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Abstract

Objectives: The exact mechanisms of deep brain stimulation (DBS) are still an active area of in-
vestigation, in spite of its clinical successes. This is due in part to the lack of understanding of the
effects of stimulation on neuronal rhythms. Entrainment of brain oscillations has been hypothesised
as a potential mechanism of neuromodulation. Better understanding entrainment might further in-
form existing methods of continuous DBS, and help refine algorithms for adaptive methods. The
purpose of this study was to demonstrate that cortical finely-tuned gamma oscillations around 75Hz
being entrained at 65Hz during 130Hz DBS in patients with Parkinson’s disease (PD) are consistent
with 1:2 entrainment, a special case of sub-harmonic entrainment predicted by synchronisation theory.

Furthermore, we looked to predict stimulation parameters that would result in 1:2 entrainment.
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Materials and Methods: We fit a coupled neuronal population model to selected features character-
ising a PD patient’s off-stimulation finely-tuned gamma rhythm recorded through electrocorticography.
Results: Our model predicts the regions of entrainment (Arnold tongues) in the stimulation fre-
quency/amplitude space. We show that the resulting neural circuit model fitted to patient data
exhibits 1:2 entrainment when stimulation is provided at 130Hz. Furthermore, we verify keys features
of the 1:2 Arnold tongue with follow-up recordings from the same patient, such as the loss of 1:2
entrainment beyond a certain stimulation amplitude.

Conclusion: Our results reveal that periodic DBS in patients may lead to nonlinear patterns of
neuronal entrainment across stimulation parameters, and that these responses can be predicted by
modelling. Should entrainment prove to be an important mechanism of therapeutic stimulation, our
modelling framework may reduce the parameter space that clinicians must consider when programming

devices for optimal benefit.

Introduction

Deep Brain Stimulation (DBS) is a form of invasive neuromodulation, where electrical impulses are
delivered to specific brain regions by implanted electrodes. In the context of Parkinson’s disease (PD),
DBS is primarily used to alleviate motor symptoms when pharmaceutical measures do not provide
therapeutic benefit. While a diverse range of effects of DBS have been observed in both behaviour
and neuronal rhythms, the exact mechanisms underlying these responses are not fully understood.

Activity in the gamma band (approximately 30 to 100Hz) has become a target for neuromodulation
as it is associated with various cognitive performance features [1] as well as motor control [2]. Invasive
recordings of the basal ganglia in PD have revealed gamma oscillations at 60-90Hz in patients on an-
tiparkinsonian medications [3, 4]. These have been thought to represent a “prokinetic” brain rhythm,
in contrast to “antikinetic” beta rhythms (13-30Hz). Recently, prominent finely-tuned gamma oscilla-
tions (a narrowband gamma activity [5]) at 60-90Hz have been found during invasive recordings from
motor cortical areas in PD [6, 7, 8], and may be associated with dyskinesias. Additionally, similar
cortical oscillations have been observed in rat models of dyskinesia [9, 10].

Stimulation targeting gamma band activity has been shown to improve motor symptoms in PD
by a comparable scale to high-frequency stimulation, while this was not observed for stimulation at
theta and beta frequencies [11]. In another study, transcranial alternating current stimulation (tACS)
at gamma frequency was observed to increase motor velocity in PD, while tACS at beta frequency
saw it decrease [12]. It was hypothesised that entrainment (specifically 1:1 entrainment, as depicted in

Fig 1B) of both gamma and beta oscillations would explain this observation by enhancing “prokinetic”
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and “antikinetic” rhythms, respectively. This suggests that gamma entrainment may have potential
to modulate PD-associated motor symptoms.

Further evidence of cortical gamma entrainment is provided by observations of modulated cortical
gamma rhythms in response to stimulation. The ability to entrain gamma rhythms at stimulation
frequency has been shown through varying visual stimulation at gamma frequency in the Macaque
V1 [13]. Cross-frequency coupling of cortical finely-tuned gamma to the stimulation frequency has
also been observed in PD patients with Subthalamic Nucleus (STN) DBS [14]. Additionally, a shifted
finely-tuned gamma peak has been noted in the motor cortex in response to high-frequency (130Hz)
DBS of the STN [6, 15, 8, 16]. The gamma peak, off-stimulation between 75 and 80Hz, locks to
the half harmonic of stimulation (see Fig 1), corresponding to 1:2 entrainment. This half harmonic
lock suggests that modulation goes beyond solely entraining rhythms at the frequency being applied
or suppressing them like an information blockade. Currently, there is no theoretical understanding
of 1:2 gamma entrainment in PD and generally no framework to predict the occurrence of specific
entrainment regimes in response to brain stimulation.

