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Edge time series decompose FC into its framewise contributions. Previous studies have focused
on characterizing the properties of high-amplitude frames, including their cluster structure. Less is
known about middle- and low-amplitude co-fluctuations. Here, we address those questions directly,
using data from two dense-sampling studies: the MyConnectome project and Midnight Scan Club.
We develop a hierarchical clustering algorithm to group peak co-fluctuations of all magnitudes
into nested and multi-scale clusters based on their pairwise concordance. At a coarse scale, we
find evidence of three large clusters that, collectively, engage virtually all canonical brain systems.
At finer scales, however, each cluster is dissolved, giving way to increasingly refined patterns of co-
fluctuations involving specific sets of brain systems. We also find an increase in global co-fluctuation
magnitude with hierarchical scale. Finally, we comment on the amount of data needed to estimate
co-fluctuation pattern clusters and implications for brain-behavior studies. Collectively, the findings
reported here fill several gaps in current knowledge concerning the heterogeneity and richness of co-
fluctuation patterns as estimated with edge time series while providing some practical guidance for
future studies.

INTRODUCTION

The human brain can be modeled as a network of func-
tionally interconnected brain regions [1]. In many appli-
cations, the weights of functional connections are defined
as the bivariate correlation between two regions’ activity
time series. Strong correlations are generally treated as
evidence of functional connectivity (FC) [2].
Recent work has demonstrated that a static correlation

between two time series, i.e. a functional connection, can
be “temporally unwrapped” and precisely decomposed
into its time-varying contributions [3–5]. This procedure
generates a co-fluctuation or “edge time series”, whose
elements indicate the magnitude and direction of instan-
taneous coupling between pairs of regions.
Previous analyses of edge time series have focused on

high-amplitude co-fluctuations or“events” (but see [5] for
an exception). Although events occur briefly and infre-
quently, the pattern of whole-brain co-fluctuations ex-
pressed during these periods necessarily contribute more
to the time-averaged FC than lower-amplitude frames [3].
Moreover, high-amplitude co-fluctuation patterns can be
partitioned into a small number of recurring clusters or
“states” [6–8], encode information about subjects’ brain-
based fingerprints [9], and can possibly enhance brain-
behavior correlations [3].
However, interest in high-amplitude events – including

work that predates our own [10–14] – has come at the
expense of lower-amplitude co-fluctuations. In fact, very
little is known about their properties. For instance, do
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low-amplitude frames exhibit cluster structure? Do they
contain subject-specific information? How much does the
inclusion of lower-amplitude peaks improve predictions of
time-averaged FC?

Here, we address those questions directly. Specifically,
we analyze densely-sampled data from the MyConnec-
tome Project [15, 16] and Midnight Scan Club (MSC;
five hours of data for ten subjects) [17, 18]. Focusing
on peaks of the global co-fluctuation signal, we sam-
ple patterns corresponding to different magnitudes and
cluster them using a bespoke hierarchical clustering algo-
rithm. We discover that, while high- and low-amplitude
co-fluctuation patterns form inter-mixed clusters, lower-
amplitude patterns tend to be dissimilar from all other
patterns and therefore less likely to participate in cohe-
sive clusters. We investigate the hierarchical clusters in
greater detail and show that, at a coarse scale, the major-
ity of co-fluctuation patterns could be explained by three
broad clusters that get sub-divided and refined at deeper
hierarchical levels. Whereas the coarse clusters disclose
broad, brain-wide co-fluctuation patterns, finescale clus-
ters emphasize co-fluctuations involving distinct combi-
nations of functional systems/networks. Finally, we re-
veal that accurately estimating cluster centroids requires
large amounts of data and that, while coarse clusters
“lock in” a basic pattern of FC, predictions of FC ben-
efit from the inclusion of finescale clusters. This work
is the first to investigate the organization of sub-event
co-fluctuations, revealing rich structure while setting the
stage for future studies.
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FIG. 1. Analysis pipeline. (a) The global amplitude of edge time series (root mean square; RMS) was segmented into
motion-free trough-to-trough intervals, or “event segments”. (b) Each segment was represented by the co-fluctuation pattern
at its peak. (c) These patterns were aggregated across scans. (d) The similarity between pairs of co-fluctuation patterns
was measured with Lin’s concordance. (e) A hierarchical variant of modularity maximization was used to estimate consensus
community structure at different scales (resolutions). The multi-scale communities were then summarized using a matrix of
co-assignment probabilities. (f ) Detailed schematic of recursive clustering algorithm. From the full concordance matrix we
estimate an expected weight as the mean of this matrices’ upper triangle elements. We calculate a modularity matrix as the
observed concordance minus expected weight, and submit this to the Louvain algorithm, which we run 1000 times (different
initial conditions) whose outputs are delivered to a consensus clustering algorithm. We calculate the modularity contribution
(local modularity) of each consensus cluster and compare those values to a null distribution generated by randomly permuting
consensus community assignments. We retain only those communities whose local modularity is statistically greater than that
of the null distribution. The concordance matrices for each such community is returned to step 1 and the algorithm is repeated.
This process terminates when the local modularities of all detected consensus communities are consistent with their respective
null distribution.

RESULTS

Here, we aimed to characterize co-fluctuation patterns
estimated using “edge time series”. Briefly, this pro-
cedure entails z-scoring parcel time series, generating
edge time series for every pair of parcels, and calculating
the root mean square (RMS) of co-activity at each time
point. We elected to focus on local maxima in this RMS
time series – “peaks” – rather than all frames, as our pre-
vious studies using this same dataset demonstrated that
“troughs” in the RMS signal correspond to highly vari-
able co-fluctuation patterns [7]. After motion censoring,
we detected a total of 3124 peaks. We further discarded
peaks whose prominence (height minus the largest of its
temporally adjacent troughs) was less than a value of 0.25
or occurred within 10 seconds of another peak. This pro-
cedure resulted in 1568 co-fluctuation patterns (whose
statistical properties are described in Fig. S1; we show
analogous statistics for data from the Midnight Scan
Club in Fig. S2). For all subsequent analyses, we pooled
the corresponding co-fluctuation patterns from scans.

Cluster structure of

full-spectrum co-fluctuation peaks

Previous studies demonstrated that high-amplitude co-
fluctuations could be clustered into a small set of pat-
terns, each of which recurred over time. However, those
studies discarded all but highest-amplitude frames, i.e.
putative “events”, and used a clustering algorithm that
generated communities corresponding to a single orga-
nizational scale. Here, we extend those studies by clus-
tering co-fluctuation patterns of varying amplitudes and
examining their cluster structure at multiple hierarchical
levels.

To address this question, we leveraged a hierarchical
and recursive extension of the popular community de-
tection method, “modularity maximization” [19, 20] (see
Materials and methods for a detailed description of
the algorithm). Our approach is similar to other recursive
applications in that we iteratively partition sub-networks
until we reach some stopping criterion. Here, we stop
when the detected communities have local modularities
– for each community, the sum over all within-community
edges less their expected weights – that are statistically
indistinguishable from a null distribution (Fig. 1f). We
further excluded small communities (fewer than five el-
ements) and those comprised of co-fluctuation patterns
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FIG. 2. Hierarchical organization of co-fluctuation patterns. Peak co-fluctuation patterns were clus-
tered using a hierarchical analog of modularity maximization. (a) Cluster labels at each hierarchical level. The
color associated with each cluster was determined by first assigning each level-3 cluster a unique color (an RGB
triplet) using the MATLAB function distinguishable colors (https://www.mathworks.com/matlabcentral/fileexchange/
29702-generate-maximally-perceptually-distinct-colors). For clusters at all other hierarchical levels, we projected their
centroids onto the level 3 cluster centroids, rescaling each projection magnitudes so that, collectively, they summed to unity.
Finally, we assigned each cluster a color as the linear combination of level-3 RGB triplets, each weighted by the corresponding
normalized projection magnitude. (b) Top 10% edges, (c) concordance matrix, and (d) co-assignment matrix sorted by com-
munity label. (e) Cluster centroids for largest clusters at second hierarchical level. (f ) Strongest edges in centroid matrices.
(g) We calculated the mean value of PC1 for each brain system and plotted these values on the perimeter of a circle. In each
plot the order of systems differs; those with positive co-fluctuation appear on the left and those with negative on the right. (h)
MyConnectome system labels from [15]. (i) To identify dominant mode of activity underlying each cluster we calculated the
first principal component (PC1) of each cluster centroid matrix. Here, we show PC1 projected onto the cortical surface. (j )
Correlation of mean co-fluctuation patterns with static FC.

