bioRxiv preprint doi: https://doi.org/10.1101/2022.02.03.478981; this version posted February 3, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.
Changes in chromatin accessibility are not concordant with transcriptional changes for single-factor
perturbations

Karun Kiani', Eric M. Sanford:, Yogesh Goyal:+s, and Arjun Rajss

‘Genetics and Epigenetics, Cell and Molecular Biology Graduate Group, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA, USA

:Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of
Pennsylvania, Philadelphia, PA, US

‘Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania,
Philadelphia, PA, USA

‘Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University,
Chicago, IL, USA

sCenter for Synthetic Biology, Northwestern University, Chicago, IL, USA

sDepartment of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
*Author for correspondence: arjunrajlab@gmail.com

Abstract

A major goal in the field of transcriptional regulation is the mapping of changes in the binding of transcription
factors to the resultant changes in gene expression. Recently, methods for measuring chromatin accessibility
have enabled us to measure changes in accessibility across the genome, which are thought to correspond to
transcription factor binding events. In concert with RNA-sequencing, these data in principle enable such
mappings; however, few studies have looked at their concordance over short duration treatments with specific
perturbations. Here, we used tandem, bulk ATAC-seq and RNA-seq measurements from MCF-7 breast
carcinoma cells to systematically evaluate the concordance between changes in accessibility and changes in
expression in response to retinoic acid and TGF-B. We found two classes of genes whose expression showed
a significant change: those that showed some change in accessibility of nearby chromatin, and those that
showed virtually no change despite strong changes in expression. The peaks associated with genes in the
former group had a lower baseline accessibility prior to exposure to signal. Focusing the analysis specifically
on peaks with motifs for transcription factors associated with retinoic acid and TGF-f signaling did not reduce
the lack of correspondence. Analysis of paired chromatin accessibility and gene expression data from distinct
paths along the hematopoietic differentiation trajectory showed a much stronger correspondence, suggesting
that the multifactorial biological processes associated with differentiation may lead to changes in chromatin
accessibility that reflect rather than drive altered transcriptional status. Together, these results show many
gene expression changes can happen independent of changes in accessibility of local chromatin in the context
of a single-factor perturbation and suggest that some changes to accessibility changes may occur after
changes to expression, rather than before.

Introduction

Transcription factors regulate gene expression by binding to specific DNA sequences, facilitating transcription
through the recruitment and activation of the transcriptional machinery. Deciphering the combinatorial logic
underlying which transcription factors bind to what portions of DNA and in what contexts is a central challenge
in creating a complete model of transcriptional regulation. Sequencing-based methods have enabled the
measurement of transcript levels for all genes as well as the putative binding profiles of transcription factors
across the genome. However, the precise mapping between changes in these putative binding profiles and the
changes in transcriptional activity remain the subject of debate.

A key component of decoding the relationship between transcription factor activity and the resultant changes in
transcription is the measurement of transcription factor binding to DNA. Recently, the combination of
biochemical binding assays with sequencing-based readouts has led to a cornucopia of methods for making
such measurements. One workhorse method is chromatin immunoprecipitation sequencing (ChlP-seq), which
characterizes the binding of transcription factors and other DNA-protein interactions genome-wide [1-3] by
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using immunoprecipitation of proteins that bind to chromatin and subsequently sequencing the coprecipitated
DNA. However, ChlP-seq is limited in that each experiment can only interrogate the binding profile of one
transcription factor at a time.

An alternative approach that circumvents that issue is the measurement of changes in accessibility of DNA to
infer changes in the binding of all transcription factors at once. Accessible regions of DNA (i.e. those regions
depleted of nucleosomes) represent only 3% of the genome, but often participate in the regulation of gene
expression [4-7]. These regions can be detected genome-wide by combining the enzymatic activity of
nucleases with high-throughput sequencing using techniques such as DNase | hypersensitive site sequencing
(DNase-seq) [8] and assay for transposase accessible chromatin with sequencing (ATAC-seq) [9]. The
interpretation of these accessibility methods leans heavily on the assumption that changes in regulatory factor
binding are reflected in changes in chromatin accessibility. Certainly, there are many examples in which the
correspondence between changes in accessibility strongly correspond to changes in transcriptional output. For
instance, summation of ChlP-seq signal for 42 transcription factors mapped by encode in K562 chronic
myelogenous leukemia cells paralleled the signal from accessible sites revealed by DNase-seq [7]. Moreover,
computational methods to infer transcription factor footprints from accessibility measurements have been
shown to recapitulate ChIP-seq binding well [10]. Accessibility methods can also be used to look for changes in
accessibility across various perturbations and cell types. Changes in accessibility generally seem to
correspond to changes in transcription in the sense that large changes in transcriptional output are reflected in
broad changes in the accessibility of several loci in the surrounding chromatin [11,12].