In this study, we look to set up a pathway to predict sub-harmonic entrainment of brain rhythms
by DBS in PD patients, using a model-based approach that is informed by data. We postulate that
by constraining the parameters of a neuronal population model to patient data, it will be possible to
predict stimulation parameters that lead to 1:2 gamma entrainment for subjects with off-stimulation
gamma rhythms. We provide a theoretical introduction to 1:2 gamma entrainment using the simplest
model of a neural oscillator receiving periodic stimulation, the sine circle map. However, the sine circle
map cannot be fitted to patient data. Hence, we develop a patient specific approach by showing that
the Wilson-Cowan model, a neural population model, is capable of replicating off-stimulation features
of a finely-tuned gamma rhythm when fitted to electrocorticography (ECoG) data from a patient
with PD. The fitted-model is capable of predicting the regions of 1:2 entrainment in the stimulation
parameter (frequency and amplitude) space. We proceed to verify key features of the 1:2 entrainment
region with follow-up recordings from the same patient. Lastly, these results are discussed and the

implications are highlighted for future stimulation therapies.

Materials and methods

Rotation Number and Arnold Tongues

The frequency locking behaviour of a rhythm to external stimulation across stimulation frequency

and amplitude can be described by frequency-locking regions called Arnold tongues [17]. Frequency
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locking is observed when a rotation number of the form p:q, where p and q are coprime integers, is
maintained for several stimulation periods. In general, the rotation number may not be a ratio of
integers, and corresponds to the average number of oscillatory cycles achieved by the rhythm between

two periodic pulses of the driving stimulation. This is calculated as

On — 6o
2N’

(1)
where 0 is the phase after N stimulation pulses (in this study, N > 50) and 6 is the initial phase.
Previously, Arnold tongues have been used to describe 1:1 entrainment in response to noninvasive
neuromodulation [18, 19, 20, 21]. Depending on the system considered and the stimulation waveform,
Arnold tongues can theoretically exist for various rotation numbers, including p:q with large p and/or
q. However, in real systems, often only the tongues of the most stable rotation numbers, corresponding
to low p and q values, will be observed. Arnold tongues often have different shapes for different
dynamical systems. Generally, an Arnold tongue expands in width across larger frequency ranges as

stimulation amplitude increases. This continues up until an amplitude where the region may share

stability with another frequency-locking ratio or lose stability altogether.
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Figure 1: Prior human recordings demonstrate 1:2 entrainment of cortical gamma
rhythms from subcortical stimulation. (A) PSD of gamma band activity before and during
DBS to the STN at 130Hz. In the DBS Off state, a natural ~75Hz gamma rhythm can be observed.
This is entrained at 65Hz during the following two minutes of DBS On at 130Hz. (B) 1:1 entrain-
ment = one stimulation pulse per brain rhythm cycle and a rotation number of 1, 1:2 entrainment
= two stimulation pulses per brain rhythm cycle and a rotation number of 0.5. Hence, during 1:2
entrainment, the brain rhythm locks to a frequency of half that from the external stimulation. This
corresponds to the DBS On state of panel A. Panel A is edited from [6].
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Sine Circle Map

The sine circle map is the simplest model that describes the influence of periodic stimulation on an
oscillator and can provide a first level description of gamma entrainment during 130Hz stimulation.
The model stroboscopically observes the phase, 0, of a single oscillator of natural frequency fy, pe-
riodically stimulated at frequency fs; and stimulation intensity, A;. The map between the oscillator

phase right after stimulation pulse ¢ and its phase right after stimulation pulse ¢ + 1 is given by

Oiv1 = 0; + 2w (fo/fs) + AsPRC(6;),

where PRC denotes the oscillator phase response curve and describes the change in the oscillator phase
as a function of the stimulation phase. For the sine circle map, the PRC is given by PRC(6) = sin(9).

While the sine circle map can provide a first level description of gamma entrainment, its simplicity
results in significant limitations. Firstly, as the oscillator stays on the unit circle, there is no variable
amplitude of oscillations. This makes anything more than analysis of a single neuronal unit unreliable.
Secondly, the sine circle map only represents a single oscillator. Therefore it is difficult to draw com-
parisons to ECoG signals that arise from interacting populations of neurons. Thirdly, it is known that
pulse shape impacts entrainment behaviour; however, as the sine circle map is stroboscopic, realistic
pulses cannot be used. Hence, a model which captures the interaction of neurons, is representative of
larger neuronal populations and for which realistic pulse shapes can be used would be more suitable.

A model such as the Wilson-Cowan model would provide this.

