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 2 

Abstract 25 

 26 

Primate superior colliculus (SC) neurons exhibit rich visual feature tuning properties and are 27 

implicated in a subcortical network hypothesized to mediate fast threat and/or conspecific 28 

detection. However, the mechanisms through which generalized object detection may be 29 

mediated by SC neurons remain unclear. Here we explored whether, and how quickly, SC 30 

neurons detect and discriminate real-life object stimuli. We presented experimentally-31 

controlled gray-scale images of seven different object categories within the response fields 32 

(RF9s) of SC neurons, and we also presented a variety of luminance- and spectral-matched 33 

image controls. We found that all of our functionally-identified SC neuron types 34 

preferentially detected real-life objects even in their very first stimulus-evoked visual bursts 35 

(starting within approximately 50 ms from image onset). Intriguingly, even visually-36 

responsive motor-related neurons exhibited such robust early object detection, and they 37 

also preferentially discriminated between object categories in their initial visual bursts. We 38 

further identified spatial frequency information in visual images as a critical source for early 39 

object detection and discrimination by SC neurons. Our results demonstrate rapid and 40 

robust SC processing of visual objects, and they underline how the visual processing 41 

capabilities of the primate SC support perception and action. 42 

 43 

 44 

Introduction 45 

 46 

Object detection and recognition are fundamental components of primate vision, and a 47 

substantial number of visual cortical areas are dedicated to processing visual objects [1-5]. 48 

However, vision does not occur in complete isolation of behavior, and an element of visual 49 

object processing in the brain must facilitate active orienting in association with objects, 50 

whether to avoid threats [6] or to foveate and further process behaviorally-relevant items. 51 

Indeed, certain classes of visual objects, like faces, easily pop out from visual scenes with 52 

very short latencies [7], and short-latency eye movements can likewise be automatically 53 

captured by completely task-irrelevant object images [8]. 54 

 55 

The speed with which orienting phenomena associated with visual object recognition 56 

proceed points to the presence of subcortical mechanisms for visual object processing. 57 

Indeed, in 1974, Updyke [9] observed neurons in the superior colliculus (SC), a site of 58 

convergence for retinal and extra-retinal visual signals, that were particularly sensitive to 59 

three-dimensional objects, and SC cells sensitive to complex visual stimuli were also 60 

reported by Rizzolatti and colleagues in 1980 [10]. More recently, a series of studies 61 

explored the roles of the SC and pulvinar in the processing of face and snake images [11-17], 62 

and concluded that the SC may be part of a fast detection network for visual threats and 63 

ecologically-relevant faces that can influence emotions [6]. 64 

 65 

Because the SC is also shown to contribute to a variety of important cognitive processes like 66 

target selection, visual attention, and perceptual decision making [18-24], and given that SC 67 

activity can influence cortical areas through different thalamic circuits [25-28], it stands to 68 

reason that the SC may be involved in object processing in a more general way than being 69 

specifically tuned for processing snakes and faces. In fact, experimental manipulation of SC 70 

activity is associated with altered object selectivity in a patch of the ventral visual processing 71 

stream of the cortex [29], and, similarly, the SC has a dedicated primary cortical area in mice 72 
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[30]. Importantly, the SC possesses privileged access to the saccadic system9s motor 73 

periphery; therefore, a generalized object detection capability by the SC can support rapid 74 

orienting behaviors, which are facilitated by visual objects [8]. As a result, there is a pressing 75 

need to investigate whether, and how, neurons in the primate SC detect and discriminate 76 

visual objects. We did so by presenting seven different categories of visual object images to 77 

individual SC neurons, along with various versions of control images. We found rapid and 78 

sustained detection and discrimination of visual object categories by all visually-responsive 79 

SC neuron types. We also observed that SC tuning to spatial frequency information in images 80 

[31, 32] can facilitate the fastest components of SC visual object processing. Generalized 81 

visual object processing is a robust property of the primate SC. 82 

 83 

 84 

Results 85 

 86 

The very first SC visual responses differentiate between object and non-object 87 

stimuli 88 

We analyzed SC visual responses to images of real-life objects appearing within the recorded 89 

neurons9 response fields (RF9s). The monkeys fixated a central spot, and we presented one of 90 

28 different images, drawn from seven different object categories and their corresponding 91 

control images (Figs. 1A, S1). The control images were luminance- and spectrum-matched 92 

non-object images (Methods): phase-scrambled controls had the same spatial frequency 93 

content as the real object images, but with spectral phase scrambling; grid-scrambled 94 

images had small, square patches (grids) containing identical copies of small patches from 95 

the original images, but with randomized locations. The grid-scrambled images maintained 96 

local image properties but disrupted global form information. Finally, since grid scrambling 97 

also introduced a square grid of hard edges between the scrambled image patches (altering 98 

the spatial frequency content of the images), we also checked whether object detection by 99 

SC neurons was significantly disrupted by overlaid grids presented over the intact objects 100 

(grid+object images; Figs. 1A, S1). Thus, each neuron was tested with seven different object 101 

categories and four different image types: two being coherent objects (object and 102 

object+grid) and two being image-matched, non-object images (grid-scrambled and phase-103 

scrambled). 104 

 105 

Initial and sustained SC visual responses were systematically higher for real object stimuli 106 

than for non-object images. Consider the example neuron of Fig. 1B. In both the object and 107 

object+grid conditions (leftmost two columns), the neuron9s visual response was higher than 108 

in the phase- and grid-scrambled conditions (rightmost two columns). Therefore, the neuron 109 

discriminated between intact object and non-object stimuli even within its very first, initial 110 

visual burst (i.e. within approximately 50 ms from image onset). 111 

 112 

In Fig. 1C-F, we also show results from four additional example neurons. In all cases, initial 113 

visual bursts were the highest for real object images and/or object+grid images. Moreover, 114 

sustained visual activity was clearly higher for the object and object+grid images than for the 115 

phase- and grid-scrambled images, and this was the case even for the neurons with 116 

relatively low sustained activity (Fig. 1E, F). Note that in these analyses, we pooled all seven 117 

object categories together, but we later return to the question of whether SC neurons also 118 

preferred specific individual objects or not. Also note that starting at 300 ms after image 119 

onset (gray shaded regions), the saccade target could appear for the next stages of the 120 
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behavioral task (Methods). Therefore, in all subsequent analyses, we focused only on the 121 

first 300 ms of neural responses. In all, the five example neurons of Fig. 1 suggest the 122 

presence of both very early as well as sustained discrimination of object and non-object 123 

