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Abstract 

 

Two analytic traditions characterize fMRI language research. One relies on averaging activations 

voxel-wise across individuals. This approach has limitations: because of inter-individual 

variability in the locations of language areas, a location in a common brain space cannot be 

meaningfully linked to function. An alternative approach relies on identifying language areas in 

each individual using a functional 8localizer9. Because of its greater sensitivity, functional 

resolution, and interpretability, functional localization is gaining popularity, but it is not always 

feasible, and cannot be applied retroactively to past studies. We provide a solution for bridging 

these currently disjoint approaches in the form of a probabilistic functional atlas created from 

fMRI data for an extensively validated language localizer in 806 individuals. This atlas enables 

estimating the probability that any given location in a common brain space belongs to the 

language network, and thus can help interpret group-level peaks and meta-analyses of such 

peaks, and lesion locations in patient investigations. More meaningful comparisons of findings 

across studies should increase robustness and replicability in language research.  
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Background and Summary 

 

fMRI is an invaluable non-invasive tool for illuminating the brain9s architecture, especially for 

human-unique abilities like language. A common analytic approach in fMRI language studies is 

to average activation maps voxel-wise in a common brain space and perform statistical inference 

across individuals in each voxel. However, because of the well-established inter-individual 

variability in the locations of functional areas in the association cortex (Frost & Goebel, 2012; 

Tahmasebi et al., 2012), activations do not line up well across individuals, leading to low 

sensitivity and functional resolution (Nieto-Castañón & Fedorenko, 2012). Further, the results of 

group-averaging analyses are generally interpreted through reverse inference from anatomical 

locations to function (Fedorenko, 2021; Poldrack, 2011), but because of the variability 

mentioned above, combined with the functional heterogeneity of the association cortex, locations 

in a common brain space cannot be meaningfully linked to function (see Fedorenko & Blank, 

2020, for a discussion of this issue for 8Broca9s area9). 

 

An alternative analytic approach, which circumvents voxel-wise brain averaging, is known as 

8functional localization9 (Nieto-Castañón & Fedorenko, 2012; Saxe, 2006). In this approach, a 

brain region or network that supports a mental process of interest is identified with a functional 

contrast in each individual and then its functional responses to some new critical condition(s) are 

examined. This approach yields greater sensitivity, functional resolution, and interpretability, and 

has been highly successful across many domains of perception and cognition, including 

language. As a result, many research groups are now moving away from group-averaging 

analyses toward individual-subject analyses (e.g., Fedorenko, 2021; Gratton & Braga, 2021). 

 

However, functional localization is not always feasible. Further, although studies that rely on 

functional localization can be straightforwardly compared to each other, it is at present unclear 

how to relate the results from such studies to group-averaging fMRI studies, or other studies that 

rely on brain averaging (e.g., studies that use voxel-based morphometry (VBM) or voxel-based 

lesion-symptom mapping (VLSM) in patient work; Wilson, 2017). To help bridge the gap 

between these two different analytic traditions in language research, we created a probabilistic 

functional atlas of the language network (8Language Atlas9 or LanA) by overlaying 806 

individual activation maps for a robust and validated language 8localizer9 (Fedorenko et al., 

2010; Mahowald & Fedorenko, 2016). This localizer relies on a contrast between the processing 

of sentences and a linguistically/acoustically degraded condition and is robust to changes in 

materials, modality of presentation, and task (see Methods). This localizer identifies the fronto-

temporal language network that selectively (Fedorenko et al., 2011) supports high-level language 

comprehension and production, including the processing of word meanings and combinatorial 

syntactic/semantic processing (Bautista & Wilson, 2016; Fedorenko et al., 2012, 2020). Further, 

a network that closely corresponds to this functional contrast emerges from task-free resting state 

data (Braga et al., 2020). 
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LanA allows one to estimate for any location in a common brain space the probability that it falls 

within the language network. In this way, this atlas can provide a common reference frame and 

help interpret a) group-level activation peaks from past and future fMRI studies, b) results of 

meta-analyses of such peaks (Hauptman et al., 2022), c) lesion locations in individual brains 

(Woolgar et al., 2018) or lesion overlap loci in VBM/VLSM analyses, d) electrode locations in 

ECoG/SEEG investigations and locations of source-localized activity in MEG studies.  