Wilson-Cowan Model

The Wilson-Cowan model is well-suited to fit population-level brain recordings. The model is a
heuristically derived mean-field model describing interacting neuronal populations [22, 23] and, hence,
is a natural choice to represent ECoG recordings. The Wilson-Cowan model has been used in the
analysis of neuronal responses to periodic and varying stimulation [24, 25, 26, 27, 28] and in theoretical
studies of entrainment [29, 30]. Additionally, the model has been used in the analysis of resonances [31],
as well as in the communication of information [32]. The Wilson-Cowan model has a limited number
of model parameters which make it feasible to constrain the model without over-fitting. Despite the
relatively small number of parameters, it is also able to capture a wide variety of dynamics [33, 34, 29].

We use the two-population Wilson-Cowan model to represent excitatory and inhibitory cortical
populations with reciprocal connections (see Fig 2). The model can be used to predict the interactions

of large groups of neurons and outputs the activity of excitatory and inhibitory populations. The

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93


https://doi.org/10.1101/2022.03.01.482549
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.01.482549; this version posted July 7, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

population activities are denoted by F and I, respectively, and are proportional to the firing rate of

that population’s neurons. Stochastic differential equations describe the evolution of E and [ as

1
dE = — (=B + f(np + wepE + wipl))dt + (dWp
E

1
dl = T—(—I + f(1 +werE) + Agim(t))dt + CdW;
T
1

f(l‘) = 1+ eb—1)"

These interactions are weighted by coupling strength, w2 (going from population one to population
two), and occur through a sigmoid function, f(z), of steepness coefficient b. 7 and 77 represent
the time constants of the excitatory and inhibitory populations respectively. ngp and n; are the
constant inputs to the respective populations. Stochasticity is introduced to the model through Wiener
processes, Wg and Wj, with noise standard deviation denoted by (. Noise is required to reproduce
the off-stimulation data, which is characterised by bursts of activity rather than perfectly periodic
dynamics (see Fig 4D).

It is unclear whether stimulation of the external globus pallidus (GPe) has a net inhibitory or
excitatory effect on the cortex. Connections via the thalamus likely have an excitatory effect on
the cortex [35]. However, there also exist direct projections from cholinergic neurons in the GPe
which have a solely GABAergic effect on the cortex [36]. Hence, while both inhibitory and excitatory
projections exist from the GPe to the cortex, in this study we focus on the direct connection and apply
periodic high-frequency stimulation, Agy,(t), to the inhibitory population. However, we also consider
stimulation applied to the excitatory population in Supplementary Data section 2.5. Stimulation is
applied directly, not through the sigmoid function, as this provides a greater wealth of dynamics by

avoiding saturation effects [28].

Data Collection

Cortical data off-stimulation were collected to fit the Wilson-Cowan model. On-stimulation data
at variable stimulation frequencies and amplitudes were then used to compare and validate pre-
dictions from the fitted model. Human neural data were collected from a 64 year old female who
had DBS implantation for motor fluctuations and medically intractable tremor, 13 years after onset
of motor signs. The patient was diagnosed with idiopathic Parkinson’s Disease and bilaterally im-

planted with the Medtronic Summit RC+S bidirectional neural interface (clinicaltrials.gov identifier
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Figure 2: The two-population Wilson-Cowan model. Stimulation is applied to the inhibitory
population (I) and data recorded from the excitatory population (E). The weights of the three connec-
tions present in this model are wgy, the weight of the excitatory effect on the inhibitory population,
wrE, the weight of the inhibitory effect on the excitatory population, and wgg, the weight of the self
excitatory effect. Additionally, there are external inputs, ng and 77, to each population. The insert
displays the single time step stimulation pulse with no recharge used throughout study.

NCT03582891, USA FDA investigational device exemption number 180097, IRB number 18-24454),
quadripolar cylindrical leads in the pallidal nuclei, and subdural paddle-type leads over the primary
motor cortex, Figs 3A1-3. She had been chronically treated with antiparkinsonian medications, at a
levodopa equivalent dose of 1083 mg/day at the time of surgery. Her preoperative unified Parkinson’s
disease rating scale (UPDRS) part 3 score was 89 twelve hours off of medication, improving by 53%
in the on-medication state. The active contact array was localised in the globus pallidus (GP) using
microelectrode recording (MER) mapping of single-unit cells to traverse the postero-lateral regions
of the external globus pallidus (GPe) and internal globus pallidus (GPi), Fig 3A1. Localisation of
contacts was further confirmed by computationally fusing a postoperative CT scan to the preoperative
planning MRI scan, Figs 3A2-3. Prior to the initiation of standard therapeutic pallidal stimulation, we
recorded four-channel local field potentials of the cortical and pallidal sites of each hemisphere across
a month-long period. The data used for the fitting process was streamed from the patient wirelessly
during normal activities of daily living, on their usual schedule of antiparkinsonian medication. The
recording methods and data processing were similar to those described in Gilron et al. [8]. After ten
months of continuous pallidal stimulation at 130Hz or 150 Hz with left hemisphere stimulation from
contact two and right-hemisphere stimulation from contacts one and two, we conducted a follow-up
in-clinic recording session to validate some of the model predictions and explore the DBS parameter

