope of the speech. The sentence onset is a 2 

binary feature with a 1 at the onset of the first time stamp of the first phoneme in each 3 

sentence, and 0 elsewhere. The peak rate was computed in the same way as previous work,50 4 

which was a sparse time series of local peaks extracted in the first order derivative of the 5 

amplitude envelope of the speech.  6 

 7 

Encoding models 8 

We used time-delayed linear encoding models known as temporal receptive field models.12 9 

!"#$%&'()&"*"$+,-").,"(/)0!123)#%/"(4)'((%5)64)+%)$&"/,*+)7"6&'()'*+,-,+8)9'4"/)%7)4+,#6(64)10 

."'+6&"4),7)')5,7/%5)%.)+,#")$&"*"/,7:)7"6&'()'*+,-,+8;)In particular, we fit the linear model 11 

�(�) = 3 3 �!
"(�)�!(� 2 �)"

#$%
&
!$' + � for each electrode, where y is the high-gamma activity 12 

recorded from the electrode, �!(� 2 �) is the stimulus representation vector of feature set f at 13 

time t- Ç, �!(�) is the regression weights for feature set f at time lag Ç, and � is the gaussian 14 

noise. 15 

 16 

  17 

To prevent model overfitting, we used L2 regularization and cross-validation. Specifically, we 18 

divided the data into three mutually exclusive sets of 80%, 10% and 10% of samples. The first 19 

set of 80% was used as the training set. The second set was used to optimize the L2 20 

regularization hyperparameter, and the final set was used as the test set. We evaluated the 21 

models using the correlation between actual and predicted values of neural activity on held out 22 

data. We performed this procedure 5 times and the performance of the model was taken as the 23 

mean of performance across all testing sets.  24 

 25 

The performance of each specific encoding model on an individual recording site 26 

(electrode/neuron) was quantified as the (normalized) brain prediction score (BPS). In particular 27 

BPS = �!"#$%
& /�'()$%*+$

& , where �!"#$%
&  is the R2 value of the prediction model based on cross-28 

validation, and �'()$%*+$
&  is the R2 value of the baseline model (full feature set model) for the 29 

same electrode/neuron based on cross-validation. A BPS value of 1 indicates the proposed 30 

model performs as good as the baseline, and BPS larger than 1 suggests the proposed model 31 

outperforms the baseline model.  32 

 33 

For the spectrogram TRF (STRF) model and the baseline full feature model, we used a fixed 34 

400 ms delay time window length. For all the DNN-based encoding models, we varied the time 35 

window length from 0 (only using the current time frame) to 400 ms, and picked the optimal 36 

window length based on the cross-validation results.  37 

 38 

Electrode selection 39 

To select speech responsive electrodes, and to avoid numerical instability of BPS caused by 40 

dividing very small R2 values of baseline, we only include speech-responsive electrodes in our 41 

analysis. The responsive threshold was set as �'()$%*+$
&  > 0.05.  42 

 43 
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Deep neural networks: model architectures 1 

We used 4 different DNN models, namely HuBERT (HuB),19 Wav2Vec 2 unsupervised version 2 

(W2V),17 Wav2Vec 2 ASR-supervised (W2V-A),17 and DeepSpeech 2 (DS2).16  3 

 4 

The HuBERT and Wav2Vec 2 models shared the same architecture, consisting of a 5 

convolutional waveform encoder and a Transformer BERT encoder.75 The network took 16kHz 6 

raw sound waveform as input. The convolutional encoder consisted of seven 512-channel 1D 7 

convolution layers with strides [5, 2, 2, 2, 2, 2, 2] and kernel widths [10, 3, 3, 3, 3, 2, 2]. The 8 

convolution encoder down-sampled the input to 512-dimensional feature sequence at 20ms 9 

framerate (50Hz). The output of the convolution encoder, noted as <CNN out=, was projected to 10 

