bioRxiv preprint doi: https://doi.org/10.1101/2022.02.05.479274; this version posted February 8, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

EMoMiS: A Pipeline for Epitope-based
Molecular Mimicry Search in Protein Structures
with Applications to SARS-CoV-2

Vitalii Stebliankin’, Prabin Baral?, Christian Balbin3, Janelle Nunez-Castilla®,
Masrur Sobhan' , Trevor Cickovski!, Ananda Mohan Mondal'®, Jessica
Siltberg-Liberles®*®, Prem Chapagain®®, Kalai Mathee*s, and Giri
Narasimhan'®”

'Bioinformatics Research Group (BioRG), Knight Foundation School of Computing and Information
Sciences, Florida International University, Miami, USA, 2Department of Physics, College of Arts,
Science and Education, Florida International University, Miami, USA , 3Department of Biological
Sciences, College of Arts, Science and Education, Florida International University, Miami, USA ,
4Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida
International University, Miami, USA , sBiomolecular Sciences Institute, Florida International University,
Miami, USA

*To whom correspondence should be addressed.

Associate Editor: XXXXXXX
Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract
Motivation: Epitope-based molecular mimicry occurs when an antibody cross-reacts with two different

antigens due to structural and chemical similarities. Molecular mimicry between proteins from two
viruses can lead to beneficial cross-protection when the antibodies produced by exposure to one also
react with the other. On the other hand, mimicry between a protein from a pathogen and a human
protein can lead to auto-immune disorders if the antibodies resulting from exposure to the virus end up
interacting with host proteins. While cross-protection can suggest the possible reuse of vaccines
developed for other pathogens, cross-reaction with host proteins may explain side effects. There are
no computational tools available to date for a large-scale search of antibody cross-reactivity.

Results: We present a comprehensive Epitope-based Molecular Mimicry Search (EMoMiS) pipeline
for computational molecular mimicry searches. EMoMiS, when applied to the SARS-CoV-2 Spike
protein, identified eight examples of molecular mimicry with viral and human proteins. These findings
provide possible explanations for (a) differential severity of COVID-19 caused by cross-protection due
to prior vaccinations and/or exposure to other viruses, and (b) commonly seen COVID-19 side effects
such as thrombocytopenia and thrombophilia. Our findings are supported by previously reported
research but need validation with laboratory experiments. The developed pipeline is generic and can
be applied to find mimicry for novel pathogens. It has applications in improving vaccine design.
Availability: The developed Epitope-based Molecular Mimicry Search Pipeline (EMoMiS) is available
from https://biorg.cs.fiu.edu/emomis/.

Contact: giri@cs.fiu.edu
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1 Introduction

Epitope-based molecular mimicry occurs when antibodies cross-react
with two different antigens, triggered by the structural similarity and the
physicochemical properties at the binding site (Albert and Inman, 1999).
Identification of cross-reactivity may explain heterologous immunity
when antibodies for a previous infection from an unrelated organism
cross-react with newly encountered pathogens (Welsh ez al., 2010). It can
also explain autoimmune disorders such as rheumatoid arthritis when
antibodies cross-react with human proteins (Cusick et al., 2012).
Limited studies have described a computational molecular mimicry search
process. One of the earliest works is a genome-wide BLAST survey to
search for parasite-host molecular mimicry (Ludin et al., 2011). Many
examples of the sequence similarity approach adapted for molecular
mimicry searches can be found in the literature. Examples include the
study of virulence mechanisms of pathogenic bacteria (Doxey and
McConkey, 2013), fungus-plant interactions induced by cross-reactivity
(Armijos-Jaramillo et al., 2021), and pathogenicity of Clostridium
botulinum ATCC 3502 to the human host (Bhardwaj et al., 2018).
Another approach for molecular mimicry search is to look for similar
structural motifs (Kristensen et al., 2006). A recent tool called Epitopedia
combined sequence and structural similarity searches for improved
scoring of molecular mimicry candidates of known epitopes (Balbin et al.,
2021). However, sequence and structural similarity of epitopes from two
proteins do not guarantee antibody cross-reaction. Non-consecutive amino
acids (AA) of the antigenic protein may affect antibody binding,
preventing or enhancing its cross-reactivity. To the best of our knowledge,
there are no molecular mimicry search tools available that
computationally evaluate antibody cross-reactivity.

Deep learning is a promising approach to overcome the major challenges
of investigating proteins at a molecular level. The complexity of protein
structures and their dynamic nature make the binding energy function
highly unstable and difficult to model (Esmaielbeiki et al., 2016). Protein
docking algorithms may predict the correct “native” binding pose, but the
interaction strength is generally poorly predicted (Weng et al., 2020).
Physics-based simulations can accurately infer the protein interaction
trajectory but require substantial computational resources, posing a
significant challenge for large-scale mimicry searches. Deep learning can
alleviate the high computational cost of protein-protein interactions
prediction and improve predictive accuracy (Graves et al., 2020; Gainza
et al., 2020; Wang et al., 2020; Pittala and Bailey-Kellogg, 2020). By
training a machine learning tool with sufficient positive and negative
examples of binding interface regions, the model learns to estimate the
strength of interactions between queried antibody-antigen pairs.

