
Sub-harmonic Entrainment of Cortical Gamma Oscillations to Deep Brain

Stimulation in Parkinson’s Disease: Predictions and Validation of a

Patient-Specific Nonlinear Model

James J. Sermon1,2†, Maria Olaru3†, Juan Anso3, Simon Little4, Rafal Bogacz2, Philip A. Starr3‡,

Timothy Denison1,2‡, Benoit Duchet2‡*

1 Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford,

Oxford, UK

2 MRC Brain Networks Dynamcis Unit, Nuffield Department of Clinical Neurosciences, University of

Oxford, Oxford, UK

3 Department of Neurological Surgery and Weill Institute for Neurosciences, University of California

San Francisco, San Francisco, California, USA

4 Department of Neurology, University of California San Francisco, San Francisco, California, USA

†These authors contributed equally to this work.

‡These authors share senior authorship.

*Corresponding author at: MRC Brain Network Dynamics Unit, University of Oxford,

Mansfield Road, Oxford OX1 3TH, UK. Email address: benoit.duchet@ndcn.ox.ac.uk

Abstract

Objectives: The exact mechanisms of deep brain stimulation (DBS) are still an active area of in-

vestigation, in spite of its clinical successes. This is due in part to the lack of understanding of the

effects of stimulation on neuronal rhythms. Entrainment of brain oscillations has been hypothesised

as a potential mechanism of neuromodulation. Better understanding entrainment might further in-

form existing methods of continuous DBS, and help refine algorithms for adaptive methods. The

purpose of this study was to demonstrate that cortical finely-tuned gamma oscillations around 75Hz

being entrained at 65Hz during 130Hz DBS in patients with Parkinson’s disease (PD) are consistent

with 1:2 entrainment, a special case of sub-harmonic entrainment predicted by synchronisation theory.

Furthermore, we looked to predict stimulation parameters that would result in 1:2 entrainment.
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Materials and Methods: We fit a coupled neuronal population model to selected features character-

ising a PD patient’s off-stimulation finely-tuned gamma rhythm recorded through electrocorticography.

Results: Our model predicts the regions of entrainment (Arnold tongues) in the stimulation fre-

quency/amplitude space. We show that the resulting neural circuit model fitted to patient data

exhibits 1:2 entrainment when stimulation is provided at 130Hz. Furthermore, we verify keys features

of the 1:2 Arnold tongue with follow-up recordings from the same patient, such as the loss of 1:2

entrainment beyond a certain stimulation amplitude.

Conclusion: Our results reveal that periodic DBS in patients may lead to nonlinear patterns of

neuronal entrainment across stimulation parameters, and that these responses can be predicted by

modelling. Should entrainment prove to be an important mechanism of therapeutic stimulation, our

modelling framework may reduce the parameter space that clinicians must consider when programming

devices for optimal benefit.

Introduction 1

Deep Brain Stimulation (DBS) is a form of invasive neuromodulation, where electrical impulses are 2

delivered to specific brain regions by implanted electrodes. In the context of Parkinson’s disease (PD), 3

DBS is primarily used to alleviate motor symptoms when pharmaceutical measures do not provide 4

therapeutic benefit. While a diverse range of effects of DBS have been observed in both behaviour 5

and neuronal rhythms, the exact mechanisms underlying these responses are not fully understood. 6

Activity in the gamma band (approximately 30 to 100Hz) has become a target for neuromodulation 7

as it is associated with various cognitive performance features [1] as well as motor control [2]. Invasive 8

recordings of the basal ganglia in PD have revealed gamma oscillations at 60-90Hz in patients on an- 9

tiparkinsonian medications [3, 4]. These have been thought to represent a “prokinetic” brain rhythm, 10

in contrast to “antikinetic” beta rhythms (13-30Hz). Recently, prominent finely-tuned gamma oscilla- 11

tions (a narrowband gamma activity [5]) at 60-90Hz have been found during invasive recordings from 12

motor cortical areas in PD [6, 7, 8], and may be associated with dyskinesias. Additionally, similar 13

cortical oscillations have been observed in rat models of dyskinesia [9, 10]. 14

Stimulation targeting gamma band activity has been shown to improve motor symptoms in PD 15

by a comparable scale to high-frequency stimulation, while this was not observed for stimulation at 16

theta and beta frequencies [11]. In another study, transcranial alternating current stimulation (tACS) 17

at gamma frequency was observed to increase motor velocity in PD, while tACS at beta frequency 18

saw it decrease [12]. It was hypothesised that entrainment (specifically 1:1 entrainment, as depicted in 19

Fig 1B) of both gamma and beta oscillations would explain this observation by enhancing “prokinetic” 20
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and “antikinetic” rhythms, respectively. This suggests that gamma entrainment may have potential 21

to modulate PD-associated motor symptoms. 22

Further evidence of cortical gamma entrainment is provided by observations of modulated cortical 23

gamma rhythms in response to stimulation. The ability to entrain gamma rhythms at stimulation 24

frequency has been shown through varying visual stimulation at gamma frequency in the Macaque 25

V1 [13]. Cross-frequency coupling of cortical finely-tuned gamma to the stimulation frequency has 26

also been observed in PD patients with Subthalamic Nucleus (STN) DBS [14]. Additionally, a shifted 27

finely-tuned gamma peak has been noted in the motor cortex in response to high-frequency (130Hz) 28