from only one scan session.
Here, we apply this algorithm to the similarity matrix

estimated from 1568 peak co-fluctuation patterns. Note,
that as a measure of similarity we used Lin’s concordance
in place of the more common Pearson correlation [21].
This concordance measure has been applied previously to
brain network data [22] and, in contrast with Pearson’s
correlation, which assesses the similarity of two patterns
irrespective of their amplitudes, the concordance mea-
sure penalizes the similarity score if the amplitudes are
mismatched (see Materials and Methods for more de-
tails).
We found that the hierarchical clustering algorithm de-

tected ten distinct hierarchical levels (Fig. 2a). At the
coarsest scale (hierarchical level 2), we identified three

large communities (Fig. 2a), each formed by cohesive pat-
terns of co-fluctuations (Fig. 2b-d). The largest of these
communities (cluster 1) contained 835 patterns (53.3% of
all patterns), while the next largest – clusters 2 and 3 –
contained 231 and 200 patterns (14.7% and 12.8% of all
patterns).

Next, we characterized these three clusters in greater
detail. For each cluster, we computed its centroid as the
mean over all patterns assigned to that cluster (Fig. 2e,f).
In previous work, we showed that at a timescale of in-
dividual frames, co-fluctuation patterns estimated from
edge time series can always be viewed as a bipartition
of the network into two groups that correspond to col-
lections of nodes whose instantaneous activity levels are
above or below their respective means [5]. Even at this
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FIG. 3. Exploring hierarchical relationships among communities. Previously we investigated a specific hierarchical
level of community structure (a). Here, we investigate sub-divisions of those communities, focusing on what had previously
been termed “cluster 1” and “cluster 2” at the second hierarchical level (we refer to these as clusters 2.1 and 2.2 following the
convention hierarchical level.cluster number). We overlap a dendrogram over the community label matrix to highlight
the divisions of those communities at levels 3, 4, and 5. The text next to each node in the dendrogram denotes the correlation
of the corresponding co-fluctuation pattern with its parent. (b) A zoomed-in version of edge co-fluctuation weights for clusters
2.1 and 2.2 at the second hierarchical level, highlighting their subdivisions. (c) Concordance matrix ordered by communities.
(d) Mean co-fluctuation patterns (centroids) for subdivisions of cluster 2.1 at level 3. The top row depicts sub-cluster centroid
and the bottom row depicts the mean difference of children co-fluctuation patterns with their respective parents. Panels e-g
depict analogous matrices for sub-divisions of clusters 2.2, 3.1, and 4.1. (h) Edges with the strongest co-fluctuation magnitude
(> 2.75) for clusters 3.4, 3.5, 3.6, and 3.8.

coarse scale, where clusters represent the average of many
individual co-fluctuation patterns, the underlying bipar-
titions were still apparent. For example, consider clus-
ter 1 (the largest of the three clusters). It is typified
by opposed co-fluctuations of cingulo-opercular, visual,
attention, and somatomotor networks (“group A”) with
default mode and frontoparietal networks (“group B”)
(Fig. 2e). That is, were we to examine regional BOLD
data at points in time when this cluster is expressed, we
would expect to find the activity of regions in groups
A and B to have opposite sign (Fig. 2i). Interestingly,
cluster 1, which appears most frequently, also has the
strongest correspondence with static (time averaged) FC
(Pearson correlation of r = 0.90; Fig. 2j), suggesting that
the prevalence of this activity mode (and corresponding
co-fluctuation pattern) help to “lock in” the gross con-
nectional features of FC.

Clusters 2 and 3 corresponded to opposed co-
fluctuations of default-mode with fronto-parietal net-

works (cluster 2) and sensorimotor systems (somato-
motor + visual networks) with salience and cingulo-
opercular networks (cluster 3). These two communities
were also related to static FC, albeit not as strongly cor-
related (r = 0.63 and r = 0.62, respectively). Note that
the remaining communities, including much smaller com-
munities, were correlated with FC but to a much lesser
extent (r = 0.30± 0.09).

We also performed a series of supplementary analyses.
First, to ensure that differences in the correspondence
between cluster centroids and static FC was not driven
by differences in the amount of data used to estimate
each centroid, we repeated this analysis using individ-
ual co-fluctuation patterns. In general, the results of
this analysis were consistent with those reported here;
patterns assigned to cluster 1 were more strongly corre-
lated with FC compared with those assigned to different
clusters (Fig. S6). Additionally, we repeated this entire
enterprise using MSC data and, despite different acqui-
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sition parameters and amounts of data, again observed
consistent results (see Fig. S7, Fig. S8, Fig. S9).
As a final supplementary analysis, we assessed to what

extent these results depend on our decision to cluster
peaks of the RMS signal as opposed to nearby, but off-
peak, frames. To address this question, we resampled the
full set of 1568 peak co-fluctuation patterns by selecting
frames from within the same trough-to-trough segment
but with a random offset (Fig. S3a). Using these off-peak
frames, we calculated a null concordance matrix that we
compared with the observed matrix. We repeated this
process 1000 times and, for every pair of co-fluctuation
patterns, estimated the probability that their null concor-
dance was at least as large as the observed. In general, we
found that stronger concordance values corresponded to
small p-values (Spearman’s rank correlation; ρ = −0.87,
p < 10−15; Fig. S3e). That is, if two peak co-fluctuation
patterns were highly concordant, any movement away
from their respective peaks resulted in decreased con-
cordance. Because high-concordance pairs tended to be
assigned to the same cluster, small p-values were con-
centrated within clusters Fig. S3d), suggesting that the
detected clusters would be systematically disrupted had
we elected to cluster non-peak frames.
Collectively, this analysis of the coarsest level of co-

fluctuation patterns generates clusters whose centroids
are consistent with those reported in our previous paper
[7]. However, unlike that study, the hierarchical clus-
tering algorithm used here allows us to investigate in-
creasingly refined and more exclusive communities. We
explore these communities in the next section.

Sub-divisions of coarse-scale community structure

Our hierarchical clustering approach generates a
nested and multi-scale description of peak co-fluctuation
patterns. In the previous section we focused a single hi-
erarchical level (the coarsest non-trivial partition). Here,
we investigate the “children” of those coarse “parent”
clusters. For practical reasons, we focus our investigation
on sub-divisions of clusters 1 and 2 from hierarchical level
2 (described in the previous section). Comparing clusters
across hierarchical levels necessitates a naming conven-
tion that not only distinguishes a cluster from other clus-
ters in its own hierarchical level, but indicates the level in
which it was detected. We now refer to clusters using the
convention hierarchical level.cluster number. So
cluster 1 in hierarchical level 2 would be referred to
as “cluster 2.1”. Note that cluster numbers are reused
across levels, i.e. cluster label 1 will appear in all layers,
but will be distinguishable by the prefixes 2.1, 3.1, 4.1,
and so on.
We find that cluster 2.1, which we described in the

previous section, fragments into five distinct communi-
ties in the third hierarchical level (Fig. 3a-c). The first
and largest of these communities, cluster 3.1, represents
a refined version of its parent (Fig. 3d) in which posi-

tive and negative co-fluctuations are reinforced, strength-
ening their weights. In fact, of the five sub-clusters,
this one maintains the strongest similarity to its parent
(r = 0.99). Incidentally, we observe similar behavior for
all three of the large clusters detected in hierarchical level
2. That is, we find evidence of sub-clusters that strongly
resemble their parent, but simply increase the magnitude
of the strongest positive and negative co-fluctuations (see
Fig. S10).