stimuli by primate SC neurons. 124 

 125 

 126 

 127 
 128 
Figure 1 Early and sustained enhancement of superior colliculus (SC) visual activity for real-life object images. 129 
(A) We presented an image of real-life objects (e.g. banana) as well as multiple variants of it. The object+grid 130 
image overlaid a grid creating small square patches of image regions. The phase-scrambled image contained the 131 
same spatial frequency content as the object image, but with scrambled phase information. And, the grid-132 
scrambled image had randomized grid locations from the object+grid image. In total, we tested seven different 133 
object categories, spanning faces, animals, and artificial objects. See also Fig. S1. (B) Each column shows the 134 
responses of an example neuron under the four different image conditions. The leftmost column shows 135 
responses to intact object images. Top: individual trial spike time rasters showing responses to each object 136 
category; bottom: average firing rate plot pooling the seven different object categories together (but see Figs. 4, 137 
5 later for further analyses of object preference without pooling). The neuron exhibited a robust visual burst 138 
followed by sustained activity. In the second column, the overlaid grid minimally altered the response. However, 139 
both the phase-scrambled (third column) and grid-scrambled (fourth column) conditions were associated with 140 
significantly weaker activity. (C-F) Four additional example neurons showing similar results. The object and 141 
object+grid conditions had the highest initial visual bursts. Moreover, sustained activity was higher for the object 142 
and object+grid conditions than for the scrambled conditions. The gray shaded regions in B-F denote the time at 143 
which the saccade target could appear in the subsequent stages of the trials (Fig. S1). 144 

 145 

 146 

 147 

We confirmed that, across the population, early SC visual bursts robustly discriminated 148 

between object and non-object images. We did so by assessing the discriminability of firing 149 

rates between the object and grid-scrambled conditions; we performed a running receiver 150 

operating characteristic (ROC) analysis on the neural responses, using 40 ms time bins in 151 

steps of 10 ms (Methods). For each time bin around image onset, we collected firing rates 152 

from each condition (either intact object or grid-scrambled image) pooled for all seven 153 

object categories, and we then calculated the area under the ROC curve (AUC) between the 154 

two distributions (see later for our separate analyses of object preference). AUC values 155 
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significantly different from 0.5 indicated discriminable firing rate distributions between 156 

object and grid-scrambled images (Methods). 157 

 158 

In each monkey, we accepted a neuron as significantly detecting objects versus non-object 159 

stimuli if it had a significant AUC value in any time bin within 0-300 ms from image onset 160 

(Methods). Out of 131 neurons in monkey M (including task-irrelevant ones like purely 161 

motor neurons), 77 showed significant discrimination performance for intact objects relative 162 

to grid-scrambled images. In monkey A, 26 out of 82 total neurons (again including task-163 

irrelevant ones like purely motor neurons) did so. Most importantly, in both monkeys, the 164 

highest discrimination performance always occurred in the very initial visual burst interval. 165 

This is illustrated in Fig. 2A for monkey M and Fig. 2D for monkey A (error bars denote 95% 166 

confidence intervals). Therefore, SC neurons detect visual objects in an express manner, 167 

consistent with behavioral evidence of an automatic influence of visual forms on target 168 

selection for eye movements [8], and also consistent with results demonstrating altered 169 

cortical object selectivity with altered SC activity [29]. 170 

 171 

Since grid scrambling necessarily entailed adding hard vertical and horizontal edges around 172 

each grid (see the example grid-scrambled image in Fig. 1A), we also checked whether the 173 

results of Fig. 2A, D were trivially explained by these added edges. We, therefore, repeated 174 

the ROC analyses, but this time comparing the grid+object images to the grid-scrambled 175 

ones. Now, both image types had the same hard edges embedded within them, but the 176 

grid+object images preserved much of the form information in the original intact object 177 

images; the grid+object stimuli were akin to the objects being occluded by a thin rectangular 178 

mesh and thus still recognizable as coherent objects. We still found robust early and 179 

sustained discrimination performance in both monkeys (Fig. 2B, E). Thus, the results of Fig. 180 

2A, D were not explained by the slightly altered spatial frequency content introduced by the 181 

grids in the grid-scrambled images. We next explored spatial frequency effects more closely. 182 

 183 

 184 

The earliest phase of visual-object detection by SC neurons relies on spatial 185 

frequency image content 186 

Because spatial frequency is relevant for visual object recognition [33-37], and because 187 

primate SC neurons exhibit spatial frequency tuning [31, 32], we next asked how object 188 

detection performance as in Figs. 1, 2A, 2B, 2D, 2E depended on spatial frequency. We 189 

repeated the ROC analyses, but we now pitted intact object images against phase-scrambled 190 

images (Methods). In these latter images, there was no grid overlay, but the phases of the 191 

different spatial frequency bands of the images were randomized relative to the intact 192 

object image condition. We still found a substantial number of neurons in each monkey with 193 

significant AUC values in the first 300 ms after image onset (Fig. 2C, F), satisfying our criteria 194 

for object detection by SC neurons. Interestingly, however, the earliest phase of AUC 195 

discrimination performance between intact and phase-scrambled images was significantly 196 

weaker than in the case of grid scrambling. For example, across the population of significant 197 

neurons in each monkey in the phase-scrambled condition (46 in monkey M and 35 in 198 

monkey A), the average population AUC value first moved significantly away from 0.5 (at the 199 

95% confidence level) at 70 ms and 60 ms after image onset for monkeys M and A, 200 

respectively (Fig. 2B, E). This is in contrast to the earlier detection of objects with respect to 201 

grid-scrambled images (30 ms; Fig. 2A, D). This observation implies that in the very early 202 

phases of visual responses in our population, neural activity for the intact objects was more 203 
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 6 

similar to that for phase-scrambled objects than it was to grid-scrambled images. Therefore, 204 

object detection by SC neurons is partially mediated, in the very early phases of neural 205 

responses, by the spatial frequency image processing capabilities of these neurons; this 206 

highlights an interesting potential functional role for spatial frequency tuning in primate SC 207 

neurons [31, 32]. 208 

 209 

 210 

 211 
 212 
Figure 2 Early and late detection of visual objects by SC neurons. (A) For each neuron in monkey M, we 213 
compared distributions of firing rates (in 40 ms time bins) between intact and grid-scrambled object images using 214 
ROC analyses (Methods). For each neuron with a significant AUC (area under ROC curve) value in the interval 0-215 
300 ms from image onset (n=77), we plotted AUC as a function of time in the top panel (the color indicates the 216 
AUC value). The bottom panel plots the average of all neurons9 AUC time courses (error bars denote 95% 217 
confidence intervals across the population), showing an initial robust peak followed by sustained elevation. The 218 
dashed vertical line marks the first time point after stimulus onset for which the AUC value of the population was 219 
significantly deviated away from 0.5 (30 ms). (B) Same analysis but comparing object+grid images to grid-220 
scrambled images. The overlay of a grid on top of the images (Fig. 1A, S1B) was not enough to strongly alter the 221 
ability of the neurons to detect visual objects, but the altered spatial frequency content of object+grid images 222 
slightly modified the early (<100 ms) AUC values (see C). (C) Same analysis but comparing object images to phase-223 
scrambled images. Here, the early peak in AUC discrimination performance was significantly attenuated, 224 
suggesting that the spatial frequency content of object images contributes to early object detection mechanisms 225 
by the SC. (D-F) Same as A-C but for monkey A. The results in both animals were highly consistent with each 226 
other. Figure S2 shows related analyses controlling for the effects of microsaccades. 227 

