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Abstract

A fundamental goal across the neurosciences is the characterization of relationships
linking brain anatomy, functioning, and behavior. Although various MRI modalities
have been developed to probe these relationships, direct comparisons of their ability
to predict behavior have been lacking. Here, we compared the ability of anatomical
T1, diffusion and functional MRI (fMRI) to predict behavior at an individual level.
Cortical thickness, area and volume were extracted from anatomical T1 images.
Diffusion Tensor Imaging (DTI) and approximate Neurite Orientation Dispersion and
Density Imaging (NODDI) models were fitted to the diffusion images. The resulting
metrics were projected to the Tract-Based Spatial Statistics (TBSS) skeleton. We also
ran probabilistic tractography for the diffusion images, from which we extracted the
stream count, average stream length, and the average of each DTI and NODDI metric
across tracts connecting each pair of brain regions. Functional connectivity (FC) was
extracted from both task and resting-state fMRI. Individualized prediction of a wide
range of behavioral measures were performed using kernel ridge regression, linear
ridge regression and elastic net regression. Consistency of the results were
investigated with the Human Connectome Project (HCP) and Adolescent Brain
Cognitive Development (ABCD) datasets. In both datasets, FC-based models gave
the best prediction performance, regardless of regression model or behavioral
measure. This was especially true for the cognitive domain. Furthermore, all modalities
were able to predict cognition better than other behavioral domains. Combining all
modalities improved prediction of cognition, but not other behavioral domains. Finally,
across all behaviors, combining resting and task FC yielded prediction performance
similar to combining all modalities. Overall, our study suggests that in the case of
healthy children and young adults, behaviorally-relevant information in T1 and
diffusion features might reflect a subset of the variance captured by FC.

Keywords: Anatomical T1, diffusion MRI, functional MRI, multimodal MR,
individualized behavior prediction

Highlights (85 characters)
e FC predicts behavior better than anatomical and diffusion features
e Cognition is predicted better than other behavioral domains regardless of
modality
e Combining resting & task FC improves prediction as much as combining all
modalities
e Findings were replicated over 3 regression models and 2 datasets
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1. Introduction

A fundamental aim of neuroscience is to answer how brain characteristics are linked
to behavior (Zatorre et al., 2012; Rosenberg et al., 2018). Previous studies have
established that inter-individual variation in functional and structural patterns covary
with behavioral and demographical traits (Finn et al., 2015; Smith et al., 2015; Llera et
al., 2019; Alnzes et al., 2020). In recent years, there is an increasing interest in utilizing
machine learning algorithms to predict behavioral traits at an individual level (Bzdok &
Meyer-Lindenberg, 2018; Calhoun, 2018). Here, we compare the ability of anatomical,
diffusion and functional characteristics of the brain in making individualized predictions
of behavioral traits.

Diffusion and anatomical MRI have been used to make individualized predictions in a
large variety of neurological and psychiatric disorders (Sabuncu & Konukoglu, 2015;
Arbabshirani et al., 2017; Bajaj et al., 2017; Cohen et al., 2021; Elad et al., 2021).
However, their utility for behavioral predictions in healthy participants has been less
explored. Given that psychiatric symptoms and associated shifts in brain function likely
exist on a spectrum from healthy participants to patient populations (Xia et al., 2018;
Kebets et al., 2019; Peter et al., 2021), predicting behavioral traits in the former group
is an important endeavour (Lui et al., 2016). Functional connectivity has already been
widely used to predict individual behavioral traits in healthy participants (Kong et al.,
2019; Li et al., 2019; Cai et al., 2020; Chen et al., 2020; He et al., 2020; Sripada et al.,
2020). However, similar work utilizing anatomical (Lu et al., 2014; Avinun et al., 2020;
Liu et al., 2021) and diffusion MRI (Lewis et al., 2016; Mansour et al., 2021) has been
a lot more sparse. Furthermore, most of these studies have performed predictions
using a single modality, so the comparative value of each modality in making
individualized predictions is unclear.

Several recent studies have tackled the topic of comparing MRI modalities for
behavioral prediction (Dhamala et al., 2021; Mansour et al., 2021; Rasero et al., 2021).
However, their analyses were performed in the Human Connectome Project (HCP),
which is perhaps the most widely used dataset for studies investigating individualized
predictions in healthy participants (Finn et al., 2015; Greene et al., 2018; Gao et al.,
2019). Repeated use of the HCP for investigating behavior prediction leads to the
issue of dataset decay (Thompson et al., 2020). The over-reliance on the dataset
results in increased possibility of type | errors as the number of sequential tests on
the dataset increases (Thompson et al., 2020). Furthermore, repeated use of the
training and test sets from the same dataset leads to overly optimistic prediction results
with models less able to generalize to new datasets (Recht et al., 2019; Beyer et al.,
2020). These considerations highlight the need for additional analyses of independent
data and/or less utilized datasets to replicate the conclusions. Therefore, in the current
study, in addition to the widely used HCP dataset, we utilized the adolescent brain
cognitive development (ABCD) dataset.
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Given that different MRI modalities measure different aspects of the brain biology, one
question is whether combining multiple MRI modalities might improve behavioral
prediction. Rasero and colleagues found that integrating diffusion MRI and resting FC
led to improvement in predicting cognition (Rasero et al., 2021). However, two other
studies did not find any benefit from integrating diffusion MRI, resting-state fMRI and/or
anatomical features to predict cognition (Dhamala et al., 2021; Xiao et al., 2021).
Overall, the literature is inconsistent about the value of integrating multiple modalities.
Furthermore, despite the wide range of possible diffusion features, most studies only
focused on one particular type of diffusion feature. Most studies have also focused on
predicting a small number of behavioral measures (e.g. cognition), which reduces their
generalizability to other behavior.

In this study, we compared the utility of different MRI modalities for behavioral
prediction across a wide range of behavioral measures in two large datasets (HCP
and ABCD) using three different regression models. Unlike previous studies, we
considered a wide range of diffusion features, including fractional anisotropy (FA),
mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD). An approximate
Neurite Orientation Dispersion and Density Imaging (AMICO-NODDI) model was also
used to derive orientation dispersion (OD), intracellular volume fraction (ICVF), and
isotropic volume fraction (ISOVF) features. Probabilistic tractography was performed
to extract structural connectivity (SC) features. Furthermore, unlike most previous
studies on multi-modal prediction, we considered both resting and task FC. In the case
of anatomical T1, we considered cortical thickness, volume and surface area. We also
combined features within and across modalities to investigate whether integrating
modalities resulted in improved prediction.
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2. Methods and materials

2.1.Datasets and participants

We considered participants from the HCP WU-Minn S1200 release. After strict pre-
processing quality control of imaging data, we filtered participants from Li’s set of 953
participants (Li et al., 2019) based on the availability of a complete set of structural,
diffusion and functional (resting and task) scans, as well as all behavioral scores of
interest (Table S1). Our main analysis comprised 753 participants, who fulfilled all
selection criteria.

We also considered participants from the ABCD 2.0.1 release. After strict pre-
processing quality control of imaging data, participants from Chen’s set of 2262
subjects who underwent motion-filtering to remove pseudo-respiratory motion (Chen
et al., 2020) were filtered based on the availability of a complete set of structural,
diffusion and functional (resting and task) scans, and all behavioral scores of interest
(Table S2). We also excluded participants from sites which used Phillips scanners due
to incorrect processing, as recommended by the ABCD consortium. Our main analysis
comprised 1823 patrticipants, who fulfilled all selection criteria.

2.2.lmaging acquisition and processing

Minimally processed T1 and multi-shell diffusion from each dataset were utilized.
Details about the acquisition protocol and minimal processing for the HCP data can
be found elsewhere (Glasser et al., 2013; Van Essen et al., 2013). Likewise,
acquisition protocol and minimal processing pipelines for the ABCD can be found
elsewhere (Casey et al., 2018; Hagler et al., 2019).

FMRI data in the HCP included working memory, gambling, motor, language and
social cognition tasks, as well as the resting-state scans. We excluded the relational
processing and emotional processing tasks in the HCP as the run duration for these
tasks were below 3 minutes. The MSMAII ICA-FIX data was used for the resting state
scans, and the MSMAII data was used for task fMRI (Glasser et al., 2013). Global
signal regression has been shown to improve behavioral prediction (Li et al., 2019),
so we further applied global signal regression (GSR) and censoring, consistent with
our previous studies (Li et al., 2019; He et al., 2020; Kong et al., 2021). More details
of the processing can be found elsewhere (Li et al., 2019).

For the ABCD study, fMRI data included the N-back, monetary incentive delay (MID),
stop signal task (SST), as well as resting-state scans. The minimally processed
functional data were utilized (Hagler et al., 2019). We additionally aligned the
functional images to the T1 images using boundary-based registration, and performed
motion filtering, nuisance regression, GSR, censoring and bandpass filtering. The data
was then projected onto FreeSurfer fsaverage6 surface space and smoothed using a
6 mm full-width half maximum kernel. More details of the processing can be found
elsewhere (Chen et al., 2020).
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2.3.Imaging features for behavioral prediction

2.3.1. Anatomical feature processing

The 400-region Schaefer parcellation was projected to each participant’s native
surface space (Schaefer et al., 2018). Using each participant’s T1 image, cortical
volume, cortical thickness and cortical area were extracted from each of the 400
regions of interest (ROIs) using Freesurfer 5.3.0 (Dale et al., 1999). Cortical volumes
were divided by intra-cranial volume (ICV), while cortical area was divided by ICV273,
This resulted in three 400 x participants feature matrices for each dataset.

2.3.2. Diffusion feature processing

A diffusion tensor model (DTI) was fitted to each participant’s diffusion images using
FSL’s DTIFIT (Basser et al., 1994). The fractional anisotropy (FA), mean diffusivity
(MD), axial diffusivity (AD) and radial diffusivity (RD) images were generated for each
participant. Additionally, a relaxed Neurite Orientation Dispersion and Density Imaging
(AMICO-NODDI) model was also fitted to the diffusion images (Daducci et al., 2015).
Orientation dispersion (OD), intracellular volume fraction (ICVF), and isotropic volume
fraction (ISOVF) images were generated for each participant.

The diffusion features were further processed in two ways. First, a TBSS skeleton was
generated for each set of participants (one for HCP and one for ABCD), and the seven
diffusion metric images (FA, MD, AD, RD, OD, ICVF, ISOVF) were projected to the
skeleton (Smith et al., 2006). The voxels of each diffusion metric skeleton were
vectorized for each participant, yielding seven feature matrices for each dataset. Each
matrix is of size number of TBSS voxels x number of participants.

Secondly, probabilistic tractography was run for each participant using MRtrix
(Tournier et al., 2019). The 400-region Schaefer parcellation was projected to each
participant’s native surface space (Schaefer et al., 2018). Nine 400 x 400 structural
connectivity (SC) matrices were generated. The first matrix was a symmetric matrix
containing the log transformation of stream count connecting each ROI pair. The
second matrix comprised the average length of streams. The final seven matrices
corresponded to the seven diffusion metrics averaged along and across streams
connecting each ROI pair. The lower triangle of each matrix was vectorized for each
participant, yielding nine 79,800 x number of participants feature matrices for each
dataset.