Recent data-driven studies have suggested that non-COVID-19
vaccines may provide partial immunity against the SARS-CoV-2 virus
(Pawlowski et al., 2021; Rivas et al., 2021). Mannar et al. experimentally
confirmed that several SARS-CoV-2-induced antibodies cross-react with
proteins from other viruses such as HIV-1 (Mannar et al., 2021) and
Dengue virus (Nath et al., 2020). The discovery of heterologous immunity
resulting from mimicry may suggest using other vaccines for partial
protection against a rampant pathogen. Mimicry can also explain how the
history of prior infections can provide heterologous immunity against a
pathogen. Molecular mimicry can also explain several unexpected side
effects of the SARS-CoV-2 infection. We recently reported that molecular
mimicry between SARS-CoV-2 Spike and human thrombopoietin (TPO)
might induce thrombocytopenia in infected subjects (Nunez-Castilla et al.,
2021).
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Figure 1. EMoMIiS computational pipeline for epitope-based molecular mimicry
search. The process consists of four steps: (A) sequence similarity search, (B) filtering,

(C) structural alignment, and (D) deep learning for antibody binding evaluation.

In this study, we developed a comprehensive computational Epitope-
based Molecular Mimicry Search (EMoMiS) pipeline that includes
sequence and structural similarity searches followed by deep learning for
antibody-antigen binding assessments. We applied it to the SARS-CoV-2
Spike protein. We report the discovery of many potential antibody-antigen
cross-reactions and discuss their implications.

2 Methods

In this study, a comprehensive computational pipeline called EMoMiS was
developed (Fig. 1). The method identifies known antibodies that can cross-
react with target antigens. After searching the database of antigens for
regions of sequence and structural similarity with the target protein, a pre-
trained deep learning model is used to evaluate if antibodies, known to
recognize the database antigens, can cross-react with the target structure.
For this discussion, the term “target protein” refers to the query protein
(such as the SARS-CoV-2 Spike) for the search.

The EMoMiS pipeline uses the three-dimensional structures, Spp as
well as sequence information, Qpp of antibody-antigen complexes from
the structural antibody database SAbDab (Dunbar et al., 2014). The
second input to our pipeline is the structure and sequence of the target
protein (Sigrger and Qarger), for which mimics are sought. Note that we
do not require the availability of a structural complex of the target protein
with its antibody. Also, we may have several variant sequences and
structures, as is the case with SARS-CoV-2. The target query protein is
assumed to be immunogenic, i.e., able to provoke an immune response
(Baker et al., 2010). In Step A (Fig 1), the target protein sequence(s)
(Qtarger) is searched against the sequences from SAbDab (Qpg) for
regions of sequence similarity with other eukaryotic and prokaryotic
protein sequences. In Step B, a hit, denoted as Qy;, , is retained only if (a)
the match has sufficient length (i.e., above a prespecified threshold), (b)
the corresponding target antigen is surface-accessible (in Siqrger), and (c)
the sequence similarity is in the antibody-antigen interface region (in the
corresponding complex in Spp). In Step C, we isolate the target
(Shit-target) and the mimic (Sp;;_pp) from the hit region and check if they
display good local structural alignment. In Step D, we evaluate the
potential cross-reactivity using a pre-trained deep learning model (Gainza
et al., 2020), which estimates the binding strength between the antibody
Spp—ap complexed with the database antigen Spp and the target antigen

Starget—Ag-
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Figure 2. Distribution of Deep Learning (DL) scores of MaSIF pre-trained “sc05”
model applied to antibody-antigen complexes from the SAbDab database (left) and the
SARS-CoV-2 Spike proteins complexes with native antibodies (right).

2.1. Sequence Similarity Search

The sequence similarity search between the target protein sequence,
Qtarget»> and the antigen sequences from the data set, Qpg, was performed
using Protein-Protein BLAST 2.12.0+ (Altschul, 1997). FASTA
sequences were downloaded using BioPython utilities (Cock et al., 2009).
The search was executed with several non-default parameters: the ‘-
blastp-short’ flag was used to find small hits because the average epitope
length is only about 15 amino acids (Kringelum et al., 2013); the ‘-
gapopen’ was set to the maximum value since epitope regions are unlikely
to allow insertions and deletions without disrupting the binding; and
finally, ‘-evalue’ was set to ‘999999’ to include high E-values that often

result from short alignments.