 228 

 229 
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It is, nonetheless, interesting that in longer intervals after image onset (e.g. >100 ms), there 230 

was still significant AUC discrimination performance between the intact and phase-231 

scrambled object images. This is clearly seen in Fig. 2C, F, in which significant AUC 232 

discrimination performance persisted at least until the next phase of the trials (>300 ms). 233 

Such sustained effect might suggest a reverberation of object representation between the 234 

SC and other visual cortical areas associated with object recognition. For example, because 235 

object recognition may preferentially benefit from mid-spatial-frequency information [34-236 

37] and the SC is primarily low-spatial-frequency tuned [31], feedback to the SC after the 237 

initial visual bursts can help to stabilize the SC representation for the detected objects for 238 

prolonged intervals. Therefore, object detection by SC neurons proceeds with both an early 239 

and a sustained phase (Fig. 2A, D); the early phase is supported by spatial frequency 240 

information that is intrinsically present in the SC neurons, and the later phase may use 241 

additional form information that could potentially be relayed to the SC from other brain 242 

areas (Fig. 2C, F). 243 

 244 

We also analyzed microsaccades to remove potential eye movement confounds from our 245 

analyses. Microsaccade rate exhibited expected modulations as a function of time from 246 

image onset (Fig. S2A, E) [38-40]. This meant that in the early visual burst intervals of neural 247 

responses, there were already rare microsaccades due to microsaccadic inhibition. This ruled 248 

out a potential role for microsaccades in at least explaining the early visual burst interval 249 

results so far. However, we still repeated all analyses when excluding all trials containing 250 

microsaccades in the interval between -100 ms and +300 ms from image onset. Our results 251 

were largely unchanged (Fig. S2B-D, F-H). In fact, the AUC discrimination performance 252 

improved slightly across the board (compare Fig. S2B-D, F-H to Fig. 2), as might be expected 253 

given that microsaccades can modulate SC visual bursts [41, 42], and also given that these 254 

movements can cause measurable visual reafferent SC neural modulations after image jitter 255 

[43]. 256 

 257 

 258 

Even visual-motor SC neurons detect objects in their very first visual responses 259 

To further appreciate the SC9s role in express object detection, even within the initial visual 260 

bursts, we also considered this structure9s different functional neuron types. For example, it 261 

is well known that deeper-layer visual-motor neurons are relevant for a variety of cognitive 262 

processes like target selection, attention, and decision making [18-20, 22-24, 44], in addition 263 

to their roles in eye movement generation [45-48]. So, we functionally classified our neurons 264 

according to classic visual and saccade-related response criteria (Methods), and we then 265 

explored object detection performance once again. 266 

 267 

In both monkeys, most of our neurons were visual-motor-prelude neurons (Methods): they 268 

emitted visual bursts after stimulus onset, saccade-related bursts at saccade onset, as well 269 

as significant prelude activity (above baseline spiking rate) before saccade onset. We also 270 

encountered visual-motor neurons, which did not exhibit substantial delay-period (prelude) 271 

activity but were otherwise similar to visual-motor-prelude neurons. Finally, our database 272 

included a fewer number of purely visual neurons, which came in two primary flavors: visual 273 

neurons emitting a burst shortly after stimulus onset, and visual-delay neurons also 274 

exhibiting delay-period activity after the bursts. 275 

 276 
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All neuron types that we encountered exhibited significant object detection capabilities, and 277 

highly similarly in both monkeys. For example, Fig. 3A, D shows the distribution of neuron 278 

types contributing to the results of Fig. 2A, D. Both visual-motor types were most frequent in 279 

both monkeys (likely due to the recording technique with thick electrode shanks; Methods), 280 

but purely visual neurons were also clearly present. Most interestingly, visual-motor neurons 281 

detected visual objects even earlier than visual-delay neurons in both monkeys (with the 282 

caveat that the number of the visual-delay neurons was relatively low). This result is 283 

illustrated in Fig. 3B, E: in both animals, visual-motor-prelude neurons exhibited high AUC 284 

discrimination performance (relative to grid-scrambled images) in their very initial visual 285 

bursts, and this high discrimination performance actually preceded the discrimination 286 

performance of visual-delay neurons. Even though the numbers of visual-delay neurons 287 

were relatively low in each animal, the effects in both animals were virtually identical, 288 

increasing our confidence in concluding that there is indeed very early object detection by 289 

visual-motor-prelude neurons. At the very least, it is safe to state that visual-motor-prelude 290 

neurons detect visual objects as early as (if not earlier) than purely visual neurons (Fig. 3B, E; 291 

also see Fig. 3C, F). 292 

 293 

 294 

 295 
 296 
Figure 3 Express object detection even by visual-motor neurons. (A) Distribution of neuron types (Methods) 297 
exhibiting significant object detection performance in the data of Fig. 2A (monkey M). Visual-motor and purely 298 
visual neurons were both present. (B) When we compared the initial AUC discrimination performance between 299 
visual-motor-prelude and visual-delay neurons, we found earlier object detection by the visual-motor-prelude 300 
neurons (with the caveat of significantly fewer visual-delay neurons in the database). Error bars denote 95% 301 
confidence intervals. (C) Similarly, visual-motor neurons (without prelude activity) also exhibited early detection 302 
performance. In this panel, the curve from visual-motor-prelude neurons is replicated from B to facilitate 303 
comparison. In this animal, a few visual neurons were also encountered that exhibited object detection 304 
performance, and their results are shown in yellow. Thus, all visual and visual-motor neuron types detected 305 
objects in this animal, and it is interesting that even visual-motor neurons exhibited early detection. (D-F) Highly 306 
similar results from monkey A. Note that in this monkey, we did not encounter visual neurons, so they are not 307 
shown in F as they were shown in C. Figure S3 provides further analyses of neuron types, focusing on later, 308 
sustained intervals of neural discharge. 309 
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 310 

We also found that prelude activity was not a prerequisite for visual-motor neurons to 311 

exhibit rapid object detection. Specifically, in Fig. 3C, F, we repeated the ROC analyses but 312 

now for the visual-motor neurons (green), which did not have substantial delay-period 313 

activity. For comparison, we also plotted the visual-motor-prelude neuron results from Fig. 314 