2.3.3. Functional feature processing

A functional connectivity (FC) matrix was generated for each task fMRI and resting-
state fMRI scan using the 400-region Schaefer parcellation. The FC matrix was
constructed by computing the Pearson’s correlation between the fMRI signals of each
ROl pair. The lower triangle of each matrix was vectorized for each participant, yielding
six feature matrices for the HCP and four feature matrices for the ABCD study.
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2.4.Behavioral data

We analyzed 58 behavioral scores from the HCP, consistent with our previous studies
(Kong et al., 2019; Li et al., 2019). In the case of ABCD, we considered 36 behavioral
scores, consistent with our previous study (Chen et al., 2020). A complete list of scores
used for the HCP and ABCD can be found in Tables S1 and S2 respectively.

Because many behavioral scores were correlated, we performed a factor analysis
within each dataset to derive components explaining differing aspects of behavior. The
scores from all participants with a full set of scores (even if they were missing imaging
data) from each dataset underwent a principal component analysis. The top three
components explaining the most variance were retained and entered into varimax
rotation (Kaiser, 1958). In the HCP, based on the behavioral loadings (Table S3), we
interpreted the three components to be related to (1) cognition, (2) life dissatisfaction
and (3) emotional recognition. In the ABCD, based on the behavioral loadings (Table
S4), we interpreted the three components to the 3 components to be related to (1)
cognition, (2) personality and (3) mental health.

Some studies have suggested that in the context of phenotypic prediction, the
behavioral component scores should be estimated from the training data and then
applied to the test data. However, such a procedure would result in a significantly more
complex workflow. To ensure our conclusions were not biased by the estimation of
behavioral components from the full dataset, we also considered prediction results
from individual behavioral scores (58 measures in HCP and 36 measures in ABCD).

2.5.Single-feature-type prediction models

We utilized different regression models to predict the 3 behavioral components and
each behavioral measure in each dataset. Our main analysis utilized kernel ridge
regression (KRR), which has shown strong behavioral prediction performance (Kong
et al., 2019; Chen et al., 2020; He et al., 2020). Briefly, KRR performs predictions
based on the similarity between imaging features. A L2-regularization term was used
in the model to reduce overfitting.

A separate predictive model was built for each feature type within each MRI modality.
In the case of anatomical features, three KRR models were evaluated for each
behavioral measure, corresponding to cortical volume, thickness and area. In the case
of TBSS, seven KRR models were evaluated for each behavioral measure,
corresponding to FA, MD, AD, RD, OD, ISOVF and ICVF. In the case of structural
connectivity, nine KRR models were evaluated for each behavioral measure,
corresponding to the log transformation of stream counts, stream length, FA, MD, AD,
RD, OD, ISOVF and ICVF. In the case of FC in HCP, six KRR models were evaluated
for each behavioral measure, corresponding to resting FC and five different tasks. In
the case of FC in ABCD, four KRR models were evaluated for each behavioral
measure, corresponding to resting FC and three different tasks.
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Each regression model was trained using a nested cross-validation procedure. In the
HCP, we performed 60 random replications of 10-fold nested cross-validation. The
family structure was taken into account when performing the cross-validation —
participants from the same family were placed into either the test fold or training folds,
but not split across training and test folds.

In the case of ABCD, similar to our previous study (Chen et al., 2020), we combined
participants across the 22 imaging sites, yielding 10 “site-clusters”. Each site-cluster
comprised at least 140 individuals (see Table S5). We then performed a leave-3-site-
clusters out nested cross-validation — 7 random site-clusters were used for training
while the remaining 3 site-clusters were used for testing. The prediction was performed
for every possible split of the site clusters, resulting in 120 replications.

Age and sex were regressed from the behavioral measures. Regression was
performed on the training folds and the regression coefficients were applied to the test
fold. Accuracy of each model was defined as the correlation between the predicted
scores of the test participants and their actual scores within each test fold, and then
averaged across test folds and replications. We additionally computed accuracy using
the coefficient of determination (COD).

To ensure our conclusions are across different regression approaches, we also
considered linear ridge regression (LRR) and elastic net regression (Friedman et al.,
2010).

2.6. Multiple-feature-type prediction models

To combine across features, we applied a stacking procedure. For each participant,
predictions from the single-feature-type KRR models (first-level predictions) were
concatenated into a vector and used as prediction features in a 2nd level linear
regression with no regularization. We also considered the use of multi-kernel ridge
regression (multi-KRR), which we have previously utilized to predict behavioral
measures using task and resting FC.

Overall, we trained three models: a multi-KRR model combining all FC features, a
stacking model combining all FC-based models, and a stacking model combining all
single-feature-type models from all modalities. We note that we did not consider a
multi-KRR model combining all features from all modalities because that was too
computationally expensive.

In the case of the stacking, to prevent data leakage between the training and test folds,
cross-validation splits were fixed from the single-feature-type models. The training
data consisted of first-level predictions made by the “inner-loops” of the first level
models so that none of the first-level predictions would have been made from
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participants of the test folds. Similar to the single-modality models, prediction
performance was again evaluated using Pearson’s correlation and COD.

2.7.Statistical tests

To test whether a model performed better than chance, we performed a permutation
test by shuffling behavioral measures across participants and repeating the prediction
procedure. Care was taken to avoid shuffling between families or sites.

To compare models, we used the corrected resampled t-test (Nadeau & Benigo, 2003;
Bouckaert & Frank, 2004) because a permutation test would not be valid. To control
for multiple comparisons, we performed a false discovery rate (FDR) correction with q
< 0.05.

2.8.Data and code availability

The lists of participants, features, and behavior scores utilized are released for both
datasets. Data for the HCP are available in this Github repository
(https://github.com/ThomasYeolLab/O0i2022 MMP_ HCP). Data for the ABCD are
available on the NIMH Data Archive (NDA) website'
(https://dx.doi.org/10.15154/1523482). The folder structure for ABCD is similar to that
of the HCP. Any additional data can be accessed directly from the HCP
(https://www.humanconnectome.org/) and ABCD (https://abcdstudy.org/) websites, as
they are both publicly available.

Code for this study is publicly available in the Github repository maintained by the
Computational Brain Imaging Group (https://github.com/ThomasYeolLab/CBIG). Code
specific to the regression models and analyses in this study can be found here
(https://github.com/ThomasYeol ab/Standalone 00i2022 MMP).

a. To replicate the results in this study, first download the features and training-
test splits provided for each dataset, and train the regression algorithms with
the regression code from the CBIG repository.

b. To compare a new set of features against the benchmarks in this study.
Download the participant list and training-test split for each dataset. Using the
participant list provided in each dataset repository, extract a #features x
#participants matrix for each participant in the list and perform the predictions
using the regression codes from the CBIG repository using the same training-
test splits.

c. To compare a new predictive model against the benchmarks in this study,
download the features and training-test splits for each dataset. Using the same

" Note to reviewers: The NDA link will only be public after the manuscript is
published, since we will not be able to change the relevant information (e.g.
reference to this study) after the link becomes public. However, we have structured
the HCP and ABCD data to be as similar as possible.
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features and training-test splits, predictive performance of the new model can
be compared to the results in this study.

Processing pipelines for diffusion data
(https://github.com/ThomasYeolab/CBIG/tree/master/stable projects/preprocessing/
CBIG2022 DiffProc), and functional data

(https://github.com/ThomasYeolab/CBIG/tree/master/stable projects/preprocessing/
CBIG fMRI Preproc2016) are provided in their respective links.
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3. Results

3.1. Functional connectivity (FC) outperforms other features for predicting
behavior

Across both HCP and ABCD, for each feature-type, a separate KRR model was
trained to predict each of three behavioral components and each behavioral measure.
Figure 1 shows the KRR predictive performance (Pearson’s correlation) averaged
across single-feature-type predictive models for each of the three behavioral
components. Figure 1 also shows the predictive performance averaged across single-
feature-type predictive models for all behavioral measures, which we refer to as “grand
average”. The grand average corresponded to averaging the prediction performance
across 58 behavioral measures in the case of HCP and 36 behavioral measures in the
case of ABCD.

In both datasets, FC-based models performed the best, especially in the case of the
cognition component (p < 1e-9) and the grand average (p < 1e-17). Predictions of
cognition were also significantly better for FC-based models compared to models
trained on anatomical features, TBSS, and SC in both the HCP (p=1.5e-20, p=2.4e-
17, p=4.2e-9 respectively) and ABCD (p=1.1e-28, p=2.6e-15, p=1.4e-13 respectively)
datasets.

Similar results were obtained with COD (Figure S1). Prediction performance
(Pearson’s correlation) for each individual behavioral measure can be found in Figures
S2 to S6. LRR and elastic net yielded slightly lower prediction performance, but similar
conclusions (Figures 2 and 3).