However, it is unclear how well these accessibility based methods capture the activity of all transcription
factors. It is possible that some transcription factors’ binding and activity does not result in corresponding
changes in accessibility and vice versa. Such a lack of correspondence could manifest itself as a lack of
correlation between changes in accessibility and changes in transcription. Given the underlying assumption
that a change in transcription must be mediated by the change in some transcription factor activity, then such a
lack of correspondence would suggest that changes in the activity of transcription factors could change
expression without changing accessibility near its binding site. While reports from the literature generally show
a strong correspondence [11-14], it is worth noting that the comparisons in such studies are often across
rather different cell types. In such cases, it is possible that the changes in accessibility are not driven by
regulation per se, but rather reflect the consequences of sequential exposure to multiple regulatory factors that
characterize the differentiation process. Such accessibility changes could, in principle, signify the
reinforcement of genes that are already transcriptionally active genes, or could even just appear around
actively transcribed genes without any functional role. Disentangling such possibilities could be revealed with
the use of single-factor perturbations that more directly affect an individual pathway; however, few such data
are available.

Here, we used tandem bulk RNA-seq and ATAC-seq data from MCF-7 breast carcinoma cells exposed to
multiple doses of retinoic acid or TGF-f3 to determine the degree of concordance between changes in
chromatin accessibility and changes in gene expression. Furthermore, we evaluated concordance in another
published data set of hematopoietic differentiation to validate our approach based on well-defined and specific
perturbations. We demonstrate that while some differentially expressed genes have a high concordance
between gene expression and chromatin accessibility changes, many other genes are differentially expressed
without changes in their local chromatin accessibility.

Results

Genome-wide expression and chromatin accessibility changes reflect known biology of two perturbations

To measure the correspondence between changes in chromatin accessibility and changes in gene expression,
we used MCF-7 breast carcinoma cells due to their previously described transcriptional responses to all-frans
retinoic acid [15] (referred to from here on as retinoic acid) and transforming growth factor beta (TGF-) [16].
We used paired, bulk accessibility (ATAC-seq) and expression data (RNA-seq) from these cells [17] collected
72 hours after continuous exposure to three different doses of each signal (Figure 1A). We chose this
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timescale because previous work with MCF-7 cells showed more transcriptional changes at 72 hours
compared to 24 hours after exposure to retinoic acid [15], and chromatin accessibility changes may not be
detectable until 24 hours after perturbation [18]. Differential gene expression and differential peak accessibility
analysis showed a dose-dependent response to both signals compared to ethanol control (Figure 1A, bar
plots). The ethanol ‘vehicle’ controls comprise three different densities of cells, and the transcriptomes of
control conditions globally were similar regardless of cell density (Supplemental Figure 1A). To confirm that
global gene expression and chromatin accessibility patterns were similar between signals and dosages, we
performed principal component analysis. For both RNA-seq and ATAC-seq data, all samples exposed to the
same signal or ethanol control clustered together, indicating that their gene expression and chromatin
accessibility were more similar to each other than to other conditions, supporting the quality of these data.

To validate that changes in gene expression were consistent with the known biology of these signaling
pathways, we performed over-representation analysis on the upregulated genes in response to high dose
retinoic acid or TGF-3 against curated gene sets from the molecular signatures database [19,20]. The top ten
gene sets based on false discovery rate (FDR)-adjusted p-values were processes canonically associated with
retinoic acid (morphogenesis, organ development, anterior-posterior patterning) and TGF-B (extracellular
matrix, endopeptidase activity), respectively (Figure 1B). Gene set enrichment analysis [21] showed that genes
that were differentially expressed in response to high dose retinoic acid were significantly enriched for genes
associated with skeletal system morphogenesis, and genes that were differentially expressed as a result of
exposure to high dose TGF- were significantly enriched for genes associated with epithelial-to-mesenchymal
transition (Supplemental Figure 1B). Thus, the differentially expressed genes generally reflected the known
biology of the signals the cells were exposed to.

We next wondered if the changes in chromatin accessibility in response to signal were associated with the
activity of specific transcription factors, in particular, those associated with the biology of these signaling
pathways. We used a modified version of the chromVAR package along with its curated database of
transcription factor motifs, cisBP, to identify the transcription factors with the largest predicted change in
activity [22]. We used the set of differential peaks to determine the set of the top 150 transcription factors with
the greatest magnitude of change. These included the binding motifs of transcription factors that are canonical
effectors of retinoic acid (RAR-a, HOXA13) and TGF- signaling (SMAD3, SMAD4, and SMAD?9). For each of
these transcription factor motifs, we calculated a motif enrichment score for each condition based on the bias-
uncorrected deviation score from chromVAR. The motif enrichment score represents the percentage change in
ATAC-seq fragment counts in all peaks that contain a given transcription factor’s motif (Figure 1B). For
example, the enrichment score of 28% for SMAD3 in the TGF- condition meant that peaks containing the
SMAD3 motif on average saw a 28% increase in fragment counts after exposure to TGF-. We pooled
together the low, medium, and high doses for each condition together in order to decrease the variability of
motif enrichment scores estimates. Thus, our data recapitulated expected changes in accessibility, presumably
due to the activity of transcription factors well-known to be activated by the signals used. Thus, of the changes
in accessibility we did detect, they made sense based on a model of transcription factor activity leading to
changes in accessibility. However, it was still possible that the activity of many transcription factors was not
captured by changes in accessibility.