DBS of the STN [6, 15, 8, 16]. The gamma peak, off-stimulation between 75 and 80Hz, locks to 29

the half harmonic of stimulation (see Fig 1), corresponding to 1:2 entrainment. This half harmonic 30

lock suggests that modulation goes beyond solely entraining rhythms at the frequency being applied 31

or suppressing them like an information blockade. Currently, there is no theoretical understanding 32

of 1:2 gamma entrainment in PD and generally no framework to predict the occurrence of specific 33

entrainment regimes in response to brain stimulation. 34

In this study, we look to set up a pathway to predict sub-harmonic entrainment of brain rhythms 35

by DBS in PD patients, using a model-based approach that is informed by data. We postulate that 36

by constraining the parameters of a neuronal population model to patient data, it will be possible to 37

predict stimulation parameters that lead to 1:2 gamma entrainment for subjects with off-stimulation 38

gamma rhythms. We provide a theoretical introduction to 1:2 gamma entrainment using the simplest 39

model of a neural oscillator receiving periodic stimulation, the sine circle map. However, the sine circle 40

map cannot be fitted to patient data. Hence, we develop a patient specific approach by showing that 41

the Wilson-Cowan model, a neural population model, is capable of replicating off-stimulation features 42

of a finely-tuned gamma rhythm when fitted to electrocorticography (ECoG) data from a patient 43

with PD. The fitted-model is capable of predicting the regions of 1:2 entrainment in the stimulation 44

parameter (frequency and amplitude) space. We proceed to verify key features of the 1:2 entrainment 45

region with follow-up recordings from the same patient. Lastly, these results are discussed and the 46

implications are highlighted for future stimulation therapies. 47

Materials and methods 48

Rotation Number and Arnold Tongues 49

The frequency locking behaviour of a rhythm to external stimulation across stimulation frequency 50

and amplitude can be described by frequency-locking regions called Arnold tongues [17]. Frequency 51
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locking is observed when a rotation number of the form p:q, where p and q are coprime integers, is 52

maintained for several stimulation periods. In general, the rotation number may not be a ratio of 53

integers, and corresponds to the average number of oscillatory cycles achieved by the rhythm between 54

two periodic pulses of the driving stimulation. This is calculated as 55

θN − θ0
2πN

, (1)

where θN is the phase after N stimulation pulses (in this study, N > 50) and θ0 is the initial phase. 56

Previously, Arnold tongues have been used to describe 1:1 entrainment in response to noninvasive 57

neuromodulation [18, 19, 20, 21]. Depending on the system considered and the stimulation waveform, 58

Arnold tongues can theoretically exist for various rotation numbers, including p:q with large p and/or 59

q. However, in real systems, often only the tongues of the most stable rotation numbers, corresponding 60

to low p and q values, will be observed. Arnold tongues often have different shapes for different 61

dynamical systems. Generally, an Arnold tongue expands in width across larger frequency ranges as 62

stimulation amplitude increases. This continues up until an amplitude where the region may share 63

stability with another frequency-locking ratio or lose stability altogether. 64

Figure 1: Prior human recordings demonstrate 1:2 entrainment of cortical gamma

rhythms from subcortical stimulation. (A) PSD of gamma band activity before and during
DBS to the STN at 130Hz. In the DBS Off state, a natural ∼75Hz gamma rhythm can be observed.
This is entrained at 65Hz during the following two minutes of DBS On at 130Hz. (B) 1:1 entrain-
ment = one stimulation pulse per brain rhythm cycle and a rotation number of 1, 1:2 entrainment
= two stimulation pulses per brain rhythm cycle and a rotation number of 0.5. Hence, during 1:2
entrainment, the brain rhythm locks to a frequency of half that from the external stimulation. This
corresponds to the DBS On state of panel A. Panel A is edited from [6].
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Sine Circle Map 65

The sine circle map is the simplest model that describes the influence of periodic stimulation on an 66

oscillator and can provide a first level description of gamma entrainment during 130Hz stimulation. 67

The model stroboscopically observes the phase, θ, of a single oscillator of natural frequency f0, pe- 68

riodically stimulated at frequency fs and stimulation intensity, As. The map between the oscillator 69

phase right after stimulation pulse i and its phase right after stimulation pulse i+ 1 is given by 70

θi+1 = θi + 2π(f0/fs) + AsPRC(θi),

where PRC denotes the oscillator phase response curve and describes the change in the oscillator phase 71

as a function of the stimulation phase. For the sine circle map, the PRC is given by PRC(θ) = sin(θ). 72

While the sine circle map can provide a first level description of gamma entrainment, its simplicity 73

results in significant limitations. Firstly, as the oscillator stays on the unit circle, there is no variable 74

amplitude of oscillations. This makes anything more than analysis of a single neuronal unit unreliable. 75

Secondly, the sine circle map only represents a single oscillator. Therefore it is difficult to draw com- 76

parisons to ECoG signals that arise from interacting populations of neurons. Thirdly, it is known that 77

pulse shape impacts entrainment behaviour; however, as the sine circle map is stroboscopic, realistic 78

pulses cannot be used. Hence, a model which captures the interaction of neurons, is representative of 79

larger neuronal populations and for which realistic pulse shapes can be used would be more suitable. 80

A model such as the Wilson-Cowan model would provide this. 81

Wilson-Cowan Model 82

The Wilson-Cowan model is well-suited to fit population-level brain recordings. The model is a 83

heuristically derived mean-field model describing interacting neuronal populations [22, 23] and, hence, 84

is a natural choice to represent ECoG recordings. The Wilson-Cowan model has been used in the 85

analysis of neuronal responses to periodic and varying stimulation [24, 25, 26, 27, 28] and in theoretical 86

studies of entrainment [29, 30]. Additionally, the model has been used in the analysis of resonances [31], 87

as well as in the communication of information [32]. The Wilson-Cowan model has a limited number 88

of model parameters which make it feasible to constrain the model without over-fitting. Despite the 89

relatively small number of parameters, it is also able to capture a wide variety of dynamics [33, 34, 29]. 90

We use the two-population Wilson-Cowan model to represent excitatory and inhibitory cortical 91

populations with reciprocal connections (see Fig 2). The model can be used to predict the interactions 92

of large groups of neurons and outputs the activity of excitatory and inhibitory populations. The 93
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population activities are denoted by E and I, respectively, and are proportional to the firing rate of 94

that population’s neurons. Stochastic differential equations describe the evolution of E and I as 95

dE =
1

τE
(−E + f(ηE + ωEEE + ωIEI))dt+ ζdWE

dI =
1

τI
(−I + f(ηI + ωEIE) +Astim(t))dt+ ζdWI

f(x) =
1

1 + e−b(x−1)
.