3B, E again, to facilitate comparing the curves. Both neuron types exhibited similar early 315 

detection of intact visual objects relative to grid-scrambled images (similar results were also 316 

obtained with phase scrambling). In monkey M, we also had some purely visual (burst) 317 

neurons, and they also exhibited early object detection (yellow in Fig. 3C). Therefore, all of 318 

the above results suggest that visual-motor SC neurons are a substantial contributor to the 319 

SC9s ability to rapidly detect visual objects. 320 

 321 

In terms of later intervals after image onset, perhaps expectedly, the neurons that had 322 

sustained activity also showed sustained significant AUC discrimination performance 323 

between object and scramble images. For example, when we repeated the ROC analyses of 324 

Figs. 2, 3 for visual-motor-prelude and visual-delay neurons combined (both of which had 325 

sustained activity), and we compared them to visual-motor and visual neurons (both not 326 

having sustained activity), we found that the later (>100 ms) AUC discrimination 327 

performance was systematically higher for the former group of neurons (Fig. S3). This makes 328 

sense because sustained activity provides a necessary spiking substrate for encoding 329 

information about the visual images. 330 

 331 

Therefore, not only do SC neurons detect visual objects early (Figs. 1, 2), but they do so even 332 

if they are motor-related neurons (Fig. 3). Moreover, delay-period activity contributes to 333 

maintaining information about the intact object images for sustained intervals, as might be 334 

the case in a variety of cognitive tasks. 335 

 336 

 337 

Individual SC neurons exhibit early and late preference for individual object 338 

categories 339 

The results so far pooled all seven object categories presented to each neuron in the 340 

analyses (Methods). However, we also noticed that SC neurons can be differentially 341 

modulated by specific images. For example, inspection of the spike rasters of the neuron of 342 

Fig. 1B, which are grouped by object category, reveals that the neuron fired the most action 343 

potentials upon presentation of the neutral human face and the least action potentials after 344 

the neutral monkey face appeared. Therefore, not only did the neuron detect the presence 345 

of intact object images in its RF (Fig. 1B), but its response was also differentially modulated 346 

for different image categories. This motivated us to inspect visual object preference in more 347 

detail, and we did so using two approaches. 348 

 349 

First, we took a strict approach of only analyzing neurons in which activity for any of the 350 

seven object categories (in the 0-300 ms interval after image onset) was significantly 351 

discriminable from all scrambled images (i.e. both the grid- and phase-scrambled images). If, 352 

and only if, a neuron satisfied this constraint, we defined the preferred object category as 353 

the category for which the peak AUC value in the interval 0-300 ms after image onset was 354 

higher than all other object categories. In monkey M, this resulted in 42 neurons (Fig. 4A), 355 

and in monkey A, we found 15 neurons satisfying these conditions (Fig. 4B). For each of 356 

these neurons, we plotted in Fig. 4A, B the AUC values for the preferred object relative to all 357 
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scrambles. There was clear discriminability of the preferred objects from the control images. 358 

Most importantly, both monkeys exhibited elevated AUC values in the early visual burst 359 

intervals (much like in Figs. 2, 3 above). Therefore, object preference in the SC emerges 360 

quickly (within approximately 50 ms from image onset). 361 

 362 

 363 

 364 

 365 
 366 
Figure 4 Early preference for specific object categories, and with a diversity of category preferences across the 367 
population. (A) ROC analyses in monkey M comparing firing rates for the most preferred object category to firing 368 
rates in both the grid- and phase-scrambled images (Methods). Object preference emerged even in the early 369 
visual burst interval of neural responses (<100 ms). All conventions are as in Fig. 2. (B) Similar results for monkey 370 
A. (C) Distribution of most preferred object in the analyses of A, B. There was a diversity of preferences across 371 
categories (individual monkey results are shown in Fig. S4). 372 

 373 

 374 

Using the same approach, we also checked whether specific object categories were more or 375 

less frequently preferred. For example, it could be that threatening stimuli (e.g. snakes and 376 

threatening monkey faces) would be particularly relevant for object detection by the SC [12, 377 

14]. On the other hand, a role for the SC in modulating cortical visual areas related to object 378 

recognition [29] might suggest the need for more diversity in the SC representation. 379 

Therefore, for each neuron in Fig. 4A, B, we checked which object category was actually 380 

preferred by the neuron (as per the same definition of object preference as in Fig. 4A, B). As 381 

shown in Fig. 4C, the distribution was diverse and without particular predominance of 382 

threatening objects (Fig. S4 shows individual monkey results). This implies a more 383 

generalized role of the SC in rapid object detection and discrimination than simply the 384 

flagging of threatening stimuli or of faces. 385 

 386 

Our second approach to establish the presence of express and late object preference in SC 387 

neural discharge, as a general property, was to demonstrate a clear differential in firing rates 388 

for different objects, which disappeared when the objects were scrambled. For each neuron 389 

in the entire database, we picked the object category that resulted in the most or least 390 

visually-evoked action potentials; the object category was then labeled as the preferred or 391 

non-preferred object category accordingly. We also did this for either the early visual burst 392 

interval (0-100 ms from image onset) or the sustained interval (100-300 ms). By definition of 393 
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the analysis, there was a robust firing rate difference between the preferred and non-394 

preferred object categories. We then took the same categories and compared the firing 395 

rates in the grid-scrambled versions of the same images. If the difference in firing rate 396 

between preferred and non-preferred objects was due to low-level image features, then this 397 

difference should have persisted even in the grid-scrambled image comparisons. If not, it 398 

would suggest that there were indeed preferred and non-preferred visual form images in the 399 

individual session for the neurons. 400 

 401 

SC neurons demonstrated preference for specific object images even in their very initial 402 

visual bursts. Consider, for example, the neuron shown in Fig. 5A, which is the same as that 403 

in Fig. 1F. In the left column, we plotted the neuron9s responses to the preferred (neutral 404 

human face) and non-preferred (neutral monkey face) object images. As per the definition of 405 

the preferred and non-preferred analysis, there was a clear difference in initial visual burst 406 

strength (the shaded gray region shows our <early= analysis interval). Most critically, this 407 

difference disappeared for the grid-scrambled versions of the images (right column), and the 408 

visual burst strength for the grid-scrambled images was lower than the firing rate for the 409 

preferred object image (consistent with Figs. 1-4). Therefore, something about the intact 410 

object images, which was not present in the scrambles, was relevant for the response of the 411 

neuron to differentiate between the human (preferred) and monkey (non-preferred) faces. 412 