2.2. Filtering the Sequence Hits

In the filtering step, we select only relevant areas among the hits. First, we
require an alignment with an exact match of at least three consecutive
amino acids. Second, we check if the three matching amino acids are
surface accessible in the target antigen (Sigrger) to allow binding. An
amino acid residue is considered surface accessible if its relative
accessible surface area (RASA) is more than 20% (Touw et al., 2015).
Third, we retain hits that lie in the contact region of the antibody-antigen
interface in the complex, Spp. An antigen residue is considered a contact
point if the distance from any of its heavy atoms (atoms other than H
atoms) to the antibody is less than 5A.

2.3. Structural Alignment

The structures of the target and database proteins from each sequence
match were assessed for similarity using TM-align, an algorithm for
sequence-independent structural comparisons (Zhang, 2005).

To distinguish between molecular mimicry patterns and coincidental
structural alignments, we obtained a distribution of alignment scores of
randomly selected short motifs. The metric for structural similarity was
the root-mean-square deviation (RMSD) between aligned residues in
angstroms (A). Since shorter motifs are expected to have lower RMSD
values, the distribution of RMSD values for each motif length was
considered separately. For 3000 random antigens from the SAbDab
database, we isolated possible epitopes of lengths ranging from 3 to 32

AA, such that the center of each motif was in contact with its native
antibody. The isolated motifs of the same length were randomly paired
and aligned with the command-line tool, TM-align (Zhang, 2005).

The resulting distribution of structurally aligned random epitopes was
used to establish thresholds for acceptable structural mimicry (Fig. S1).
The Z-scores were computed for each point of the distribution. RMSD
values with Z-score less than -1.645 (one-tailed p-value < 0.05) were
considered “high-confidence” hits, while Z-scores between -1.645 and -
1.281 (one-tailed p-value < 0.1) were labeled as “medium-confidence”
hits (see details in Table S1). Since the epitope is expected to be 32 AA
(Kringelum et al., 2013), we chopped longer sequence matches into 32
residue-long motifs centered at the point of antibody contact.

2.4. Binding Prediction with Deep Learning

After determining the sequence and structure similarity of a candidate
binding site along with its surface accessibility, the next step in the
EMoMiS pipeline is to evaluate the strength of binding between the
antibodies of the mimicking proteins to the target protein at the candidate
site (Fig. 1). The Molecular Surface Interaction Fingerprint Search
(MaSIF-Search) that uses a geometric deep learning approach was used
to evaluate antibody-antigen binding, (Gainza et al., 2020). The pre-
trained model from MaSIF-Search was used for this work. The MaSIF
method is designed to uncover patterns on the surfaces of proteins. Given
two surface regions (patches) from distinct proteins, the model evaluates
compatibility for forming a stable binding complex. The patches are
obtained by drawing a fixed-sized geodesic radius on the solvent-excluded
protein surface (Sanner et al., 1996). The data structure of the patch is a
grid of 80 bins with five angular and 16 radial coordinates. Each bin has
five geometric and chemical features: shape index, distance-dependent
curvature, electrostatics, charge, and hydropathy. The model captures the
general distribution of native binding versus decoys by training the
artificial intelligence (AI) network with many examples of binding and
non-binding protein surface regions.

In Step D of the EMoMiS pipeline, we evaluate the structurally similar
motifs for the binding strength of the antibody-antigen pair. The antibody
patch corresponding to the mimicry antigen is centered on the antibody
contact residue. The antigen patch of the target protein (Spike) is centered
on the middle amino acid from the filtered sub-query. The resulting patch
pair is passed to the pre-trained MaSIF-Search deep learning model that
outputs a binding score. If several patches map to the same residue, then
we report the binding score of the best patch pair.

The patch extraction method was adapted from the original MaSIF-
Search described in (Gainza et al., 2020). First, we triangulated each
protein complex with a granularity of 1 A. Geometrical and chemical
features for each point in a surface mesh were computed with the MaSIF
data preparation module. Next, the structures were discretized into a set of
overlapped patches with a radius of 12 A, where each point in a surface
mesh is treated as a patch center.

To evaluate the complementarity of the two patches, the pre-trained
MaSIF-Search “sc05” model with a patch radius of 12 A was used
(Gainza et al., 2020). The model takes a single patch as input and embeds
it into an 80-dimensional descriptor. The original model was trained to
minimize the distance between embedded vectors from native binders
(positive) and maximize it for non-interacting decoy patches (negative)
(Gainza et al., 2020). The distance between embedded vectors from two
patches will be referred to as the Deep Learning binding score or “DL
score."
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Table 1. Molecular mimicry for SARS-CoV-2 Spike protein predicted by the EMoMisS pipeline. (A-D) Forward phase - antibodies from other
organisms predicted to cross-react with Spike. (E-H) Reverse phase - antibodies originated from Spike predicted to cross-react with antigens from the

database.
Organism Subject Subject  Spike Struct DL DL
Motif Spike Region Antibody RMSD
protein PDB PDB p-val Score p-val
Human TPO IVIN  7L2F TQLPP NTD22-26  TNI 0.9 0093 1281 0.010
Human TNFRSF-5 6PES 7K43 ESEF NTD 154-157 FAB 042 0095 1.749 0.032
Human ABCB-1 6FN1  7VNE NITN RBD331-334 UIC2 041 0092 2259 0.092
D  Dengue virus 1 non;rt;?:i?rlal 6WEQ  7M6I NLVK RBDS532-535 2B7 025 0061 2347 0.108
E Human allbB3 477N 7L2C  GDSS NTD252-255  2-51 026 0063 1.705 0.029
major capsid
F HPV-16 , 6BT3  7RW2 KHTP NTD206-209 57 021 0055 1.829 0.038
protein 11