Furthermore, LanA e) can help guide functional mapping during brain surgery when fMRI is not 

possible, f) can be related voxel-by-voxel to any whole-brain data (Markello et al., 2022), 

including structural data, gene expression data (Richiardi et al., 2015), or receptor density data 

(Hansen et al., 2021), in order to ask whether/how these features correlate with the language 

network9s topography, and g) can help select patches in post-mortem brains for cellular analyses 

to maximize the chances of examining language cortex. (We emphasize that LanA is not a 

replacement for localizers: when possible, a localizer task should be performed. As we show in 

SI-1, the effect sizes obtained from group-level ROIs based on LanA, or from commonly used 

Glasser parcels (Glasser et al., 2016) are underestimated.) 

 

We make the atlas available for two most commonly used brain templates (Figure 1): a volume-

based MNI template (IXI549Space; SPM12; Friston, 2007) and a surface-based FSaverage 

template (Fischl et al., 1999). We also release i) individual activation maps (in the MNI and 

FSaverage spaces), along with demographic data, and ii) individual-level neural markers (based 

on the volumetric analyses), including effect sizes, activation extent, and stability of activation 

across runs. The neural marker data can be used as normative distributions against which any 

new population (e.g., children or individuals with developmental or acquired brain disorders) can 

be evaluated. 

 

 

Methods 

 

Participants 

 

A total of 806 neurotypical adults (477, ~59%, female), aged 19 to 75 (average: 30.23; standard 

deviation: 7.08; median: 29), participated for payment between September 2007 and June 2021, 

as summarized in Table 1. All participants had normal or corrected-to-normal vision, and no 

history of neurological, developmental, or language impairments. Handedness information was 

collected for 758 (~94%) of the 806 participants. Of those, 707 participants (~93%) were right-

handed, as determined by the Edinburgh handedness inventory (Oldfield, 1971) or self-report, 38 

(~5%) were left-handed, and 13 (~2%) 3 ambidextrous. (The participants for whom handedness 

is missing in the database are most likely right-handed because most of them were tested during 

the earlier years of data collection when right-handedness was one of the requirements for 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 7, 2022. ; https://doi.org/10.1101/2022.03.06.483177doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.06.483177
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

participation.) Of the 806 participants, 629 (~78%) were native speakers of English, and the 

remaining 177 (~22%) 3 native speakers of another language and proficient speakers of English 

(see Malik-Moraleda, Ayyash et al., 2021, for evidence that the topography of language 

responses for a language that an individual is proficient in is similar to that of their native 

language, and see SI-2 for a comparison between the atlas generated using all 806 participants, 

vs. only the 629 native English speakers). 

 

Each participant completed a language 8localizer9 task (Fedorenko et al., 2010) as part of one of 

the studies in the Fedorenko lab. Each scanning session lasted between 1 and 2 hours and 

included a variety of additional tasks. All participants gave informed written consent in 

accordance with the requirements of the MIT9s Committee on the Use of Humans as 

Experimental Subjects (COUHES). 

 

Participant and session selection: The 806 scanning sessions above (one session per participant) 

were selected from a total of 1,065 sessions across 819 participants that were available in the 

Fedorenko Lab database as of June 2021. The goal was to include as many participants as 

possible and, for the 163 participants who performed a language localizer in multiple sessions, to 

select a single session with high-quality data. To assess data quality, we examined the stability of 

the activation topography for the language localizer contrast (see Language localizer paradigm) 

across runs. This analysis was performed on the data preprocessed and analyzed in the volume 