The next four clusters (3.4, 3.5, 3.6, and 3.8), how-
ever, reflect distinct sub-components of their mutual
parent. Specifically, each cluster exhibits strength-
ened co-fluctuations within specific functional systems.
For instance, cluster 3.4 corresponds to strengthened
co-fluctuations among cingulo-opercular regions, whiles
clusters 3.6, 3.7, and 3.8 correspond to increases among
default mode, frontoparietal, and the sensorimotor com-
plex (comprised of visual and somatomotor systems).
Notably, these sub-divisions maintain a weaker corre-
spondence with their parent (mean correlation of r =
0.59± 0.01). We show the top co-fluctuations (edges) for
these four clusters in Fig. 3h.

Interestingly, cluster 3.1 underwent further refinement
in hierarchical levels 4 and 5. Clusters 4.1 and 4.2 reflect
increased coupling of cingulo-opercular and a somatosen-
sory complex to themselves, respectively (Fig. 3f), while
clusters 5.2 and 5.3 split cluster 4.2 into distinct commu-
nities that reflect increased coupling of fronto-parietal
regions to themselves and, separately, the default mode
and sensorimotor complex to themselves (Fig. 3g).

We also found that cluster 2.2 could be further sub-
divided. At the coarsest level, this cluster corresponded
to opposed co-fluctuations of default mode regions with
cingulo-opercular and dorsal attention regions. Of its two
sub-clusters, the first (cluster 3.3) could be considered a
refinement and continuation of the previous coarser clus-
ter. This cluster also maintained a strong correspondence
with its parent (r = 0.96). In contrast, cluster 3.7 decou-
pled the fronto-parietal network from the default mode
and cingulo-opercular systems (Fig. 3f).

The hierarchical clustering framework also allowed us
to explore the composition of clusters at different lev-
els. Specifically, we assessed the extent to which clus-
ters were composed of high-, middle-, or low-amplitude
co-fluctuation patterns. We found that, at finer scales,
high-amplitude “events” acquired a greater share of the
detected clusters (Fig. 4a). This observed effect be-
lied a more general and continuous relationship be-
tween the similarity of co-fluctuation patterns to one
another and their RMS. We found that high-amplitude
co-fluctuation patterns tended to have greater levels of
similarity to other high-amplitude frames compared to
lower-amplitude frames (ANOVA, F (2) = 108.8, p <
10−15; post-hoc t-tests comparing high-amplitude frames
to middle- and low-amplitude frames, t(1527) = 13.2 and
t(1311) = 7.1, maximum p = 2.3× 10−12; Fig. 4b).

Note that the infrequency of low-amplitude peaks is
due, in part, to the fact that low-amplitude frames were
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FIG. 4. Cluster composition and similarity. At each hierarchical level, we identified the “peak type” of all frames that
were not pruned away by the hierarchical clustering algorithm (“high-amplitude”, “not significant” (n.s.), or “low-amplitude”).
(a) Composition of all patterns by peak type. Note that as clusters become more exclusive they tend to be dominated by
high-amplitude frames. (b) Concordance matrix ordered by mean similarity of co-fluctuation patterns to one another (greatest
to least). The panel to the right displays the relative positions of high-/low-amplitude and not significant patterns. Note
that the low-amplitude and not significant patterns are concentrated near the bottom. (c) Assigning patterns a peak type is a
discretization of patterns’ RMS values. Here, we show that fraction of frames assigned to a given cluster labeled high-amplitude
is tightly correlated with the cluster’s mean RMS. The size of points is proportional to the number of patterns assigned to that
community.

more likely to be censored due to high levels of in-scanner
movement and thresholding based on relative RMS, but
also due to a selection bias (we only sampled peak co-
fluctuations, which are necessary local maxima with RMS
greater than most non-peak frames; see Fig. S4 for simi-
larity of peaks to temporally proximal frames).
We note that we also repeated this analysis using net-

work “templates” described in [5]. See Fig. S11.
Collectively, these observations expose the rich, multi-

scale and hierarchical organization of peak co-fluctuation
patterns. These findings elaborate upon the clusters dis-
closed in the previous section and earlier papers.

Module statistics

One of the primary aims of this manuscript was to in-
vestigate clusters of peak co-fluctuations to better under-
stand, specifically, the contribution of low- and middle-
amplitude peaks. To address these questions, we ana-
lyzed MyConnectome data – a dense sampling study of a
single brain [15]. One of the advantages of analyzing so
much data from a single individual is that we can assess
how much data – in terms of time and scan sessions –
is necessary to accurately estimate network properties.
Previous studies have used these same data to under-
stand how data is required to estimate static FC. Here,
we take an analogous approach so that we can better un-
derstand how much data is required to estimate cluster
centroids.
To do this, we iteratively split the complete dataset

(84 scans) into two random subsets comprising 42 scans
each. We then select one scan at random from one of the
subsets, and, using only those data, estimate centroids for

each of the clusters detected using the full set of data. We
then compare those centroids to those estimated using
all of the data in the other subset. We then repeat this
process after we add in a second scan’s worth of data,
then a third, a fourth, etc., until we have incorporated all
of the data available in both subsets. This entire process
then gets repeated using a different random bipartition
of scans.

This procedure allows us to estimate how much data
is required to achieve a fixed similarity value. First, we
measure the amount of data in units of scans. With the
exception of the largest cluster, the similarity curves for
the smaller clusters never clearly asymptote (Fig. 5a).
That is, even after 40 scans, we would expect there to be
non-trivial levels of variability in our estimates of cluster
centroids.

To understand why this happens, we need to change
our unit for measuring the amount of data from “scans”
to “samples” and also estimate the baseline frequencies
with which each cluster type occurs. In general, we find
that co-fluctuation patterns labeled as cluster 1 occur,
on average, 9.9± 3.4 times per scan (Fig. 5c). The next
most frequently occurring cluster appears only 2.75±1.6
times per scan. In other words, we expect that each
additional scan would yield ≈10 new instances of cluster
1 but between 2 and 3 instances of cluster 2. Therefore,
if our aim were to acquire a fixed number of samples
of a cluster 2 compared to cluster 1, we would require
proportionally four times as many scans. Indeed, when
we recreate Fig. 5a where units are now in number of
samples rather than number of scans, we find that the
similarity curves for all clusters overlap (Fig. 2b).

Collectively, these results suggest that a key limiting
factor in accurately estimating cluster centroids is the
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FIG. 5. Amount of data required for accurate estimates of cluster centroids. We repeatedly and randomly split the
84 scans into two groups (42 scans each). For group 1 we used all available data to estimate cluster centroids. For group 2, we
estimated centroids using data from one random scan and sequentially incorporated data from additional scans. At each step,
we calculated the similarity of cluster centroid estimates from group 2 with estimates from group 1. (a) Similarity for clusters
1-10 and hierarchical level 3 as a function of number of scans. (b) Similarity as a function of samples. (c) Number of times
that each cluster appears in a given scan. (d) To further control for differences in the number of samples and to assess whether
some clusters were composed of patterns that were inherently more similar to their mean, we calculated the mean correlation
of individual co-fluctuation patterns in one half of the data with the centroids from the other half.

relatively low frequencies with which some of the smaller
states occur. Our results also suggest that a key factor
contributing to variability in connectivity patterns from
one day to another might be the frequency with which
different cluster patterns appear.

Linking FC and hierarchical depth

The hierarchical procedure yields a progressively
sparse perspective on recurring co-fluctuation patterns,
with higher levels of the hierarchy appearing more ex-
clusive and containing progressively fewer co-fluctuation
patterns but ones that form extremely tight and cohesive
clusters (Fig. 6a). Because previous studies have linked
co-fluctuation patterns to FC, this hierarchical perspec-
tive allows us to assess at what hierarchical level (and
by extension, what level of exclusivity) do co-fluctuation
patterns most closely correspond to FC.
To address this question, we assigned each co-

fluctuation pattern a score indicating its “hierarchical
depth.” That is, the number of hierarchical levels in
which that pattern was present and included in a com-
munity. Then we followed the procedure outlined in [7]
where, separately for each hierarchical level, we calcu-
lated the average co-fluctuation pattern across all pat-
terns assigned to that level, and computed the correlation
of that matrix with static FC (based on their upper tri-
angle elements). We also repeated this procedure using a
cumulative approach (starting with patterns at the high-
est level, gradually incorporating patterns from lower lev-
els until all patterns were included) and a reverse cumula-
tive approach (starting with the coarsest scale, gradually
peeling away coarser and coarser partitions until only the

most exclusive patterns were included).