96

These interactions are weighted by coupling strength, ω12 (going from population one to population 97

two), and occur through a sigmoid function, f(x), of steepness coefficient b. τE and τI represent 98

the time constants of the excitatory and inhibitory populations respectively. ηE and ηI are the 99

constant inputs to the respective populations. Stochasticity is introduced to the model through Wiener 100

processes, WE and WI , with noise standard deviation denoted by ζ. Noise is required to reproduce 101

the off-stimulation data, which is characterised by bursts of activity rather than perfectly periodic 102

dynamics (see Fig 4D). 103

It is unclear whether stimulation of the external globus pallidus (GPe) has a net inhibitory or 104

excitatory effect on the cortex. Connections via the thalamus likely have an excitatory effect on 105

the cortex [35]. However, there also exist direct projections from cholinergic neurons in the GPe 106

which have a solely GABAergic effect on the cortex [36]. Hence, while both inhibitory and excitatory 107

projections exist from the GPe to the cortex, in this study we focus on the direct connection and apply 108

periodic high-frequency stimulation, Astim(t), to the inhibitory population. However, we also consider 109

stimulation applied to the excitatory population in Supplementary Data section 2.5. Stimulation is 110

applied directly, not through the sigmoid function, as this provides a greater wealth of dynamics by 111

avoiding saturation effects [28]. 112

Data Collection 113

Cortical data off-stimulation were collected to fit the Wilson-Cowan model. On-stimulation data 114

at variable stimulation frequencies and amplitudes were then used to compare and validate pre- 115

dictions from the fitted model. Human neural data were collected from a 64 year old female who 116

had DBS implantation for motor fluctuations and medically intractable tremor, 13 years after onset 117

of motor signs. The patient was diagnosed with idiopathic Parkinson’s Disease and bilaterally im- 118

planted with the Medtronic Summit RC+S bidirectional neural interface (clinicaltrials.gov identifier 119
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Figure 2: The two-population Wilson-Cowan model. Stimulation is applied to the inhibitory
population (I) and data recorded from the excitatory population (E). The weights of the three connec-
tions present in this model are ωEI , the weight of the excitatory effect on the inhibitory population,
ωIE , the weight of the inhibitory effect on the excitatory population, and ωEE , the weight of the self
excitatory effect. Additionally, there are external inputs, ηE and ηI , to each population. The insert
displays the single time step stimulation pulse with no recharge used throughout study.

NCT03582891, USA FDA investigational device exemption number 180097, IRB number 18-24454), 120

quadripolar cylindrical leads in the pallidal nuclei, and subdural paddle-type leads over the primary 121

motor cortex, Figs 3A1-3. She had been chronically treated with antiparkinsonian medications, at a 122

levodopa equivalent dose of 1083 mg/day at the time of surgery. Her preoperative unified Parkinson’s 123

disease rating scale (UPDRS) part 3 score was 89 twelve hours off of medication, improving by 53% 124

in the on-medication state. The active contact array was localised in the globus pallidus (GP) using 125

microelectrode recording (MER) mapping of single-unit cells to traverse the postero-lateral regions 126

of the external globus pallidus (GPe) and internal globus pallidus (GPi), Fig 3A1. Localisation of 127

contacts was further confirmed by computationally fusing a postoperative CT scan to the preoperative 128

planning MRI scan, Figs 3A2-3. Prior to the initiation of standard therapeutic pallidal stimulation, we 129

recorded four-channel local field potentials of the cortical and pallidal sites of each hemisphere across 130

a month-long period. The data used for the fitting process was streamed from the patient wirelessly 131

during normal activities of daily living, on their usual schedule of antiparkinsonian medication. The 132

recording methods and data processing were similar to those described in Gilron et al. [8]. After ten 133

months of continuous pallidal stimulation at 130Hz or 150 Hz with left hemisphere stimulation from 134

contact two and right-hemisphere stimulation from contacts one and two, we conducted a follow-up 135

in-clinic recording session to validate some of the model predictions and explore the DBS parameter 136

space while the patient was on her usual antiparkinsonian medications. In this session, we cycled 137

7

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 7, 2022. ; https://doi.org/10.1101/2022.03.01.482549doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.01.482549
http://creativecommons.org/licenses/by/4.0/


through stimulation frequencies ranging 130-160Hz and stimulation amplitudes ranging 0-6.5mA un- 138

der the guidance of a movement disorders neurologist. The patient was stimulated with a 90µs pulse 139

width and an equivalent length “active recharge”, where recharge is defined in Supplementary Data 140

section 2.2. We recorded from two sensing contacts, +8-9 post-central sulcus, +10-11 pre-central sul- 141

cus, shown in Fig 3A3. Each trial of the data collection session consisted of a fixed frequency-amplitude 142

pairing with a minimum 30-second duration and a 15-second inter-trial interval. We excluded data 143

from the right hemisphere due to challenges interpreting data from dual stimulating contacts (contacts 144

1 and 2, using the subcortical contact numbering shown in Fig 3A1), while the left hemisphere was 145

only stimulated by a single contact (contact 2). 146

Fitting Process 147

To fit the parameters of our Wilson-Cowan model, we processed the month-long off-stimulation record- 148

ing to obtain data features for the model optimisation. We separated the off-stimulation sessions into 149

epochs with a minimum of 30 seconds of continuous and uninterrupted recordings. The epoch used 150

for the fitting process was selected by identifying the epoch with the most prominent gamma peak 151

within the frequency range 72-78Hz, the approximate average of the overall dataset. From this epoch, 152

three features were selected for the purposes of fitting the model; the power spectral density (PSD), 153

the envelope PSD and the envelope probability density function (PDF), as shown in Fig 3B1-3. The 154

envelope is the modulus of the analytic signal and refers to a curve that traces the upper bound of 155

the signal, providing a measure of the oscillation’s amplitude. These features were selected to provide 156

a representation of the signal and its envelope in the frequency domain, as well as a representation 157

of the statistics of the envelope in the time domain. We demonstrate that there is little correlation 158

between the three features mentioned here and that all three features are required to capture the full 159

dynamics of the data in Supplementary Data section 1.1. Fitting to off-stimulation features ensured 160

that any presence of 1:2 entrainment is not predetermined, as would have been provided by a fit to 161

on-stimulation data. 162

Model parameters were then optimised to best match the selected data features (Fig 3B1-3). 163