The relationship between changes in chromatin accessibility and gene expression varies on a gene by gene
basis

We next wondered whether genes that were differentially expressed were more likely to have differentially
accessible peaks nearby, i.e., was there concordance between gene expression and chromatin accessibility
changes at the level of individual genes? To characterize the extent of concordance between these data, we
looked at the overlap between genes that were differentially expressed in response to high dose signal and
genes with differentially accessible peaks nearby after exposure to signal (Figure 1C). We assigned each
accessible peak to the nearest transcriptional start site (“nearest approach”) and found that of the over 2000
genes upregulated in response to high dose retinoic acid, more than half of them had at least one differential
peak assigned to its transcriptional start site (p-value < 2.2x10+, Fisher’s exact test). Similarly, a third of the
genes whose expression was upregulated in response to TGF- had differential peaks assigned to them (p-
value < 2.2x10-+, Fisher’'s exact test). Thus, genes that are differentially expressed are more likely than random
chance to have a nearby peak that is differentially accessible in response to retinoic acid or TGF-£.
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While using this overlap-based approach showed correspondence between genes that are differentially
expressed and their nearby peaks in response to signal, aspects of the nature of the concordance of these
changes were not captured by this analysis. For example, the overlap-based method counted all differentially
accessible genes that had at least one differentially accessible peak assigned to them as concordant, but did
not take into account the proportion or degree to which those nearby peaks change. Moreover, we did not take
into account the relationship between directionality of changes in gene expression and chromatin accessibility.
The underlying assumption at the basis of this relationship is that when peaks become more accessible that
the nearby gene increases its expression, and the overlap-based approach does not take this correspondence
of the direction of change into account. To better characterize these facets of concordance, we first individually
examined the changes in chromatin accessibility nearby two genes whose expression were upregulated in
response to retinoic acid.

HOXA1 and SLC5A5 induction are associated with exposure to retinoic acid [23-25], and both genes showed
a dose-dependent increase in expression in response to retinoic acid (Figures 1D,E leftmost panels). After
optimizing parameters for calling peaks and determining differentially accessible peaks (Supplemental Figure
2), we found that while a large number of peaks are differentially accessible near the HOXA1 locus (Figure 1D,
track view middle, black traces in accessibility plot, right), very few peaks are differentially accessible near the
SLC5AS5 locus (Figure 1E, track view middle, accessibility plot, right). Therefore, genes with high expression
change in response to signal can show a large degree of accessibility changes or show very little accessibility
changes, suggesting that changes in transcription factor activity may or may not be reflected in changes in
accessibility.

Chromatin accessibility changes are less concordant with large changes in gene expression in signaling
compared to hematopoietic differentiation

Next, we evaluated the concordance between accessibility and gene expression genome-wide while also
factoring in the directionality of changes and the relative proportion of peaks that are changing on a gene by
gene basis. As a point of comparison, we used previously published gene expression and chromatin
accessibility data from hematopoietic differentiation [11] that demonstrated that large changes in gene
expression were typically associated with gains or losses (depending on the direction of expression change) of
cell type-specific enhancers when comparing the expression and accessibility of hematopoietic stem and
progenitor cells (HSPCs) to monocytes.

Before using this data set as a comparison to ours for measuring concordance between chromatin accessibility
and gene expression changes, we verified that the hematopoietic differentiation data was similar to our own by
a variety of metrics. First, we wanted to compare whether the number of differentially expressed genes and
differentially accessible peaks between HSPCs and monocytes in the hematopoietic differentiation data was
similar to the numbers from MCF-7 cells exposed to retinoic acid or TGF-B. We found that both HSPC and
monocyte populations had greater than 2000 genes that were specifically expressed in their respective cell
types compared to the approximately 2000 and 1500 genes differentially expressed in MCF-7 cells in response
to high dose retinoic acid and TGF-(3, respectively (Figure 1A). Moreover, HSPC and monocyte populations
had more than 6000 differentially accessible peaks (Supplemental Figure 3A) compared to the approximately
15000 and 6000 differentially accessible peaks in MCF-7 cells in response to high dose retinoic acid and TGF-
B, respectively (Figure 1A).