- COVOX
G HIV-1 Envelope glyco- chw; JNDA  NITN RBD331-334 037 0.083 2012 0.057

protein gp160 253H55L
H  Coronavirus 0C43 “PIK® gzicri’pm' TM51 7RNJ FKEELD S2 1148-1153  S2P6 0.1  0.004 2.130 0.072

2.5. Determining Thresholds for Binding Strengths

The pre-trained MaSIF model “sc05” performed well on the antibody-
antigen complexes with the receiver operator characteristic area under the
curve (ROC AUC) 95% (Fig. 2). Although the “sc05” model was trained
on a general collection of protein-protein interactions, we tested the model
only on antibody complexes. The structures from 433 non-redundant
SAbDab complexes with 90% maximum sequence identity were extracted
for the model testing (Dunbar et al., 2014). Antigens homologous to any
protein from the MaSIF-Search training set were excluded from the testing
set, which resulted in 179 protein complexes. Two antigens were called
homologous if pairwise alignment identity were greater than 95% (Rice et
al., 2000). Eighteen Spike-antibody complexes were tested separately, as
the SARS-CoV-2 virus was our primary focus. A patch pair from two
proteins were labeled “positive” if the distance between patch centers is
less than 1A, while “negative” non-interactive patches were chosen
randomly. We observe that the MaSIF pre-trained model is able to
distinguish between positive native binders (Fig. 2, orange) and negative
decoys (Fig. 2, blue) with a ROC AUC of 95%. The binding scores for
SARS-CoV-2 and antibodies (Fig. 2, right) had a similar pattern as the
general antibody-antigen complexes from SAbDab (Fig. 2, left).
Z-statistics for the DL scores distribution for negative non-binding
patches (Fig. 2, blue, left) were used to determine the containment
thresholds. The value corresponding to a Z-score of -1.645 (one-tailed p-
value=0.05) was used as the high-confidence threshold (Fig 2, green). The
scores corresponding to one-tailed p-values between 0.05 and 0.1 (Z-
scores less than -1.281) were considered a medium-confidence binding
(Fig. 2, yellow). The rest of the scores were “low-confidence” (Fig 2, red).

2.6. EMoMiS Reversed Phase
If the sequence and structure of the antibodies for the target protein are
also available, then an additional phase called the 'reverse' phase may be

added to the pipeline. The pipeline follows the same procedure while the

lists of database and target proteins are switched. In other words, every
location of the database proteins is queried against the list of known
epitopes from the target protein. Such a trick allows searching for cross-
reactivity of antibodies, known to recognize the target virus, with the
database antigens. When native antibody structures are not available, such
as what may happen in the early stages of an epidemic, the pipeline can
only be executed in the forward phase. In the case of SARS-CoV-2, such

antibodies and their structures are indeed available.

2.7. Hardware

The EMoM:iS software was built in the Chameleon Cloud environment on
CHI@TACC “Haswell” bare metal instance, which had 2x 12 core Intel
Xeon E5-2670 v3 and 128 GB of RAM (Keahey et al). To ensure
reproducibility, the running environment was containerized with
Singularity version 3.8.5 (Kurtzer et al., 2017). Deep Learning models
were tested on a server machine at the Knight Foundation School of
Computing and Information Sciences at Florida International University,
which had 8 GeForce GTX 1080 Ti GPU, 256G of RAM, and 28 core
Intel(R) Xeon(R) CPU E5-2650.

3 Results

An epitope-based molecular mimicry search (EMoMiS) pipeline was
developed in this work. The process consists of four steps: sequence
similarity search, filtering, structural alignment and filtering, and deep
learning for antibody binding evaluation (Fig. 1). The developed software
was applied to search for epitopes from multiple organisms that may
mimic a portion of the SARS-CoV-2 Spike protein surface.

3.1 Dataset

Structural antibody database SAbDab was used as the reference for the
molecular mimicry search pipeline (Dunbar ef al., 2014). The database
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Figure 3. All predicted molecular mimicry motifs on SARS-CoV-2 Spike, identified by
the EMoMiS forward and reverse phases.

was downloaded on November 30, 2021, containing 3,670 unique
antibody-antigen complexes. The target sequences and structures of 167
SARS-CoV-2 spike protein references were isolated from the database.
The target proteins of homologous MERS and SARS virus families were
excluded from the database resulting in 3,193 reference antibody-antigen
complexes (Supplementary Table S2).