This process follows a fitting methodology similar to [28, 37]. It begins by generating random sets of 164

parameters, and selecting parameter sets with a PSD broadly similar to that of the data (the first loop 165

of Fig 3C), i.e. with a gamma peak between 70 to 80Hz. This improves the computational efficiency 166

of the parameter fitting and the overall duration of the optimisation. Accepted parameters enter an 167

optimisation loop using the patternsearch function of Matlab2020b, which minimises the cost function 168

(see Supplementary Data section 1.2) capturing the distance between model and data features (the 169
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Figure 3: Use of prestimulation human neural recordings to fit Wilson-Cowan model

parameters. (A1-3) Left hemisphere lead localisation. (A1) globus pallidus (GP) contact local-
isation (black numbered rectangles) with respect to the boundaries of the internal globus pallidus
(yellow) and external globus pallidus (GPe) (blue) as defined by micro-electrode recording mapping
of single-unit cells (black dots). (A2-3) Localization of contacts with a postoperative CT scan that
is computationally fused with the preoperative planning MRI scan. (A2) GP lead on an axial T2-
weighted MRI, which visualises the GP as regions of T2 hypointensity (GPe highlighted by a white
contour). (A3) Quadripolar subdural paddle lead on sagittal T1-weighted MRI shows the relationship
between the central sulcus (red arrow) and contacts (white numbered arrows).(B1-3) The three data
features, power spectral density (PSD) (B1), envelope probability density function (PDF) (B2) and
envelope PSD (B3), for the selected epoch, based on the gamma peak height in the cortical 9-8 and
11-10 contact. The features shown are from the cortical contacts as labelled in Panel A3. The orange
and blue lines display the band-pass filtered cortical signals between 72Hz and 78Hz. The yellow and
grey dotted line in the PSD plot shows the unfiltered signal which, for the 11-10 contact, still displays
the finely-tuned gamma peak seen in the filtered data. The fitting is based off the filtered data from
the 11-10 contact. (C) The optimisation pathway for fitting the model to off-stimulation data. This
process is broken down into three main loops, as discussed in the Fitting Process section. Once a
fitted set of model parameters is obtained we are able to make predictions for the neuronal population
responses in the on-stimulation state.
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second loop of Fig 3C). We run this optimisation to obtain approximately 2500 parameter sets fitted 170

to the 30 seconds of off-stimulation data, each corresponding to a different local minimum of the cost 171

function. From the resulting fits, we select the 20 with the greatest R2 values and perform further 172

simulations to refine the ranking of cost. As the model includes stochasticity, we also make sure that 173

the optimal model parameter selections are robust to noise (the third loop of Fig 3C), more details 174

can be found in Supplementary Data section 1.3. The top-ranked fit is then selected based on these 175

simulations. We don’t expect overfitting to be an issue given that we are fitting to off stimulation 176

data, where there is no entrainment in the signal. Predictions of the response to external stimuli are 177

then be made by introducing stimulation to the off-stimulation fitted model. 178

Figure 4: Comparison of the data features and the features of the best ranked model

parameter set. R2 = 0.944 on average across 50 simulations lasting 100 seconds each.The model
closely matches the data PSD (A), envelope PDF (B), and envelope PSD (C). (D-E) Comparison
of the band-passed, z-scored, off-stimulation time series from patient data and the model excitatory
population time series data.

Providing Stimulation and Entrainment Analysis in the Model 179

The stimulation pulse provided throughout the majority of the modelling work in this study, unless 180

mentioned otherwise, is a single time step positive pulse with no recharge (see the insert in Fig 2). 181

This stimulation pulse was chosen for simplicity. Different recharge lengths and stimulation waveforms 182

are explored in Supplementary Data sections 2.2 and 2.3. In the presence of stimulation, the rotation 183

number is calculated using equation 1 where θi is taken as the unwrapped Hilbert phase of the 184
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excitatory population activity over i stimulation pulses. This was calculated over 50 stimulation 185

cycles and averaged over five repeats at each stimulation parameter. 186

The PSD of the model output with stimulation applied was calculated using Welch’s PSD estimate 187

over the same number of stimulation cycles and repeats as the rotation number. The peak PSD was 188

calculated as the maximum power in the 0 to 200Hz frequency range. 189

Entrainment Analysis of the ECoG Recordings 190

The PSD of the data was calculated in a similar way to that of the model, using Welch’s PSD estimate. 191

Only frequencies recorded within the 50 to 120Hz range were considered when finding the peak power. 192

To calculate the rotation number for a particular stimulation setting, the frequency of the maximum 193

PSD power was divided by the stimulation frequency. Only rotation numbers of 0.5 ± 0.05 were 194

considered to have resulted in 1:2 entrainment and marked by a circle in Fig 5E. However, Fig 5E 195

remains unchanged when the tolerance on rotation numbers resulting in 1:2 entrainment is reduced 196

to 0.5 ± 0.005. 197

Results 198

1:2 Entrainment During High-Frequency DBS is Predicted by the Sine Circle Map 199

Gamma entrainment during high-frequency DBS is predicted by even the simplest model that describes 200

the influence of periodic stimulation on a neural oscillator, the sine circle map. In particular, we are 201

able to observe a 1:2 Arnold tongue (Fig 5A), which predicts 1:2 entrainment for a 75Hz oscillator at 202