(i.e., SPM-based analyses; see SPM preprocessing and analysis pipeline). For 1,062 of the 1,065 

sessions, we calculated voxel-wise spatial correlations in activation magnitudes the language > 

control contrast (see Language localizer paradigm) between the odd-numbered and even-

numbered runs (three remaining sessions consisted of a single run and were evaluated by visual 

inspection of the contrast maps). The correlation values were calculated within the language 

8parcels94masks that denote typical locations of language areas. These masks (available at 

http://evlab.mit.edu/funcloc) were derived from a probabilistic language atlas based on 220 

participants (a subset of the participants in the current set of 806) and have been used in much 

past work (e.g., Diachek, Blank, Siegelman et al., 2020; Ivanova et al., 2020; Jouravlev et al., 

2019, 2020; Mollica et al., 2020; Shain, Blank et al., 2021; Wehbe et al., 2021). Six masks (three 

in the frontal cortex and three in the temporal and parietal cortex) were derived from the 

probabilistic atlas in the left hemisphere and mirror-projected onto the right hemisphere. For 

each session, the correlation values were averaged across the twelve parcels, leading to a single 

value per session. This spatial correlation measure quantifies the stability of the activation 

landscape and is an objective proxy for data quality; it is affected by factors like head motion or 

sleepiness, but does not require subjective visual inspection of contrast maps. Sessions where the 

spatial correlation value was negative (n=23; ~2%) were excluded, leaving 1,042 sessions across 

806 participants. For the 163 participants with more than one session, we selected the session 

with the highest spatial correlation value for the inclusion in the atlas (see Lipkin et al., In prep. 

for evidence of the stability of spatial correlation values across sessions: i.e., if a participant 
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shows a high spatial correlation in one session, they are likely to show a high spatial correlation 

in another session). Following this data selection procedure, the Fisher-transformed spatial 

correlations of the participants9 language > control contrast were r=0.98 and r=0.57 for the left 

and right hemispheres, respectively (see Mahowald & Fedorenko, 2016, for similar values on a 

subset (n=150) of these participants). 

 

Language localizer paradigm 

 

Across the 806 participants, ten language localizer versions were used, as summarized in Table 

2. In each version, a sentence comprehension condition was contrasted with a linguistically or 

acoustically degraded control condition. Visual (reading) and auditory (listening) contrasts have 

been previously established to engage the same fronto-temporal language network (e.g., Chen et 

al., 2021; Fedorenko et al., 2010; Malik-Moraleda, Ayyash et al., 2021; Scott et al., 2017). 

Activity in this network has further been shown to not depend on task or materials (Fedorenko et 

al., 2010) and to show robust effects across typologically diverse languages (Malik-Moraleda, 

Ayyash et al., 2021). Furthermore, this network can be recovered from naturalistic task-free 

(resting state) data based on patterns of BOLD signal fluctuations over time (Blank et al., 2014; 

Braga et al., 2020), and corresponds nearly perfectly to the network based on the sentences > 

nonwords contrast (Fedorenko et al., 2010). As a result, we pooled data from across the different 

versions in the current study (see SI-3 for a reality-check analysis showing robust language > 

control effects across all ten versions, and SI-2 for evidence that an atlas defined on only 

Localizer Version A is nearly identical to that which leverages data from all versions). 

  

The vast majority of participants (624, ~77.4%) performed Localizer version A 3 a reading 

version, where sentences and nonword strings are presented one word/nonword at a time at the 

rate of 450ms per word/nonword, in a blocked design (with 3 sentences/nonword strings in each 

18s block). Participants were instructed to read attentively and to press a button at the end of 

each trial, when a picture of a finger pressing a button appeared on the screen. The experiment 

consisted of two ~6-minute-long runs, for a total of 16 blocks for each of the two conditions. The 

presentation script and stimuli for this localizer version can be downloaded at 

http://evlab.mit.edu/funcloc/ (for the stimuli used in the other localizer versions, contact EF). 