In general, we found a statistically significant corre-
spondence between FC and co-fluctuation patterns at all
hierarchical levels using all three methods for estimat-
ing the mean co-fluctuation pattern (minimum r = 0.69;
p < 10−15). Using patterns from individual levels only,
we found that this correspondence peaked at the fourth
hierarchical level (r = 0.96), suggesting that the corre-
spondence with FC is maximized when including not only
the highest-amplitude co-fluctuations, but weaker and
less exclusive communities as well. We observed a sim-
ilar trend using the cumulative and reverse-cumulative
approaches – starting with exclusive clusters and includ-
ing patterns assigned to less-exclusive clusters led to im-
provements in the correspondence, as did starting with
all patterns and pruning away weaker patterns. We find
similar results with MSC data (see Figure. S12).

Collectively, these observations build on results from
our previous studies, noting that high-amplitude co-
fluctuations are indeed correlated with FC, but that this
correlation can be improved upon by including more
heterogeneous and slightly weaker co-fluctuation pat-
terns. That is, the lower-amplitude patterns, which are
more variable, effectively “sculpt” the more stereotypical
cofluctuation pattern driven by high-amplitude events,
enhancing the diversity of co-fluctuations and improving
the correspondence with static FC. Moreover, we find
that the correspondence is maximized at an intermedi-
ate level, suggesting that different hierarchical scales are
differentially informative about FC.
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FIG. 6. Linking hierarchical levels to FC. We calculated the deepest level of the hierarchy to which each co-fluctuation
pattern was assigned (the number of levels in which it appeared before being pruned away). (a) RMS of co-fluctuation patterns,
grouped by hierarchical depth. (b) The correlation of mean co-fluctuation patterns with FC. We compared three estimates of
the mean: using the current level and below, the current level and above, and the current level only.

DISCUSSION

In this paper we build on previous studies of edge time
series. Namely, we focused on the statistics of peaks
in the RMS time series and the clusters formed by the
co-fluctuation patterns expressed during the peaks. We
developed a bespoke multi-scale clustering algorithm to
construct a hierarchy from peak co-fluctuation patterns
and investigated clusters at all scales, ranging from coarse
clusters that included most patterns to exclusive clusters
composed of only a small number of patterns. Finally,
we assessed how the amount of data impacts estimates
of clusters and their centroids. Collectively, this work
addresses several gaps in knowledge and further demon-
strates the utility of edge analyses for fMRI data.

Co-fluctuation patterns are

hierarchically organized in time

A large body of work has shown that nervous systems
exhibit multi-scale, hierarchical organization [23, 24].
Overwhelmingly, this work has focused on hierarchical
spatial structure, in which neural elements are organized
into modules within modules within modules, ad infini-

tum [25–29].
In contrast, there are fewer papers that focus on hier-

archies in time. This is not to say that the temporal or-
ganization of nervous systems – and functional brain net-
works, in particular – has gone uncharacterized. In fact,
the opposite is true; time-varying connectivity analyses
have come to occupy an increasingly large share of con-
temporary network neuroscience and connectomics [30–
36] (despite several papers that cast doubt on the very
premise that network change can be measured with fMRI
[37, 38]).
One of the key findings in the time-varying connectiv-

ity literature is that brain networks appear to traverse
a series of “network states”, i.e. a pattern of connectiv-

ity approximately persists for some period of time before
giving way to a new pattern of connectivity. There also
exists mounting evidence that these states are revisited
across time within an individual and shared across sub-
jects at the population level [39–43].
In most state-based analyses, time-varying estimates

of network structure are usually obtained from sliding-
window methods. The sliding window approach,
however, represents only one strategy for obtaining
(smoothed and temporally imprecise) estimates of time-
varying connectivity ([44–46]. Recently, we proposed a
method for tracking “instantaneous connectivity” across
time, obviating the need for sliding windows [3, 4] 1.
In contrast with the smooth variation observed using
sliding windows, edge time series exhibited “bursty” be-
havior – long periods of quiescence punctuated by brief
high-amplitude events. The co-fluctuation patterns co-
incident with events were strongly correlated with static
FC (aligned with earlier findings [10, 12–14]), contained
subject-identifying features, and, in an exploratory anal-
ysis, strengthened brain-behavior correlations [3]. Note
that in these first studies, we treated edge time series as
an instantaneous estimate of time-varying connectivity.
However, edge time series can be viewed more generally
as a decomposition of any the correlation between any
two variates, irrespective of whether they are, in fact,
time series.
Following our initial work, we showed that high-

amplitude co-fluctuations could be partitioned into at
least two distinct clusters or “states.” These states were
shared at the group level, but refined individually, lead-
ing to the personalization of subjects’ FC patterns [6, 7].
This two-state description, however, was a direct con-
sequence of the method used to detect states and pre-
cluded the possibility that co-fluctuation patterns were

1 We discovered later that this method had been reported at least
once before, but had been applied in a narrow context [47].
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organized into clusters at multiple scales or hierarchi-
cally. This type of temporal organization, in which
broad “meta-states” could be sub-divided into a series of
smaller states has been observed in other contexts, e.g.
clusters of independent components [48–50] or states es-
timated using hidden Markov models [51]. However, it
was unclear whether edge time series exhibited analogous
temporal structure.

To address this question, we investigated data from the
MyConnectome project. Our rationale for selecting this
dataset was that, with > 10 hours of resting-state data,
the MyConnectome project gives us the best chance to
detect infrequent states, if they exist, and to obtain bet-
ter estimates of the states that occur more frequently.
to investigate co-fluctuation states, we developed a hi-
erarchical clustering algorithm built upon recursive ap-
plication of the familiar modularity maximization algo-
rithm [19], allowing us to obtain estimates of large “meta-
states” but also smaller, more refined states.

We found evidence of three large clusters of co-
fluctuation patterns that persisted over multiple hierar-
chical levels, gradually refining their organization. No-
tably, the centroids of these clusters were consistent with
those reported in our previous work [7], and were aligned
with other recent findings. For instance, our clusters de-
lineate task-positive and -negative systems [52, 53], reca-
pitulate spatial modes of variation in resting-state data
time series [54], and closely resemble components of so-
called “functional gradients” [55], which are frequently
interpreted in terms of cognitive hierarchies [56].

Importantly, we also found that these large clusters
could be meaningfully sub-divided into smaller, increas-
ingly nuanced patterns of co-fluctuation. This obser-
vation has important implications for how we interpret
static FC, but also for our understanding of brain dynam-
ics and inter-areal communication. Because edge time se-
ries are an exact decomposition of FC into framewise con-
tributions, the average across peak co-fluctuations serves
as an approximation of FC. While this pattern-level esti-
mate is generally very accurate, it offers no compression
(each individual pattern is needed). By clustering pat-
terns we reduce the description length of co-fluctuation
patterns while, hopefully, still generating a good approx-
imation of FC. Indeed, we find that this is the case, with
different hierarchical levels and clusters offering variable
predictions. Of particular interest is the observation that
mid-hierarchy co-fluctuations actually outperform other
levels. This is because clusters of co-fluctuation patterns
at coarse scales are too general to recapitulate details
of FC connectivity patterns, while clusters at the finest
scales are too specific.

FC is frequently interpreted as evidence of commu-
nication or coordination between pairs of brain regions
[2, 57]. This interpretation is evident when we consider
the brain’s static system organization – i.e. its division
into subnetworks like the default mode, visual, and atten-
tional systems – we generally think of these cohesive mod-
ules as reflecting the outcome of a segregated and func-

tionally specialized process. In previous studies, however,
we demonstrated that, as measured with fMRI, no more
than two modules can be “engaged” at any single point
in time, implying that the brain’s static system-level ar-
chitecture is a consequence of dynamically fluctuating bi-
partitions that, occasionally, do not resemble any of the
frequently-discussed brain systems [5]. Moreover, if we
think of static FC as a reflection of inter-areal communi-
cation, then each bipartition – and especially those that
occur during peaks, when the co-fluctuation magnitude
is much stronger than nearby frames – may reflect a com-
munication event. Our findings, here, suggest that these
instants of communication are highly structured in space
and time. Spatially, we identify a richer repertoire of co-
fluctuation patterns than had previously been reported
(more clusters) and show that, while these patterns can
involve the entire cerebral cortex, they also can engage
specific subsets of systems. Our findings also suggest that
these patterns occur intermittently but recur across time.
Thus, the brain’s temporal trajectory as defined by edge
time series is low-dimensional, but also bursty.