space while the patient was on her usual antiparkinsonian medications. In this session, we cycled
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through stimulation frequencies ranging 130-160Hz and stimulation amplitudes ranging 0-6.5mA un-
der the guidance of a movement disorders neurologist. The patient was stimulated with a 90us pulse
width and an equivalent length “active recharge”, where recharge is defined in Supplementary Data
section 2.2. We recorded from two sensing contacts, +8-9 post-central sulcus, +10-11 pre-central sul-
cus, shown in Fig 3A3. Each trial of the data collection session consisted of a fixed frequency-amplitude
pairing with a minimum 30-second duration and a 15-second inter-trial interval. We excluded data
from the right hemisphere due to challenges interpreting data from dual stimulating contacts (contacts
1 and 2, using the subcortical contact numbering shown in Fig 3A1), while the left hemisphere was

only stimulated by a single contact (contact 2).

Fitting Process

To fit the parameters of our Wilson-Cowan model, we processed the month-long off-stimulation record-
ing to obtain data features for the model optimisation. We separated the off-stimulation sessions into
epochs with a minimum of 30 seconds of continuous and uninterrupted recordings. The epoch used
for the fitting process was selected by identifying the epoch with the most prominent gamma peak
within the frequency range 72-78Hz, the approximate average of the overall dataset. From this epoch,
three features were selected for the purposes of fitting the model; the power spectral density (PSD),
the envelope PSD and the envelope probability density function (PDF), as shown in Fig 3B1-3. The
envelope is the modulus of the analytic signal and refers to a curve that traces the upper bound of
the signal, providing a measure of the oscillation’s amplitude. These features were selected to provide
a representation of the signal and its envelope in the frequency domain, as well as a representation
of the statistics of the envelope in the time domain. We demonstrate that there is little correlation
between the three features mentioned here and that all three features are required to capture the full
dynamics of the data in Supplementary Data section 1.1. Fitting to off-stimulation features ensured
that any presence of 1:2 entrainment is not predetermined, as would have been provided by a fit to
on-stimulation data.

Model parameters were then optimised to best match the selected data features (Fig 3B1-3).
This process follows a fitting methodology similar to [28, 37]. It begins by generating random sets of
parameters, and selecting parameter sets with a PSD broadly similar to that of the data (the first loop
of Fig 3C), i.e. with a gamma peak between 70 to 80Hz. This improves the computational efficiency
of the parameter fitting and the overall duration of the optimisation. Accepted parameters enter an
optimisation loop using the patternsearch function of Matlab2020b, which minimises the cost function

(see Supplementary Data section 1.2) capturing the distance between model and data features (the
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Figure 3: Use of prestimulation human neural recordings to fit Wilson-Cowan model
parameters. (Al-3) Left hemisphere lead localisation. (A1) globus pallidus (GP) contact local-
isation (black numbered rectangles) with respect to the boundaries of the internal globus pallidus
(yellow) and external globus pallidus (GPe) (blue) as defined by micro-electrode recording mapping
of single-unit cells (black dots). (A2-3) Localization of contacts with a postoperative CT scan that
is computationally fused with the preoperative planning MRI scan. (A2) GP lead on an axial T2-
weighted MRI, which visualises the GP as regions of T2 hypointensity (GPe highlighted by a white
contour). (A3) Quadripolar subdural paddle lead on sagittal T1-weighted MRI shows the relationship
between the central sulcus (red arrow) and contacts (white numbered arrows).(B1-3) The three data
features, power spectral density (PSD) (B1), envelope probability density function (PDF) (B2) and
envelope PSD (B3), for the selected epoch, based on the gamma peak height in the cortical 9-8 and
11-10 contact. The features shown are from the cortical contacts as labelled in Panel A3. The orange
and blue lines display the band-pass filtered cortical signals between 72Hz and 78Hz. The yellow and
grey dotted line in the PSD plot shows the unfiltered signal which, for the 11-10 contact, still displays
the finely-tuned gamma peak seen in the filtered data. The fitting is based off the filtered data from
the 11-10 contact. (C) The optimisation pathway for fitting the model to off-stimulation data. This
process is broken down into three main loops, as discussed in the Fitting Process section. Once a
fitted set of model parameters is obtained we are able to make predictions for the neuronal population
responses in the on-stimulation state.
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second loop of Fig 3C). We run this optimisation to obtain approximately 2500 parameter sets fitted
to the 30 seconds of off-stimulation data, each corresponding to a different local minimum of the cost
function. From the resulting fits, we select the 20 with the greatest R? values and perform further
simulations to refine the ranking of cost. As the model includes stochasticity, we also make sure that
the optimal model parameter selections are robust to noise (the third loop of Fig 3C), more details
can be found in Supplementary Data section 1.3. The top-ranked fit is then selected based on these
simulations. We don’t expect overfitting to be an issue given that we are fitting to off stimulation
data, where there is no entrainment in the signal. Predictions of the response to external stimuli are