Localizer versions B-G (performed by 169 participants, ~21.0%) also used visual presentation 

and the same contrast as in version A, with each word/nonword presented at the rate of 350ms 

per word/nonword. Participants were instructed to either read attentively (with no additional 

task), read attentively and press a button at the end of each trial, or read attentively and perform a 

memory probe task at the end of each trial (deciding whether a word/nonword appeared in the 

string just read). Versions B, D, E, and F included additional conditions besides the critical 

sentences and nonword-strings conditions, but we just focus on the latter two conditions here. 

Each block in versions B-G consisted of either 3 or 5 sentences/nonword strings and lasted 18 or 

24 seconds. The experiments consisted of between 2 and 8 runs (for a total of 8-32 blocks per 
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condition), with the runs lasting between ~5.5 and ~8.5 minutes. Finally, Localizer versions H-J 

(performed by 13 participants, ~1.6%) used auditory presentation. Participants were instructed to 

either listen attentively (with no additional task) or listen attentively and perform a memory 

probe task at the end of each trial. Versions I and J used nonword strings as the control condition 

(like the visual versions A-G; and version I included additional conditions besides the critical 

conditions), and version H used an acoustically degraded control condition (see Scott et al., 2017 

for details). Each block consisted of several sentences (version I) or a short text (versions H, J) 

and lasted 12-24 seconds. Experiments consisted of 2 or 4 runs (for a total of 16-32 blocks per 

condition), with the runs lasting between ~6 and ~8 minutes.  

 

fMRI data acquisition 

 

Structural and functional data were collected on the whole-body, 3 Tesla, Siemens Trio scanner 

with a 32-channel head coil, at the Athinoula A. Martinos Imaging Center at the McGovern 

Institute for Brain Research at MIT. T1-weighted structural images were collected in 176 sagittal 

slices with 1 mm isotropic voxels (TR = 2,530 ms, TE = 3.48 ms). Functional, blood 

oxygenation level dependent (BOLD), data were acquired using an EPI sequence (with a 90 

degree flip angle and using GRAPPA with an acceleration factor of 2), with the following 

acquisition parameters: thirty-one 4 mm thick near-axial slices acquired in the interleaved order 

(with 10% distance factor), 2.1 mm x 2.1 mm in-plane resolution, FoV in the phase encoding (A 

>> P) direction 200 mm and matrix size 96 mm x 96 mm, TR = 2,000 ms and TE = 30 ms. 

Prospective acquisition correction (Thesen et al., 2000) was used to adjust the positions of the 

gradients based on the participant9s motion from the previous TR. The first 10 s of each run were 

excluded to allow for steady state magnetization. 

 

SPM preprocessing and analysis pipeline 

 

For the SPM analysis (Figure 2), fMRI data were analyzed using SPM12 (release 7487), CONN 

EvLab module (release 19b) and other custom MATLAB scripts. Each participant9s functional 

and structural data were converted from DICOM to NIFTI format. All functional scans were 

coregistered and resampled using B-spline interpolation to the first scan of the first session 

(Friston et al., 1995). Potential outlier scans were identified from the resulting subject-motion 

estimates as well as from BOLD signal indicators using default thresholds in CONN 

preprocessing pipeline (5 standard deviations above the mean in global BOLD signal change, or 

framewise displacement values above 0.9 mm, Nieto-Castanon, 2020). Functional and structural 

data were independently normalized into a common space (the Montreal Neurological Institute 

[MNI] template; IXI549Space) using SPM12 unified segmentation and normalization procedure 

(Ashburner & Friston, 2005) with a reference functional image computed as the mean functional 

data after realignment across all timepoints omitting outlier scans. The output data were 

resampled to a common bounding box between MNI-space coordinates (-90, -126, -72) and (90, 
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90, 108), using 2mm isotropic voxels and 4th order spline interpolation for the functional data, 

and 1mm isotropic voxels and trilinear interpolation for the structural data. Last, the functional 

data were then smoothed spatially using spatial convolution with a 4 mm FWHM Gaussian 

kernel. Effects were estimated using a General Linear Model (GLM) in which each experimental 

condition was modeled with a boxcar function convolved with the canonical hemodynamic 

response function (HRF) (fixation was modeled implicitly). Temporal autocorrelations in the 