Figure 4 shows the best single-feature-type (based on KRR) from each modality for
each behavior component and grand average. In both datasets, FC was better than
anatomical features, TBSS and SC. Similar results were obtained with LRR and elastic
net (Figures S7 to S8).
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(A) Prediction accuracy in HCP
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(B) Prediction accuracy in ABCD
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Figure 1. Functional connectivity (FC) outperforms other modalities for kernel ridge
regression (KRR). (A) Prediction performance (Pearson’s correlation) of KRR
averaged across single-feature-type predictive models within each modality
(anatomical, TBSS, structural connectivity, functional connectivity) in the HCP dataset.
Results are shown for the three behavioral components and “grand average” obtained
by averaging prediction performance across 58 behavioral measures. Each boxplot
shows the distribution of performance over 60 repetitions of the nested cross-
validation procedure. (B) Prediction performance (Pearson’s correlation) of KRR
averaged across single-feature-type predictive models within each modality
(anatomical, TBSS, structural connectivity, functional connectivity) in the ABCD
dataset. Results are shown for the three behavioral components and “grand average”
obtained by averaging prediction performance across 36 behavioral measures. Each
boxplot shows the distribution of performance over 120 repetitions of the nested cross-
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validation procedure. Connecting lines between boxes denote significantly different
model performances after correction for multiple comparisons (FDR q < 0.05).
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Figure 2. Functional connectivity (FC) outperforms other modalities for linear ridge
regression (LRR). Figure is the same as Figure 1 except that LRR was utilized instead
of kernel ridge regression. (A) Prediction performance (Pearson’s correlation) of LRR
averaged across single-feature-type predictive models within each modality
(anatomical, TBSS, structural connectivity, functional connectivity) in the HCP dataset.
Results are shown for the three behavioral components and “grand average” obtained
by averaging prediction performance across 58 behavioral measures. Each boxplot
shows the distribution of performance over 60 repetitions of the nested cross-
validation procedure. (B) Prediction performance (Pearson’s correlation) of LRR
averaged across single-feature-type predictive models within each modality
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(anatomical, TBSS, structural connectivity, functional connectivity) in the ABCD
dataset. Results are shown for the three behavioral components and “grand average”
obtained by averaging prediction performance across 36 behavioral measures. Each
boxplot shows the distribution of performance over 120 repetitions of the nested cross-
validation procedure. Connecting lines between boxes denote significantly different
model performances after correction for multiple comparisons (FDR g < 0.05).
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Figure 3. Functional connectivity (FC) outperforms other modalities for elastic net.
Figure is the same as Figure 1 except that elastic net was utilized instead of kernel
ridge regression. (A) Prediction performance (Pearson’s correlation) of elastic net
averaged across single-feature-type predictive models within each modality
(anatomical, TBSS, structural connectivity, functional connectivity) in the HCP dataset.
Results are shown for the three behavioral components and “grand average” obtained
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by averaging prediction performance across 58 behavioral measures. Each boxplot
shows the distribution of performance over 60 repetitions of the nested cross-
validation procedure. (B) Prediction performance (Pearson’s correlation) of elastic net
averaged across single-feature-type predictive models within each modality
(anatomical, TBSS, structural connectivity, functional connectivity) in the ABCD
dataset. Results are shown for the three behavioral components and “grand average”
obtained by averaging prediction performance across 36 behavioral measures. Each
boxplot shows the distribution of performance over 120 repetitions of the nested cross-
validation procedure. Connecting lines between boxes denote significantly different
model performances after correction for multiple comparisons (FDR q < 0.05).
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Fig 4. Functional connectivity (FC) outperforms other modalities for kernel ridge
regression (KRR). Figure is the same as Figure 1 except that the best-feature-type for
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each behavioral measure was selected instead of averaging across feature-types. (A)
Prediction performance (Pearson’s correlation) of KRR for the best performing feature-
type within each modality in the HCP dataset. For the cognition component, the best
features were cortical volume, TBSS AD, SC stream length and language FC. For the
dissatisfaction component, the best features were cortical thickness, TBSS OD, SC
stream count and working memory FC. For the emotion component, the best features
were cortical volume, TBSS OD, SC stream length and social cognition FC. For the
grand average, the best features were cortical volume, TBSS AD, SC stream count
and language FC. (B) Prediction performance (Pearson’s correlation) of KRR for the
best performing feature-type within each modality in the ABCD dataset. For the
cognition component, the best features were cortical thickness, TBSS ICVF, SC FA
and N-back FC. For the personality component, the best features were cortical
volume, TBSS AD, SC stream length and N-back FC. For the mental health
component, the best features were cortical thickness, TBSS ISOVF, SC RD and SST
FC. For the grand average, the best features were cortical thickness, TBSS OD, SC
RD and N-back FC. We note that no statistical test was performed here since
maximum statistic is prone to outliers.
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3.2. All modalities predict cognition better than chance

Figures 5 and 6 show the KRR prediction performance (Pearson’s correlation) for each
single-feature-type predictive model in the HCP and ABCD datasets respectively.
Across all feature types and both datasets, the cognitive component was predicted
better than chance. This was not the case for the other two behavioral components in
HCP and ABCD. Similar results were obtained with COD (Figures S9 and S10), as
well as LRR and elastic net (Figures S11 to S14).

Overall, this suggests that in the case of healthy children and young adults, brain
characteristics captured by MRI most strongly reflect individual differences in cognition
and might reflect the difficulty in capturing subjective aspects of behavior through
imaging.
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Figure 5. Prediction performance (Pearson’s correlation) of kernel ridge regression
(KRR) for each single-feature-type in the HCP dataset. Results are shown separately
for (A) anatomical features, (B) FC, (C) TBSS and (D) structural connectivity. * denotes
that the model performed better than chance after correction for multiple comparisons
(FDR g < 0.05). Across all feature types, the cognitive component was predicted better
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than chance. This was not the case for the other two behavioral components. We note
that no statistical test was performed to compare models; see Figures 1 to 4 for model
comparisons.
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Figure 6. Prediction performance (Pearson’s correlation) of kernel ridge regression
(KRR) for each single-feature-type in the ABCD dataset. Figure is the same as Figure
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5 except that the results here corresponded to the ABCD dataset (instead of HCP).
Results are shown separately for (A) anatomical features, (B) FC, (C) TBSS and (D)
structural connectivity. * denotes that the model performed better than chance after
correction for multiple comparisons (FDR q < 0.05). Across all feature types, the
cognitive component was predicted better than chance. This was not the case for the
other two behavioral components. We note that no statistical test was performed to
compare models; see Figures 1 to 4 for model comparisons.
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3.3. Combining resting and task FC was as good as combining across all
modalities

Figure 7 shows the prediction performance (Pearson’s correlation) from combining
various MRl features based on stacking or multi-KRR. For comparison, the best single-
feature-type from KRR is shown. We note that the best single-feature-type always
corresponded to FC (Figure 4).

In the case of the cognitive component, multi-KRR of all FC features, stacking of all
FC-based models and stacking of all single-feature-type models of all modalities
yielded better prediction performance than the best single-feature-type model in both
the HCP (p=7.7e-4, p=1.3e-7, p=8.7e-6 respectively) and ABCD (p=1.1e-4, p=5.5e-8,
p=0.0057 respectively).

Furthermore, stacking all modalities did not provide any significant improvement over
stacking FC-based models. In addition, stacking the best single-feature-type models
from each modality was not better than stacking FC-based models (Figure S15).
Similar results were obtained with COD (Figure S16). Overall, this suggests that the
gain from stacking all modalities was largely due to the variance account for in FC.

Finally, combining multiple features did not improve the prediction of the remaining
two behavioral components in both datasets. In fact, in the case of life dissatisfaction
in the HCP dataset, the best performing single-feature model was statistically better
than stacking all FC-based models or stacking all single-feature-type models of all
modalities.
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Figure 7. Combining resting and task FC was as good as combining across all
modalities. (A) Prediction performance (Pearson’s correlation) from combining various
MRI features and modalities in the HCP dataset. We considered multi-KRR of all FC
features, stacking of all FC models and stacking of all single-feature-type models
across all modalities. For comparison, the best single-feature-type from KRR is shown.
Each boxplot shows the distribution over 60 repetitions of the nested cross-validation
procedure. (B) Prediction performance (Pearson’s correlation) from combining various
MRI features and modalities in the ABCD dataset. We considered multi-KRR of all FC
features, stacking of all FC models and stacking of all single-feature-type models
across all modalities. For comparison, the best single-feature-type from KRR is shown.
Each boxplot shows the distribution over 120 repetitions of the nested cross-validation
procedure. * denotes that the model performed better than chance after correction for
multiple comparisons (FDR q < 0.05). Connecting lines between boxes denote


https://doi.org/10.1101/2022.03.08.483564
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.08.483564; this version posted March 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

significantly different model performances after correction for multiple comparisons
(FDR g < 0.05). Combining features led to improvements in prediction of the cognition
component. Combining all modalities was not better than simply combining resting and
task FC.
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4. Discussion

In this study, we demonstrated that functional connectivity features led to better
predictive performance than features derived from anatomical or diffusion MRI. This
finding was replicated across two datasets, and three regression models. We also
found that integrating features across modalities through stacking mainly improved
predictions for cognition, but not for other behaviors. Finally, we showed that
combining all features from all modalities was not better than combining functional
connectivity features.

4.1. Behavioral prediction using FC versus other modalities
There are relatively few studies comparing FC prediction with other modalities in

young healthy participants, all of whom focused on the young adult HCP dataset.
Dhamala showed that resting FC outperformed SC in predicting cognitive performance
in the young adult HCP dataset (Dhamala et al., 2021). Similarly, Mansour also
showed that high resolution resting FC achieved higher accuracy than high resolution
SC and anatomical features for cognition in the young adult HCP dataset (Mansour et
al., 2021). In this study, we replicated Dhamala and Mansour’s results not just in the
young adult HCP dataset, but also in the lesser utilized young children (ABCD)
dataset. Similar to Dhamala and Mansour, we observed that FC outperformed the
other modalities when predicting cognition using KRR. In the HCP, FC achieved a
correlation coefficient of between 0.44 — 0.62 using KRR when predicting cognition,
whereas diffusion features were between 0.19 — 0.32, and anatomical features were
between 0.22 — 0.24. In the ABCD dataset, we found a similar trend that FC
outperformed other modalities in prediction of cognition. Moreover, we extended
Dhamala and Mansour’s work in two other ways. First, Dhamala and Mansour only
considered stream counts in the SC matrix. Here, we considered additional diffusion
features from DTl and NODDI models averaged across tracts connecting each pair of
brain regions. We also considered DTl and NODDI features extracted from the TBSS
skeleton (Smith et al., 2006), which is a widely used approach. Second, we also
considered task FC in addition to resting FC. Second, we additionally show that the
better behaviour prediction extends over other behavioural domains, and the “grand
average” across behavioral measures.

However, we note discrepancy with Rasero and colleagues (Rasero et al., 2021), who
showed that the “local connectome” derived from diffusion features was able to
outperform resting FC in the HCP when predicting cognition. Rasero found that the
local connectome was able to predict “global cognition” with a COD of 0.049, while FC
could only achieve an accuracy of 0.016. Conversely, in our study, we found that
resting FC could achieve a COD of 0.25 in the cognition component, and diffusion
features from SC ranged between a COD of 0.042-0.074. Therefore, our diffusion
prediction performance was comparable to Rasero, but our FC prediction performance
was significantly better.
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One possible reason for this discrepancy might be due to differences between
Rasero’s tabulation of “global cognition” and our cognition component, although this
cannot explain that our diffusion prediction performance is similar. Another possible
reason might be related to fMRI preprocessing, e.g., Rasero opted not to perform GSR
on fMRI data, which might have improved prediction performance (Li et al., 2019).
Other reasons might be parcellation choice or the application of PCA on the FC
features prior to prediction.

Our results are also inconsistent with Xiao and colleagues (Xiao et al., 2021), who
found that anatomical features were able to outperform both functional and diffusion
features in predicting visual working memory. One potential discrepancy is the use of
the CAM-CAN dataset, which focused on elderly participants. It is possible, that our
results hold for young healthy participants, but not older participants, perhaps due to
late-life age related changes in brain anatomy.

4.2.Prediction of cognition is better than other behavioural domains

Previous studies from our group have shown that it’s easier to predict cognition than
other measures when using FC (Kong et al., 2019; Li et al., 2019; Liégeois et al., 2019;
Chen et al., 2020; Kong et al., 2021). Mansour and colleagues extended this result by
showing that this is also true for anatomical and diffusion MRI in the HCP. Our current
study confirmed Mansour’s results and replicated them in a new independent ABCD
dataset.

Attaining better prediction for cognitive behaviour might be due to the subjective nature
of personality and emotion, which might result in additional difficulty in predicting them.
For example, Uher has described a lack of explicit formulation when investigating
personality traits (Uher, 2015). This could result in greater difficulty in predicting such
scores with a more subjective nature using brain imaging (Dubois et al., 2018). As
such, we might expect to see increases in prediction performances of personality and
emotion as reliability of behavioural measures increase.

4.3. Multimodal integration

Recent studies have suggested that task FC achieves better prediction of cognition
over resting FC (Rosenberg et al., 2016; Greene et al., 2018; Jiang et al., 2020).
Furthermore, combining task and resting FC in the young adult HCP dataset further
boosts the prediction of cognition (Elliott et al., 2019; Gao et al., 2019). Chen and
colleagues further expanded on this by showing that combining resting and task FC
improved prediction of cognition in ABCD with little or no improvement for other
behavioral domains (Chen et al., 2020).