768 dimensional space through a linear layer, noted as =CNN proj=, and fed into the BERT 11 

encoder. The BERT encoder consisted of 12 identical transformer encoder blocks, with 12 

embedding dimension of 768, intermediate feedforward layer dimension as 3072, and 12 13 

attention heads in each layer.  14 

 15 

The DeepSpeech 2 model consisted of a convolutional spectrogram encoder and a recurrent 16 

encoder. The DS2 model took in the spectrogram of the raw audio signal as input. The 17 

spectrogram was computed using a short-time Fourier transform with 161 frequency 18 

components from 0 to 8kHz, time window size of 0.02s and a stride size of 0.01s. The 19 

convolution encoder consisted of two 32-channel 2D convolution layers, with 2D strides [2, 2] 20 

and [2, 1] correspondingly, and kernel size (41, 11) and (21, 11) correspondingly. The final 21 

output of the convolution encoder was a 1312-dimensional vector at 20ms framerate (50Hz). 22 

The recurrent encoder consisted of 5 bi-directional long short-term memory (LSTM) layers, each 23 

with hidden state size of 1024. The output of the last LSTM layer was projected to 29-24 

dimensional feature space by a linear projection layer.  25 

 26 

Deep neural networks: unsupervised training  27 

The HuBERT model was trained using a self-supervised paradigm of masked prediction.19 The 28 

unsupervised k-means clustering algorithm was used to generate categorical labels of the 29 

acoustic speech signal, mimicking the pseudo-phonetic labels. During training, a random subset 30 

of segments in each sentence were selected and masked. After masking, the sequence was 31 

passed through the network to generate a feature embedding sequence. The embedded 32 

sequence was then projected to compute cross-entropy loss over the discrete code categories.  33 

 34 

The Wav2Vec 2 unsupervised model was trained using a self-supervised contrastive learning 35 

paradigm.17 The model used a quantization module to discretize the output sequence of the 36 

convolution encoder. Similar to BERT, a random subset of speech segments were selected and 37 

masked. The final output of the Transformer encoder and the quantized representation from the 38 

convolution encoder were used to compute the contrastive loss. Specifically, for the target 39 

output at a given masked time step, a random set of distractors were picked from other masked 40 

portions in the same sentence. The contrastive loss maximizes the distance between the target 41 

and the discretized output in the distractors, while minimizing the distance between the target 42 

and the discretized output at the target time step.   43 

 44 
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Both models were trained on the 960h Librispeech corpus.40 For the cross-language 1 

comparison, we also trained a HuBERT Mandarin model on 755h MAGICDATA corpus of 2 

Mandarin speech76 using the same procedure. 3 

 4 

Deep neural networks: supervised training 5 

The Wav2Vec 2 supervised model was fine-tuned from the unsupervised pre-trained 6 

initialization.17 A linear projection layer was used to project the output of the Transformer 7 

encoder onto 29 classes representing characters, space, and word boundary. The model was 8 

optimized by minimizing a connectionist temporal classification (CTC) loss.77 During fine-tuning, 9 

the weights of the convolution encoder were frozen. 10 

 11 

The DeepSpeech 2 model was trained from random initialization for best automatic speech 12 

recognition (ASR) performance by minimizing the CTC loss.16 The supervised training of both 13 

models used the 960h LibriSpeech corpus.  14 

 15 

Attention pattern analysis 16 

For a given speech sentence, assume the embedding sequence in a Transformer layer was of 17 

length T [c1, &, cT], and phoneme boundaries indexed as [p1, &, pm], syllable boundaries 18 

indexed as [s1, &, sn]. The attention templates were defined as follows: 19 

1) Attention to the current phoneme, phoneme (0): �,-(/) * 	=1×1, �,-(/)(�, �) = 1 if �3 f20 

� < �345 and �3 f � < �345 for any k, �,-(/)(�, �) = 0 otherwise. 21 

2) Attention to the previous phoneme, phoneme (-1): �,-(65) * 	=1×1, �,-(65)(�, �) = 1 if 22 

�3 f � < �345 and �365 f � < �3 for any k, �,-(65)(�, �) = 0 otherwise. 23 

3) Attention to the second to previous phoneme, phoneme (-2): �,-(6&) * 	=1×1, 24 

�,-(6&)(�, �) = 1  if �3 f � < �345 and �36& f � < �365 for any k, �,-(6&)(�, �) = 0 25 

otherwise. 26 

4) Attention to the current syllable, syllable (0): �)7(/) * 	=1×1, �)7(/)(�, �) = 1 if �3 f � <27 