then be made by introducing stimulation to the off-stimulation fitted model.
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Figure 4: Comparison of the data features and the features of the best ranked model
parameter set. R? = 0.944 on average across 50 simulations lasting 100 seconds each.The model
closely matches the data PSD (A), envelope PDF (B), and envelope PSD (C). (D-E) Comparison
of the band-passed, z-scored, off-stimulation time series from patient data and the model excitatory
population time series data.

Providing Stimulation and Entrainment Analysis in the Model

The stimulation pulse provided throughout the majority of the modelling work in this study, unless
mentioned otherwise, is a single time step positive pulse with no recharge (see the insert in Fig 2).
This stimulation pulse was chosen for simplicity. Different recharge lengths and stimulation waveforms
are explored in Supplementary Data sections 2.2 and 2.3. In the presence of stimulation, the rotation

number is calculated using equation 1 where 6; is taken as the unwrapped Hilbert phase of the
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excitatory population activity over ¢ stimulation pulses. This was calculated over 50 stimulation
cycles and averaged over five repeats at each stimulation parameter.

The PSD of the model output with stimulation applied was calculated using Welch’s PSD estimate
over the same number of stimulation cycles and repeats as the rotation number. The peak PSD was

calculated as the maximum power in the 0 to 200Hz frequency range.

Entrainment Analysis of the ECoG Recordings

The PSD of the data was calculated in a similar way to that of the model, using Welch’s PSD estimate.
Only frequencies recorded within the 50 to 120Hz range were considered when finding the peak power.
To calculate the rotation number for a particular stimulation setting, the frequency of the maximum
PSD power was divided by the stimulation frequency. Only rotation numbers of 0.5 £ 0.05 were
considered to have resulted in 1:2 entrainment and marked by a circle in Fig 5E. However, Fig 5E
remains unchanged when the tolerance on rotation numbers resulting in 1:2 entrainment is reduced

to 0.5 £ 0.005.

Results

1:2 Entrainment During High-Frequency DBS is Predicted by the Sine Circle Map

Gamma entrainment during high-frequency DBS is predicted by even the simplest model that describes
the influence of periodic stimulation on a neural oscillator, the sine circle map. In particular, we are
able to observe a 1:2 Arnold tongue (Fig 5A), which predicts 1:2 entrainment for a 75Hz oscillator at
130Hz stimulation. There exists a specific range of stimulation amplitudes for which we would expect
to see 1:2 entrainment of the oscillator at a resultant frequency of 65Hz. This is in agreement with the
observations by Swann et al. [6, 15] and provides theoretical grounds for expecting 1:2 entrainment
during high-frequency stimulation. However, the sine circle map only models a single oscillator (in this
case a single neuron) responding to a periodic stimulus. We therefore turn to an interacting neural
populations model that is fitted to patient data to predict stimulation parameters that lead to 1:2

entrainment.

Prediction of 1:2 Entrainment Using a Fitted Wilson-Cowan Model

The Wilson-Cowan model, fitted to the patient’s pre-stimulation cortical data, oscillates at a fixed
natural frequency of 75Hz in the absence of stimulation (shown in Fig 4A). This top ranked model

parameter set (found in Supplementary Data Table 1.1) had an average R? value of 0.944 across 50
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simulations, with good fits across all three features (Fig 4).

In the presence of low amplitude stimulation, the model displays a 1:2 tongue around a stimulation
frequency of 150Hz (twice the natural frequency of the interacting populations). This is shown by
the blue-green 1:2 tongue in Fig 5B, which corresponds to a constant rotation number of 0.5. When
stimulation is provided at 130Hz (indicated by the black line), the excitatory population is entrained
at 65Hz for a range of stimulation amplitudes. The 1:2 tongue is left leaning and stems from twice
the natural frequency of the model, i.e. from 150Hz. This left lean suggests that there exist more
parameters around 130Hz for which 1:2 entrainment would also be observed.

The left lean of the 1:2 tongue does not vary depending on whether stimulation is applied to the
inhibitory population or the excitatory population (see Supplementary Data section 2.5), even though
the decision was made to apply it to the inhibitory population. The 1:2 entrainment region exhibits a
left lean regardless of whether the stimulation being applied is in the form of a single time step pulse
train, pulse trains with various recharge durations or more complicated waveforms (see Supplementary
Data sections 2.2 and 2.3).