130Hz stimulation. There exists a specific range of stimulation amplitudes for which we would expect 203

to see 1:2 entrainment of the oscillator at a resultant frequency of 65Hz. This is in agreement with the 204

observations by Swann et al. [6, 15] and provides theoretical grounds for expecting 1:2 entrainment 205

during high-frequency stimulation. However, the sine circle map only models a single oscillator (in this 206

case a single neuron) responding to a periodic stimulus. We therefore turn to an interacting neural 207

populations model that is fitted to patient data to predict stimulation parameters that lead to 1:2 208

entrainment. 209

Prediction of 1:2 Entrainment Using a Fitted Wilson-Cowan Model 210

The Wilson-Cowan model, fitted to the patient’s pre-stimulation cortical data, oscillates at a fixed 211

natural frequency of 75Hz in the absence of stimulation (shown in Fig 4A). This top ranked model 212

parameter set (found in Supplementary Data Table 1.1) had an average R2 value of 0.944 across 50 213
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simulations, with good fits across all three features (Fig 4). 214

In the presence of low amplitude stimulation, the model displays a 1:2 tongue around a stimulation 215

frequency of 150Hz (twice the natural frequency of the interacting populations). This is shown by 216

the blue-green 1:2 tongue in Fig 5B, which corresponds to a constant rotation number of 0.5. When 217

stimulation is provided at 130Hz (indicated by the black line), the excitatory population is entrained 218

at 65Hz for a range of stimulation amplitudes. The 1:2 tongue is left leaning and stems from twice 219

the natural frequency of the model, i.e. from 150Hz. This left lean suggests that there exist more 220

parameters around 130Hz for which 1:2 entrainment would also be observed. 221

The left lean of the 1:2 tongue does not vary depending on whether stimulation is applied to the 222

inhibitory population or the excitatory population (see Supplementary Data section 2.5), even though 223

the decision was made to apply it to the inhibitory population. The 1:2 entrainment region exhibits a 224

left lean regardless of whether the stimulation being applied is in the form of a single time step pulse 225

train, pulse trains with various recharge durations or more complicated waveforms (see Supplementary 226

Data sections 2.2 and 2.3). 227

The fitted Wilson-Cowan model also predicts that the highest spectral peaks will occur at the 228

lowest frequencies for which 1:2 entrainment arises, as seen in Figs 5C-D. 229

Validation of Model Predictions in Human Patient During Chronic Therapeutic 230

Stimulation 231

The presence of 1:2 entrainment at variable stimulation parameters was investigated in follow-up 232

recordings for the same patient as the Wilson-Cowan model was fitted to (see recording details in 233

the Data Collection section). These data were only examined following the core predictions from the 234

model. 235

The data show a region of stimulation parameters for which 1:2 entrainment can be observed 236

(Fig 5E) and appears to exhibit a similar shape to the Wilson-Cowan model predictions, as shown 237

in Fig 5B. While 1:2 entrainment was seen for amplitudes greater than 5.5mA for 140 and 130Hz, it 238

was lost for 150Hz. Hence, the 1:2 tongue has an approximate left lean from this set of data with 1:2 239

entrainment being maintained at higher amplitudes for lower frequencies of stimulation. 240

Comparing the predictions of entrained peak power in Fig 5D to the data collected provides further 241

support for the fitted model. The data validate the model’s prediction of highest power for the lower 242

frequencies within the 1:2 tongue. Changing stimulation parameters from 130Hz, 6.5mA to 150Hz, 243

5mA results in a drop in entrained peak power, as indicated by the colourscale in Fig 5E. This is 244

a change that reflects a fundamental difference in the resulting entrained activity, more than the 245
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Figure 5: Testing model predictions of a cortical circuit’s response to an external stimulus

using human neural data during neurostimulation. Stimulation frequency is the horizontal axis
for all panels, while stimulation amplitude is the vertical axis for all panels. Stimulation amplitude
has arbitrary units (a.u.) for all model panels (A,B,C and D) and is in mA for the data panel (E).
Panels A and B have a jet-scaled colourbar indicating the p:q rotation number (as explained in the
Rotation Number and Arnold Tongue section) resulting from the stimulation parameters at that point,
where 1:1 entrainment is in red and 1:2 entrainment is in blue-green. For both these panels, the black
line indicates the 130Hz stimulation condition used in [6, 15]. (A) The sine circle map entrainment
field for variable stimulation frequency with a fixed natural frequency of 75Hz. (B) The entrainment
field of the Wilson-Cowan model with the top ranked parameters. The stimulation applied is a single
time step pulse with no recharge. (C-D) The maximum height of the entrained peaks as predicted
by the top-ranked Wilson-Cowan model fit, calculated as laid out in the Providing Stimulation and

Entrainment Analysis in the Model section. Panel D is a magnified version of panel C (indicated by
the grey rectangle) over stimulation parameter giving comparable results to panel E. (E) The height of
entrained peaks for a series of different stimulation parameters. Circles display peak height of entrained
parameters represented by the colour scale, while black triangles are for parameters that did not display
entrainment (as can be seen in insert E2). The asterisk (*) by the unentrained point (150Hz, 6mA)
indicates the presence of several changes in stimulation amplitude to the hemisphere not being studied
during this recording, while the left hemisphere’s stimulation parameters remained unchanged. 1:2
entrainment was not observed at any of these stimulation parameter sets. The occurrence of both a
black triangle and a circle at the point (150Hz, 2.5mA) indicate intermittent entrainment, hence, this
will likely be on the boundary of the tongue. Inserts E1-3 show PSDs over frequencies 60-80Hz.
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decrease in power due to the aperiodic component of the power spectrum. Additionally, both the data 246

and model show a small decrease in power with increased amplitude. Across the 130Hz stimulation 247

frequency line we can observe a small but continual drop in the peak height as stimulation amplitude 248

increases, as shown in Fig 5E. 249

Discussion 250

We show that the simplest model of a single neural oscillator with periodic stimulation, the sine circle 251

map, is able to recreate the observation of 1:2 entrainment for cortical finely-tuned gamma oscillations 252

(approximately 75Hz) to DBS at 130Hz in PD patients. The sine circle map represents a simple method 253

to gain intuition of the response of a specific rhythm to stimulation, but it cannot be fitted to patient 254

data. Through fitting a model of interacting neuronal populations to off-stimulation data, we are able 255

to predict the region of stimulation parameters (frequency and amplitude) for which 1:2 entrainment 256

is possible for this specific patient. In particular, our model predicts that 1:2 entrainment is lost in this 257

patient when stimulation amplitude is increased beyond a certain value. Furthermore, the 1:2 Arnold 258

tongue is left leaning, where 1:2 entrainment can be achieved for stimulation frequencies markedly 259

lower than twice the frequency of the natural gamma rhythm. Lastly, the model further predicts that 260

there would be a greater entrained gamma power at lower stimulation frequencies. Data recorded 261

during therapeutic neurostimulation, after the modelling results were obtained, appeared to show 1:2 262