Hierarchies contain heterogeneous co-fluctuation

patterns of similar amplitude

In most previous analyses of edge time series, emphasis
was placed on high-amplitude frames [3, 6, 7]. That is, in-
stants in time where the global co-fluctuation amplitude
was disproportionately large. The rationale for doing so
was that, because FC is literally the mean of an edge time
series, frames with large amplitude must contribute more
to the average and frames where many edges have large
amplitude necessarily contribute more to the overall FC
pattern. However, these high-amplitude periods are rare
and while, on a per frame basis, they contribute more
than middle and lower amplitude frames, they number
far fewer. Moreover, they represent only the tail of a dis-
tribution and ignore low-amplitude frames, which tend
to be more susceptible to motion artifacts [7], but also
middle-amplitude frames, about which less is known.

Here, we find that the overall magnitude of co-
fluctuations scales with hierarchical level. That is, the
co-fluctuation patterns that make up the most exclusive
and highest level of the hierarchy tend to be composed
of those with the greatest overall amplitude, while lower-
amplitude patterns populate the intermediate levels of
the hierarchy. This observation is analogous to recent
findings, reporting a graded link to FC [58]. However, our
findings also suggest that nuance is necessary in describ-
ing links between amplitude and FC and that, at every
hierarchical level, there exists structured heterogeneity
of co-fluctuation patterns, i.e. they can be grouped into
clusters.
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Accurate estimates of cluster centroids require lots

of data

One of our key observations is that, if we want to
accurately estimate cluster centroids, we require large
amounts of data. For some of the smaller and less fre-
quently appearing clusters, this amount is prohibitively
large and infeasible for most fMRI studies (greater than
7 hours). This observation is in line with other studies
showing that a major source in the variability of func-
tional brain networks is the amount of data [15, 18, 59].
In fact this effect gets amplified when estimating cofluc-
tuations; while a typical scan session samples brain ac-
tivity at hundreds of time points, a much smaller fraction
of those will correspond to peaks.
While this effect can be viewed as a limitation, it also

serves as a potential explanation for observed variability
in network architecture from one day to the next. Be-
cause FC is the average of co-fluctuation patterns across
time, differences in cluster frequencies across scan ses-
sions will, necessarily, correspond to differences in FC
weights.

Limitations and future directions

One of the limitations of this study is its reliance on
“dense-sampling” datasets. The rationale for studying
these types of data (rather than cross-sectional datasets)
comes from our previous studies [7], where we demon-
strated that recurring co-fluctuation patterns, while sim-
ilar across individuals, are also individualized. Accord-
ingly, we aimed to study co-fluctuation patterns at the
individual level rather than at the cohort, where cluster
centroids, because they are composed of patterns from
many individuals, may not be representative of any of
those individuals. However, while dense-sampling stud-
ies allow researchers to characterize individuals in great
detail, they make it challenging to generalize to the pop-
ulation/cohort level. Nonetheless, there is value in ex-
amining effects at that level, as many populations are
not amenable to dense-sampling designs, necessitating
cross-sectional analysis. Future studies should extend
this work to larger cross-sectional datasets, e.g. the Hu-
man Connectome Project.
Recent papers have shown that some of the appar-

ently “dynamic” features of edge time series, including
the emergence of events, can be explained parsimoniously
by properties of the static FC matrix, e.g. its eigenspec-
trum [60, 61]. First, we note, that this does not change
the view of edge time series as a decomposition of FC
– the mean of an edge time series is still exactly that
edge’s weight. Second, even if one were to accept that
the peak co-fluctuations do not occur “dynamically” but
reflect sampling variability around a stationary correla-
tion structure, we can still view edge time series (and
clusters of co-fluctuation patterns), from an explanatory
perspective, analogous to how we interpret the results of

a principal component analysis (where components cor-
respond to modes of variability that explain linear depen-
dencies in the larger dataset). While there is an indis-
putable mathematical equivalence between fluctuations
in edge time series and static FC, there remain dynamic
features that are not easily dismissed. For instance, it
was observed that edge time series synchronize across in-
dividuals during movie-watching [3]; this effect is unan-
ticipated if edge time series were stochastic fluctuations
around a stationary correlation structure.

There exist other overarching philosophical disputes
concerning the origins of and appropriate null models
for edge time series (and task-free brain activity more
generally). For instance, observed fMRI BOLD time se-
ries are generated by an underlying dynamical system
constrained by anatomical connectivity [62–64]. That is,
there exists an evolution operator that maps a pattern of
activity at time t to a new pattern at time t+1, and this
operator is parameterized by SC (among other parame-
ters). The activity time series generated by this dynam-
ical system can, of course, be summarized by its corre-
lation structure, i.e. its FC. However, FC itself plays no
role in determining the evolution of brain activity in the
model. That is, FC is a summary statistic, ephiphenom-
enal, and over short timescales plays no role in shaping
the character of ongoing brain activity. Rather, brain
activity is shaped by dynamics that are constrained by
anatomy. However, many “null” models stochastically
generate synthetic fMRI BOLD data given a fixed cor-
relation structure, often estimated from the data itself
[65], circularly presupposing that the observed correla-
tion structure is the driver of itself. In short, while the
results reported here do not directly speak to the dy-
namics of co-fluctuation time series, they set the stage
for future studies to perform detailed explorations using
generative models grounded in anatomical connectivity
[66].

As part of this paper, we create or use several tools
that might be useful for future studies. First, we used
an existing measure of concordance [21] for assessing the
similarity of co-fluctuation patterns to one another rather
than correlation measures, which are far more common.
Our rationale for choosing concordance is that it is sen-
sitive to differences in amplitude. Imagine having two
co-fluctuation (or connectivity) patterns – they are iden-
tical patterns but in once case, all edge weights are scaled
by a number very close to zero so that, effectively, each
weight is zero, but there remains a faint impression of the
original co-fluctuation pattern. The correlation of these
two patterns is exactly 1, despite the vast difference in
amplitude. Their concordance, on the other hand, would
be near 0. In short, concordance is a more conservative
measure of similarity and could be applied in other con-
texts to assess the correspondence between connectivity
or co-fluctuation matrices.

The second innovation is the multi-scale and hierarchi-
cal clustering algorithm. It addresses several limitations
of community detection methods frequently applied to
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neuroimaging data. First, unlike single-scale community
detection algorithms, it generates multi-scale estimates of
communities at different resolutions. Note that there are
many algorithms and approaches for generating multi-
scale estimates of communities including varying resolu-
tion parameters [67] or sparsity levels [68], although these
approaches do not explicitly establish hierarchical rela-
tionships between scales, which our method does. Ad-
ditionally, and importantly, our approach incorporates
an internal null model that makes it possible to reject
communities, an important consideration given that de-
scriptive community detection methods can spuriously
detect communities without proper statistical controls
[69]. Here, we test the local modularity contributions of
each community, retaining those where the contribution
is significantly greater than that of a chance model. We
note, however, that other criteria could be substituted
and used to determine whether a community is propa-
gated to the next level or not. Finally, the algorithm is
computationally efficient in comparison to other similar
methods [70]. Future analyses should focus on bench-
marking this method.