We replicated these previous results in the HCP and ABCD datasets. We also
extended these results further by showing that combining resting and task FC was as
good as combining all features from all modalities. A possible explanation for the lack
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of improvement when combining all modalities is that interindividual differences in
functional and structural brain characteristics lead to similar behavior changes. This
has been observed by Llera and colleagues, who showed that modes of variation
linking behaviour to structural variation and behaviour to functional variation
significantly overlap (Llera et al., 2019). Together with the superior performance of FC
in predicting behavior, this suggests that diffusion and anatomical features might not
contain behaviour-related variation outside what FC already contains.

We note that our results were consistent with Dhamala and colleagues (Dhamala et
al., 2021), who found that combining resting FC and SC did not increase prediction
accuracy of cognition. In our study, stacking models that combined anatomical,
diffusion and FC features were not significantly better than stacking models that
combined only task and resting FC features. We expanded Dhamala’s work by
showing the consistency of this finding in the ABCD dataset and by considering a wider
range of features. More specifically, we show that neither the inclusion of anatomical
data, nor the wider range of diffusion features could boost prediction performance
above what could be achieved from integrating the various FC features.

However, we note that our results were inconsistent with that of Rasero and
colleagues (Rasero et al., 2021), who found improvements in prediction of global
cognition when stacking anatomical, diffusion and FC features. The discrepancy could
be due to the much better prediction performance of FC in our current study, compared
with Rasero and colleagues. Given that prediction performance of FC features was
much better than diffusion and anatomical features in our current study, there might
be limited gain in combining functional with anatomical or diffusion features.

4.3. Limitations, methodological considerations and future work

The feature dimensionalities varied greatly across modalities. For example, in the case
of cortical thickness, there were 400 features per participant, corresponding to the 400-
region Schaefer parcellation. Both the SC and FC matrices comprised 79,800 features
(corresponding to the lower portion of the 400 x 400 matrix) per participant. Finally, in
the case of TBSS, there were 133k and 109k for HCP and ABCD respectively. Despite
the great variation in the number of features, we note that the cross-validation
framework obviates the need to control for the number of features. The reason is that
more features could lead to overly complex models and poor performance in the out-
of-sample data. Indeed, FC outperformed TBSS despite having less features.

In this study, we have mainly focused on prediction using the 400 cortical ROIs from
the Schaefer parcellation. In the case of anatomical features, we did not include
contributions from subcortical regions to allow for fair comparisons among surface,
thickness and volumetric features — there’s no concept of surface and thickness for
subcortical structures. Given that we excluded subcortical structures for anatomical
features, we also decided to exclude subcortical structures from the functional and
structural connectivity analyses in order to be consistent.
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Here, we have shown that FC outperforms diffusion and anatomical features in young
healthy participants. However, several studies have begun to explore the value of
multimodal individualized prediction performance in disease populations (Meng et al.,
2017; Sui et al., 2020) and in aging (Engemann et al., 2020; Xiao et al., 2021), showing
improved prediction of clinical markers with multimodal imaging (Mill et al., 2021). The
benefits of multimodal imaging could be further explored in future work, focusing on
the identification of disease and aging markers that can benefit from multimodal
imaging, and comparing the utility of each modality in predicting these markers.
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5. Conclusion

Through applying KRR, LRR, and elastic net regression to anatomical, diffusion and
functional connectivity features in the HCP and ABCD datasets, we showed that
functional connectivity was able to achieve better prediction of behavioral traits.
Combining resting and task FC improved prediction of cognition, but not other
behavioral traits. On the other hand, there was no additional benefit from combining
all features from all modalities compared with combining resting and task FC,
suggesting that FC features might encompass behaviorally relevant information from
anatomical and diffusion features.

Acknowledgements
Our research is currently supported by the Singapore National Research Foundation

(NRF) Fellowship (Class of 2017), the NUS Yong Loo Lin School of Medicine
(NUHSRO/2020/124/TMR/LOA), and the USA NIH (RO1MH120080). Our
computational work was partially performed on resources of the National
Supercomputing Centre, Singapore (https://www.nscc.sg). Any opinions, findings and
conclusions or recommendations expressed in this material are those of the authors
and do not reflect the views of the Singapore NRF.

Data were provided [in part] by the Human Connectome Project, WU-Minn Consortium
(Principal Investigators: David Van Essen and Kamil Ugurbil; 1TU54MH091657) funded
by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience
Research; and by the McDonnell Center for Systems Neuroscience at Washington
University.

Data used in the preparation of this article were obtained from the Adolescent Brain
Cognitive DevelopmentSM (ABCD) Study (https://abcdstudy.org), held in the NIMH
Data Archive (NDA). This is a multisite, longitudinal study designed to recruit more
than 10,000 children age 9-10 and follow them over 10 years into early adulthood. The
ABCD Study® is supported by the National Institutes of Health and additional federal
partners under award numbers U01DA041048, UO1DA050989, U01DA051016,
U01DA041022, U01DA051018, UO01DA051037, U01DA050987, U01DA041174,
U01DA041106, UO01DA041117, U01DA041028, UO01DA041134, U0O1DA050988,
UO1DA051039, UO01DA041156, UO01DA041025, UO01DA041120, UO01DA051038,
U01DA041148, U0O1DA041093, U01DA041089, U24DA041123, U24DA041147. A full
list of supporters is available at https://abcdstudy.org/federal-partners.html. A listing of
participating sites and a complete listing of the study investigators can be found at
https://abcdstudy.org/consortium_members/. ABCD  consortium  investigators
designed and implemented the study and/or provided data but did not necessarily
participate in the analysis or writing of this report. This manuscript reflects the views
of the authors and may not reflect the opinions or views of the NIH or ABCD consortium
investigators. The ABCD data repository grows and changes over time. The ABCD
data used in this report came from http://dx.doi.org/10.15154/1504041.


https://doi.org/10.1101/2022.03.08.483564
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.08.483564; this version posted March 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

References

Alnzes, D., Kaufmann, T., Marquand, A. F., Smith, S. M., & Westlye, L. T. (2020). Patterns of
sociocognitive stratification and perinatal risk in the child brain. Proceedings of the
National Academy of Sciences, 117(22), 12419.
https://doi.org/10.1073/pnas.2001517117

Arbabshirani, M. R., Plis, S., Sui, J., & Calhoun, V. D. (2017). Single subject prediction of brain
disorders in neuroimaging: Promises and pitfalls. Neurolmage, 145(Pt B), 137-165.
https://doi.org/10.1016/j.neuroimage.2016.02.079

Avinun, R., Israel, S., Knodt, A. R., & Hariri, A. R. (2020). Little evidence for associations
between the Big Five personality traits and variability in brain gray or white matter.
Neurolmage, 220, 117092. https://doi.org/10.1016/j.neuroimage.2020.117092

Bajaj, S., Krismer, F., Palma, J.-A., Wenning, G. K., Kaufmann, H., Poewe, W., & Seppi, K. (2017).
Diffusion-weighted MRI distinguishes Parkinson disease from the parkinsonian variant
of multiple system atrophy: A systematic review and meta-analysis. PLoS ONE, 12(12),
€0189897. https://doi.org/10.1371/journal.pone.0189897

Basser, P. J., Mattiello, J., & Lebihan, D. (1994). MR diffusion tensor spectroscopy and imaging.
Biophysical Journal, 66(1), 259-267. https://doi.org/10.1016/s0006-3495(94)80775-1

Beyer, L., Olivier, Alexander, & A\"aron. (2020). Are we done with ImageNet? arXiv pre-print
server. https://doi.org/None

arxiv:2006.07159

Bouckaert, R. R., & Frank, E. (2004). Evaluating the Replicability of Significance Tests for
Comparing Learning Algorithms. In (pp. 3-12). Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-540-24775-3 3

Bzdok, D., & Meyer-Lindenberg, A. (2018). Machine Learning for Precision Psychiatry:
Opportunities and Challenges. Biological Psychiatry: Cognitive Neuroscience and
Neuroimaging, 3(3), 223-230. https://doi.org/10.1016/j.bpsc.2017.11.007

Cai, H., Zhu, J., & Yu, Y. (2020). Robust prediction of individual personality from brain
functional connectome. Social Cognitive and Affective Neuroscience, 15(3), 359-369.
https://doi.org/10.1093/scan/nsaa044

Calhoun, V. (2018). Data-driven approaches for identifying links between brain structure and
function in health and disease. Neurocircuitry, 20(2), 87-99.
https://doi.org/10.31887/dcns.2018.20.2/vcalhoun

Casey, B. J., Cannonier, T., Conley, M. I, Cohen, A. O, Barch, D. M., Heitzeg, M. M., Soules, M.
E., Teslovich, T., Dellarco, D. V., Garavan, H., Orr, C. A., Wager, T. D., Banich, M. T,,
Speer, N. K., Sutherland, M. T., Riedel, M. C,, Dick, A. S., Bjork, J. M., Thomas, K. M.,
Chaarani, B., Mejia, M. H., Hagler, D. J., Daniela Cornejo, M., Sicat, C. S., Harms, M. P.,
Dosenbach, N. U. F., Rosenberg, M., Earl, E., Bartsch, H., Watts, R., Polimeni, J. R,,
Kuperman, J. M., Fair, D. A., & Dale, A. M. (2018). The Adolescent Brain Cognitive
Development (ABCD) study: Imaging acquisition across 21 sites. Developmental
Cognitive Neuroscience, 32, 43-54,
https://doi.org/https://doi.org/10.1016/j.dcn.2018.03.001

Chen, J., Tam, A., Kebets, V., Orban, C., Ooi, L. Q. R., Marek, S., Dosenbach, N., Eickhoff, S.,
Bzdok, D., Holmes, A. J., & Thomas Yeo, B. T. (2020). Shared and unique brain network
features predict cognition, personality and mental health in childhood. Cold Spring
Harbor Laboratory. https://dx.doi.org/10.1101/2020.06.24.168724

Cohen, S. E., Zantvoord, J. B., Wezenberg, B. N., Bockting, C. L. H., & Van Wingen, G. A. (2021).
Magnetic resonance imaging for individual prediction of treatment response in major



https://doi.org/10.1073/pnas.2001517117
https://doi.org/10.1016/j.neuroimage.2016.02.079
https://doi.org/10.1016/j.neuroimage.2020.117092
https://doi.org/10.1371/journal.pone.0189897
https://doi.org/10.1016/s0006-3495(94)80775-1
https://doi.org/None
https://doi.org/10.1007/978-3-540-24775-3_3
https://doi.org/10.1016/j.bpsc.2017.11.007
https://doi.org/10.1093/scan/nsaa044
https://doi.org/10.31887/dcns.2018.20.2/vcalhoun
https://doi.org/https:/doi.org/10.1016/j.dcn.2018.03.001
https://dx.doi.org/10.1101/2020.06.24.168724
https://doi.org/10.1101/2022.03.08.483564
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.08.483564; this version posted March 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

depressive disorder: a systematic review and meta-analysis. Translational Psychiatry,
11(1). https://doi.org/10.1038/s41398-021-01286-x