The Beta, Delta, and Omicron variants of SARS-CoV-2 Spike were
obtained from Protein Data Bank (PDB) database (PDB IDs 7LYM,
7V7N, 7T9J) (Gobeil et al., 2021; Berman et al., 2000).

3.2 EMoMiS Forward Phase

During the forward phase of the EMoMiS pipeline, every location of the
167 target SARS-CoV-2 Spike proteins was matched against antibodies
from 3,193 database complexes. The method identified four molecular
mimicry candidates, where antibodies from other organisms that likely
cross-react with the SARS-CoV-2 Spike (Table 1, A-D). (A) The TN1
antibody from human thrombopoietin (Feese et al., 2004) had the most
significant Deep Learning score (DL score = 1.281, p-value = 0.01), while
similarity had medium (RMSD=0.9, p-
value=0.093). The mimicry is predicted for the TQLPP motif in the Spike
N-terminal domain (NTD). (B) An antibody from tumor necrosis factor
receptor superfamily member 5 (TNFRSF-5) (Argiriadi et al., 2019) also
had high confidence to cross-react with Spike in the NTD region (DL
score = 1.749, p-value = 0.032), while the motif ESEF structurally aligned
with medium confidence (RMSD = 0.42, p-value = 0.095). (C) The motif
NITN from human ABCB-1 (Alam et al., 2018) had medium structural
similarity with the SARS-CoV-2 Spike protein in the receptor-binding
domain (RBD), whereas human-specific inhibitory antibody UIC2

structural confidence

showed a medium score for cross-reaction with the Spike protein (DL
score = 2.259, p-value = 0.092). (D) The scores for antibody 2B7 from

Dengue virus (Biering et al., 2021) to cross-react with Spike were close to
medium (DL score = 2.347, p-value = 0.108), while structural similarity
for the corresponding NLVK motif had a medium RMSD score (RMSD =
0.25, p-value = 0.061).

3.3 EMoMiS Reverse Phase

In the reverse phase of the EMoMiS pipeline, the database and target lists
were switched to identify unknown epitopes from multiple organisms that
may cross-react with native anti-Spike antibodies (Table 1) EMoMiS
predicted that SARS-CoV-2-specific antibodies can cross-react with (E)
human olIbB3 (Lin ef al., 2016), (F) major capsid protein 11 of Human
papilloma virus (HPV) 16 (Guan et al., 2017), (G) HIV-1 envelope
glycoprotein (Pan et al., 2020), and (H) coronavirus OC43 Spike
glycoprotein (Sauer et al., 2021). Human olIbf3 motif GDSS and HPV-
16 motif KHTP had a high score for antibody cross-reaction (DL score =
1.705 and 1.829, p-value < 0.05), while structural similarity with the same
motifs of Spike protein had a medium score (RMSD = 0.26 and 0.21, p-
value < 0.1). The NITN motif of the HIV-1 envelope glycoprotein gp160
and SARS-CoV-2 spike protein had medium structural similarity (RMSD
= 0.37, p-value = 0.083), while the binding of antibody COVOX-
253H55L with the motif of HIV-1 had medium confidence (DL score =
2.012, p-value = 0.057). The FKEELD motif from Spike Coronavirus
OC43 had high structural similarity with SARS-CoV-2 Spike protein
(RMSD = 0.1, p-value = 0.004), while the binding of S2P6 antibody had
only medium confidence for antigen cross-reaction (DL score = 2.130, p-
value = 0.072).

3.4 Surface Accessibility of Predicted Mimicry Candidates

All predicted mimicry motifs appeared surface accessible in the Spike
protein (Fig. 3), confirming the possibility for antibody cross-reaction.
Motifs GDSS (Fig. 3, E), KHTP (Fig. 3, F), NITN (Fig. 3, C and G), and
FKEELD (Fig. 3, H) are confirmed antibody interacting spots on Spike
(Cerutti, Guo, Zhou, et al., 2021; Cerutti, Guo, Wang, et al., 2021;
Dejnirattisai et al., 2021; Pinto et al., 2021). We note that motif FKEELD
(residues 1148-1153) is hidden in Fig. 3 H because the structure for
residues after 1147 is not available for the full Spike (Cerutti, Guo, Zhou,
etal.,2021).