Next, we annotated the location of peaks based on where in the genome they were located relative to gene
bodies and quantified what proportion of peaks fell into annotation categories such as promoter, intergenic,
exonic, intronic, etc. ATAC-seq peaks from MCF-7 cells had a larger proportion of peaks at gene promoters
(within 3 kilobases upstream or downstream of the transcription start site) whereas a greater proportion of the
DNase | hypersensitive sites in the HSPC and monocyte populations were from distal intergenic regions
compared to promoters (Supplemental Figure 3B). This finding could be the result of inherent differences in the
assays or could reflect biological differences. Moreover, the MCF-7 data had a greater proportion of peaks
located at gene promoters, which could in principle bias our results toward having a larger degree of
concordance because accessibility changes at promoters were more strongly correlated with gene expression
changes than distal accessible. Despite this bias, our data demonstrate less concordance.
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Given the different assays used to determine genome-wide chromatin accessibility, we realigned the DNase-
seq data to the hg38 reference and examined the peaks at a ‘housekeeping gene’ (GAPDH), hematopoietic
differentiation-specific genes (CD34, CD14) and retinoic acid and TGF-B-related genes (DHRS3, SERPINA11)
to spot-check that the accessibility data were similar. Indeed, there were similar accessibility profiles for
GAPDH, and appropriate differences in accessibility given the cell type of signal for the other sites, indicating
the accessibility data were comparable (Supplemental Figure 4A-E). Moreover, to look at similarities in
accessibility genome-wide, we calculated the intersection of the consensus peak sets from hematopoietic
differentiation and MCF-7 signal response data sets. We observed that approximately 55% of peaks from
hematopoietic differentiation data (DNase-seq) overlapped with peaks from the MCF-7 signal response data
set (ATAC-seq). These results show that the datasets do not have systematic qualitative differences in either
expression or accessibility, enabling us to compare the degree of concordance across these two systems.

In the original analysis of hematopoietic differentiation, the authors found that regulatory complexity (defined as
the number of accessible regions closest to a gene’s transcriptional unit) was an important discriminating factor
for whether changes in accessibility corresponded to changes in expression, with areas of high complexity
showing more correspondence than those of low complexity. Hence, we similarly grouped genes from our
MCEF-7 dataset into high and low complexity for our comparisons. We categorized genes with more than 7
peaks assigned to them using the ‘nearest approach’ as ‘high complexity’, while genes with 7 or fewer peaks
were categorized as having ‘low complexity’ (Figure 2A, top panel). The cutoff for loci complexity was
calculated by taking a tertile based approach [11] and calling any number of peaks above the highest tertile
cutoff as high and any peak below that as low complexity (Figure 2B, solid line, lower plot). Because high
complexity genes on average had higher levels of expression in the hematopoietic differentiation data, we
sought to determine if there was any difference in expression between high and low complexity genes in our
MCEF-7 data. The median expression of high complexity loci was similarly higher than low complexity loci in
response to both exposure to high dose retinoic acid (23.30 versus 13.27 TPM) and high dose TGF-(3 (24.06
versus 13.05 TPM) (Supplemental Figure 5A, p-value < 2.2x10+ for both, Kolmogorov-Smirnov test)
demonstrating that high complexity genes are more highly expressed as in the hematopoietic differentiation
data. Despite this difference in expression, the distributions of peak widths for peaks of high and low
complexity genes were similar (Supplemental Figure 5B).

We began our analysis by focusing on the high complexity genes. To determine the concordance between
gene expression changes and chromatin accessibility changes, we used the ‘nearest approach’ to assign
peaks to genes. For each gene we compared the log. of the fold change in expression between conditions
versus the proportion of peaks that were differentially accessible in the same direction (i.e., peaks that increase
in accessibility for genes that increase in expression after exposure to signal and vice versa). We observed
that for hematopoietic differentiation, the 100 most highly expressed high complexity genes in the HSPC and
monocyte populations had a high proportion of peaks which were differentially accessible in the concordant
direction, reproducing the conclusions of Gonzalez et al. that large changes in expression were consistently
associated with concordant changes in chromatin accessibility (Figure 2C). Next, we used this approach on our
data to compare expression and accessibility changes between ethanol vehicle control and high dose retinoic
acid or TGF-B. For both signals, we observed two distinct groups of genes within the top 100 most differentially
expressed genes. One group of genes (‘accessibility-concordant genes’) behaved similarly to those in the
hematopoietic differentiation data, demonstrating a concordance between expression and accessibility
changes (Figures 2D,E). However, the other group of genes (‘accessibility-non-concordant genes’) had large
expression changes with little to no peaks nearby changing in accessibility, creating a skew in the distribution
toward a lower proportion of peaks being differentially accessible in a concordant manner compared to the
hematopoietic differentiation data (Figures 2C-E, density plots).