Daducci, A., Canales-Rodriguez, E. J., Zhang, H., Dyrby, T. B., Alexander, D. C., & Thiran, J.-P.
(2015). Accelerated Microstructure Imaging via Convex Optimization (AMICO) from
diffusion MRI data. Neurolmage, 105, 32-44.
https://doi.org/10.1016/j.neuroimage.2014.10.026

Dale, A. M., Fischl, B., & Sereno, M. . (1999). Cortical Surface-Based Analysis. Neurolmage,
9(2), 179-194. https://doi.org/10.1006/nimg.1998.0395

Dhamala, E., Jamison, K. W., Jaywant, A., Dennis, S., & Kuceyeski, A. (2021). Distinct functional
and structural connections predict crystallised and fluid cognition in healthy adults.
Human Brain Mapping, 42(10), 3102-3118. https://doi.org/10.1002/hbm.25420

Dubois, J., Galdi, P., Han, Y., Paul, L. K., & Adolphs, R. (2018). Resting-State Functional Brain
Connectivity Best Predicts the Personality Dimension of Openness to Experience.
Personality Neuroscience, 1. https://doi.org/10.1017/pen.2018.8

Elad, D., Cetin-Karayumak, S., Zhang, F., Cho, K. I. K., Lyall, A. E., Seitz-Holland, J., Ben-Ari, R.,
Pearlson, G. D., Tamminga, C. A., Sweeney, J. A., Clementz, B. A,, Schretlen, D. J., Viher,
P. V., Stegmayer, K., Walther, S., Lee, J., Crow, T. J., James, A., Voineskos, A. N.,
Buchanan, R. W., Szeszko, P. R., Malhotra, A. K., Keshavan, M. S., Shenton, M. E., Rathi,
Y., Bouix, S., Sochen, N., Kubicki, M. R., & Pasternak, O. (2021). Improving the
predictive potential of diffusion MRI in schizophrenia using normative models—
Towards subject-level classification. Human Brain Mapping.
https://doi.org/10.1002/hbm.25574

Elliott, M. L., Knodt, A. R., Cooke, M., Kim, M. J., Melzer, T. R., Keenan, R., Ireland, D.,
Ramrakha, S., Poulton, R., Caspi, A., Moffitt, T. E., & Hariri, A. R. (2019). General
functional connectivity: Shared features of resting-state and task fMRI drive reliable
and heritable individual differences in functional brain networks. NeuroImage, 189,
516-532. https://doi.org/10.1016/j.neuroimage.2019.01.068

Engemann, D. A., Kozynets, O., Sabbagh, D., Lemaitre, G., Varoquaux, G., Liem, F., & Gramfort,
A. (2020). Combining magnetoencephalography with magnetic resonance imaging
enhances learning of surrogate-biomarkers. elife, 9.
https://doi.org/10.7554/elife.54055

Finn, E. S., Shen, X., Scheinost, D., Rosenberg, M. D., Huang, J., Chun, M. M., Papademetris,
X., & Constable, R. T. (2015). Functional connectome fingerprinting: identifying
individuals using patterns of brain connectivity. Nature Neuroscience, 18(11), 1664-
1671. https://doi.org/10.1038/nn.4135

Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization Paths for Generalized Linear
Models via Coordinate Descent. Journal of statistical software, 33(1), 1-22.
https://pubmed.ncbi.nlm.nih.gov/20808728

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929880/

Gao, S., Greene, A. S., Constable, R. T., & Scheinost, D. (2019). Combining multiple
connectomes improves predictive modeling of phenotypic measures. Neurolmage,
201, 116038. https://doi.org/https://doi.org/10.1016/j.neuroimage.2019.116038

Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B., Andersson, J. L., Xu,
J., Jbabdi, S., Webster, M., Polimeni, J. R., Van Essen, D. C., & Jenkinson, M. (2013). The
minimal preprocessing pipelines for the Human Connectome Project. Neurolmage, 80,
105-124. https://doi.org/10.1016/j.neuroimage.2013.04.127



https://doi.org/10.1038/s41398-021-01286-x
https://doi.org/10.1016/j.neuroimage.2014.10.026
https://doi.org/10.1006/nimg.1998.0395
https://doi.org/10.1002/hbm.25420
https://doi.org/10.1017/pen.2018.8
https://doi.org/10.1002/hbm.25574
https://doi.org/10.1016/j.neuroimage.2019.01.068
https://doi.org/10.7554/elife.54055
https://doi.org/10.1038/nn.4135
https://pubmed.ncbi.nlm.nih.gov/20808728
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929880/
https://doi.org/https:/doi.org/10.1016/j.neuroimage.2019.116038
https://doi.org/10.1016/j.neuroimage.2013.04.127
https://doi.org/10.1101/2022.03.08.483564
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.08.483564; this version posted March 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

Greene, A. S., Gao, S., Scheinost, D., & Constable, R. T. (2018). Task-induced brain state
manipulation improves prediction of individual traits. Nature Communications, 9(1).
https://doi.org/10.1038/s41467-018-04920-3

Hagler, D. J., Hatton, S., Cornejo, M. D., Makowski, C., Fair, D. A., Dick, A. S., Sutherland, M.
T., Casey, B.J., Barch, D. M., Harms, M. P., Watts, R., Bjork, J. M., Garavan, H. P., Hilmer,
L., Pung, C. J,, Sicat, C. S., Kuperman, J., Bartsch, H., Xue, F., Heitzeg, M. M., Laird, A.
R., Trinh, T. T., Gonzalez, R., Tapert, S. F., Riedel, M. C., Squeglia, L. M., Hyde, L. W.,
Rosenberg, M. D., Earl, E. A., Howlett, K. D., Baker, F. C., Soules, M., Diaz, J., De Leon,
0. R., Thompson, W. K., Neale, M. C., Herting, M., Sowell, E. R., Alvarez, R. P., Hawes,
S. W,, Sanchez, M., Bodurka, J., Breslin, F. J., Morris, A. S., Paulus, M. P., Simmons, W.
K., Polimeni, J. R., Van Der Kouwe, A., Nencka, A. S., Gray, K. M., Pierpaoli, C., Matochik,
J. A, Noronha, A., Aklin, W. M., Conway, K., Glantz, M., Hoffman, E., Little, R., Lopez,
M., Pariyadath, V., Weiss, S. R., Wolff-Hughes, D. L., Delcarmen-Wiggins, R., Feldstein
Ewing, S. W., Miranda-Dominguez, O., Nagel, B. J., Perrone, A. J., Sturgeon, D. T.,
Goldstone, A., Pfefferbaum, A., Pohl, K. M., Prouty, D., Uban, K., Bookheimer, S. Y.,
Dapretto, M., Galvan, A., Bagot, K., Giedd, J., Infante, M. A, Jacobus, J., Patrick, K.,
Shilling, P. D., Desikan, R., Li, Y., Sugrue, L., Banich, M. T., Friedman, N., Hewitt, J. K,,
Hopfer, C., Sakai, J., Tanabe, J., Cottler, L. B., Nixon, S. J., Chang, L., Cloak, C., Ernst, T.,
Reeves, G., Kennedy, D. N., Heeringa, S., Peltier, S., Schulenberg, J., Sripada, C., Zucker,
R. A., lacono, W. G., Luciana, M., Calabro, F. J., Clark, D. B., Lewis, D. A., Luna, B.,
Schirda, C., Brima, T., Foxe, J. J., Freedman, E. G., Mruzek, D. W., Mason, M. J., Huber,
R., McGlade, E., Prescot, A., Renshaw, P. F., Yurgelun-Todd, D. A., Allgaier, N. A,
Dumas, J. A., lvanova, M., Potter, A., Florsheim, P., Larson, C., Lisdahl, K., Charness, M.
E., Fuemmeler, B., Hettema, J. M., Maes, H. H., Steinberg, J., Anokhin, A. P., Glaser, P.,
Heath, A. C., Madden, P. A., Baskin-Sommers, A., Constable, R. T., Grant, S. J., Dowling,
G.J., Brown, S. A, Jernigan, T. L., & Dale, A. M. (2019). Image processing and analysis
methods for the Adolescent Brain Cognitive Development Study. Neurolmage, 202,
116091. https://doi.org/10.1016/j.neuroimage.2019.116091

He, T., Kong, R., Holmes, A. J., Nguyen, M., Sabuncu, M. R., Eickhoff, S. B., Bzdok, D., Feng, J.,
& Yeo, B. T. T. (2020). Deep neural networks and kernel regression achieve comparable
accuracies for functional connectivity prediction of behavior and demographics.
Neurolmage, 206, 116276.
https://doi.org/https://doi.org/10.1016/j.neuroimage.2019.116276

Jiang, R., Zuo, N., Ford, J. M., Qi, S., Zhi, D., Zhuo, C., Xu, Y., Fu, Z., Bustillo, J., Turner, J. A,,
Calhoun, V. D., & Sui, J. (2020). Task-induced brain connectivity promotes the
detection of individual differences in brain-behavior relationships. Neurolmage, 207,
116370. https://doi.org/https://doi.org/10.1016/j.neuroimage.2019.116370

Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis.
Psychometrika, 23(3), 187-200. https://doi.org/10.1007/BF02289233

Kebets, V., Holmes, A. J., Orban, C., Tang, S., Li, J., Sun, N., Kong, R., Poldrack, R. A., & Yeo, B.
T. T. (2019). Somatosensory-Motor Dysconnectivity Spans Multiple Transdiagnostic
Dimensions of Psychopathology. Biological Psychiatry, 86(10), 779-791.
https://doi.org/https://doi.org/10.1016/j.biopsych.2019.06.013

Kong, R., Li, J., Orban, C., Sabuncu, M. R,, Liu, H., Schaefer, A., Sun, N., Zuo, X.-N., Holmes, A.
J., Eickhoff, S. B., & Yeo, B. T. T. (2019). Spatial Topography of Individual-Specific
Cortical Networks Predicts Human Cognition, Personality, and Emotion. Cerebral
Cortex, 29(6), 2533-2551. https://doi.org/10.1093/cercor/bhy123



https://doi.org/10.1038/s41467-018-04920-3
https://doi.org/10.1016/j.neuroimage.2019.116091
https://doi.org/https:/doi.org/10.1016/j.neuroimage.2019.116276
https://doi.org/https:/doi.org/10.1016/j.neuroimage.2019.116370
https://doi.org/10.1007/BF02289233
https://doi.org/https:/doi.org/10.1016/j.biopsych.2019.06.013
https://doi.org/10.1093/cercor/bhy123
https://doi.org/10.1101/2022.03.08.483564
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.08.483564; this version posted March 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

Kong, R., Yang, Q., Gordon, E., Xue, A,, Yan, X., Orban, C., Zuo, X.-N., Spreng, N., Ge, T., Holmes,
A., Eickhoff, S., & Yeo, B. T. T. (2021). Individual-Specific Areal-Level Parcellations
Improve Functional Connectivity Prediction of Behavior. Cerebral Cortex, 31(10), 4477-
4500. https://doi.org/10.1093/cercor/bhab101