3.5 Impact of Variants

Finally, the SARS-CoV-2 Spike variants of concern (Omicron, Delta, and
Beta) were analyzed for the prevalence of identified molecular mimicry
candidates (Table 2). The variant Spike structures were queried against the
epitopes of four mimicry proteins identified in the EMoMiS forward
phase: TPO, TNFRSF-5, ABCB-1, and non-structural protein 1 of Dengue
virus 1. The binding and structural alignment scores for the Alpha variant
corresponds to the previously reported molecular mimicry results (Table
1, rows A-D). The scores for Beta variant 1.351 were not computed for
TQLPP and ESEF motifs, as the structure is not available for those regions
(PDB ID 7LYM). Two mutations are known in the ESEF motif of the
Delta B.1.617.2 variant (E156G and F157V), which resulted in a
significant decrease in binding strength of FAB and Delta Spike compared
to the Alpha variant (DL score 2.87 vs 1.74). No other mutations directly
affected the mimicry motifs, yet, the pipeline shows variability in the
binding and structural alignment scores.
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Table 2. Molecular mimicry predictions across Spike variants. DL score shows the binding strength of the antibody from other organisms (indicated in
row 2) to bind the Spike of the given variant. RMSD indicates the structural alignment score of the mimicry antigen and corresponding Spike motifs.
DL is denoted as the deep learning score of the antibody (row 2) to bind the N-terminal or receptor-binding domains (NTD and RBD, respectively) of
the SARS-CoV-2 Spike. The significance was determined with one-tailed Z-score statistics (~ p-values<0.11; * p-values<0.1; **p-values<0.05)

Motif TOLPP (NTD 22-26) ESEF (NTD 154-157) | NITN (RBD 331-334) | NLVK (RBD 532-535)
Antibody/Antigen TN1/TPO FAB/TNFRSEF-5 UIC2/ABCB-1 2B7/Dengue virus 1

DL score | RMSD DL score RMSD DL score RMSD [DL score RMSD

Alpha 1.28 ** 0.9 * 1.74 ** 042 * 2.25 % 0.41* 2.34 ~ 0.25 *

Beta 1.351 NA NA NA NA 1.73 ** 0.81 4.45 0.35 *

Delta B.1.617.2 1.57 %% | 0.54 % 2.87 0.88 1.98 * 054 | 294 0.51

(Mut. E156G, F157V)

Omicron B.1.1.5.29 1.83 ** 0.9 * 2.39 022 * 2.14 * 0.48 ~ 3.15 0.38 *

The scores for molecular mimicry in the TQLPP region were
consistently significant across the variants (Table 2, column 2). The
binding score of cross-reacting antibody with ESEF motif significantly
decreased in Delta and Omicron variants (Table 2, Column 3, DL score),
while its structures in the TNFRSF-5 and Omicron Spike aligned with the
same confidence (Table 2, column 3, RMSD). The confidence of the
cross-reactive binding strength increased for the NITN motifin Beta 1.351
while staying the same for other Delta and Omicron (Table 2, column 4,
DL score). On the other hand, the RMSD between NITN aligned residues
increased significantly for every Spike variant (Table 2, column 4,
RMSD). The DL score of the 2B7 antibody to bind to Spike has decreased
in every variant compared to control (Table 2, column 5, DL score).
However, the structural alignment showed a significant decline only in the
Delta B.1.6.17.2 (Table 2, column 5, RMSD).

4 Discussion

We developed an epitope-based molecular mimicry search pipeline that
identifies epitopes that can elicit antibodies cross-reactive to the surface-
accessible query viral immunogens. Other molecular mimicry search
studies have been fairly simplistic and have not been viewed as an
instrument to prepare for the viral pandemic. After applying the EMoMiS
pipeline to the SARS-CoV-2 Spike protein we hypothesize how cross-

reactivity can impact immune response.

4.1. EMoM;iS Pipeline

The EMoMiS tool has many advantages over alternative molecular
mimicry search methods. First, along with the standard sequence and
structural similarity searches, our method evaluates cross-reactive
antibody binding strength. The sensitivity analysis revealed that the
MaSIF deep learning model accurately separates positive and negative
binding with AUC equal to 95% (Fig. 2). Combined with sequence and
structural similarity filtering, the deep learning model aims to select only
relevant candidates for antibody cross-reaction. Second, our method is
capable of predicting cross-reaction with unknown epitopes. Only one
protein requires an antibody binding in the sequence similarity region,
while the evaluated motif on the second protein can be in any surface
accessible position. Thus, the usage of structural antibody database
SAbDab expands the search space when compared to the Immune Epitope
Database (IEDB), typically used to search for mimicking epitopes (Vita et
al., 2019). Third, the pipeline may take as input multiple structural
conformations and target protein variants, which accounts for protein

dynamics. Large variability of target protein structures increases the
chance of finding configuration favorable for antibody binding.