 413 

This second analysis approach avoided the caveat in Fig. 4A, B that the preferred object 414 

could have only had the peak AUC value much later than in the initial visual burst. However, 415 

we also checked for object preference with this second approach in the sustained firing rates 416 

of the neurons as well. For example, the neuron in Fig. 5B is the same as that in Fig. 1C, but 417 

we now inspected individual object categories. This neuron clearly preferred the artificial 418 

object image in its sustained visual response (shaded gray region delineating our <late= 419 

analysis interval), and its least preferred image for the session was the threatening monkey 420 

face (left column). Again, most critically, this difference disappeared when comparing the 421 

grid-scrambled versions of the same images (right column). Therefore, both early and late 422 

intervals demonstrated object preference by SC neurons. 423 

 424 

 425 

 426 
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 427 
 428 
Figure 5 Discrimination of object categories by SC neurons even in the very initial visual responses. (A) 429 
Responses of the neuron shown in Fig. 1F for the most and least preferred object categories in the session (left 430 
column). In the right column, the difference in visual burst strength evident for the intact object images (left 431 
column) disappeared. The gray shaded region marks our analysis interval for assessing object preference in the 432 
early visual burst intervals. (B) A second neuron (same as that in Fig. 1C) exhibiting object preference in the 433 
sustained interval (shaded region), which again disappeared under grid scrambling (compare left and right 434 
columns). Note that the two neurons preferred different object categories, consistent with Fig. 4C. (C) Summary 435 
across all isolated neurons in our database of preferred and non-preferred early responses, with both intact and 436 
grid-scrambled images (color coded in the left panel). The left panel shows raw measurements, and the right 437 
panel plots differences of firing rates between preferred and non-preferred conditions (intact images on the x-438 
axis and scrambled images on the y-axis). In both cases, we used a Wilcoxon signed rank test within each monkey 439 
for statistical testing. Real object tuning (significant differences in the left panel and >0 x-axis values in the right 440 
panel) disappeared when the same images were grid-scrambled. (D) Same as C but for the late, sustained 441 
interval, and with similar conclusions. 442 

 443 

 444 

 445 

Across the population, a clear difference in responses to preferred and non-preferred object 446 

images within a given session was absent with grid-scrambling, and this happened even in 447 

the early visual burst interval (Fig. 5C). The left column in Fig. 5C shows preferred and non-448 

preferred responses for the intact object images and for the grid-scrambled images. There 449 

was a significant difference (Wilcoxon signed rank test; p<4x10-15) only for the intact object 450 

images, as also clarified in the right column plotting the difference response between 451 

preferred and non-preferred objects under the two conditions (each monkey9s results are 452 

shown individually with different symbols). A similar result was also seen for the late 453 

sustained interval (Fig. 5D; Wilcoxon signed rank test; p<4x10-15 for the real images and 454 

p>0.15 for grid scrambling). Therefore, in all, our results demonstrate robust, express 455 

detection (Figs. 1-3) and discrimination (Figs. 4, 5) of visual objects by primate SC neurons. 456 

 457 

 458 
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 459 

Discussion 460 

 461 

We found that all of our classified visual and visual-motor SC neuron types contributed to 462 

rapid detection and discrimination of visual objects, with even deeper visual-motor neurons 463 

doing so in their very first visual bursts. Such visual-motor neurons are typically implicated in 464 

a variety of cognitive functions beyond saccade generation [18-20, 49-51], suggesting that 465 

the visual form information that they carry can influence such functions as well. Moreover, 466 

because of the intrinsic motor nature of these neurons, it would also be very intriguing to 467 

think of the role of the SC9s visual object representations in the broader context of active 468 

vision with saccades. 469 

 470 

Besides the short latencies associated with object detection and discrimination by SC 471 

neurons, we were particularly intrigued by the role of spatial frequency information in object 472 

detection during the early phases of SC neural responses. In the early visual burst phase of 473 

neural responses, we observed that AUC discriminability between the responses for object 474 

images and spectral-matched phase-scrambled images was weak (Fig. 2C, F). This suggests 475 

that a functional role for spatial frequency tuning in SC neurons [31] could be to aid in rapid 476 

object detection. Indeed, this could also mediate rapid orienting responses to objects [8], 477 

since the spatial frequency tuning of SC neurons is relevant for saccadic reaction times [31]. 478 

Having said that, spatial frequency information cannot fully explain early object detection by 479 

the SC because the AUC discrimination performance between intact objects and phase-480 

scrambled controls still became significant earlier than 100 ms after image onset (Fig. 2). 481 

This is still relatively faster than when some cortical visual areas detect objects [52], again 482 

affirming a role for the SC in early object detection. This is also consistent with early pop out 483 

of high level visual objects, like faces, in perception [7]. 484 

 485 

Another interesting observation is that object detection in later intervals after the visual 486 

bursts (e.g. >100 ms after image onset in the phase scrambling results) seems to rely on 487 

more than just the spatial frequency information. This is because AUC discrimination was 488 

still significant between object and phase-scrambled controls in these later intervals (Fig. 2C, 489 

F), and it would imply potential feedback from other visual cortical areas involved in object 490 

processing. This could functionally allow visual cortical areas to utilize additional spatial 491 

frequency bands, and other rich visual feature representations, beyond those represented in 492 

the SC. That is, since SC neurons are predominantly low-pass in nature at our tested 493 

eccentricities [31] (Fig. S5), and since various cortical areas can detect objects at multiple 494 

spatial frequency bands [33], feedback from these areas could help to sustain the object 495 

representations in the SC after the initial visual bursts subside. This is important because 496 

object recognition does indeed benefit from middle spatial frequencies in images [34, 35, 497 

37]. 498 

 499 

We are also intrigued by the object preference results, especially in the earliest phases of 500 

neural responses (Figs. 4, 5). In previous work, it was suggested that the SC is part of a 501 

network for quickly detecting threats and/or faces [6]. Indeed, SC lesions in infant monkeys 502 

impair these monkeys9 fear responses to snakes [12]. However, the SC seems to influence 503 

cortical visual processing in a more generalized manner [8, 29, 30], suggesting that there is 504 

value in having the SC act as a more generalized object detector and discriminator as 505 

opposed to only a face and threat detector. This is consistent with our observations; we 506 
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found a diversity of preferred object images across the population. Of course, very fine 507 

discriminations may be ultimately limited by the potential pattern processing capacity 508 

limitations of SC neurons, such as orientation [53] and spatial frequency [31] bandwidths, 509 

but some level of <recognition= by the SC may still be useful for facilitating orienting 510 

responses to objects in our environment. 511 

 512 

In all, our results motivate further investigations of subcortical pathways for visual 513 

perception, particularly given the active nature of behavior in the real world, and the 514 

perpetual interplay between sensory processing, on the one hand, and movement 515 

generation, on the other. 516 

 517 

 518 

  519 
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Methods 712 

 713 

 714 

Experimental animals and ethics approvals 715 

We recorded superior colliculus (SC) neural activity from two adult, male rhesus macaque 716 

monkeys (A and M) aged 9 and 8 years, respectively. The experiments were approved by 717 

ethics committees at the regional governmental offices of the city of Tübingen. 718 