Adjusting the minimum peak coverage parameter changes the number of differential peaks and the proportion
of differential peaks that change in the corresponding direction of expression. We wondered if a lower
minimum coverage threshold changed the qualitative result we noticed before and thus conducted the same
analysis using a lower minimum peak coverage threshold for determining differential peaks (see methods). We
observed that a similar pattern occurred in high complexity genes with this set of parameters (Supplemental
Figure 6).
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Gonzalez and colleagues showed that for some low complexity genes, large changes in expression were not
accompanied with concordant changes in accessibility [11]. We similarly wanted to confirm whether this
decreased correspondence was the case in our data in response to retinoic acid and TGF-. Using the same
approach as before, we compared the log. of the fold change in expression of low complexity genes to the
proportion of peaks with differential accessibility in the concordant direction. The hematopoietic differentiation
and signaling data for low complexity all qualitatively had genes whose expression increased without
concordant changes in accessibility (Supplemental Figure 7A-C). The distribution of the proportion peaks that
were differentially accessible in the concordant direction for the top 100 up and downregulated genes was
roughly uniform when comparing HSPCs to monocytes (Supplemental Figure 7A, density plot on right). By
comparison,the distribution was skewed toward more genes having a lower proportion of peaks being
differentially accessible in the concordant direction in response to signals in MCF-7 cells, especially in the case
of TGF-B (Supplemental Figure 7B,C, density plots on right). Thus, while both the signaling in MCF-7 and
hematopoietic data demonstrated large gene expression changes without concordant changes in chromatin
accessibility with low complexity genes, a greater proportion of genes did so in the signaling data.

Peaks nearby genes with high concordance have lower accessibility prior to exposure to signal

We wondered what the differences were between genes that were differentially expressed and had large
accessibility changes versus those that were differentially expressed and had low accessibility changes. First,
for high dose retinoic acid and TGF-(3, we split genes into four groups based on whether they were
differentially expressed and the proportion of peaks assigned to them using the ‘nearest’ method that were
differentially accessible in the appropriate direction. These four groups were (1) genes with differentially
upregulated expression and concordant accessibility changes (2) genes with differentially upregulated
expression non-concordant accessibility changes (3) genes with differentially downregulated expression and a
concordant accessibility changes, and (4) genes with with differentially downregulated expression and non-
concordant accessibility changes (Figures 3A,B). We quantified the distribution of peak complexity across
these groups and observed that they were similar across all four gene subgroups (Supplemental Figures
8A,B).

We first asked whether the change in accessibility between these two gene groups was due to differences in
the preexisting accessibility of peaks for these genes. Indeed, we found the baseline accessibility of peaks for
genes with concordant increases in expression and accessibility in ethanol vehicle conditions was lower than
those of peaks of genes that increase in expression without a commensurate change in chromatin accessibility
(Figure 3C). This relationship was also recapitulated for concordant peaks that increase in expression and
accessibility in response to high dose TGF-3 (Figure 3D). Similarly, when comparing genes that are
differentially downregulated in expression a similar pattern holds true in the opposite direction (Figures 3C,D,
Supplemental Figures 8C,D). One explanation may be that genes whose nearby chromatin was already
accessible were permissive toward the action of the appropriate transcription factors to modulate expression.
An alternative explanation is that the ATAC-seq assay itself had saturated in its ability to measure chromatin
accessibility. In contrast, the difference in accessibility decreased between genes with a low proportion of
peaks that were differentially accessible and genes with a high proportion of accessible peaks after exposure
to signal Supplemental Figures 8C,D). Thus, the difference in the proportion of accessible peaks nearby the
two groups of genes was partially explained by the pre-existing chromatin accessibility.

Multiple approaches to integrating chromatin accessibility and gene expression changes show a low degree of
concordance during signaling.

Finally, we measured to what degree the change in accessibility of chromatin nearby a gene is reflected in the
change in gene expression. Because linear distance is not always a good predictor of what accessible regions
interact with what genes, we used multiple approaches to assign peaks to genes. First, we used the ‘nearest
approach’ to create a one-to-one mapping between accessible sites and genes by assigning them to the
nearest transcriptional start site [26,27], again comparing our signaling dataset to the hematopoietic
differentiation dataset. Because many genes have multiple peaks assigned to them, we used two methods for
collapsing peak values per gene: either the median accessibility of peaks across genes or the maximum
(Figure 4A, schematic). We observed a stronger correlation between accessibility and expression changes in
differentiation data (median approach Pearson’s r = 0.34, maximum approach Pearson’s r = 0.26) than in
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MCEF-7 in response to signal (retinoic acid: median approach Pearson’s r = 0.27, maximum approach
Pearson’s r = 0.10; TGF-3: median approach Pearson’s r = 0.27, maximum approach Pearson’s r = 0.10;
Figure 4A, right side).