Arnold tongues that validate these predictions. Hence, the model can capture a range of sub-harmonic 263

entrainment features without being constrained by entrainment data. This makes the model a good 264

candidate for further investigations into the effects of high-frequency DBS on finely-tuned gamma in 265

PD. 266

By solely analysing the presence of 1:2 entrainment, we avoid the prominent artefact at stimulation 267

frequency. Hence, this analysis of the data provides a valuable, uncorrupted insight into the neuronal 268

responses to stimulation. Bounding the 1:2 tongue for 150Hz stimulation, as we ’lose’ 1:2 entrainment 269

at increased stimulation amplitudes, also provides further evidence that the gamma peak at half 270

stimulation frequency is not artefactual. This is aligned with the model prediction that 1:2 entrainment 271

will be ‘lost’ when amplitude is increased beyond a certain point. Additionally, the model predicts that 272

parameter changes that result in the ‘loss’ of 1:2 entrainment would see a transition to 1:1 entrainment. 273

However, the presence of 1:1 entrainment is difficult to assess as the resulting power spectral peak can 274

be masked by the stimulation artefact. In contrast, 1:2 entrainment does not suffer from this issue 275

remaining free of stimulation artefact, which could provide a utility of sub-harmonic entrainment as a 276

mechanism for accurate adaptive DBS [6] without having to remove stimulation artefact from a signal 277
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containing the biomarker of interest. Furthermore, entrainment in the gamma frequency band has 278

been linked with dyskinesia [6], showing that the entrained signal could be of clinical relevance. 279

The observation of the highest spectral peaks occurring at the lowest frequencies of stimulation 280

may be somewhat counter-intuitive, since one could expect more stimulation energy to provide more 281

oscillatory power. However, due to the increased time between successive pulses of stimulation at 282

lower frequencies, the trajectory of the population activity covers a larger distance in phase space 283

(see Supplementary Data section 2.4, specifically Supplementary Data Fig 2.4 for more details on 284

population activity vector fields and trajectories). This means that the range of values that activity 285

reaches for each population is greater, producing a higher power spectral peak for the given resultant 286

frequency. Population activity having a larger range can also be interpreted as there being greater 287

synchrony of neurons within the populations, as increased peak firing rates and decreased minima 288

suggest more neurons are firing together. 289

1:2 entrainment is not an intrinsic property of the Wilson-Cowan model (large regions of parameter 290

space do not lead to 1:2 entrainment). Additionally, if the parameters of the Wilson-Cowan model do 291

produce 1:2 entrainment, the 1:2 tongue can also be right leaning or symmetrical about the central 292

frequency, similar to the 1:2 tongue observed in the sine circle map (Fig 5A). Hence, the parameters 293

of the Wilson-Cowan model need to be tuned to reproduce the data. Among the top-ranked Wilson- 294

Cowan fits, there is some variability between the parameter sets and the corresponding entrainment 295

predictions (see Supplementary Data section 2.1). This demonstrates that the model parameters are 296

non-identifiable. However, as the best fits converge on results that all include a left leaning 1:2 tongue 297

and given the validation of some of the model predictions by follow-up recordings, we can conclude 298

that the fitted model remains a good candidate to make predictions for future investigations. It would 299

be possible to fit Wilson-Cowan model parameters to on-stimulation entrainment data, which may or 300

may not reproduce off-stimulation data. This is not something we are investigating as more value is 301

provided by predicting the response from off-stimulation fits. 302

While only 1:2 entrainment is investigated here, entrainment will occur at other sub-harmonics 303

of stimulation if there is a neuronal rhythm present to entrain and the corresponding tongue is large 304

enough to encompass the neuronal rhythm. Similarly to 1:2 entrainment, sub-harmonic entrainment 305

at every harmonic of stimulation is not an intrinsic property of Wilson-Cowan models. However, other 306

sub-harmonic entrainment ratios can be observed for certain model parameter sets. Stimulating in 307

the range of 130-160Hz in the patient, only 1:2 entrainment was explored for a 75Hz natural rhythm. 308

By increasing stimulation frequency, for example to around 225Hz, it would be possible to investigate 309

other sub-harmonic entrainment ratios such as 1:3 entrainment of this rhythm. 310
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Study Limitations 311

As a case study, our approach has only been tested in one patient. Our patient-specific approach 312

consists of fitting a neural mass model to off-stimulation data to predict stimulation parameters that 313

will lead to 1:2 entrainment. In our case study, patient-specific predictions have been validated with 314

follow-up recordings. However, it is unclear to what extent these predictions (such as the lean of the 315

tongue) would generalise to other patients. We expect some variability in entrainment characteristics 316

across patients, which further motivates a patient-specific approach. The extent of this variability 317

is however unknown. Additionally, due to the limited amount of data obtained from this patient, it 318

was not possible to perform a statistical analysis on the observations of 1:2 entrainment in response 319

to variable stimulation parameters. Statistical analysis could have been achieved by repeating the 320

observations across stimulation parameters several times, but this would not have been tolerated by 321

this patient. Nevertheless, this case-study demonstrates the potential for a patient-specific approach 322

to predict nonlinear effects of brain stimulation. 323

Furthermore, the stimulation parameters explored in this case study would benefit from a system- 324

atic mapping of the tongue boundary, with large regions of untested parameters and no full boundary 325

being charted. Both of these shortcomings will be the focus of further investigations into 1:2 entrain- 326

ment. However, extensive mapping of the tongue boundary may be limited by patient discomfort as 327

some parameters tested are subtherapeutic and thus lead to brief exacerbation of motor signs. 328