The fitted Wilson-Cowan model also predicts that the highest spectral peaks will occur at the

lowest frequencies for which 1:2 entrainment arises, as seen in Figs 5C-D.

Validation of Model Predictions in Human Patient During Chronic Therapeutic

Stimulation

The presence of 1:2 entrainment at variable stimulation parameters was investigated in follow-up
recordings for the same patient as the Wilson-Cowan model was fitted to (see recording details in
the Data Collection section). These data were only examined following the core predictions from the
model.

The data show a region of stimulation parameters for which 1:2 entrainment can be observed
(Fig 5E) and appears to exhibit a similar shape to the Wilson-Cowan model predictions, as shown
in Fig 5B. While 1:2 entrainment was seen for amplitudes greater than 5.5mA for 140 and 130Hz, it
was lost for 150Hz. Hence, the 1:2 tongue has an approximate left lean from this set of data with 1:2
entrainment being maintained at higher amplitudes for lower frequencies of stimulation.

Comparing the predictions of entrained peak power in Fig 5D to the data collected provides further
support for the fitted model. The data validate the model’s prediction of highest power for the lower
frequencies within the 1:2 tongue. Changing stimulation parameters from 130Hz, 6.5mA to 150Hz,
5mA results in a drop in entrained peak power, as indicated by the colourscale in Fig 5E. This is

a change that reflects a fundamental difference in the resulting entrained activity, more than the

12

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245


https://doi.org/10.1101/2022.03.01.482549
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.01.482549; this version posted July 7, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

rotation number

10-*

stimulation amplitude (a.u.)

1079

maximum spectral density (dB/Hz)

0 0
50 100 150 130 140 150 160 !
_ stimulation frequency (Hz) x107°
E7r E1 =
A EI
E2
6t O -~ @ x
= O O ® {10
< 5 —~
5t @) O @ e
= E3 =
< BE
=] S
247 A ®
=% ) g
= e~
o 16
§ 3 g
(=%
= A A & @ z
=) g
Eot 48
= =3
1 2
0
125 130 135 140 145 150 155 160

stimulation frequency (Hz)

Figure 5: Testing model predictions of a cortical circuit’s response to an external stimulus
using human neural data during neurostimulation. Stimulation frequency is the horizontal axis
for all panels, while stimulation amplitude is the vertical axis for all panels. Stimulation amplitude
has arbitrary units (a.u.) for all model panels (A,B,C and D) and is in mA for the data panel (E).
Panels A and B have a jet-scaled colourbar indicating the p:q rotation number (as explained in the
Rotation Number and Arnold Tongue section) resulting from the stimulation parameters at that point,
where 1:1 entrainment is in red and 1:2 entrainment is in blue-green. For both these panels, the black
line indicates the 130Hz stimulation condition used in [6, 15]. (A) The sine circle map entrainment
field for variable stimulation frequency with a fixed natural frequency of 75Hz. (B) The entrainment
field of the Wilson-Cowan model with the top ranked parameters. The stimulation applied is a single
time step pulse with no recharge. (C-D) The maximum height of the entrained peaks as predicted
by the top-ranked Wilson-Cowan model fit, calculated as laid out in the Providing Stimulation and
Entrainment Analysis in the Model section. Panel D is a magnified version of panel C (indicated by
the grey rectangle) over stimulation parameter giving comparable results to panel E. (E) The height of
entrained peaks for a series of different stimulation parameters. Circles display peak height of entrained
parameters represented by the colour scale, while black triangles are for parameters that did not display
entrainment (as can be seen in insert E2). The asterisk (*) by the unentrained point (150Hz, 6mA)
indicates the presence of several changes in stimulation amplitude to the hemisphere not being studied
during this recording, while the left hemisphere’s stimulation parameters remained unchanged. 1:2
entrainment was not observed at any of these stimulation parameter sets. The occurrence of both a
black triangle and a circle at the point (150Hz, 2.5mA) indicate intermittent entrainment, hence, this
will likely be on the boundary of the tongue. Inserts E1-3 show PSDs over frequencies 60-80Hz.
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decrease in power due to the aperiodic component of the power spectrum. Additionally, both the data
and model show a small decrease in power with increased amplitude. Across the 130Hz stimulation
frequency line we can observe a small but continual drop in the peak height as stimulation amplitude

increases, as shown in Fig 5E.