Yet, despite the high accuracy, the deep learning model for cross-
reactivity evaluation needs improvements. The model can be biased
towards some interface structures. The training and testing sets for MaSIF
deep learning are limited by the protein complexes available in the Protein
Data Bank (PDB). If the target protein is sufficiently novel in comparison
to the contents of the database and the training set, the model may fail to
generalize and may produce false predictions. Another limitation of the
deep learning model is the absence of glycans in the set of features. The
glycosylation events may significantly affect the antibody neutralizing
properties and thus, the model sensitivity (Miranda et al., 2007). Those
limiting factors may consolidate the false-negative predictions. For
example, the score for the antibody from the Ab-Spike OC43 complex
(PDB ID 7M51) to bind SARS-CoV-2 Spike protein (PDB ID 7M53) was
very low (DL score = 3.066, p-value = 0.306, see Supplemental Table S3).
Yet, the cross-reaction between antibody B6 (PDB IDs 7M51 and 7M53)
with coronavirus OC43 and SARS-CoV-2 Spike proteins was
experimentally verified (Sauer ef al., 2021). On the other hand, another
Spike configuration (PDB ID 7RNJ) was found to cross-react with
coronavirus OC43 (Table 1, H), which highlights the advantage of using
multiple target structures.

While the lack of a molecular structure for the target protein may be
seen as a limitation for the EMoM:iS pipeline, protein structures can be
quickly and accurately predicted with the recent advances in the deep
learning field (Jumper et al., 2021).

4.2. Antiviral Antibody Cross-reaction

The EMoM:iS pipeline identified four sites in the SARS-CoV-2 Spike
protein that may mimic epitopes from other viruses. Antibody cross-
reaction with viral mimic epitopes may provide cross-protection to the
host. On the other hand, antibodies elicited by mimicry may cross-react
with the vital antigen with lower affinity. As a result, bound antibodies
may fail to block the virus from cell entry, while shielding the pathogen
from its native antibodies. Such an effect is known as antibody-dependent
enhancement (ADE), where antibody enhances the viral entry (Tirado and
Yoon, 2003).

The strongest antibody cross-reactions were predicted for HPV-16
major capsid protein | and the SARS-CoV-2 Spike protein. HPV is a DNA
virus that can cause benign and malignant neoplasms (Molijn ef al., 2005).
A recent study reported a patient for which persistent verruca vulgaris
(benign HPV warts) paradoxically regressed after recovery from COVID-
19 (Demirbas et al., 2021). However, we hypothesize that the HPV
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vaccine will not be effective against COVID-19, as the predicted motif
KHTP is not included in the list of cross-neutralizing epitopes (Tumban et
al.,2011). Indeed, a recent study of immunization records shows that there
is no decrease in the frequency of COVID-19 cases in HPV vaccinated
patients (Pawlowski ef al., 2021).

The next medium confidence molecular mimicry was predicted for non-
structural protein 1 of dengue virus and the SARS-CoV-2 Spike protein
(Table 1, row D). The antibody cross-reaction between proteins from the
dengue and SARS-CoV-2 viruses was previously computationally
predicted (Nath et al., 2020). A recent study experimentally confirmed this
hypothesis, but the rate of antibody cross-reaction was only 22% (Lustig
etal.,2021). Yet, it remains unknown if antibodies induced by such cross-
reaction can provide cross-protection.

Another molecular mimicry hit was found between the SARS-CoV-2
Spike and the HIV-1 envelope glycoprotein. The first hint to cross-
reactivity was documented in the study that observed false-positive HIV
tests in COVID-19 patients (Tan et al., 2021). Another group has found
that two out of nine tested anti-HIV antibodies can cross-react with the
Spike protein, but such antibody reactions do not block viral entry
(Mannar et al., 2021). Thus, cross-reaction of anti-HIV antibodies with
Spike may promote an adverse effect of antibody-dependent enhancement
(ADE).

The last molecular mimicry prediction was for coronavirus OC43 and
SARS-CoV-2 Spike proteins. The structure of the predicted cross-reactive
anti-Spike antibody S2P6 was isolated from the experimental study
confirming the existence of such mimicry (Pinto er al, 2021). The
FKEELD region from perfusion-stabilized S ectodomain trimers is a
confirmed epitope and conserved across SARS-CoV, MERS-CoV, SARS-
CoV-2, and OC43 (Pinto et al., 2021). Identified mimicry proves the
validity of our pipeline. We note that SARS-CoV and MERS-CoV are
absent in the mimicry results because they were excluded from the
database to avoid obvious molecular mimicry from the closely related
viral families.

4.3. Autoimmune Disorders

Molecular mimicry between epitopes from viral and human proteins may
cause autoimmune disorders. Antibodies induced by the virus may bind to
essential human proteins and thereby change their ability to function. The
SARS-CoV-2 infection can initiate a cascade of interactions between
plasmin, complement, and platelet-activating systems, which can lead to
tissue damage, thrombosis, inflammation, and cytokine storm (Mukund et
al., 2020). The nature of the adverse interactions can be caused by the
auto-antibodies induced by molecular mimicry. Four of the identified
mimicry antigenic motifs originated from human proteins: TPO,
TNFRSF-5, ABCB-1, and olIbB3 (Table 1).