BOLD signal timeseries were accounted for by a combination of high-pass filtering with a 128 

seconds cutoff, and whitening using an AR(0.2) model (first-order autoregressive model 

linearized around the coefficient a=0.2) to approximate the observed covariance of the functional 

data in the context of Restricted Maximum Likelihood estimation (ReML). In addition to main 

condition effects, other model parameters in the GLM design included first-order temporal 

derivatives for each condition, modeling spatial variability in the HRF delays, as well as 

nuisance regressors controlling for the effect of slow linear drifts, subject-motion parameters, 

and potential outlier scans on the BOLD signal. 

 

FreeSurfer preprocessing and analysis pipeline 

 

For the FreeSurfer analysis (Figure 2), fMRI data was analyzed using FreeSurfer v6.0.0. Each 

participant9s functional and structural data were converted from DICOM to NIFTI format using 

the default unpacksdcmdir parameters. (Two of the 806 participants could not be included in this 

pipeline because their raw dicom files were lost, leaving 804 participants for this analysis.) The 

raw data were then sampled onto both hemispheres of the FSaverage surface, motion corrected 

and registered using the middle time point of each run. The data were then smoothed spatially 

with a 4 mm FWHM Gaussian filter. Effects were estimated using a GLM in which each 

condition was modeled with a first order polynomial regressor fitting the canonical HRF (the 

first 4 time points of each run were excluded to allow for steady state magnetization). The GLM 

also included nuisance regressors for offline-estimated motion parameters. 

 

Atlas creation 

 

SPM: Using custom code (available at OSF: https://osf.io/kzwbh/), we computed the overlap of 

the individual activation maps for the language > control contrast using the 806 participants 

analyzed in the SPM12 pipeline. In particular, we used whole-brain t-maps that are generated by 

the first-level analysis and that contain a t-value for the relevant contrast in each voxel (a post-

hoc analysis compared the whole-brain t-maps to their respective unscaled contrast maps and 

found strong voxel-wise correlations over the set of 806 participants: r=0.93±0.03) (see SI-2 for 

evidence that atlases generated from t-maps vs. contrast maps are highly similar). In each 

individual map, we selected the 10% of voxels across the brain with the highest t-values for the 

language > control contrast (average minimum t-value across participants was 1.73 (median: 

1.62); average maximum t-value was 13.8 (median: 13.7)). We chose the top 10% approach over 
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an approach where each individual map is thresholded at a fixed t-value (as in Fedorenko et al., 

2010) to account for inter-individual variability in the overall strength of BOLD signal responses 

due to trait or state factors (Erdo�an et al., 2016; He et al., 2010; Power et al., 2015; Wong et al., 

2013) (but see SI-2 for evidence that an atlas based on the fixed t-value thresholding approach 

yields a nearly identical topography). These maps were then binarized so that the selected voxels 

got assigned a value of 1 and the remaining voxels4a value of 0. Finally, these values were 

averaged across participants in each voxel. The resulting atlas contains in each voxel a value 

between 0 and 1, which corresponds to the proportion of the 806 participants for whom that 

voxel falls in the 10% of voxels across the brain with the highest t-values for the language > 

control contrast. In the left hemisphere, these values range from 0 to 0.82, and in the RH4from 

0 to 0.64 (the values are lower in the RH presumably because the majority of the selected voxels 

fall in the LH: average and median proportions of selected voxels falling in the LH are 58.3% 

and 57.8%, respectively). 

 

FreeSurfer: Using custom code (available at OSF: https://osf.io/kzwbh/), we computed the 

overlap of the individual activation maps for the language > control contrast, using the 804 

participants analyzed in the FreeSurfer pipeline. The procedure was similar to that used for the 

SPM-based atlas, except that the selection of the highest t-values was performed on the surface 

vertices. To maintain hemispheric asymmetries, rather than evaluating each hemisphere 

separately, as is generally common for FreeSurfer analyses, the top 10% of vertices were 

selected from the vertices pooled across the LH and RH, as for the SPM-based atlas. For this 

atlas, in the left hemisphere, the proportion values range from 0 to 0.90, and in the RH4from 0 

to 0.80 (these values are expectedly higher than those in the SPM-based atlas given the 

superiority of surface-based inter-individual alignment; e.g., Fischl et al., 2008). 