Discussion

We show that the simplest model of a single neural oscillator with periodic stimulation, the sine circle
map, is able to recreate the observation of 1:2 entrainment for cortical finely-tuned gamma oscillations
(approximately 75Hz) to DBS at 130Hz in PD patients. The sine circle map represents a simple method
to gain intuition of the response of a specific rhythm to stimulation, but it cannot be fitted to patient
data. Through fitting a model of interacting neuronal populations to off-stimulation data, we are able
to predict the region of stimulation parameters (frequency and amplitude) for which 1:2 entrainment
is possible for this specific patient. In particular, our model predicts that 1:2 entrainment is lost in this
patient when stimulation amplitude is increased beyond a certain value. Furthermore, the 1:2 Arnold
tongue is left leaning, where 1:2 entrainment can be achieved for stimulation frequencies markedly
lower than twice the frequency of the natural gamma rhythm. Lastly, the model further predicts that
there would be a greater entrained gamma power at lower stimulation frequencies. Data recorded
during therapeutic neurostimulation, after the modelling results were obtained, appeared to show 1:2
Arnold tongues that validate these predictions. Hence, the model can capture a range of sub-harmonic
entrainment features without being constrained by entrainment data. This makes the model a good
candidate for further investigations into the effects of high-frequency DBS on finely-tuned gamma in
PD.

By solely analysing the presence of 1:2 entrainment, we avoid the prominent artefact at stimulation
frequency. Hence, this analysis of the data provides a valuable, uncorrupted insight into the neuronal
responses to stimulation. Bounding the 1:2 tongue for 150Hz stimulation, as we ’lose’ 1:2 entrainment
at increased stimulation amplitudes, also provides further evidence that the gamma peak at half
stimulation frequency is not artefactual. This is aligned with the model prediction that 1:2 entrainment
will be ‘lost’ when amplitude is increased beyond a certain point. Additionally, the model predicts that
parameter changes that result in the ‘loss’ of 1:2 entrainment would see a transition to 1:1 entrainment.
However, the presence of 1:1 entrainment is difficult to assess as the resulting power spectral peak can
be masked by the stimulation artefact. In contrast, 1:2 entrainment does not suffer from this issue
remaining free of stimulation artefact, which could provide a utility of sub-harmonic entrainment as a

mechanism for accurate adaptive DBS [6] without having to remove stimulation artefact from a signal
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containing the biomarker of interest. Furthermore, entrainment in the gamma frequency band has
been linked with dyskinesia [6], showing that the entrained signal could be of clinical relevance.

The observation of the highest spectral peaks occurring at the lowest frequencies of stimulation
may be somewhat counter-intuitive, since one could expect more stimulation energy to provide more
oscillatory power. However, due to the increased time between successive pulses of stimulation at
lower frequencies, the trajectory of the population activity covers a larger distance in phase space
(see Supplementary Data section 2.4, specifically Supplementary Data Fig 2.4 for more details on
population activity vector fields and trajectories). This means that the range of values that activity
reaches for each population is greater, producing a higher power spectral peak for the given resultant
frequency. Population activity having a larger range can also be interpreted as there being greater
synchrony of neurons within the populations, as increased peak firing rates and decreased minima
suggest more neurons are firing together.

1:2 entrainment is not an intrinsic property of the Wilson-Cowan model (large regions of parameter
space do not lead to 1:2 entrainment). Additionally, if the parameters of the Wilson-Cowan model do
produce 1:2 entrainment, the 1:2 tongue can also be right leaning or symmetrical about the central
frequency, similar to the 1:2 tongue observed in the sine circle map (Fig 5A). Hence, the parameters
of the Wilson-Cowan model need to be tuned to reproduce the data. Among the top-ranked Wilson-
Cowan fits, there is some variability between the parameter sets and the corresponding entrainment
predictions (see Supplementary Data section 2.1). This demonstrates that the model parameters are
non-identifiable. However, as the best fits converge on results that all include a left leaning 1:2 tongue
and given the validation of some of the model predictions by follow-up recordings, we can conclude
that the fitted model remains a good candidate to make predictions for future investigations. It would
be possible to fit Wilson-Cowan model parameters to on-stimulation entrainment data, which may or
may not reproduce off-stimulation data. This is not something we are investigating as more value is
provided by predicting the response from off-stimulation fits.

While only 1:2 entrainment is investigated here, entrainment will occur at other sub-harmonics
of stimulation if there is a neuronal rhythm present to entrain and the corresponding tongue is large
enough to encompass the neuronal rhythm. Similarly to 1:2 entrainment, sub-harmonic entrainment
at every harmonic of stimulation is not an intrinsic property of Wilson-Cowan models. However, other
sub-harmonic entrainment ratios can be observed for certain model parameter sets. Stimulating in
the range of 130-160Hz in the patient, only 1:2 entrainment was explored for a 75Hz natural rhythm.
By increasing stimulation frequency, for example to around 225Hz, it would be possible to investigate

other sub-harmonic entrainment ratios such as 1:3 entrainment of this rhythm.
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Study Limitations