MATERIALS AND METHODS

Midnight Scan Club

The description of the Midnight Scan Club dataset ac-
quisition, pre-processing, and network modeling is de-
scribed in detail in [17]. Here, we provide a high-level
overview. Data were collected from ten healthy, right-
handed, young adult participants (5 females; age: 24-34).
Participants were recruited from the Washington Univer-
sity community. Informed consent was obtained from all
participants. The study was approved by the Washing-
ton University School of Medicine Human Studies Com-
mittee and Institutional Review Board. This dataset
was previously reported in [17, 18] and is publicly avail-
able at https://openneuro.org/datasets/ds000224/
versions/00002. Imaging for each participant was per-
formed on a Siemens TRIO 3T MRI scanner over the
course of 12 sessions conducted on separate days, each
beginning at midnight. In total, four T1-weighted im-
ages, four T2-weighted images, and 5 hours of resting-
state BOLD fMRI were collected from each participant.
For further details regarding data acquisition parameters,
see [17].
High-resolution structural MRI data were averaged to-

gether, and the average T1 images were used to generate
hand-edited cortical surfaces using Freesurfer [71]. The
resulting surfaces were registered into fs LR 32k surface
space as described in [72]. Separately, an average native
T1-to-Talaraich [73] volumetric atlas transform was cal-
culated. That transform was applied to the fs LR 32k
surfaces to put them into Talaraich volumetric space.
Volumetric fMRI pre-processing included slice-timing

correction, frame-to-frame alignment to correct for mo-

tion, intensity normalization to mode 1000, registration
to the T2 image (which was registered to the high-
resolution T1 anatomical image, which in turn had been
previously registered to the template space), and dis-
tortion correction [17]. Registration, atlas transforma-
tion, resampling to 3 mm isotropic resolution, and dis-
tortion correction were all combined and applied in a sin-
gle transformation step [74]. Subsequent steps were all
completed on the atlas transformed and resampled data.
Several connectivity-specific steps were included (see

[75]): (1) demeaning and de-trending of the data, (2)
nuisance regression of signals from white matter, cere-
brospinal fluid, and the global signal, (3) removal of
high motion frames (with framewise displacement (FD)
> 0.2 mm; see [17]) and their interpolation using power-
spectral matched data, and (4) bandpass filtering (0.009
Hz to 0.08 Hz). Functional data were sampled to the cor-
tical surface and smoothed (Gaussian kernel, σ = 2.55
mm) with 2-D geodesic smoothing.
The following steps were also undertaken to reduce

contributions from non-neuronal sources [75, 76]. First,
motion-contaminated frames were flagged. Two partic-
ipants (MSC03 and MSC10) had high-frequency arti-
facts in the motion estimates calculated in the phase
encode (anterior-posterior) direction. Motion estimate
time courses were filtered in this direction to retain ef-
fects occurring below 0.1 Hz. Motion contaminated vol-
umes were then identified by frame-by-frame displace-
ment (FD, described in [77]), calculated as the sum of ab-
solute values of the differentials of the 3 translational mo-
tion parameters (including one filtered parameter) and 3
rotational motion parameters. Frames with FD > 0.2
mm were flagged as motion-contaminated. Across all
participants, these masks censored 28%±18% (range: 6%
– 67%) of the data; on average, participants retained
5929±1508 volumes (range: 2733 – 7667). Note that in
this paradigm, even the worst participant retained al-
most two hours of data. Nonetheless, we excluded two
subjects from all analyses, both of whom had fewer than
50% usable frames in at least five scan sessions (MSC08
in 7/10 and MSC9 in 5/10).
Time courses were extracted from individualized par-

cellations (see [78] for details). The time series were used
for FC estimation and edge time series generation.

MyConnectome dataset

All data and cortical surface files are freely available
and were obtained from the MyConnectome Project ’s
data-sharing webpage (http://myconnectome.org/wp/
data-sharing/). Specifically, we studied pre-processed
parcel fMRI time series for scan sessions 14–104. Details
of the pre-processing procedure have been described else-
where [15, 79]. Each session consisted of 518 time points
during which the average fMRI BOLD signal was mea-
sured for N = 630 parcels or regions of interest (ROIs).
With a TR of 1.16 s, the analyzed segment of each session

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 9, 2022. ; https://doi.org/10.1101/2022.03.06.483045doi: bioRxiv preprint 

https://openneuro.org/datasets/ds000224/versions/00002
https://openneuro.org/datasets/ds000224/versions/00002
https://doi.org/10.1101/2022.03.06.483045
http://creativecommons.org/licenses/by-nc-nd/4.0/


12

was approximately 10 minutes long.

Functional connectivity

Functional connectivity (FC) measures the statisti-
cal dependence between the activity of distinct neural
elements. In the modeling of macroscale brain net-
works with fMRI data, this usually means computing
the Pearson correlation of brain regions’ activity time
series. To calculate FC for regions i and j, then, we first
standardize their time series and represent them as z-
scores. We denote the z-scored time series of region i as
zi = [zi(1), . . . , zi(T )], where T is the number of samples.
The Pearson correlation is then calculated as:

rij =
1

T − 1

T
∑

t=1

zi(t) · zj(t). (1)

In other words, the correlation is equal to the temporal
average of two regions’ cofluctuation.

Edge time series

We analyzed edge time series data. Edge time series
can be viewed as a temporal decomposition of a corre-
lation (functional connection) into its framewise contri-
butions. Note that Pearson correlation is calculated as
rx,y = 1

T−1

∑

t zx(t) · zy(t), where T is the number of

samples and zx(t) =
x−µx

σx

is the z-scored transformation

of the time series x = [x(1), . . . , x(T )]. If we omit the
summation in our calculation of rx,y, we obtain a time
series rx,y(t) = zx(t) · zy(t), whose elements index the
instantaneous co-fluctuation between variates x and y.
Here, we estimated the edge time series for all pairs of
brain regions {i, j}.

Time series segmentation and peak detection

In estimating edge time series, we censored all frames
with high levels of motion. In addition, we further cen-
sored frames that were within two TRs of a high-motion
frame. Finally, of the remaining frames, we discarded any
temporally contiguous sequences of low-motion frames
that were shorter than five TRs. For a given scan ses-
sion, this procedure induced discontinuous sequences of
low-motion data. Aside from z-scoring parcel time se-
ries (for which the mean and standard deviation were
estimated using all low-motion frames), all subsequent
analyses were carried out separately for each sequence.
Let rij(t) be the co-fluctuation magnitude between

regions i and j at time t. The magnitude of co-
fluctuation at any instance can be calculated as R(t) =
√

∑

ij∈E rij(t)2. Here, E = {{1, 2}, . . . , {N − 1, N}} is

the set of all node pairs (edges) andN is the total number
of nodes (630 for the MyConnectome dataset). We used
MATLAB’s findpeaks function to identify local minima
in the RMS time series, resulting in 3124 low-motion,
trough-to-trough segments. Within each segment there
exists a single peak frame; we then calculated its relative
RMS as its height minus the height largest of its neigh-
boring troughs. We retained only those peaks whose rel-
ative RMS was greater than 0.25, reducing the number
of segments to 1717. As a final exclusionary criterion,
we identified peaks that occurred within 10 seconds of
one another and retained only the peak with the greater
relate RMS, further reducing the number of segments to
1568 (50.1% of the original).

Lin’s concordance

In order to detect clusters among peak co-fluctuation
patterns, we needed a distance metric to assess their
pairwise similarity. A common candidate in human neu-
roimaging and network neuroscience studies is the Pear-
son correlation (correlation similarity). However, this
measure rescales patterns before computing their simi-
larity (z-score). That is, two co-fluctuation patterns with
very different magnitude would be considered highly sim-
ilar using the correlation metric. Here, however, we ex-
plicitly aimed to compare co-fluctuation patterns of dif-
fering amplitude and needed a distance/similarity metric
sensitive to these differences.
Accordingly, we opted to use Lin’s concordance as a

measure of similarity [21]. Briefly, this measure simulta-
neously assesses the similarity between two vectors based
on their overall pattern (like the correlation matrix), but
also allows vectors to be distinguished from another if
their magnitudes differed. Briefly, the concordance be-
tween two vectors, x and y, is calculated as:

Cxy =
2 · Cov(x, y)

V ar(x) + V ar(y) + (µx − µy)2
. (2)

Intuitively, if the two vectors have identical means and
variances, then their concordance is equal to their cor-
relation coefficient rxy, which serves as an upper bound.
However, if the variances or means of x and y differ, then
Cxy < rxy. Here, we calculate the pairwise concordance
between all peak co-fluctuation patterns. This matrix is
calculated separately for each subject.