 719 

 720 

Laboratory setup and animal preparation 721 

The experiments were conducted in the same laboratory as that described for the monkey 722 

portions of [8]. Briefly, the monkeys were seated in a darkened booth ~72 cm from a 723 

calibrated and linearized CRT display spanning ~31 deg horizontally and ~23 deg vertically. 724 

Data acquisition and stimulus control were managed by a modified version of PLDAPS [54], 725 

interfacing with the Psychophysics Toolbox [55-57] and an OmniPlex data acquisition system 726 

(Plexon, Inc.). 727 

 728 

The monkeys were prepared for behavioral training and electrophysiological recordings 729 

earlier [58, 59]. Specifically, each monkey was implanted with a head-holder and scleral 730 

search coil in one eye [58]. The search coil allowed tracking eye movements using the 731 

magnetic induction technique [60, 61], and the head-holder comfortably stabilized head 732 

position during the experiments. The monkeys also each had a recording chamber centered 733 

on the midline and tilted 38 deg posterior of vertical, allowing access to both the right and 734 

left SC. 735 

 736 

 737 

Behavioral task 738 

We employed a modified version of the classic delayed, visually-guided saccade task, similar 739 

to what we did in our recent behavioral study [8] (see Fig. S1). Each trial started with the 740 

appearance of a central white fixation spot of 79.9 cd/m2 luminance, presented over a gray 741 

background (26.11 cd/m2). The fixation spot was 0.18 x 0.18 deg in dimensions. After 300 742 

ms, an image patch (see below for image preparation procedures) appeared within the 743 

visual response fields (RF9s) of the recorded neurons. The image patch could contain pictures 744 

of real-life objects or the other versions of image controls described in more detail below. 745 

After 300-700 ms from image patch onset, a white spot identical to the fixation spot 746 

appeared on top of a gray disc (diameter: 0.54 deg; 26.11 cd/m2) in the center of the image 747 

patch. This white spot was referred to as the saccade target in our analyses. It remained 748 

visible (along with the fixation spot and image patch) for 500-1000 ms, at which point the 749 

fixation spot disappeared to instruct the monkeys to generate a saccade towards the 750 

saccade target (and the underlying image patch). If the monkey successfully made the 751 

saccade within 500 ms, it received positive reinforcement in the form of liquid reward. 752 

 753 

As described in more detail below, the size of the image patch that we presented was 754 

matched to the RF size, and its position was designated after initial assessment of RF 755 

locations and sizes (using standard visual and saccadic tasks employed in SC studies; our 756 

instantiations of these tasks were described previously [59, 62]). The average luminance of 757 

the image patch was 42.07 cd/m2. 758 

 759 
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 760 

Image database and image pre-processing procedures 761 

We used a total of 156 grayscale images, from previously published studies [8, 29, 63], 762 

across seven different object categories: neutral monkey face (15 images), threatening 763 

monkey face (15 images), snake (15 images), artificial object (15 images), human hand (16 764 

images), neutral human face (64 images), and fruit (16 images) (Figs. 1A, S1). In each session, 765 

we randomly picked seven images from the database, one from each category. 766 

 767 

For each session, we first sized the images to match the RF sizes of the neurons across the 768 

recording contacts. Our neurons spanned eccentricities in the range of 3.1-23.9 deg (Fig. S5), 769 

and we assessed their RF9s using standard visual and saccadic tasks. The image patches were 770 

square, and their sizes were in the range of 2-8 deg (in width and height). These sizes fit 771 

within the excitatory parts of the neurons9 RF9s. Since we had multiple RF9s within a session 772 

(see neurophysiological procedures below), we picked the image location that best matched 773 

most of these RF9s. This was feasible given the topographic organization of the SC and the 774 

fact that our electrode penetrations were roughly orthogonal to the SC surface at our 775 

recorded eccentricities. 776 

 777 

We then iteratively equalized the luminance histograms and spatial frequency spectra of the 778 

seven images of a given session using the SHINE toolbox [64]. Specifically, we ran 20 779 

iterations of histogram matching (histMatch function) of the gray levels across the images, 780 

as well as spectral matching across the same images (specMatch function). To generate 781 

phase-scrambled images, we randomized the phase matrices of the Fourier-decomposed 782 

images, while keeping the amplitude matrices unchanged. Then, to match the real and 783 

phase-scrambled images further, we took all object images and their corresponding phase-784 

scrambled images, and we again iteratively matched them once more for histogram levels 785 

and frequency spectra using the same SHINE toolbox functions (again, with 20 iterations). 786 

Example final images (real and phase-scrambled) are shown in Fig. 1A and Fig. S1B. 787 

 788 

To obtain the grid-scrambled image controls, we overlaid 1-pixel-width horizontal and 789 

vertical lines of mean image luminance over the real object images. These horizontal and 790 

vertical lines formed a grid of 0.33 deg x 0.33 deg squares within which the original object 791 

was visible. We then scrambled all grids by randomizing their original locations in the image. 792 

To ensure that the neural modulations associated with the grid-scrambled images were not 793 

fully explained by the overlaid horizontal and vertical gray lines, we also created the grid 794 

overlay without randomizing the individual grid locations. This created the object+grid 795 

images (as if the objects were intact and only occluded by a thin grid in front of them). 796 

Examples of the final grid-scrambled and object+grid images used in our study are shown in 797 

Fig. 1A and Fig. S1B. 798 

 799 

 800 

Neurophysiological procedures and functional cell type classification 801 

We recorded neural activity using linear microelectrode arrays (V-Probes, Plexon, Inc.) 802 

inserted into the SC. We aligned the arrays (16- or 24-channels with 50 µm inter-electrode 803 

spacing) to obtain sufficient coverage across different functional SC layers (0.8-1.2 mm 804 

depth coverage by the contacts). 805 

 806 
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The experiment started by identifying entry into the SC by the deepest electrode contact, 807 

and we then advanced the array to insert further contacts into the SC. After ensuring that 808 

the tissue had settled and the neural activity was stabilized across contacts, we assessed the 809 

RF9s at the electrode contacts using standard visual and saccade tasks. This allowed us to 810 

place and size the object images for a given session according to the neurons9 approximate 811 

RF locations and sizes. Following RF estimation and the preparation of the object and control 812 

images to fit the RF sizes, we ran the main experiment and collected an average of 32 (+/- 8 813 