Given that ECoG data represents the activity of populations of neurons, the Wilson-Cowan model is 329

a good choice for this type of data. However, this doesn’t allow us to observe or model the behaviour of 330

individual neurons in response to stimulation and during 1:2 entrainment. Our approach is nonetheless 331

adequate to predict stimulation parameters leading to 1:2 entrainment. Additionally, we have not 332

included a population to represent the basal ganglia in our model. This was because there was no 333

subcortical peak to fit a Wilson-Cowan network to for this patient. Subcortical narrowband oscillations 334

in the basal ganglia have been recorded in long term recordings in other patients [8]. 335

Implications 336

Throughout this study, it is demonstrated that brain rhythms can have nonlinear responses to stim- 337

ulation, such as entrainment at harmonics of stimulation frequency, and non-monotonic rhythmic 338

responses to amplitude. We argue against the simple view that only brain rhythms close to the stim- 339

ulation frequency can be entrained (through 1:1 entrainment). The study also shows that if a specific 340

entrainment ratio is observed at given stimulation parameters, increasing stimulation amplitude will 341

not necessarily promote that corresponding frequency even further. 342
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Given that entrainment to periodic stimulation has been observed in different frequency bands, our 343

findings might have implications across frequencies. For instance, 1:1 entrainment has been reported in 344

the alpha band through single pulse transcranial magnetic stimulation when treating depression [18], 345

with rhythmic visual stimulation [19], and with tACS [38]. If rhythms can lock to harmonics of 346

stimulation frequency, as supported by this study, it is possible that current stimulation protocols 347

targeting any frequency band could induce unexpected responses at sub- or supra-harmonics of the 348

stimulation frequency. Furthermore, when designing stimulation protocols one should be aware of 349

potential ramifications of stimulation on other neuronal rhythms. For instance, stimulation targeting 350

lower frequency oscillations, such as beta rhythms, may be able to entrain gamma at a 2:1 rotation 351

number, or even alpha at a 1:2 rotation number. Similar considerations have been employed when 352

designing stimulation protocols in a canine with epilepsy [39]. Our patient-specific approach can 353

help predict these nonlinear responses. This is important since reinforcing oscillations at sub- or 354

supra-harmonics might induce undesirable effects, or otherwise interfere with the therapeutic effect of 355

stimulation. 356

Conclusion 357

We show that for certain network parameters, simple neural circuits can support 1:2 entrainment 358

to DBS. In particular, our fitted Wilson-Cowan model provides theoretical evidence for a neural 359

circuit origin of 1:2 entrainment of cortical gamma oscillation to high-frequency DBS in PD patients. 360

Furthermore, it predicts a larger region of stimulation parameters, at frequencies corresponding to less 361

than twice the natural frequency of the system, for which 1:2 entrainment would be observed. These 362

results are validated by initial 1:2 entrainment charting from the same patient to whom the model 363

was fitted. 364

Understanding the variety of effects of stimulation on various brain rhythms would provide valuable 365

insights into designing stimulation protocols to provide maximum therapeutic benefit with minimal 366

side effects. This model provides a first step to predicting these responses. Computational models 367

enable us to experiment with a variety of waveforms without the burdensome tests and validation 368

that would be associated with in patient trials. Prediction of the neuronal responses to stimulation 369

is a fundamental step in the design of future therapeutic protocols. Our model predicts that these 370

responses are not a simple one-for-one mapping of stimulation frequency and amplitudes to brain 371

network activity and that stimulation may have significant effects, even when the stimulation frequency 372

is outside of the frequency band of interest. 373
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Supporting information 374

Supplementary Data Supplementary Appendix. Further details of the optimisation process, 375

as well as the fitting robustness and entrainment predictions when different stimulation patterns are 376

applied to the Wilson-Cowan model, are presented here. 377

Acknowledgements 378

The authors would like to acknowledge the use of the University of Oxford Advanced Research Com- 379

puting (ARC) facility in carrying out this work. http://dx.doi.org/10.5281/zenodo.22558. 380

Data Availability 381

The data will be made available before publication. 382

Declaration of Competing Interest 383

PS receives research support from Medtronic Inc (providing investigational devices free of charge). 384

SL is a scientific advisor for RuneLabs. The University of Oxford has research agreements with 385

Bioinduction Ltd. TD has stock ownership (<1%) and business relationships with Bioinduction for 386

research tool design and deployment, as well as being an advisor for Synchron and Cortec Neuro. 387

Funding Information 388

JS and TD are supported by DARPA HR0011- 20-2-0028 Manipulating and Optimizing Brain Rhythms 389

for Enhancement of Sleep (Morpheus) and the UK Medical Research Council grant MC UU 00003/3. 390

MO and PS are supported by NIH/NINDS award R01NS090913. JA is supported by Swiss National 391

Science Foundation (Early Postdoc Mobility – P2BEP3 188140). SL is supported by NIH award 392

K23NS120037. RB and BD are supported by Medical Research Council grant MC UU 00003/1. 393

Content represents views of the authors and not the funders. 394

CRediT Author Statement 395

J.J. Sermon: Conceptualisation, Investigation, Methodology, Validation, Visualisation, Writing - 396

original draft, Writing - review and editing. M. Olaru: Conceptualisation, Data Curation, Investiga- 397

tion, Writing - original draft, Writing - review and editing. J. Anso: Conceptualisation, Methodology, 398

18

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 7, 2022. ; https://doi.org/10.1101/2022.03.01.482549doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.01.482549
http://creativecommons.org/licenses/by/4.0/


Data Curation, Writing - review and editing. S. Little: Writing - review and editing. R. Bogacz: 399

Conceptualisation, Funding Acquisition, Supervision, Writing - review and editing. P.A. Starr: Con- 400

ceptualisation, Funding Acquisition, Resources, Supervision, Writing - review and editing. T. Deni- 401

son: Conceptualisation, Funding Acquisition, Supervision, Writing - review and editing. B. Duchet: 402

Conceptualisation, Investigation, Methodology, Supervision, Writing - review and editing. 403

19

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 7, 2022. ; https://doi.org/10.1101/2022.03.01.482549doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.01.482549
http://creativecommons.org/licenses/by/4.0/


References

[1] Conrado A. Bosman, Carien S. Lansink, and Cyriel M.A. Pennartz. Functions of gamma-band

synchronization in cognition: From single circuits to functional diversity across cortical and sub-

cortical systems. European Journal of Neuroscience, 39(11):1982–1999, jun 2014.