�345 and �3 f � < �345 for any s, �,-(/)(�, �) = 0 otherwise. And to exclude the current 28 

phoneme from the current syllable, we use �)7(/)
8 = �)7(/) 2 �,-(/) as the template.  29 

5) Attention to the previous syllable, syllable (-1): �)7(65) * 	=1×1, �)7(65)(�, �) = 1 if �3 f30 

� < �345 and �365 f � < �3 for any k, �)7(65)(�, �) = 0 otherwise. 31 

6) Attention to the second to previous syllable, syllable (-2): �)7(6&) * 	=1×1, �)7(6&)(�, �) =32 

1  if �3 f � < �345 and �36& f � < �365 for any k, �)7(6&)(�, �) = 0 otherwise. 33 

For the sentence, we computed the attention matrix �97 at the x-th layer and y-th attention 34 

head. The correlation coefficient ����8�97 , �:9 was computed for all templates. And attention 35 

score (AS) for layer x and template q was computed as the average over all attention heads and 36 

over all speech sentences.  37 

 38 

STG clustering analysis 39 

To identify functional clusters in STG, we took a similar clustering approach as described in 40 

previous works.41 Specifically, we applied convex non-negative matrix factorization (convex 41 

NMF)78 to decompose the averaged high-gamma time series across all STG electrodes. 42 
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Specifically, � j �< = ��1, and � = ��, where X [T time points × p electrodes] was the ERP 1 

matrix for different STG electrodes average across all sentences, G [p electrodes × k clusters] 2 

represented spatial weight of each electrode for each cluster, and W [p electrodes × k clusters] 3 

represents weights applied to electrode time series. In particular, for X we took all 144 speech-4 

responsive STG electrodes across all 9 subjects and computed the averaged ERP response for 5 

each electrode across all 599 TIMIT sentences. We evaluated different k values ranging from 1 6 

to 10 and computed the percent of variance explained by NMF models with different k values. 7 

We chose the number of clusters at the elbow of the percent variance curve (Supplement Figure 8 

4), which yielded k = 2, and explained 94% of the total variance.  9 

 10 

After choosing the optimal number of clusters, each electrode was assigned to a cluster with the 11 

maximum cluster weight in G.  12 

  13 
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 1 

Supplement Figure 1. ECoG grid coverage for all subjects. For E1-E9, electrodes are 2 
marked in colors according to anatomical label: superior temporal gyrus (red), Heschl9s gyrus 3 
(yellow), planum temporale (blue), planum polare (green). 4 
 5 
 6 
 7 
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 1 
Supplement Figure 2. Acoustic phonetic feature encoding model. Example of feature 2 
extraction for a sample sentence. From top to bottom: 1) raw waveform; 2) high-gamma (z-3 
scored) activity at an example electrode; 3) Mel-scaled spectrogram; 4) intensity of voicing; 5) 4 
sentence onset; 6) time course of peak rate; 7) absolute pitch (binned into 10 bins); 8) relative 5 
pitch (binned into 10 bins); 9) pitch change (binned into 10 bins); 10) phonetic features.  6 
 7 
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 1 
Supplement Figure 3. Comparing DNN encoding performance across different models. 2 
The averaged normalized brain prediction score of the best-performing neural encoding model 3 
based on each single layer in the DNN model (maximum over delay window length). a) 4 
Wav2Vec 2.0 Unsupervised model; b) Wav2Vec 2.0 Supervised model; c) HuBERT model. 5 
Each column corresponds to one area in the auditory pathway, from left to right AN/IC/HG/STG. 6 
Magenta bars indicate CNN output layers, cyan bars indicate Transformer layers. Red star (*) 7 
indicates the best model for each area, black dot (.) indicates other models that are not 8 
statistically different from the best model (p > 0.05, two-sided paired t-test). 9 
 10 
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 1 
Supplement Figure 4. Clustering the STG electrodes. a) Percent of total variance explained 2 
by the NMF decomposition with different number of factors; b) The time course of the two 3 
factors from the NMF model; c) the cluster assignment for each STG electrode. Each panel is 4 
the sentence averaged response for one STG electrode.  5 
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