Recursive modularity maximization, modularity

contributions, and statistical tests

We used a community detection algorithm to partition
co-fluctuation patterns into hierarchically related clus-
ters. Specifically, we recursively applied modularity max-
imization to the concordance matrix. The modularity
heuristic defines communities as groups of nodes whose
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density of connections to one another maximally exceeds
what would be expected by chance.
In general, the modularity, Q, of a partition can be ex-

pressed as the sum of contributions made by each com-
munity, c ∈ {1, . . . ,K}, such that:

Q =
K
∑

c=1

qc (3)

where qc =
∑

i∈c,j∈c[Cij − Pij ]. In this expression, i and

j correspond to distinct elements in the network (in our
case, peak co-fluctuation patterns). The values of Cij and
Pij correspond to the observed and expected concordance
between those pairs of patterns.
Our algorithm is simple and built upon the modularity

maximization framework. For a given concordance ma-
trix, we uniformly set the expected weight of connections
equal to the mean concordance value. That is Pij = C̄ij

for all {i, j} pairs, where C̄ij = 2
Np(Np−1)

∑

i,j>i Cij and

Np is the total number of peak co-fluctuation patterns
detected.
Next, we used a generalization of the Louvain algo-

rithm [20] to optimize the modularity Q, repeating the
procedure 1000 times with random restarts, before ob-
taining a consensus partition [80]. In general, the consen-
sus partition will containK communities, each of which is
associated with a modularity contribution, qc. We com-
pare the observed contribution value against a null dis-
tribution generated by preserving the consensus commu-
nity labels but randomly assigning peak co-fluctuation
patterns to communities (10000 repetitions). We then
calculate a p-value as the fraction of times that the null
value was greater than that of the observed value. Com-
munities were propagated to the next level if p < 0.05.
If a community survived this statistical test, it was

propagated to the next level, where the entire procedure
is repeated. This algorithm continues until no detected
communities pass the statistical test. The end results is
a series of nested communities that can be linked to one
another via a dendrogram.

Centroid analysis

Throughout this report we found it useful to exam-
ine individual communities in more detail. One way to

summarize a community is by computing the mean co-
fluctuation pattern across all patterns assigned to that
community, i.e. the community’s centroid. The elements
of this pattern can be represented as a [node× node] co-
fluctuation matrix.

To better understand the modes of activity that under-
pin each co-fluctuation pattern, we performed an eigende-
composition of each co-fluctuation matrix, which yielded
a series of [node×1] eigenvectors, each associated with an
eigenvalue that was linearly proportional to the amount
of variance explained by its corresponding eigenvector.
We focus only on the eigenvector corresponding to the
largest eigenvalue.

Bipartition analysis

In a previous study we showed that the co-fluctuation
pattern expressed at each moment in time could be parti-
tioned into exactly two communities (a bipartition) based
on whether each node’s activity was above or below its
mean value [5]. These bipartitions effectively retain only
the signs of a node’s activity and necessarily discard de-
tails about its amplitude. Despite this loss of informa-
tion, the mean co-assignment of nodes to the same com-
munity closely recapitulate the brain’s static connectivity
structure.

The bipartitions framework also facilitates a straight-
forward comparison with canonical brain systems.
Specifically, brain systems, e.g. default mode, visual,
control networks, etc., can be represented as bipartitions.
The nodes assigned to that system are given a value of
‘1’ while the others are assigned ’0’. One could also con-
sider combinations of systems, e.g. by assigning nodes in
systems A + B + C a value of ‘1’. The empirical and sys-
tem bipartitions can be compared to one another directly
using the measure of normalized mutual information –
values close to 1 indicate a correspondence between the
two bipartitions; values near 0 indicate no relationships.

Here, we used the bipartition analysis to relate each
peak co-fluctuation pattern with one of 127 template pat-
terns (all possible combinations of the 14 systems).
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[65] Raphaël Liégeois, BT Thomas Yeo, and Dimitri Van
De Ville, “Interpreting null models of resting-state func-
tional mri dynamics: not throwing the model out with
the hypothesis,” NeuroImage 243, 118518 (2021).

[66] Maria Pope, Makoto Fukushima, Richard Betzel, and
Olaf Sporns, “Modular origins of high-amplitude co-
fluctuations in fine-scale functional connectivity dynam-
ics,” bioRxiv (2021).

[67] Megan M Sperry, Sonia Kartha, Eric J Granquist, and
Beth A Winkelstein, “Inter-subject fdg pet brain net-
works exhibit multi-scale community structure with dif-
ferent normalization techniques,” Annals of biomedical
engineering 46, 1001–1012 (2018).

[68] Evan M Gordon, Timothy O Laumann, Scott Marek,
Ryan V Raut, Caterina Gratton, Dillan J Newbold,
Deanna J Greene, Rebecca S Coalson, Abraham Z Sny-
der, Bradley L Schlaggar, et al., “Default-mode network
streams for coupling to language and control systems,”
Proceedings of the National Academy of Sciences 117,
17308–17319 (2020).

[69] Roger Guimera, Marta Sales-Pardo, and Lúıs A Nunes
Amaral, “Modularity from fluctuations in random graphs
and complex networks,” Physical Review E 70, 025101
(2004).

[70] Lucas GS Jeub, Olaf Sporns, and Santo Fortunato,
“Multiresolution consensus clustering in networks,” Sci-
entific reports 8, 1–16 (2018).

[71] Anders M Dale, Bruce Fischl, and Martin I Sereno, “Cor-
tical surface-based analysis: I. segmentation and surface
reconstruction,” Neuroimage 9, 179–194 (1999).

[72] Matthew F Glasser, Stamatios N Sotiropoulos, J An-
thony Wilson, Timothy S Coalson, Bruce Fischl, Jesper L
Andersson, Junqian Xu, Saad Jbabdi, Matthew Webster,
Jonathan R Polimeni, et al., “The minimal preprocessing
pipelines for the human connectome project,” Neuroim-
age 80, 105–124 (2013).

[73] Jean Talairach, “Co-planar stereotaxic atlas of the hu-
man brain-3-dimensional proportional system,” An ap-
proach to cerebral imaging (1988).

[74] Stephen M Smith, Mark Jenkinson, Mark W Wool-
rich, Christian F Beckmann, Timothy EJ Behrens, Heidi
Johansen-Berg, Peter R Bannister, Marilena De Luca,
Ivana Drobnjak, David E Flitney, et al., “Advances in
functional and structural mr image analysis and imple-
mentation as fsl,” Neuroimage 23, S208–S219 (2004).

[75] Jonathan D Power, Anish Mitra, Timothy O Laumann,
Abraham Z Snyder, Bradley L Schlaggar, and Steven E
Petersen, “Methods to detect, characterize, and remove
motion artifact in resting state fmri,” Neuroimage 84,
320–341 (2014).

[76] Rastko Ciric, Daniel H Wolf, Jonathan D Power, David R
Roalf, Graham L Baum, Kosha Ruparel, Russell T Shi-
nohara, Mark A Elliott, Simon B Eickhoff, Christos Da-
vatzikos, et al., “Benchmarking of participant-level con-
found regression strategies for the control of motion ar-
tifact in studies of functional connectivity,” Neuroimage
154, 174–187 (2017).

[77] Jonathan D Power, Kelly A Barnes, Abraham Z Snyder,
Bradley L Schlaggar, and Steven E Petersen, “Spuri-
ous but systematic correlations in functional connectiv-
ity mri networks arise from subject motion,” Neuroimage
59, 2142–2154 (2012).

[78] Evan M Gordon, Timothy O Laumann, Babatunde
Adeyemo, and Steven E Petersen, “Individual variabil-
ity of the system-level organization of the human brain,”
Cerebral cortex 27, 386–399 (2017).

[79] Russell A Poldrack, Timothy O Laumann, Oluwasanmi
Koyejo, Brenda Gregory, Ashleigh Hover, Mei-Yen Chen,
Krzysztof J Gorgolewski, Jeffrey Luci, Sung Jun Joo,
Ryan L Boyd, et al., “Long-term neural and physiological
phenotyping of a single human,” Nature communications
6, 1–15 (2015).