SD) trial repetitions per session of the different image conditions that we had: 4 image patch 814 

versions (real object, phase-scrambled, grid-scrambled, and object+grid) of each of the 7 815 

object categories (total of 28 different conditions), resulting in a total of 903 (+/- 239 SD) 816 

trials per session. 817 

 818 

We classified neurons as being visual, delay, visual-delay, visual-motor, visual-motor-819 

prelude, or motor in nature, as per previous criteria [65]. Specifically, in our delayed visually-820 

guided saccade to image task, we measured the firing rate in each trial, regardless of image 821 

conditions, during four different epochs: baseline (100 ms before image onset), visual (50-822 

150 ms after image onset), delay (400-500 ms after saccade target onset), and motor (-50 to 823 

25 ms from saccade onset). Next, we used the firing rates in these four epochs to compute a 824 

non-parametric ANOVA (Kruskal-Wallis), and we determined the neuron class by post-hoc 825 

significance tests (p<0.05). Neurons with significant activity in the visual epoch compared to 826 

the baseline epoch were classified as visual neurons. Similarly, neurons with significant 827 

activity in the motor epoch compared to the baseline and delay epochs were classified as 828 

motor neurons, and a visual neuron with significant motor activity was classified as a visual-829 

motor neuron. Furthermore, visual neurons posessing significant delay-period activity were 830 

labeled as visual-delay neurons, and visual-motor neurons with significant delay-period 831 

activity were classified as visual-motor-prelude neurons. Any neuron that did not have 832 

higher than 5 spikes/s average firing rate in any of the above-mentioned measurement 833 

intervals (other than baseline) was excluded from further study. Similarly, for the purposes 834 

of this study, we did not analyze the purely motor neurons, since we were interested in 835 

assessing visual object detection by the SC. 836 

 837 

In total, we had 82 included neurons from monkey A and 131 from monkey M. 838 

Approximately half of the neurons in monkey A (47.56%) and two thirds in monkey M 839 

(67.18%) were visual-motor-prelude neurons in our database. The next most frequent 840 

neuron type in our sample was visual-motor neurons (19.51% in monkey A and 16.03% in 841 

monkey M), followed by the motor (13.41% and 6.87%) and visual-delay (13.41% and 5.34%) 842 

neurons, and then finally the visual neurons (6.1% and 3.82%). Delay-only neurons were a 843 

rarity (1 in monkey M and non-existent in monkey A), and were not analyzed. The neurons9 844 

preferred RF hotspot locations are shown in Fig. S5. 845 

 846 

 847 

Data analysis 848 

We detected saccades and microsaccades using our previously described toolbox [66], and 849 

we inspected the detection results manually. To investigate whether microsaccades at image 850 

onset might have influenced the SC responses to the stimuli, whether by peri-microsaccadic 851 

modulation [41, 62] or jittering of images [43], we computed microsaccade rate across time 852 

from image onset (e.g. Fig. S2A, E). We did so similarly to how we estimated microsaccade 853 

rate recently [8]. Briefly, we binned microsaccades using a 40 ms moving time window, with 854 
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time steps of 10 ms. In general, we included all trials in our neural data analyses, even when 855 

there were microsaccades. This was fine because of the low likelihood of microsaccades, 856 

especially in the critical early visual burst interval. However, we also confirmed that our 857 

results were unchanged by repeating the analyses after removing all trials in which there 858 

was a microsaccade between -100 ms and +300 ms relative to image onset (e.g. Fig. S2). 859 

 860 

For neural analyses, we sorted the neurons offline using the Kilosort Toolbox [67], followed 861 

by manual curation using the phy software. We then proceeded to analyze the spike rasters 862 

and firing rates. 863 

 864 

To investigate whether SC visual responses differentiate between object and non-object 865 

stimuli, we plotted spike rasters and firing rates across the different image conditions (e.g. 866 

Fig. 1). We then assessed whether an ideal observer could discriminate between object and 867 

non-object stimuli just based on the SC firing rates. To do so, we performed receiver 868 

operating characteristic (ROC) analyses using 40 ms time bins moving in steps of 10 ms. In 869 

each 40 ms time bin around the time of image onset, we collected firing rates within this 870 

interval from all trials of the real-life object condition and all trials of an image control from 871 

the same neuron (e.g. phase-scrambled or grid-scrambled images). We then ran the ROC 872 

analysis to obtain an area under ROC curve measure (AUC), allowing us to assess the 873 

discriminability between the two firing rate distributions. An area under the ROC curve value 874 

of 0.5 would indicate non-discriminable firing rate distributions. We performed the ROC 875 

analyses at all times from -100 ms to +300 ms from image onset, with 10 ms resolution. We 876 

did this because the earliest time at which the saccade target could appear in the task was 877 

300 ms (e.g. Fig. S1). We assessed a neuron as detecting objects if its area under the ROC 878 

curve in any interval between 0 and 300 ms was statistically significantly different from 0.5. 879 

We assessed significance by calculating bootstrapped confidence intervals for the area under 880 

the ROC curve measure and using a p<0.05 criterion. This is similar to our previous 881 

approaches [29]. We then averaged across all significant neurons9 AUC time courses and 882 

obtained 95% confidence intervals across the population. We labeled the time of object 883 

detection in figures as the time at which the population AUC discrimination time course first 884 

deviated significantly from 0.5 (i.e. no overlap between the 95% confidence interval and 885 

0.5). 886 

 887 

We also repeated the ROC analyses for the different functionally-classified neurons. For 888 

example, we picked only visual-motor-prelude neurons and calculated the area under the 889 

ROC curve metrics for those, or we only considered visual-delay neurons. This allowed us to 890 

assess whether early visual object detection by the SC (e.g. in the initial visual burst interval; 891 

see Results) only occurred in purely sensory neurons, or whether it also appeared in deeper 892 

visual-motor neurons. In some analyses, we found that whether a neuron had delay-period 893 

activity or not (e.g. visual-delay and visual-motor-prelude neurons both had delay-period 894 

activity) influenced the ROC results in either early or late intervals after image onset. 895 

Therefore, to demonstrate this point, we combined neuron types appropriately; that is, 896 

visual-motor-prelude and visual-delay neurons were combined together since they both 897 

showed delay-period activity, and visual-motor or visual neurons were combined together 898 

because they both lacked delay-period activity. 899 

 900 

To assess whether SC neurons could also discriminate between different object categories 901 

presented within a given session, we investigated object preference in a variety of ways. For 902 
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each neuron, we first plotted firing rates as a function of object category (example neurons 903 

are shown in Figs. 1, 5). We found that different neurons have higher firing rates for 904 

different objects, whether in the initial visual burst interval or in the later sustained response 905 