Next, we used a window-based approach where there was the possibility of a many-to-one mapping of peaks
to genes. We assigned all peaks within a 100 kilobase window [17] in order to maximize the number of
differential peaks assigned to a gene (Supplemental Figure 9A,B). Similar to the ‘nearest’ approach, we
collapsed values using median accessibility change across all peaks assigned to a gene as well as maximum
accessibility per gene (Figure 4B, schematic) We observed a similar effect using this approach where there
was a stronger correlation between change in accessibility and change in expression between HSPC versus
monocyte versus MCF-7 cells exposed to signal (Figure 4B). Of note, the correlation coefficients were similar
between both methods of assigning peaks.

We also wondered if the correlation between the extent of chromatin accessibility changes and gene
expression changes would be different at the two lower doses. We used both the median and maximum peak
value per gene while assigning peaks to genes using the nearest and window approaches. We observed
similarly weak correlation as high dose signal using all methods at both low and medium doses (Supplemental
Figure 9C,D). Consequently, the correlation between the magnitude of change in gene expression and
chromatin accessibility was modest across the range of doses of signals.

To see if peaks in specific genomic regions (promoters, parts of the gene body, downstream and intergenic
areas) had unique relationships between change in chromatin accessibility and change in gene expression, we
subsetted our correlation analysis. We annotated peaks using ChiPseeker [28] to categorize them as being at
promoters, within the gene body (5’ UTR, 3’ UTR, intronic, and exonic sequences), downstream of the gene
end, or at intergenic sequences. We used peaks assigned to genes using the ‘nearest’ approach and took the
median change in accessibility per gene. The strongest correlation between changes in accessibility and gene
expression across sets of comparisons was at promoter peaks (Figure 4C). While promoter correlation is
quantitatively stronger, the overall qualitative conclusion remains the same. Thus, despite using a variety of
approaches for both assigning peaks to genes as well as collapsing the accessibility of all peaks for a given
gene to a single value, we failed to appreciate a strong relationship between changes in accessibility and
changes in gene expression.

Finally, we wondered if peaks that contained the motifs of transcription factors that are associated with retinoic
acid and TGF-p signaling only (as opposed to all peaks) would show a stronger correlation between the
changes in chromatin accessibility and gene expression. We annotated peaks with a log-likelihood score of a
given motif being found in that peak and subsetted on those peaks with a nonzero log-likelihood score to
examine the correlation between changes in accessibility and gene expression. Using this approach, we
examined log-likelihood scores for motifs associated with retinoic acid signaling (RARA-a, HOXA13, and
FOXA1) and motifs associated with TGF-3 (SMAD3, SMAD4, and SMAD9). We observed that focusing on
peaks annotated with peaks we would a priori expect to be involved in modulating gene expression in
response to signal showed limited correlation between changes in chromatin accessibility and changes in gene
expression (Figure 5).

Discussion

Here, we integrated tandem, genome-wide chromatin accessibility and transcriptomic data to characterize the
extent of concordance between them in response to inductive signals. We demonstrated that while certain
genes have a high degree of concordance of change between expression and accessibility changes, there is
also a large group of differentially expressed genes whose local chromatin remains unchanged. By
comparison, data from cell types along the hematopoietic differentiation trajectory had a much higher degree of
concordance between genes with large gene expression changes and chromatin accessibility changes.

What might explain the lack of concordant changes in chromatin accessibility? One explanation could be that
pre-existing chromatin accessibility dictates the de novo binding of transcription factors, but that the binding of
transcription factors to those regions does not result in further changes to accessibility. Such effects have been
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reported in the context of glucocorticoid signaling, in which the glucocorticoid receptor almost exclusively binds
to chromatin that is already accessible in response to dexamethasone [29]. Indeed, we demonstrated that
genes that lacked concordance between changes in chromatin accessibility and gene expression were more
likely to have nearby chromatin that was already accessible (Figures 3C,D). It is possible that in MCF-7 cells,
the transcriptional effects of RA and TGF-8 do not lead to a significant change in the activity of pioneer
transcription factors, which are able to bind directly to condensed or inaccessible chromatin to facilitate its
opening [30]. Also, implicit in our approach is the assumption that an increase in accessibility is associated with
an increase in expression, which is not necessarily the case if a genomic locus becomes accessible to a
repressive factor or a bound repressive factor is displaced by a nucleosome.