[80] Richard F Betzel, John D Medaglia, Lia Papadopoulos,
Graham L Baum, Ruben Gur, Raquel Gur, David Roalf,
Theodore D Satterthwaite, and Danielle S Bassett, “The
modular organization of human anatomical brain net-
works: Accounting for the cost of wiring,” Network Neu-
roscience 1, 42–68 (2017).

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 9, 2022. ; https://doi.org/10.1101/2022.03.06.483045doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.06.483045
http://creativecommons.org/licenses/by-nc-nd/4.0/


17

FIG. S1. Characterizing peak co-fluctuations. For every peak, we calculated its amplitude (RMS) and duration. Using
a procedure developed in our previous work, also classified each peak as a high-, middle-, or low-amplitude frame. In the
main text and in all panels we report statistics based on a set of 1568 co-fluctuation patterns that survived a series of quality
assessments to reduce the likelihood that they are related to motion or reflect background stochastic fluctuation. In all plots,
these 1568 points are opaque. For completeness, we also include the remaining 1556 detected peaks that were discarded. These
points are depicted as gray and transparent. (a) Definition of several quantities of interest. (b) Peak height for three peak
types. (c) Trough-to-trough durations for three peaks. (d) Maximum velocity for three peaks. (e) Relationship between peak
height and duration. (f ) Relationship between velocity and duration. (g) Relationship between peak height and velocity. (h)
Mean RMS trough-to-trough curves for co-fluctuation peaks. The inset depicts analogous data but for mean slope, rather than
RMS. In this panel, color indicates duration.
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FIG. S2. Characterizing peak co-fluctuations in Midnight Scan Club data. In the main text, we characterized peak
co-fluctuation using data from the MyConnectome project. Here, we repeated this analysis using data from the Midnight Scan
Club after pooling together data from eight subjects (MSC08 and MSC09 were excluded due to data quality issues). For every
peak, we calculated its amplitude (RMS) and duration. Using a procedure developed in our previous work, also classified each
peak as a high-, middle-, or low-amplitude frame. (a) Definition of several quantities of interest. (b) Peak height for three peak
types. (c) Trough-to-trough durations for three peaks. (d) Maximum velocity for three peaks. (e) Relationship between peak
height and duration. (f ) Relationship between velocity and duration. (g) Relationship between peak height and velocity. (h)
Typical RMS trough-to-trough curves for co-fluctuation peaks. In this panel, color indicates duration.
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FIG. S3. Comparing peak and off-peak co-fluctuation patterns. In the main text, we examine peak co-fluctuation
patterns. Here, we compare concordance matrices estimated from peak co-fluctuations against those estimated using patterns
taken from within the same event segment but at off-peak frames (see a for a schematic of this null model). (b) The observed
concordance matrix. (c) Out of 1000 random samples of off-peak frames, we calculated the fraction of those samples in which
the similarity of elements in the null concordance matrix were greater than or equal to those of the observed matrix. Small p-
values indicate event segments whose peak-peak concordance was significantly greater than the concordance of random-samples
of off-peaks. (d) Black cells in this matrix indicate those pairs of segments that survive multiple comparisons corrections
(false discovery rate fixed at q = 0.05 and the p-value adjusted to padj = 0.002. (e) Scatterplot of p-values versus observed
concordance values. Note that concordant pairs of co-fluctuations tend to have small p-values.

FIG. S4. Similarity of co-fluctuation patterns to peak. We analyzed peak co-fluctuation patterns in the main text. Here,
we show the similarity of nearby frames in the same segment to those peak patterns. (a) Similarity as measured with Pearson’s
correlation coefficient. (b) Similarity as measured by Lin’s concordance.
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FIG. S5. Top and bottom RMS quartiles by duration. In the main text we described a correlation between duration
and amplitude of peak co-fluctulations. There was, however, considerable variance around that best linear fit between those
variables. (a) Here, for each duration (in units of TRs) we show the top (red) and bottom (blue) trough-to-trough curves,
ranked by RMS. (b) We returned to the edge time series and calculated the correlation of each edge time series with the
corresponding trough-to-trough RMS curve. We found that the mean correlation over all edges was stronger for the top 25%
than for the bottom 25%, suggesting that even after controlling for duration, there is variability in the “diffusivity” of the
trough-to-trough co-fluctuation, with higher amplitude co-fluctuations corresponding to tighter and more cohesive fluctuations
than lower-amplitude fluctuations of identical duration.

FIG. S6. Correlation of cluster centroids and individual patterns with static FC. In Fig. 2j we showed that larger
clusters and their centroids were more strongly correlated with FC. Here, we repeat this analysis showing (a) the correlation
of individual co-fluctuation patterns with FC, (b) the mean across those pattern level correlations averaged by cluster, and (c)
the correlation of cluster centroids with FC.
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FIG. S7. Hierarchical clusters, concondance, and co-assignment matrices Here, we show results of the hierarchical
clustering algorithm applied to data from the Midnight Scan Club. Panels a-h show data from MSC01-MSC07 and MSC10.
Each panel includes three sub-panels. From left to right: hierarchical cluster labels for each co-fluctuation pattern; concordance
matrix ordered by clusters; co-assignment matrix ordered by clusters.

FIG. S8. Correlation of cluster centroids with static FC. In Fig. 2j we showed that larger clusters were more strongly
correlated with FC. Here, we repeat this analysis using data from the Midnight Scan Club. Each panel correspond to a different
subject.
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FIG. S9. Sub-divisions of clusters in MSC data: An example using MSC07. In the main text we demonstrated that
co-fluctuation patterns could be organized hierarchically. In the supplement, we applied the hierarchical clustering algorithm to
all MSC participants. For illustrative purposes, we show here the results for subject MSC07. (a) Hierarchical cluster assignment
with dendrogram overlaid. (b) We show the three largest cluster centroids at hierarchical level 2. (c) The leading eigenvector
for each centroid. (d) We show decompositions of clusters 2, 1, and 3 into smaller and more distinct sub-clusters. (e) Again,
we show the leading eigenvectors for each sub-cluster.
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FIG. S10. Persistence and refinement of coarse clusters across hierarchical levels. In Fig. 3 and Fig. 4 we showed
coarse clusters and their hierarchical divisions. We note that the coarse clusters, although they get sub-divided, are also refined
across hierarchical levels. That is, strong co-fluctuations get stronger (positive and negative) but the overall pattern persists.
Here, we highlight the persistence of the three large clusters identified in Fig. 3. The correlation values shown in a correspond
to the correlation of each child centroid with its immediate parent. Note that an alternative possibility was that, as clusters
sub-divide, the children partitions decompose their parents so that the correspondence is not as strong.
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FIG. S11. Comparison with templates and bipartitions. (a) System templates. Given 14 systems, there are exactly
127 unique templates. (b) Normalized mutual information of each co-fluctuation pattern with each template. Patterns are
ordered by community. Note: Here we include all co-fluctuation patterns, including those with low prominence and without
exclusion based on proximity to another peak. (c) For each pattern, we identified the index corresponding to the maximum
NMI. Here, we show the histogram. (d) We then averaged NMI values within each of the three large clusters at hierarchical
level 2 to reveal distinct NMI profiles. (e) We then compared different reconstructions of FC to the observed FC matrix.
These included the mean co-fluctuation pattern (averaged over all patterns), the co-assignment matrix of observed bipartition,
the co-assignment matrix of the best-matched system-templates, and the z-scored version of the best-matched templates. We
repeated this analysis for the largest clusters detected at hierarchical level 2 (f ) and for subdivisions of the largest cluster at
that level (g). In all cases, we find evidence that templates capture the specificity of divisions among co-fluctuations originally
identified using the hierarchical clustering algorithm.
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FIG. S12. Linking different hierarchical levels to FC using MSC data. In the main text we show that the correspondence
with FC peaks at an intermediate hierarchical level. Here, we recapitulate that analysis using data from the individual subjects
in the MSC dataset. (a) Correlation with FC at different hierarchical levels. Thick lines indicate subject-averages, thin lines
indicate data from individual subjects. (b) Mean RMS of co-fluctuation patterns at different hierarchical levels.
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