As a case study, our approach has only been tested in one patient. Our patient-specific approach
consists of fitting a neural mass model to off-stimulation data to predict stimulation parameters that
will lead to 1:2 entrainment. In our case study, patient-specific predictions have been validated with
follow-up recordings. However, it is unclear to what extent these predictions (such as the lean of the
tongue) would generalise to other patients. We expect some variability in entrainment characteristics
across patients, which further motivates a patient-specific approach. The extent of this variability
is however unknown. Additionally, due to the limited amount of data obtained from this patient, it
was not possible to perform a statistical analysis on the observations of 1:2 entrainment in response
to variable stimulation parameters. Statistical analysis could have been achieved by repeating the
observations across stimulation parameters several times, but this would not have been tolerated by
this patient. Nevertheless, this case-study demonstrates the potential for a patient-specific approach
to predict nonlinear effects of brain stimulation.

Furthermore, the stimulation parameters explored in this case study would benefit from a system-
atic mapping of the tongue boundary, with large regions of untested parameters and no full boundary
being charted. Both of these shortcomings will be the focus of further investigations into 1:2 entrain-
ment. However, extensive mapping of the tongue boundary may be limited by patient discomfort as
some parameters tested are subtherapeutic and thus lead to brief exacerbation of motor signs.

Given that ECoG data represents the activity of populations of neurons, the Wilson-Cowan model is
a good choice for this type of data. However, this doesn’t allow us to observe or model the behaviour of
individual neurons in response to stimulation and during 1:2 entrainment. Our approach is nonetheless
adequate to predict stimulation parameters leading to 1:2 entrainment. Additionally, we have not
included a population to represent the basal ganglia in our model. This was because there was no
subcortical peak to fit a Wilson-Cowan network to for this patient. Subcortical narrowband oscillations

in the basal ganglia have been recorded in long term recordings in other patients [8].

Implications

Throughout this study, it is demonstrated that brain rhythms can have nonlinear responses to stim-
ulation, such as entrainment at harmonics of stimulation frequency, and non-monotonic rhythmic
responses to amplitude. We argue against the simple view that only brain rhythms close to the stim-
ulation frequency can be entrained (through 1:1 entrainment). The study also shows that if a specific
entrainment ratio is observed at given stimulation parameters, increasing stimulation amplitude will

not necessarily promote that corresponding frequency even further.
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Given that entrainment to periodic stimulation has been observed in different frequency bands, our
findings might have implications across frequencies. For instance, 1:1 entrainment has been reported in
the alpha band through single pulse transcranial magnetic stimulation when treating depression [18],
with rhythmic visual stimulation [19], and with tACS [38]. If rhythms can lock to harmonics of
stimulation frequency, as supported by this study, it is possible that current stimulation protocols
targeting any frequency band could induce unexpected responses at sub- or supra-harmonics of the
stimulation frequency. Furthermore, when designing stimulation protocols one should be aware of
potential ramifications of stimulation on other neuronal rhythms. For instance, stimulation targeting
lower frequency oscillations, such as beta rhythms, may be able to entrain gamma at a 2:1 rotation
number, or even alpha at a 1:2 rotation number. Similar considerations have been employed when
designing stimulation protocols in a canine with epilepsy [39]. Our patient-specific approach can
help predict these nonlinear responses. This is important since reinforcing oscillations at sub- or
supra-harmonics might induce undesirable effects, or otherwise interfere with the therapeutic effect of

stimulation.

Conclusion

We show that for certain network parameters, simple neural circuits can support 1:2 entrainment
to DBS. In particular, our fitted Wilson-Cowan model provides theoretical evidence for a neural
circuit origin of 1:2 entrainment of cortical gamma oscillation to high-frequency DBS in PD patients.
Furthermore, it predicts a larger region of stimulation parameters, at frequencies corresponding to less
than twice the natural frequency of the system, for which 1:2 entrainment would be observed. These
results are validated by initial 1:2 entrainment charting from the same patient to whom the model
was fitted.

Understanding the variety of effects of stimulation on various brain rhythms would provide valuable
insights into designing stimulation protocols to provide maximum therapeutic benefit with minimal
side effects. This model provides a first step to predicting these responses. Computational models
enable us to experiment with a variety of waveforms without the burdensome tests and validation
that would be associated with in patient trials. Prediction of the neuronal responses to stimulation
is a fundamental step in the design of future therapeutic protocols. Our model predicts that these
responses are not a simple one-for-one mapping of stimulation frequency and amplitudes to brain
network activity and that stimulation may have significant effects, even when the stimulation frequency

is outside of the frequency band of interest.
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Supporting information

Supplementary Data Supplementary Appendix. Further details of the optimisation process,
as well as the fitting robustness and entrainment predictions when different stimulation patterns are

applied to the Wilson-Cowan model, are presented here.
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