Lewis, G. J.,, Cox, S. R., Booth, T., Mufioz Maniega, S., Royle, N. A., Valdés Hernandez, M.,
Wardlaw, J. M., Bastin, M. E., & Deary, I. J. (2016). Trait conscientiousness and the
personality meta-trait stability are associated with regional white matter
microstructure. Social Cognitive and Affective Neuroscience, 11(8), 1255-1261.
https://doi.org/10.1093/scan/nsw037

Li, J., Kong, R., Liégeois, R., Orban, C., Tan, Y., Sun, N., Holmes, A. J., Sabuncu, M. R,, Ge, T., &
Yeo, B. T. T. (2019). Global signal regression strengthens association between resting-
state functional connectivity and behavior. Neurolmage, 196, 126-141.
https://doi.org/https://doi.org/10.1016/j.neuroimage.2019.04.016

Liégeois, R., Li, J., Kong, R., Orban, C., Van De Ville, D., Ge, T., Sabuncu, M. R., & Yeo, B. T. T.
(2019). Resting brain dynamics at different timescales capture distinct aspects of
human behavior. Nature Communications, 10(12), 2317.
https://doi.org/10.1038/s41467-019-10317-7

Liu, X., Lai, H., Li, J., Becker, B., Zhao, Y., Cheng, B., & Wang, S. (2021). Gray matter structures
associated with neuroticism: A meta-analysis of whole-brain voxel-based
morphometry  studies. Human  Brain Mapping,  42(9), 2706-2721.
https://doi.org/10.1002/hbm.25395

Llera, A., Wolfers, T., Mulders, P., & Beckmann, C. F. (2019). Inter-individual differences in
human brain structure and morphology link to variation in demographics and
behavior. elife, 8. https://doi.org/10.7554/elife.44443

Lu, F., Huo, Y., Li, M., Chen, H., Liu, F., Wang, Y., Long, Z., Duan, X., Zhang, J., Zeng, L., & Chen,
H. (2014). Relationship between Personality and Gray Matter Volume in Healthy
Young Adults: A Voxel-Based Morphometric Study. PLoS ONE, 9(2), e88763.
https://doi.org/10.1371/journal.pone.0088763

Lui, S., Zhou, X. J., Sweeney, J. A., & Gong, Q. (2016). Psychoradiology: The Frontier of
Neuroimaging in Psychiatry. Radiology, 281(2), 357-372.
https://doi.org/10.1148/radiol.2016152149

Mansour, S., Tian, Y., Yeo, B. T. T., Cropley, V., & Zalesky, A. (2021). High-resolution
connectomic fingerprints: Mapping neural identity and behavior. Neurolmage, 229,
117695. https://doi.org/10.1016/j.neuroimage.2020.117695

Meng, X., Jiang, R., Lin, D., Bustillo, J., Jones, T., Chen, J., Yu, Q., Du, Y., Zhang, Y., Jiang, T., Sui,
J., & Calhoun, V. D. (2017). Predicting individualized clinical measures by a generalized
prediction framework and multimodal fusion of MRI data. Neuro/lmage, 145(Pt B),
218-229. https://doi.org/10.1016/j.neuroimage.2016.05.026

Mill, R. D., Winfield, E. C., Cole, M. W., & Ray, S. (2021). Structural MRI and functional
connectivity features predict current clinical status and persistence behavior in
prescription opioid users. Neurolmage. Clinical, 30, 102663-102663.
https://doi.org/10.1016/j.nicl.2021.102663

Nadeau, C., & Benigo, Y. (2003). Inference for Generalization Error. Machine Learning, 52(3),
239-281. https://doi.org/10.1023/a:1024068626366

Peter, L.-J., Schindler, S., Sander, C., Schmidt, S., Muehlan, H., Mclaren, T., Tomczyk, S.,
Speerforck, S., & Schomerus, G. (2021). Continuum beliefs and mental illness stigma:
a systematic review and meta-analysis of correlation and intervention studies.



https://doi.org/10.1093/cercor/bhab101
https://doi.org/10.1093/scan/nsw037
https://doi.org/https:/doi.org/10.1016/j.neuroimage.2019.04.016
https://doi.org/10.1038/s41467-019-10317-7
https://doi.org/10.1002/hbm.25395
https://doi.org/10.7554/elife.44443
https://doi.org/10.1371/journal.pone.0088763
https://doi.org/10.1148/radiol.2016152149
https://doi.org/10.1016/j.neuroimage.2020.117695
https://doi.org/10.1016/j.neuroimage.2016.05.026
https://doi.org/10.1016/j.nicl.2021.102663
https://doi.org/10.1023/a:1024068626366
https://doi.org/10.1101/2022.03.08.483564
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.08.483564; this version posted March 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

Psychological Medicine, 51(5), 716-726.
https://doi.org/10.1017/s0033291721000854

Rasero, J., Sentis, A. I., Yeh, F.-C., & Verstynen, T. (2021). Integrating across neuroimaging
modalities boosts prediction accuracy of cognitive ability. PLOS Computational
Biology, 17(3), €1008347. https://doi.org/10.1371/journal.pcbi.1008347

Recht, B., Roelofs, R., Schmidt, L., & Shankar, V. (2019, 2019-06-12). Do ImageNet Classifiers
Generalize to ImageNet? Proceedings of the 36th International Conference on
Machine Learning, Proceedings of Machine Learning Research.
https://proceedings.mlr.press/v97/recht19a.html

Rosenberg, M. D., Casey, B. J., & Holmes, A. J. (2018). Prediction complements explanation in
understanding the  developing brain. Nature  Communications,  9(1).
https://doi.org/10.1038/s41467-018-02887-9

Rosenberg, M. D., Finn, E. S., Scheinost, D., Papademetris, X., Shen, X., Constable, R. T., &
Chun, M. M. (2016). A neuromarker of sustained attention from whole-brain
functional connectivity. Nature Neuroscience, 19(1), 165-171.
https://doi.org/10.1038/nn.4179

Sabuncu, M. R., & Konukoglu, E. (2015). Clinical Prediction from Structural Brain MRI Scans: A
Large-Scale Empirical Study. Neuroinformatics, 13(1), 31-46.
https://doi.org/10.1007/s12021-014-9238-1

Schaefer, A., Kong, R., Gordon, E. M., Laumann, T. O., Zuo, X.-N., Holmes, A. J., Eickhoff, S. B.,
& Yeo, B. T. T. (2018). Local-Global Parcellation of the Human Cerebral Cortex from
Intrinsic  Functional Connectivity MRI. Cerebral Cortex, 28(9), 3095-3114.
https://doi.org/10.1093/cercor/bhx179

Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E.,
Watkins, K. E., Ciccarelli, O., Cader, M. Z., Matthews, P. M., & Behrens, T. E. J. (2006).
Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data.
Neurolmage, 31(4), 1487-1505. https://doi.org/10.1016/j.neuroimage.2006.02.024

Smith, S. M., Nichols, T. E., Vidaurre, D., Winkler, A. M., Behrens, T. E. J., Glasser, M. F., Ugurbil,
K., Barch, D. M., Van Essen, D. C., & Miller, K. L. (2015). A positive-negative mode of
population covariation links brain connectivity, demographics and behavior. Nature
Neuroscience, 18(11), 1565-1567. https://doi.org/10.1038/nn.4125

Sripada, C., Rutherford, S., Angstadt, M., Thompson, W. K., Luciana, M., Weigard, A., Hyde, L.
H., & Heitzeg, M. (2020). Prediction of neurocognition in youth from resting state
fMRI. Molecular Psychiatry, 25(12), 3413-3421. https://doi.org/10.1038/s41380-019-
0481-6

Sui, J., Jiang, R., Bustillo, J., & Calhoun, V. (2020). Neuroimaging-based Individualized
Prediction of Cognition and Behavior for Mental Disorders and Health: Methods and
Promises. Biological Psychiatry, 88(11), 818-828.
https://doi.org/https://doi.org/10.1016/j.biopsych.2020.02.016

Thompson, W. H., Wright, J., Bissett, P. G., & Poldrack, R. A. (2020). Dataset decay and the
problem of sequential analyses on  open datasets. elife, 9.
https://doi.org/10.7554/elife.53498

Tournier, J. D., Smith, R., Raffelt, D., Tabbara, R., Dhollander, T., Pietsch, M., Christiaens, D.,
Jeurissen, B., Yeh, C.-H., & Connelly, A. (2019). MRtrix3: A fast, flexible and open
software framework for medical image processing and visualisation. Neurolmage,
202, 116137. https://doi.org/10.1016/j.neuroimage.2019.116137



https://doi.org/10.1017/s0033291721000854
https://doi.org/10.1371/journal.pcbi.1008347
https://proceedings.mlr.press/v97/recht19a.html
https://doi.org/10.1038/s41467-018-02887-9
https://doi.org/10.1038/nn.4179
https://doi.org/10.1007/s12021-014-9238-1
https://doi.org/10.1093/cercor/bhx179
https://doi.org/10.1016/j.neuroimage.2006.02.024
https://doi.org/10.1038/nn.4125
https://doi.org/10.1038/s41380-019-0481-6
https://doi.org/10.1038/s41380-019-0481-6
https://doi.org/https:/doi.org/10.1016/j.biopsych.2020.02.016
https://doi.org/10.7554/elife.53498
https://doi.org/10.1016/j.neuroimage.2019.116137
https://doi.org/10.1101/2022.03.08.483564
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.08.483564; this version posted March 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

Uher, J. (2015). Developing “Personality” Taxonomies: Metatheoretical and Methodological
Rationales Underlying Selection Approaches, Methods of Data Generation and
Reduction Principles. Integrative Psychological and Behavioral Science, 49(4), 531-
589. https://doi.org/10.1007/s12124-014-9280-4

Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E. J., Yacoub, E., & Ugurbil, K. (2013).
The WU-Minn Human Connectome Project: An overview. Neurolmage, 80, 62-79.
https://doi.org/https://doi.org/10.1016/j.neuroimage.2013.05.041

Xia, C. H., Mg, Z., Ciric, R., Gu, S., Betzel, R. F., Kaczkurkin, A. N., Calkins, M. E., Cook, P. A.,
Garcia de la Garza, A., Vandekar, S. N., Cui, Z.,, Moore, T. M., Roalf, D. R., Ruparel, K.,
Wolf, D. H., Davatzikos, C., Gur, R. C., Gur, R. E., Shinohara, R. T., Bassett, D. S., &
Satterthwaite, T. D. (2018). Linked dimensions of psychopathology and connectivity in
functional brain networks. Nature Communications, 9(1), 3003.
https://doi.org/10.1038/s41467-018-05317-y

Xiao, Y., Lin, Y., Ma, J., Qian, J., Ke, Z,, Li, L., Yi, Y., Zhang, J., & Dai, Z. (2021). Predicting visual
working memory with multimodal magnetic resonance imaging. Human Brain
Mapping, 42(5), 1446-1462. https://doi.org/10.1002/hbm.25305