 

Neural Markers 

 

In addition to the population-level atlases, we also provide a set of individual-level neural 

markers (based on the volumetric SPM analyses) for the language network in each participant. 

These neural markers include: effect size, voxel count, and spatial correlation. All of these 

markers have all been shown to be reliable within individuals over time, including across 

scanning sessions (Lipkin et al., In prep.; Mahowald & Fedorenko, 2016). We provide each of 

these measures for each of the ROIs constrained by the previously defined language 8parcels9 

(available at http://evlab.mit.edu/funcloc), which include in each hemisphere three frontal parcels 

(IFG, IFGorb, MFG) and three temporal/parietal ones (AntTemp, PostTemp, AngG), for a total 

of 12 parcels. 

 

Effect Size was operationalized as the magnitude (% BOLD signal change) of the critical 

language > control contrast. Within each parcel, we defined4for each participant4a fROI by 

selecting 10% of the mask9s total voxels with the highest t-values for the language > control 
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contrast using all but one run of the data. We then extracted from the left-out run the responses to 

the language and control conditions and computed the language > control difference. This 

procedure was repeated across all run partitions. This across-runs cross-validation procedure 

(Nieto-Castañón & Fedorenko, 2012) ensures independence between the data used to define the 

fROIs and estimate their responses (Kriegeskorte, 2011). In the final step, the estimates were 

averaged across the cross-validation folds to derive a single value per participant per fROI. 

Voxel count (extent of activation) was defined as the number of significant voxels for the critical 

language > control contrast at a fixed statistical threshold (p<0.001 uncorrected threshold). 

Spatial correlation (stability of the activation landscape) was defined4for the voxels falling 

within the language parcels4as the Fischer-transformed Pearson correlation between the voxel 

responses for the language > control contrast across odd and even runs. As noted above, for all 

three measures, we provide 14 values per participant: one for each of the 12 ROIs (6 in each 

hemisphere), and two additional per-hemisphere values (averaging across the 6 ROIs in each 

hemisphere). See Table 3 for a summary of these neural markers within the atlas population. 

 

 

Data records 

 

The SPM and FreeSurfer atlases are available for download [*website*] (the website will go live 

upon manuscript acceptance; in the meantime, the atlas is available from BL). Along with the 

atlases, we make available i) individual contrast and significance maps (for both the volume-

based SPM and the surface-based FreeSurfer pipelines; because we had not obtained consent for 

raw data release, we cannot make publicly available the raw dicom/NIfTI images), and ii) a 

dataset of individual neural markers, which can be explored with respect to demographic 

variables or serve as normative distributions against which any new population can be evaluated. 

 

The complete dataset can be accessed at [*website*] via the prepackaged download links. The 

8Download SPM Atlas9 and 8Download FS Atlas9 links provide a copy of the language atlas in 

their respective formats. The SPM atlas is a single volumetric NIfTI file, whereas the FS atlas is 

comprised of two overlay NIfTI files, one for each hemisphere. Under 8Download All SPM 

Data9 and 8Download All FS Data9, each of the individual participant9s data can be downloaded. 

In particular, for each of the 806 participants (804 for FS), we provide a 

8Demograhics_&_Summary.txt9 file, which contains relevant information as in Tables 2 and 3, 

the individual contrast and significance maps, and a visualization of their individual activation 

profile in the selected template space. 