(e.g. Fig. 5). To analyze such preference further, we first looked at the strict criterion of only 906 

those neurons exhibiting significant AUC results for individual object images with respect to 907 

all scrambled images. Therefore, for each neuron, we performed ROC analyses comparing 908 

responses to individual object images with responses to all scrambled images (i.e. both 909 

phase- and grid-scrambled conditions). The preferred object of a given neuron was labeled 910 

as the object with the significant and highest AUC value in any time interval 0-300 ms after 911 

image onset. Across the population, we then checked whether specific object categories 912 

were more or less prevalent as the preferred objects of the neurons. 913 

 914 

The above approach allowed us to look at object preference using a strict measure that 915 

captures the difference in activity between real object images and control scramble images. 916 

This way, we could simultaneously conclude that (1) the neurons detected objects as 917 

opposed to non-object control images, and (2) the same neurons exhibited a preference for 918 

certain objects as opposed to others. However, the peak AUC value could appear anywhere 919 

in the first 300 ms, and we were particularly interested in whether there was object 920 

preference in the very earliest visual bursts. Therefore, we also checked for the existence of 921 

object preference by SC neurons using another approach. For all of the original categorized 922 

neurons in each animal, we picked either an early visual burst interval (0-100 ms from image 923 

onset) or a late sustained interval (100-300 ms from image onset). In each interval, we 924 

picked, for a given neuron, the object category that elicited the highest average firing rate 925 

(e.g. neutral human face). This was labeled the preferred object of this neuron. We also 926 

picked the object category evoking the lowest average activity in the same interval (e.g. 927 

neutral monkey face), and we labeled it as the non-preferred object. We then checked 928 

whether the difference in firing rate between the most and least preferred objects 929 

disappeared (or was significantly reduced) when the object images were scrambled. If the 930 

neurons were tuned to specific object categories, then the firing rate differences between 931 

preferred and non-preferred object images were expected to be higher than the differences 932 

in firing rates between the scrambled versions of these same objects. We statistically 933 

assessed such differences across the population using signed rank tests. 934 

 935 

In all figures and analyses, we showed results for each monkey individually. 936 

 937 

 938 

 939 

  940 
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Supplementary figures 941 

 942 

 943 

 944 

 945 
 946 
Figure S1 Behavioral task and example images. (A) Each task started with a central fixation spot. At the 947 
approximate response field (RF) locations of the recorded neurons in a given session (yellow dashed circle), an 948 
image appeared during fixation. After 300-700 ms from image onset, a saccade target appeared on top of the 949 
image for another fixation interval (500-1000 ms). The fixation spot then disappeared, instructing the monkey to 950 
generate a saccade towards the target on top of the image (green arrow). (B) Example images from a given 951 
session. The fruit image from the session is shown in Fig. 1, and the human neutral face image is not shown for 952 
data privacy reasons. The top row shows the real object images, and the second row shows these images with 953 
the grid overlay. The third row shows the phase-scrambled images, and the bottom row shows the grid-954 
scrambled images (Methods). 955 

 956 

 957 
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 959 

 960 
 961 
Figure S2 Discrimination between object and non-object stimuli by SC neurons9 visual responses, after 962 
controlling for microsaccades. (A) Microsaccade rate around the time of image onset from monkey M. A classic 963 
modulation of eye movement rate was present [38, 39, 68, 69]. Note that microsaccade rate was negligible in 964 
the early visual burst interval of neural responses, due to the known phenomenon of microsaccadic inhibition. 965 
The relatively high (but declining) microsaccade rate before image onset was due to the short initial fixation 966 
interval of the task (Fig. S1), and therefore had some refixation saccades as the monkey was starting a new trial 967 
after the end of the previous one. The gray bar on the x-axis denotes the interval chosen for removing 968 
microsaccades in the control analyses of B-D. (B-D) Same results as in Fig. 2A-C but after including only trials in 969 
which there were no microsaccades in the entire shown interval in A (-100 ms to +300 ms from image onset). 970 
The same qualitative results as in the main text were obtained. In fact, the AUC values here were generally higher 971 
than with all trials included. This is expected because microsaccades jitter images, and are associated with various 972 
effects on SC neurons9 firing rates [41-43, 62]. (E) Same as A but for monkey A. (F-H) Same as B-D but for monkey 973 
A. 974 

 975 

 976 

  977 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 10, 2022. ; https://doi.org/10.1101/2022.02.08.479583doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.08.479583
http://creativecommons.org/licenses/by-nc/4.0/


 27 

 978 

 979 
 980 
Figure S3 Neurons with sustained delay-period (prelude) activity allow sustained discrimination between 981 
object and non-object images in SC RF9s. (A) We performed our ROC analyses on object versus grid-scrambled 982 
images as in Figs. 2, 3, but this time by pooling only neurons with delay-period activity (visual-delay and visual-983 
motor-prelude neurons) or neurons without (visual and visual-motor neurons). In the latter group, discrimination 984 
performance returned to baseline (light gray), whereas it remained significant throughout the sustained interval 985 
for the first group of neurons (see red vertical arrow). Error bars denote 95% confidence interval. (B) We 986 
observed very similar results in monkey A, although the smaller number of visual and visual-motor neurons (light 987 
gray) reduces the statistical confidence around this latter group of neurons. 988 

 989 

 990 
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 992 

 993 
 994 
Figure S4 Individual monkey results from Fig. 4C. Each histogram shows the number of neurons preferring a 995 
given object category from each monkey, from the same analyses of Fig. 4. These neurons were, therefore, only 996 
the neurons that passed the AUC criterion relative to scrambled images (see Methods and Fig. 4). In both 997 
monkeys, no single category (e.g. snake or threatening monkey face) emerged as an outlier. Rather, there was 998 
diversity of object preferences, consistent with the idea of supporting object detection in general. 999 
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 1003 

 1004 
 1005 
Figure S5 Response field (RF) locations of the recorded neurons. (A) Visual RF of an example neuron recorded 1006 
from monkey M. Each black circle indicates a sampled location in which we presented a small spot during fixation. 1007 
The pseudocolor surface indicates the mean firing rate emitted by the neuron in a visual epoch 40-140 ms after 1008 
spot onset (we interpolated across space between the sampled locations to obtain the pseudocolor surface). The 1009 
neuron9s RF occupied the upper left quadrant, and our online estimate of its hotspot is indicated by the red 1010 
asterisk. The red cross indicates where we placed the image during the main experiment. (B) All RF hotspot 1011 
locations from monkey M (remapped to one hemifield for easier viewing). Our neurons were extrafoveal. (C) 1012 
Visual RF of an example neuron recorded from monkey A. The same conventions as in A apply. The neuron 1013 
occupied the lower right quadrant. (D) All RF hotspot locations from monkey A, showing similar coverage to 1014 
monkey M. For purely motor neurons, RF hotspot locations in B, D were obtained from the saccade-related, 1015 
rather than visual, responses. 1016 

 1017 

 1018 

 1019 
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