Zatorre, R. J., Fields, R. D., & Johansen-Berg, H. (2012). Plasticity in gray and white:
neuroimaging changes in brain structure during learning. Nature Neuroscience, 15(4),
528-536. https://doi.org/10.1038/nn.3045



https://doi.org/10.1007/s12124-014-9280-4
https://doi.org/https:/doi.org/10.1016/j.neuroimage.2013.05.041
https://doi.org/10.1038/s41467-018-05317-y
https://doi.org/10.1002/hbm.25305
https://doi.org/10.1038/nn.3045
https://doi.org/10.1101/2022.03.08.483564
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.08.483564; this version posted March 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

Supplemental material
Table S1. Behavioral measures for HCP

Description HCP field
1 Visual Episodic Memory PicSeq_Unadj
2 Cognitive Flexibility (DCCS) CardSort_Unadj
3 Inhibition (Flanker Task) Flanker_Unad;
4 Fluid Intelligence (PMAT) PMAT24_A_CR
5 Vocabulary (Pronunciation) ReadEng_Unadj
6 Vocabulary (Picture Matching) PicVocab_Unadj
7 Processing Speed ProcSpeed_Unadj
8 Delay Discounting DDic_AUC_40K
9 Spatial Orientation VSPLOT_TC
10 Sustained Attention — Sens. SCPT_SEN
11 Sustained Attention — Spec. SCPT_SPEC
12 Verbal Episodic Memory IWRD_TOT
13 Working Memory (List Sorting) ListSort_Unadj
14 Cognitive Status (MMSE) MMSE_Score
15 Sleep Quality (PSQI) PSQI_Score
16 Walking Endurance Endurance_Unadj
17 Walking Speed GaitSpeed_Unad]
18 Manual Dexterity Dexterity _Unadj
19 Grip Strength Strength_Unadj
20 Odor Identification Odor_Unadj
21 Pain Interference Survey Paininterf_Tscore
22 Taste Intensity Taste_Unad]
23 Contrast Sensitivity Mars_Final
24 Emotional Face Matching Emotion_Task Face Acc
25 Arithmetic Language_Task Math_Avg_Difficulty Level
26 Story Comprehension Language Task_ Story Avg_Difficulty Level
27 Relational Processing Relational_Task Acc
28 Social Cognition — Random Social_Task_Perc_Random
29 Social Cognition — Interaction Social _Task_Perc_ TOM
30 Working Memory (N-back) WM_Task_Acc
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31 Agreeableness (NEO) NEOFAC_A
32 Openness (NEO) NEOFAC_O
33 Conscientiousness (NEO) NEOFAC_C
34 Neuroticism (NEO) NEOFAC_N
35 Extraversion (NEO) NEOFAC_E
36 Emot. Recog. — Total ER40_CR

37 Emot. Recog. — Angry ER40ANG

38 Emot. Recog. — Fear ER40FEAR

39 Emot. Recog. — Happy ER40HAP

40 Emot. Recog. - Neutral ER40NOE

41 Emot. Recog. — Sad ER40SAD

42 Anger — Affect AngAffect_Unadj
43 Anger — Hostility AngHostil_Unadj
44 Anger — Aggression AngAggr_Unadj
45 Fear — Affect FearAffect_Unadj
46 Fear — Somatic Arousal FearSomat_Unadj
47 Sadness Sadness_Unadj
48 Life Satisfaction LifeSatisf_Unadj
49 Meaning & Purpose MeanPurp_Unadj
50 Positive Affect PosAffect_Unadj
51 Friendship Friendship_Unad;
52 Loneliness Loneliness_Unadj
53 Perceived Hostility PercHostil_Unadj
54 Perceived Rejection PercReject_Unadj
55 Emotional Support EmotSupp_Unad;
56 Instrument Support InstruSupp_Unadj
57 Perceived Stress PercStress_Unadj
58 Self-Efficacy SelfEff_Unad;
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Table S2. Behavioral measures for ABCD

Description ABCD field ABCD file
1 Anxious Depressed cbcl_scr_syn_anxdep_r abced_cbcls01.txt
2 | Withdrawn Depressed cbcl_scr_syn_withdep_r abcd_cbcls01.xt
3 Somatic Complaints cbcl_scr_syn_somatic_r abcd_cbcls01.txt
4 Social Problems cbcl_scr_syn_social_r abcd_cbcls01.xt
5 | Thought Problems cbcl_scr_syn_thought_r abcd_cbcls01.txt
6 Attention Problems cbcl_scr_syn_attention_r abcd cbcls01.ixt
7 Rule-breaking Behavior | cbcl_scr_syn_rulebreak_r abcd cbcls01.ixt
8 | Aggressive Behavior cbcl_scr_syn_aggressive_r abced_cbcls01.txt
9 Vocabulary nihtbx_picvocab_uncorrected abcd tbss01.ixt
10 | Attention nihtbx_flanker_uncorrected abcd_tbssO01.ixt
11 | Working Memory nihtbx_list_uncorrected abcd tbss01.ixt
12 | Executive Function nihtbx_cardsort_uncorrected abcd_tbssO01.ixt
13 | Processing Speed nihtbx_pattern_uncorrected abcd tbss01.ixt
14 | Episodic Memory nihtbx_picture_uncorrected abcd_tbssO01.ixt
15 | Reading nihtbx_reading_uncorrected abcd tbss01.ixt
16 | Fluid Cognition nihtbx_fluidcomp_uncorrected abcd tbss01.ixt
17 | Crystallized Cognition nihtbx_cryst_uncorrected abcd_tbssO01.ixt
18 | Overall Cognition nihtbx_totalcomp_uncorrected abcd _tbss01.txt
19 [ Negative Urgency upps_y_ss_negative_urgency abcd_mhy02.txt
20 | Lack of Planning upps_y_ss_lack_of_planning abcd_mhy02.txt
21 | Sensation Seeking upps_y_ss_sensation_seeking abcd_mhy02.txt
22 | Positive Urgency upps_y_ss_positive_urgency abcd _mhy02.txt
23 | Lack Perseverance upps_y_lack_of perseverance abcd_mhy02.txt
24 | Behavioral Inhibition bis_y_ ss_bis_sum abcd_mhy02.txt
25 | Reward Responsiveness | bis_y_ss_bas_rr abcd_mhy02.txt
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26 | Drive bis_y ss_bas_drive abcd_mhy02.ixt

27 | Fun Seeking bis_y ss_bas_fs abcd_mhy02.txt

Total Psychosis abcd_mhy02.txt

Symptoms

28 pps_y_ss_number

29 | Psychosis Severity ppS_y_Ss_severity_score abcd_mhy02.ixt

30 | Mania pgbi_p_ss_score abcd_mhp02.ixt
31 | Short Delay Recall pea_ravlt_sd trial_vi tc abcd ps01.ixt
32 | Long Delay Recall pea_ravlt_Id_trial_vii_tc abcd_ps01.ixt
33 | Fluid Intelligence pea_wiscv_trs abcd_ps01.ixt
34 | Visuospatial Accuracy Imt_scr_perc_correct Imtp201 .txt

35 Visuospatial Reaction Imt_scr_rt_correct Imtp201.txt

Time
36 | Visuospatial Efficiency Imt_scr_efficiency Imtp201.txt
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Table S3. Top 10 loadings (absolute) for HCP behavioral factors

Cognition Dissatisfaction Emotion

1 Working 0.3024 | Sadness 0.2740 | Emot. Recog. - |0.4951
Memory (N- Total
back)

2 Vocabulary 0.2964 | Perceived 0.2738 | Emot Recog - |0.3384
(Pronunciation) Stress Fear

3 Story 0.2900 | Loneliness 0.2691 Emot. Recog -|0.3293
Comprehension Sad

4 Vocabulary 0.2803 | Neuroticism | 0.2599 | Grip Strength 0.3067
(Picture (NEO)
Matching)

5 Fluid 0.2730 | Fear - Affect | 0.2423 | Emot. Recog. - |0.2720
Intelligence Anger
(PMAT)

6 Relational 0.2627 | Anger -1 0.2363 | Agreeableness 0.2485
Processing Affect (NEO)

7 Spatial 0.2459 | Perceived 0.2353 | Anger - 1-0.2348
Orientation Rejection Aggression

8 Working 0.2325 | Positive -0.2315 | Manual Dexterity | 0.1636
Memory (List Affect
Sorting)

9 Walking 0.2258 | Life -0.2255 | Perceived -0.1629
Endurance Satisfaction Hostility

10 | Cognitive 0.2201 | Emotional -0.2226 | Verbal Episodic | 0.1596
Flexibility Support Memory
(DCCS)
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Table S4. Top 10 loadings (absolute) for ABCD behavioral factors

Cognition Personality Mental health
1 | Overall Cognition | 0.3760 | Fun seeking 0.3883 | Aggressive 0.3652
Behavior
2 | Fluid Cognition 0.3442 | Total Psychosis | 0.3455 | Thought 0.3584
Symptoms Problems
3 | Crystalized 0.2975 | Reward 0.3450 | Social Problems | 0.3568
Cognition Responsiveness
4 | Reading 0.2619 | Drive 0.3415 | Anxious 0.3408
Depressed
5 | Vocabulary 0.2603 | Psychosis 0.3365 | Attention 0.3347
Severity Problems
6 | Working Memory 0.2585 | Positive Urgency | 0.3246 | Withdrawn 0.3219
Depressed
7 | Executive Function | 0.2468 | Negative Urgency | 0.3178 | Mania 0.3079
8 | Attention 0.2282 | Behavioral 0.2798 | Rule-breaking 0.3072
inhibition behavior
9 | Long Delay Recall | 0.2243 | Sensation 0.2299 | Somatic 0.2611
Seeking Complaints
10 | Short Delay Recall | 0.2229 | Visuospatial -0.0947 | Lack 0.0923
Reaction Time perseverance
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Table S5. Site clusters for ABCD

ABCD Site Make Model N Site-cluster

4 GE Discovery MR750 89 A
10 GE Discovery MR750 102 A
8 GE Discovery MR750 49 B
13 GE Discovery MR750 70 B
18 GE Discovery MR750 63 B
22 GE Discovery MR750 1 B
3 Siemens Prisma 141 C
11 Siemens Prisma 67 C
16 Siemens Prisma 320 D
14 Siemens Prisma/Prisma fit 163 E
7 Siemens Prisma fit 62 F
20 Siemens Prisma/Prisma fit 95 F
5 Siemens Prisma fit 67 G
21 Siemens Prisma fit/Prisma 81 G
2 Siemens Prisma fit 123 H
15 Siemens Prisma fit 29 H