 

As well as allowing the user to download the data, the website offers ample opportunities for 

online exploration and the retrieval of relevant subsets of data. In particular, individual activation 

maps can be explored under the 8Explore Activation Maps9 tab, and relevant neural markers can 

be explored under the 8Explore Neural Markers9 tab. In addition, data can be filtered by 
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demographic variables including, age, gender, handedness, native English speaker status, 

language network lateralization, etc., and these subsets can be downloaded, or their maps / neural 

markers can be explored. This flexible tool allows individual users to access relevant data for 

their needs without the requirement for offline filtering. 

 

Finally, we provide a version of the language localizer experiment (Localizer Version A, which is 

used for the majority of the participants) for download, as well as some informational videos and 

references about the language network. 

 

 

Technical Validation 

 

The individual participants9 data quality check was performed as described in the Participants 

and session selection section. 

 

Individual localizer versions were evaluated to confirm they each elicited a strong language > 

control effect, as described in SI-2. 

 

The atlas creation process was evaluated with respect to several hyperparameter choices, and 

remained robust to each decision, including the inclusion of non-native but fluent English 

speakers, localizer versions, the use of whole-brain maps based on t-values vs. contrast values, 

and definition of the language system as the top 10% of language>control voxels vs. as 

language>control voxels that pass a specific significance threshold. We outline the minimal 

impact of all these choices and the strong correlations to the main atlas in SI-3. 

 

Finally, in SI-1, we demonstrate that group-level ROIs defined based on the highest-overlap 

voxels in LanA outperform commonly used Glasser ROIs derived from multi-modal Human 

Connectome Project data (Glasser et al., 2016) in effect size estimation. The latter grossly 

underestimate effect sizes, especially for the frontal language areas. Of course, as expected (e.g., 

Nieto-Castañón & Fedorenko, 2012), individual-level language fROIs are still the best for 

accurately estimating effect sizes, and these outperform the group-based LanA fROIs, but in 

cases where individual localization may not be possible (e.g., in retroactively re-analyzing past 

studies), LanA-based group ROIs are recommended, as they fare substantially better than Glasser 

ROIs. 

 

 

Usage Notes 

 

The data records presented in this paper, including materials for download and exploration at the 

[*website*] are available for free and fair use to individual and academic researchers, 
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institutions, and entities provided that this work is appropriately referenced. Although this atlas 

has potential for clinical applications, the authors assume no responsibility for the use or misuse 

of LanA and associated data records in clinical and other settings. 

 

 

Code availability 

 

Code associated with this manuscript can be found at OSF: https://osf.io/kzwbh/. 
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Figures 

 

 

Figure 1: Probabilistic functional atlas for the language > control contrast based on overlaid 

individual binarized activation maps (where in each map, the top 10% of voxels are selected, as 

described in the text). A) SPM-analyzed volume data in the MNI template space (based on 806 

individual maps). B) FreeSurfer-analyzed surface data in the FSaverage template space (based on 

804 individual maps). In both figures, the color scale reflects the proportion of participants for 

whom that voxel belongs to the top 10% of language > control voxels. 
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Figure 2: Overview of SPM and FreeSurfer preprocessing and analysis pipelines. Raw dicom 

images are converted to NIfTI format, motion-corrected, mapped to a common space and 

smoothed during preprocessing. Each session is then modeled, t-maps are extracted and 

thresholded, and all sessions are aggregated to create the probabilistic atlas.  
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Tables 

 

Table 1: Summary demographics of the 806 participants included in the atlas. 
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Table 2: Timing parameters for each version of the language localizer task. Under task type, the 

options are defined as follows: BP = Button Press, MP = Memory Probe, N = No Task. 
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Table 3: Summary neural markers for the language > control contrast of the 803 participants 

included in the atlas for whom we have 2 or more runs. Effect sizes reflect the % BOLD Signal 

Change of the target contrast in the language parcels using an out-of-sample localizer, 

Significant voxels are defined at p<0.001 uncorrected, and Spatial Correlation is defined as the 

Fischer-transformed correlation coefficient over the language parcels between the odd and even 

runs as a marker of stability. LH=Left-Hemisphere; RH=Right-Hemisphere. 
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Supplemental Materials 