[2] Magdalena Nowak, Catharina Zich, and Charlotte J. Stagg. Motor Cortical Gamma Oscillations:

What Have We Learnt and Where Are We Headed?, apr 2018.

[3] Michael Cassidy, Paolo Mazzone, Antonio Oliviero, Angelo Insola, Pietro Tonali, Vincenzo Di

Lazzaro, and Peter Brown. Movement-related changes in synchronization in the human basal

ganglia. Brain, 125(6):1235–1246, jun 2002.

[4] David Williams, Marina Tijssen, Gerard Van Bruggen, Andries Bosch, Angelo Insola, Vincenzo

Di Lazzaro, Paolo Mazzone, Antonio Oliviero, Angelo Quartarone, Hans Speelman, and Peter

Brown. Dopamine-dependent changes in the functional connectivity between basal ganglia and

cerebral cortex in humans. Brain, 125(7):1558–1569, jul 2002.

[5] C. Wiest, F. Torrecillos, G. Tinkhauser, A. Pogosyan, F. Morgante, E.A. Pereira, and H. Tan.

Finely-tuned gamma oscillations: Spectral characteristics and links to dyskinesia — Elsevier

Enhanced Reader. Experimental Neurology, 351:113999, 2022.

[6] Nicole C. Swann, Coralie De Hemptinne, Svjetlana Miocinovic, Salman Qasim, Sarah S. Wang,

Nathan Ziman, Jill L. Ostrem, Marta San Luciano, Nicholas B. Galifianakis, and Philip A. Starr.

Gamma oscillations in the hyperkinetic state detected with chronic human brain recordings in

parkinson’s disease. Journal of Neuroscience, 36(24):6445–6458, jun 2016.

[7] Coralie de Hemptinne, Doris D. Wang, Svjetlana Miocinovic, Witney Chen, Jill L. Ostrem, and

Philip A. Starr. Pallidal thermolesion unleashes gamma oscillations in the motor cortex in Parkin-

son’s disease. Movement Disorders, 34(6):903–911, jun 2019.

[8] Ro’ee Gilron, Simon Little, Randy Perrone, Robert Wilt, Coralie de Hemptinne, Maria S.

Yaroshinsky, Caroline A. Racine, Sarah S. Wang, Jill L. Ostrem, Paul S. Larson, Doris D. Wang,

Nick B. Galifianakis, Ian O. Bledsoe, Marta San Luciano, Heather E. Dawes, Gregory A. Worrell,

Vaclav Kremen, David A. Borton, Timothy Denison, and Philip A. Starr. Long-term wireless

streaming of neural recordings for circuit discovery and adaptive stimulation in individuals with

Parkinson’s disease. Nature Biotechnology, 39(9):1078–1085, may 2021.

20

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 7, 2022. ; https://doi.org/10.1101/2022.03.01.482549doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.01.482549
http://creativecommons.org/licenses/by/4.0/
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Haumesser, Vadim V. Nikulin, Andrea A. Kühn, and Christoph van Riesen. Levodopa-Induced

Dyskinesia Are Mediated by Cortical Gamma Oscillations in Experimental Parkinsonism. Move-

ment Disorders, 36(4):927–937, apr 2021.

[11] E. W. Tsang, C. Hamani, E. Moro, F. Mazzella, U. Saha, A. M. Lozano, M. Hodaie, R. Chuang,

T. Steeves, S. Y. Lim, B. Neagu, and R. Chen. Subthalamic deep brain stimulation at individu-

alized frequencies for Parkinson disease. Neurology, 78(24):1930–1938, jun 2012.

[12] Andrea Guerra, Donato Colella, Margherita Giangrosso, Antonio Cannavacciuolo, Giulia Papar-

ella, Giovanni Fabbrini, Antonio Suppa, Alfredo Berardelli, and Matteo Bologna. Driving motor

cortex oscillations modulates bradykinesia in Parkinson’s disease. Brain, jul 2021.

[13] Eric Lowet, Mark J. Roberts, Alina Peter, Bart Gips, and Peter De Weerd. A quantitative theory

of gamma synchronization in macaque V1. eLife, 6, aug 2017.

[14] Muthuraman Muthuraman, Manuel Bange, Nabin Koirala, Dumitru Ciolac, Bogdan Pintea, Mar-

tin Glaser, Gerd Tinkhauser, Peter Brown, Gunther Deuschl, and Sergiu Groppa. Cross-frequency

coupling between gamma oscillations and deep brain stimulation frequency in Parkinson’s disease.

Brain, 143(11):3393–3407, nov 2021.

[15] Nicole C. Swann, Coralie De Hemptinne, Margaret C. Thompson, Svjetlana Miocinovic, An-

drew M. Miller, Ro’Ee Gilron, Jill L. Ostrem, Howard J. Chizeck, and Philip A. Starr. Adaptive

deep brain stimulation for Parkinson’s disease using motor cortex sensing. Journal of Neural

Engineering, 15(4), may 2018.

[16] J. Anso, R. Gilron, M. Yaroshinsky, R. Wilt, R. Perrone, I. Bledsoe, M. San Luciano, J. Ostrem,

S. Little, C. de Hemptinne, and P. Starr. 895 Pallidal deep brain stimulation entrains finely tuned

gamma oscillations in motor cortex. Movement Disorders Abstracts 2021: official journal of the

Movement Disorder Society, 36:S1–S599, sep 2021.

[17] V I Arnol’d. Remarks on the perturbation theory for problems of Mathieu type. Russian Math-

ematical Surveys, 38(4):215–233, aug 1983.

21

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 7, 2022. ; https://doi.org/10.1101/2022.03.01.482549doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.01.482549
http://creativecommons.org/licenses/by/4.0/
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