We looked at MCF-7 cells exposed to retinoic acid and TGF- because these two signals induce a robust
transcriptional response through distinct mechanisms. RAR-a remains bound to DNA and interacts with
transcriptional activators in response to retinoic acid binding, while SMAD family members require TGF-$ to
bind to surface receptors to translocate to the nucleus. Yet, despite these differences, we observed that many
genes changed expression independent of changes in chromatin accessibility for both signals. It is, however,
possible that signaling molecules that exert their effects through very different types of transcription factors
may have a different profile of concordance between changes in accessibility and gene expression. It is
possible that other types of factors in a different context (e.g., different cell line) may yield a stronger
correspondence.

Our data characterized molecular changes resulting from a single input (retinoic acid or TGF-B) in a clonal cell
line, whereas the majority of work reporting a stronger concordance between simultaneous measurements of
accessibility and transcription compared entirely different cell types or cells undergoing a directed
differentiation protocol. What we have observed in the case of a single perturbation applied to cells that are not
thought to change type per se is increased or decreased transcription with less concomitant nearby change in
accessibility. How can one reconcile these observations? One possibility is that if we were to leave the signal
on for longer, or combine it over time with the effects of several other signals, that we eventually would observe
many further changes in accessibility proximal to a gene, concordant with the aforementioned results from
comparisons between cell types. Whatever the source, these further changes in accessibility do not seem to
occur randomly, given that they largely reflect the direction of change in transcription (increased accessibility
for upregulation, decreased for downregulation). It may be that these subsequent changes in accessibility do
not explicitly change transcription, but rather alter the underlying regulatory logic of the gene; i.e., the removal
of a signal may not lead to a decrease in the gene’s transcription, or the gene’s transcription may be sensitized
or desensitized to some other set of transcription factors.

Methods

PCA of RNA and ATAC-sequencing samples

Principal component analysis and visualization of RNA-seq and ATAC-seq samples was performed using raw
counts and performing a variance stabilizing transform. Results were visualized using functions from the R
DESeq2 package [31].

RNA-sequencing analysis

Initial RNA sequencing analysis was performed as previously [32]. Briefly, reads were aligned to the hg38
assembly using STAR v.2.7.1a and counted uniquely mapped reads with HTSeq v0.6.1 and hg38 GTF file
from Ensembl (release 90). We used DESeqg2 v1.22.2 in R 3.5.1 using a minimum absolute-value log-fold-
change of 0.5 and a q value of 0.05. For genes with multiple annotated transcriptional start sites, we used the
‘canonical’ transcription start site from the knownCanonical table from GENCODE v29 in the UCSC Table
Browser.

We performed functional over-representation and gene set enrichment analysis [21] of upregulated transcripts
in the high dose retinoic acid and high dose TGF- using clusterProfiler v4.0.5 and enrichplot v1.12.3 [33]. P
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values for the over-representation analysis were adjusted using a false discovery rate approach. We used the
C5 ontology and H hallmark curated gene sets from the Molecular Signatures Database (MSigDB) v7.4 [19,20]
as reference gene sets to compare our upregulated genes to.

ATAC-sequencing analysis

ATAC-seq alignment and peak calling was performed as previously [17]. We aligned peaks to the hg38
assembly using bowtie2 v2.3.4.1, and filtered out low-quality alignments with samtools v1.96, removed
duplicate read pairs with picard 1.96, and used custom Python scripts along with bedtools v2.25.0 to create
alignment files with inferred Tn5 insertion points. We called peaks using MACS2 [34] v2.1.1.20160309 with the
command, ‘macs2 callpeak --nomodel --nolambda --keep-dup all --call-summits -B —-
SPMR --format BED -g 0.05 --shift 75 --extsize 150

Since we had three biological replicates per condition, we used a majority rule approach to retain only summits
that were found in at least two replicates [35]. Using these condition-specific peak files, we used bedtools to
create a consensus peak file by merging each individual condition's peak summit file together in a manner that
disallowed overlapping peaks. We used bedtools merge command ‘bedtools merge -d 50’ to combine
features within 50 base pairs of each other into a single peak after testing multiple merge distances. We used
the number of ATAC-seq fragment counts at each peak in this merged consensus peak file for differential peak
analysis.

We used the custom peak analysis algorithm from Sanford et al., 2020 that took advantage of additional
ethanol control conditions to estimate false discovery rate in ethanol controls to then identify differential peaks.
Briefly, reads were quantified for each peak in the master consensus file and fragments at each peak were
normalized to correct for differences in total sequencing depth using the equation:

sample's total reads in peaksmean number of reads in peaks across all samples. Next, an estimated false
discovery rate was calculated in each cell of a 50x50 grid containing 50 exponentially-spaced steps of
minimum fold-change values (ranging from 1.5-10) and 50 exponentially-spaced steps of minimum number of
normalized fragment counts in the condition with the greater number of counts (ranging from 30 to 237 or 10 to
237). The estimated false discovery rate (FDR) was calculated using the equation: estimated FDR = (no. of
conditions)(est. number of false positive peaks per condition)total number of differential peaks in experimental
conditions. After calculating the estimated FDR in each cell of the 50x50 grid, we then pooled together
differential peaks contained in any cell with an FDR less than 0.25%.