The strongest cross-reaction was predicted for antibody TNI to
recognize the TQLPP motif from TPO and the Spike protein (row A in
Table 1). Human TPO is a glycoprotein hormone that regulates the
production of platelets, essential elements for blood coagulation (Kuter
and Begley, 2002). Previously, we have shown that molecular mimicry
between Spike and TPO may induce thrombocytopenia, a disorder with
low blood platelet count (Nunez-Castilla et al., 2021). The EMoMiS
pipeline result provides further evidence that antibodies that recognize
TQLPP in Spike may cross-react with TPO, causing the reduction of
platelet counts. Thrombocytopenia is a common side effect in COVID-19
patients and is associated with an almost 5-fold increase in mortality
(Yang et al., 2020; Shi et al., 2021).

Another high-confidence molecular mimicry was predicted for SARS-
CoV-2 Spike and the human protein TNFRSF-5 (Table 1, row B). TNFSF-
5, also known as CD40, is a tumor necrosis factor receptor superfamily
member expressed by immune and non-immune cells and involved in
producing pro-inflammatory cytokines (Vonderheide and Glennie, 2013).
Previous studies have reported that monoclonal antibodies against the
CDA40 ligand may induce thrombophilia (Kawai et al., 2000). At the same
time, it has been shown that COVID-19 infection increases susceptibility
to systemic thromboembolic complications (Mui et al., 2021; Ferrari et
al., 2020; Oudkerk et al., 2020). We hypothesize that thrombophilia in
COVID-19 patients can be induced by the antibody cross-reactivity
between CD40 and Spike.

The next high-confidence cross-reactivity prediction was between an
antibody from SARS-CoV-2 Spike and human allbB3 (Table 1, E). The
protein alIbB3 is a heterodimeric platelet receptor that plays an essential
role in platelet aggregation (Ma et al., 2007). A previous study showed
that the level of alIbB3 activation on platelets from non-surviving
COVID-19 patients decreased compared to survivors (Ercan et al., 2021,
5). The mechanism for the decline in alIbB3 in severe COVID-19 patients
was unknown. Here, we propose that the imbalance of alIbB3 can be
explained by auto-antibodies induced by Spike.

The cross-reactivity of antibody UIC2 with human ABCB-1 and SARS-
COV-2 Spike protein was predicted with medium confidence (Table 1,
row C). The multidrug transporter ABCBI1 is an ATP-binding cassette
transporter that is involved in protecting tissues from toxic insult and plays
a role in multidrug extrusion from cancer cells (Alam et al., 2018). The
implications of this mimicry discovery remain to be understood and would
require data from COVID-19 patients with cancer.

4.4. Effect of Mutations on Molecular Mimicry

When the structure and sequence of viral variants are available, molecular
mimicry results may explain the change in the immune response upon
evolutionary mutations. For example, the antibody known to recognize
TNFRSF-5 has a reduced cross-reactive binding strength in the Omicron
and Delta variants compared to the Spike protein in the reference Alpha
strain (Table 2, column 3). These variants have less chance to elicit auto-
antibodies against TNFRSF-5, implying a lower chance of developing
thrombophilia. On the other hand, TQLPP molecular mimicry of Spike
with human TPO was consistent across all SARS-CoV-2 variants (Table
2, column 2), suggesting that thrombocytopenia is a concern of COVID-
19 infection regardless of mutation. Additionally, the reduction in binding
score between antibody 2B7 and Beta, Delta, and Omicron variants
compared to Alpha suggests the potential loss of cross-protection provided
by the previous infection of the dengue virus 1.

5 Conclusion

In conclusion, we have developed a novel approach to infer epitope-
based molecular mimicry. We demonstrate the vital importance of
predicting cross-reactivity by applying EMoMiS to the SARS-CoV-2
Spike protein. We have found one confirmed mimicry epitope, FKEELD
from SARS-CoV-2 and OC43 Spike proteins. Other predicted events of
antibody cross-reactivity of SARS-CoV-2 Spike with HPV-16, HIV-1,
and Dengue virus were suggested by previous literature (Demirbas et al.,
2021; Mannar et al., 2021; Lustig et al., 2021). Unlike previous studies
(Balbin et al., 2021; Ludin et al., 2011; Doxey and McConkey, 2013), the
EMoMiS pipeline can predict the exact site of molecular mimicry, thus
opening the door for further experimentation. Most importantly, the
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results should be seen as an attempt to explain observed phenomena in
terms of partial immunity and the COVID-19-associated complications
and side effects. EMoMiS has generated potential explanations for
thrombocytopenia and thrombophilia, observed to occur in some COVID-
19 patients. All predicted molecular mimicry candidates were derived
computationally and should be verified in the laboratory. Additionally,
this work serves as a step toward building generic pipelines to prepare for
future epidemics caused by new pathogens. Our methods also provide a
way to quickly understand what one could expect with new variants of a

virus.
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