Siemens Prisma fit 141 I

Siemens Prisma fit 62 J
12 Siemens Prisma fit 98
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(A) Prediction accuracy in HCP
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Figure S1. Functional connectivity (FC) outperforms other modalities for kernel ridge
regression (KRR). Figure is the same as Figure 1 except that COD is shown instead
of Pearson’s correlation. (A) Prediction performance (COD) of KRR averaged across
single-feature-type predictive models within each modality (anatomical, TBSS,
structural connectivity, functional connectivity) in the HCP dataset. Results are shown
for the three behavioral components and “grand average” obtained by averaging
prediction performance across 58 behavioral measures. Each boxplot shows the
distribution of performance over 60 repetitions of the nested cross-validation
procedure. (B) Prediction performance (COD) of KRR averaged across single-feature-
type predictive models within each modality (anatomical, TBSS, structural
connectivity, functional connectivity) in the ABCD dataset. Results are shown for the
three behavioral components and “grand average” obtained by averaging prediction
performance across 36 behavioral measures. Each boxplot shows the distribution of
performance over 120 repetitions of the nested cross-validation procedure.
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(A) Prediction accuracy in HCP: Behaviours 1-10
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(B) Prediction accuracy in HCP: Behaviours 11-20
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Figure S2. Prediction performance (Pearson’s correlation) of kernel ridge regression
(KRR) for individual behavioural measures in the HCP dataset. (A) Prediction
performance (Pearson’s correlation) of KRR averaged across single-feature-type
predictive models within each modality (anatomical, TBSS, structural connectivity,
functional connectivity) in the HCP dataset. Results are shown for behaviors 1-10 of
Table S1. Each boxplot shows the distribution of performance over 60 repetitions of
the nested cross-validation procedure. (B) Prediction performance (Pearson’s
correlation) of KRR averaged across single-feature-type predictive models within each
modality (anatomical, TBSS, structural connectivity, functional connectivity) in the
HCP dataset. Results are shown for behaviors 11-21 of Table S1. Each boxplot shows
the distribution of performance over 60 repetitions of the nested cross-validation

procedure.
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(A) Prediction accuracy in HCP: Behaviours 21-30
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(B) Prediction accuracy in HCP: Behaviours 31-40
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Figure S3. Prediction performance (Pearson’s correlation) of kernel ridge regression
(KRR) for individual behavioural measures in the HCP dataset. (A) Prediction
performance (Pearson’s correlation) of KRR averaged across single-feature-type
predictive models within each modality (anatomical, TBSS, structural connectivity,
functional connectivity) in the HCP dataset. Results are shown for behaviors 21-30 of
Table S1. Each boxplot shows the distribution of performance over 60 repetitions of
the nested cross-validation procedure. (B) Prediction performance (Pearson’s
correlation) of KRR averaged across single-feature-type predictive models within each
modality (anatomical, TBSS, structural connectivity, functional connectivity) in the
HCP dataset. Results are shown for behaviors 31-40 of Table S1. Each boxplot shows
the distribution of performance over 60 repetitions of the nested cross-validation
procedure.
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(A) Prediction accuracy in HCP: Behaviours 41-50
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(B) Prediction accuracy in HCP: Behaviours 51-58
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Figure S4. (Prediction performance (Pearson’s correlation) of kernel ridge regression
(KRR) for individual behavioural measures in the HCP dataset. (A) Prediction
performance (Pearson’s correlation) of KRR averaged across single-feature-type
predictive models within each modality (anatomical, TBSS, structural connectivity,
functional connectivity) in the HCP dataset. Results are shown for behaviors 41-50 of
Table S1. Each boxplot shows the distribution of performance over 60 repetitions of
the nested cross-validation procedure. (B) Prediction performance (Pearson’s
correlation) of KRR averaged across single-feature-type predictive models within each
modality (anatomical, TBSS, structural connectivity, functional connectivity) in the
HCP dataset. Results are shown for behaviors 51-58 of Table S1. Each boxplot shows
the distribution of performance over 60 repetitions of the nested cross-validation
procedure.
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(A) Prediction accuracy in ABCD: Behaviours 1-10
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(B) Prediction accuracy in ABCD: Behaviours 11-20
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Figure S5. Prediction performance (Pearson’s correlation) of kernel ridge regression
(KRR) for individual behavioural measures in the ABCD dataset. (A) Prediction
performance (Pearson’s correlation) of KRR averaged across single-feature-type
predictive models within each modality (anatomical, TBSS, structural connectivity,
functional connectivity) in the ABCD dataset. Results are shown for behaviors 1-10 of
Table S2. Each boxplot shows the distribution of performance over 120 repetitions of
the nested cross-validation procedure. (B) Prediction performance (Pearson’s
correlation) of KRR averaged across single-feature-type predictive models within each
modality (anatomical, TBSS, structural connectivity, functional connectivity) in the
ABCD dataset. Results are shown for behaviors 11-20 of Table S2. Each boxplot
shows the distribution of performance over 120 repetitions of the nested cross-
validation procedure.
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(A) Prediction accuracy in ABCD: Behaviours 21-30
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(B) Prediction accuracy in ABCD: Behaviours 31-36
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Figure S6. Prediction performance (Pearson’s correlation) of kernel ridge regression
(KRR) for individual behavioural measures in the ABCD dataset. (A) Prediction
performance (Pearson’s correlation) of KRR averaged across single-feature-type
predictive models within each modality (anatomical, TBSS, structural connectivity,
functional connectivity) in the ABCD dataset. Results are shown for behaviors 21-30
of Table S2. Each boxplot shows the distribution of performance over 120 repetitions
of the nested cross-validation procedure. (B) Prediction performance (Pearson’s
correlation) of KRR averaged across single-feature-type predictive models within each
modality (anatomical, TBSS, structural connectivity, functional connectivity) in the
ABCD dataset. Results are shown for behaviors 31-36 of Table S2. Each boxplot
shows the distribution of performance over 120 repetitions of the nested cross-
validation procedure.
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Figure S7. Functional connectivity (FC) outperforms other modalities for linear ridge
regression (LRR). Figure is the same as Figure 4 except that LRR was utilized instead
of kernel ridge regression. (A) Prediction performance (Pearson’s correlation) of LRR
for the best performing feature-type within each modality in the HCP dataset. For the
cognition component, the best features were cortical area, TBSS OD, SC FA and
language FC. For the dissatisfaction component, the best features were cortical
thickness, TBSS FA, SC stream count and working memory FC. For the emotion
component, the best features were cortical volume, TBSS AD, SC FA and social
cognition FC. For the grand average, the best features were cortical volume, TBSS
AD, SC AD and language FC. (B) Prediction performance (Pearson’s correlation) of
LRR for the best performing feature-type within each modality in the ABCD dataset.
For the cognition component, the best features were cortical area, TBSS OD, SC ICVF
and N-back FC. For the personality component, the best features were cortical
volume, TBSS OD, SC MD and MID FC. For the mental health component, the best
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features were cortical area, TBSS OD, SC MD and resting FC. For the grand average,
the best features were cortical area, TBSS OD, SC ICVF and N-back FC.
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Fig S8. Functional connectivity (FC) outperforms other modalities for elastic net.
Figure is the same as Figure 4 except that elastic net was utilized instead of kernel
ridge regression. (A) Prediction performance (Pearson’s correlation) of elastic net for
the best performing feature-type within each modality in the HCP dataset. For the
cognition component, the best features were cortical area, TBSS FA, SC FA and
language FC. For the dissatisfaction component, the best features were cortical
thickness, TBSS AD, SC stream length and working memory FC. For the emotion
component, the best features were cortical volume, TBSS OD, SC FA and language
FC. For the grand average, the best features were cortical thickness, TBSS FA, SC
AD and language FC. (B) Prediction performance (Pearson’s correlation) of elastic net
for the best performing feature-type within each modality in the ABCD dataset. For the
cognition component, the best features were cortical thickness, TBSS OD, SC ICVF
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and N-back FC. For the personality component, the best features were cortical
thickness, TBSS OD, SC OD and MID FC. For the mental health component, the best
features were cortical area, TBSS OD, SC OD and SST FC. For the grand average,
the best features were cortical area, TBSS OD, SC ICVF and N-back FC.
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Figure S9. Prediction performance (COD) of kernel ridge regression (KRR) for each
single-feature-type in the HCP dataset. Figure is the same as Figure 5, except that
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COD was shown instead of Pearson’s correlation. Results are shown separately for
(A) anatomical features, (B) FC, (C) TBSS and (D) structural connectivity.
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Figure S10. Prediction performance (COD) of kernel ridge regression (KRR) for each
single-feature-type in the ABCD dataset. Figure is the same as Figure 6, except that
COD was shown instead of Pearson’s correlation. Results are shown separately for
(A) anatomical features, (B) FC, (C) TBSS and (D) structural connectivity.
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Figure S11. Prediction performance (Pearson’s correlation) of linear ridge regression
(LRR) for each single-feature-type in the HCP dataset. Figure is the same as Figure 5
except that LRR was utilized instead of kernel ridge regression. Results are shown
separately for (A) anatomical features, (B) FC, (C) TBSS and (D) structural
connectivity.
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Figure S12. Prediction performance (Pearson’s correlation) of elastic net for each
single-feature-type in the HCP dataset. Figure is the same as Figure 5 except that
elastic net was utilized instead of kernel ridge regression. Results are shown
separately for (A) anatomical features, (B) FC, (C) TBSS and (D) structural
connectivity.
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Figure S13. Prediction performance (Pearson’s correlation) of linear ridge regression
(LRR) for each single-feature-type in the ABCD dataset. Figure is the same as Figure
6 except that LRR was utilized instead of kernel ridge regression. Results are shown
separately for (A) anatomical features, (B) FC, (C) TBSS and (D) structural
connectivity.
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Figure S14. Prediction performance (Pearson’s correlation) of elastic net for each
single-feature-type in the ABCD dataset. Figure is the same as Figure 6 except that
elastic net was utilized instead of kernel ridge regression. Results are shown
separately for (A) anatomical features, (B) FC, (C) TBSS and (D) structural
connectivity.
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Figure S15. Combining resting and task FC was as good as combining across all
modalities, or combining the best single-feature-type models of each modality. Figure
is the same as Figure 7, except that the results of multi-KRR are replaced with the
results of stacking the best single-feature-type models (which can be found in Figure
4). (A) Prediction performance (Pearson’s correlation) from combining various MRI
features and modalities in the HCP dataset. We considered stacking the best single-
feature-type model of each modality, all FC models, and all single-feature-type models
across all modalities. For comparison, the best single-feature-type from KRR is shown.
Each boxplot shows the distribution over 60 repetitions of the nested cross-validation
procedure. (B) Prediction performance (Pearson’s correlation) from combining various
MRI features and modalities in the ABCD dataset. We considered stacking the best
single-feature-type model of each modality, all FC models, and all single-feature-type
models across all modalities. For comparison, the best single-feature-type from KRR
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is shown. Each boxplot shows the distribution over 120 repetitions of the nested cross-
validation procedure.
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Figure S16. Combining resting and task FC was as good as combining across all
modalities. Figure is the same as Figure 7, except that COD was shown instead of
Pearson’s correlation. (A) Prediction performance (COD) from combining various MRI
features and modalities in the HCP dataset. We considered multi-KRR of all FC
features, stacking of all FC models and stacking of all single-feature-type models
across all modalities. For comparison, the best single-feature-type from KRR is shown.
Each boxplot shows the distribution over 60 repetitions of the nested cross-validation
procedure. (B) Prediction performance (COD) from combining various MRI features
and modalities in the ABCD dataset. We considered multi-KRR of all FC features,
stacking of all FC models and stacking of all single-feature-type models across all
modalities. For comparison, the best single-feature-type from KRR is shown. Each
boxplot shows the distribution over 120 repetitions of the nested cross-validation
procedure.
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