 

SI-1: Response magnitudes for the language and control conditions and the size of the language 

> control effect for three sets of regions of interest (ROIs) in each of the six language parcels 

(shown on the left, smaller brain in each panel; see Neural Markers) for a subset of 403 

participants: i) individual functional ROIs (Indiv fROIs), defined as described in Neural 

Markers; ii) ROIs based on LanA, where within each language parcel 10% of voxels with the 

highest overlap values in LanA are selected based on an independent set of participants (Group 

LanA; see below for details), and iii) ROIs based on the multi-modal data in the Human 

Connectome Project created by Glasser et al. (2016) (Glasser Parcels; shown on the right, larger 

brain in each panel). For the latter, we selected a subset of the parcels (n=23) that had at least 
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25% voxel overlap with one of the language parcels. Between 2 and 8 parcels overlapped with 

each of the six language parcels. A). Magnitude of the language and control effects relative to 

the fixation baseline. Error bars reflect standard error of the mean (SEM). B). Size of the 

language > control effect. For each set of ROIs, each dot corresponds to a language parcel (for 

Indiv fROIs and Group LanA) or to a Glasser parcel. Vertical black lines mark the average for 

that set of ROIs. As the figure clearly shows, individually defined fROIs fare best in terms of 

accurate estimates of effect sizes (and thus remain the gold standard), followed by the Group 

LanA ROIs, followed by the Glasser parcels. A few of the Glasser parcels in the temporal cortex 

perform comparably to the Group LanA ROIs, but in the frontal lobe all Glasser parcels grossly 

underestimate effect sizes (see Fedorenko & Blank, 2020 for a discussion of why frontal group-

level ROIs are doomed to fail). 

 

Details on the definition of Group LanA ROIs: From the total set of 803 participants for whom 

we have two or more runs of a language localizer, we took a random sample of 400 participants. 

From those 400 participants, we generated a probabilistic volumetric atlas exactly as described in 

Atlas creation. For the remaining 403 left-out participants we defined ROIs as follows: within 

each language parcel, we select4based on the atlas created from the 400 independent 

participants4the 10% of voxels that have the highest overlap values, i.e., the voxels that are 

most likely to be language voxels. Critically, unlike for the individual fROIs, the same exact set 

of voxels is used in every participant, similar to anatomical or multi-modal group ROIs, like the 

Glasser parcels. 
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SI-2: The robustness of the atlas to variation in data selection and other aspects of the procedure. 

Each alternative version of the atlas was compared to the original (top 10% of language > 

control voxels selected based on the t-maps across all 806 participants) by evaluating a spatial 

Pearson correlation over the set of all voxels in the atlas. A). Atlas generated using only 

Localizer Version A (n=624 participants). Comparison to LanA: r=0.996. B). Atlas generated 

using only native English speakers (n=629 participants). Comparison to LanA: r=0.998. C). 

Atlas generated by selecting the top 10% of voxels from the contrast (con) maps rather than the 

variance-normalized spmT maps. Comparison to LanA: r=0.934. D). Atlas generated using a 

fixed t-value threshold of 3.09 (~p<0.001). Comparison to LanA: r=0.942 (although the overlap 

values were generally lower: maximum 0.66 in the LH (cf. 0.82 in the original atlas) and 

maximum 0.40 in the RH (cf. 0.64)). 
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SI-3: All 10 localizer versions (Table 2) show strong language > control effects. Error bars 

reflect standard error of the mean (SEM). For this analysis, we included 804 participants for 

whom we have at least 2 runs (necessary for across-runs cross-validation, as described in Neural 

Markers). For each participant, we calculated the average magnitudes across the 6 fROIs of the 

language-dominant hemisphere, defined as the hemisphere with the larger number of significant 

voxels (at the p<0.001, uncorrected threshold) within the union of the language parcels (see 

Neural Markers). Across all localizer versions, we see a strong language > control effect (in line 

with past work: e.g., Fedorenko et al., 2010; Scott et al., 2017). 
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