We performed motif analysis on our set of differential peaks using chromVAR v1.8.0 [22], its associated cisBP
database of transcription factor motifs, and the motifmatchR package from bioconductor. To decrease the
variance of the transcription factor motif deviations scores, we pooled together the different dosages of retinoic
acid or TGF-B. The chromVAR code was modified to extract an internal metric that equals the fractional
change in fragment counts at motif-containing peaks for a given motif.

Hematopoietic differentiation data

We used preexisting RNA- and DNase I-seq data (aligned to genome assembly hg19) of hematopoietic
differentiation [11] to compare against our data. We used data from the website provided in the paper
(http://cbio.mskcc.org/public/Leslie/Early _enhancer_establishment/) to download annotations of peaks
(peaksTable.txt), counts of DNase-seq (DNaseCnts.ixt), and RNA-seq counts (RNAseqCnts.txt). Counts
presented in these data files were quantile normalized and averaged when biological replicates were available.
We filtered peaks with “CD14” or “CD34” under the “accessPattern” annotation to choose for peaks that were
relevant for comparing HSPCs to monocytes. We used a log. fold change of greater than or equal to 2 as a
cutoff for assigning differential peaks. We used the preexisting annotations of genes for each peak for peak-
gene mapping. For determining the log. fold change in gene expression we discarded genes whose maximum
expression value across the two conditions was fewer than 5 quantile-normalized units.

For visualization of this data set with our own accessibility data, we realigned raw fastq files DNase-seq files to
the hg38 assembly using bowtie v2.3.4.1 and filtered out low-quality alignments with samtools v1.1 to generate
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new .bam alignment files. The alignment files were combined using samtools merge in a single .bam file per
cell type. Bam files were converted to .bigWig format using deeptools 3.5.1 [36] “bamCoverage --
normalizeUsing CPM’ to create a ‘consensus’ .bigWig for visualization. Peaks for CD34+ and CD14+
samples were made by filtering peaks annotated for these populations in the “accessPattern” column and
creating separate .bed files using a custom script. The peak location in these .bed files were then lifted over
from hg19 to hg38 using UCSC hgLiftOver. For comparing the overlap of peaks between data sets, we created
consensus peak sets across all sample types and used the bedtools intersect function to quantify the
proportion of peaks that intersected between the hematopoietic differentiation and signaling data.

Peak annotation

Peaks were annotated using ChiPseeker [28] to determine the relative proportion of features in the data from
Gonzalez et al., 2015 (DNAse-seq) and Sanford et al., 2020 (ATAC-seq). For ease of visualization, certain
categories like the three promoter categories were collapsed into one. ChiPseeker was also used to identify
the nearest transcriptional start site to a gene used for the nearest integration approach described below. For
making scatter plots of change in accessibility versus change in expression annotated by peak feature, a
custom script was used to combine annotations from ChlPseeker into four categories: downstream, gene body,
integenic, and promoter.

For each of the top 150 most variable transcription factor motifs we identified using differential accessibility
analysis, we used the R bioconductor motifmatchR package to annotate both the number of motif matches and
a log-likelihood match score for each peak.

RNA and ATAC data integration

We employed two methods for assigning peaks to genes. In the ‘nearest’ approach, we used annotation from
ChiIPseeker to assign each peak to the nearest transcriptional start site. With this method, each peak is
uniquely mapped to a single gene. In the ‘window’ approach we used a window of 50 kilobases on either side
of the transcriptional start site (100 kilobases in total) to assign peaks to a gene, which could result in a peak
being assigned to multiple genes.

Track Visualization

We visualized accessibility data using the web based version of integrative genomics viewer (IGV) [37,38]. We
prepared accessibility data for visualization by taking consensus files and converting them to .bigWig file
format with either fragments per million or counts per million normalization. Bed files for identifying peaks were
created using custom scripts.

Statistics and software

Unless otherwise stated, we performed analyses using R v4.1.0 with data manipulation and visualization done
with tidyverse v1.3.1 [39] and ggpubr v0.4.0. We used a Kolmogorov-Smirnov test to compare means. Unless
otherwise stated, 95% confidence intervals for Pearson’s r were calculated by bootstrapping using 10,000
replicates.

Data and Code Availability
All raw and processed data as well as code for the analyses in this manuscript can be found at:
https://www.dropbox.com/sh/gbjuagz511c072g/AAChvYMjdoG7A0eNdgbEmaUla?dI=0
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Figure Captions

Figure 1: Changes in gene expression can occur with or without concordant changes in chromatin
accessibility in response to signal.

a. Schematic of signal response experiments in MCF-7 cells from Sanford et al., 2020. Briefly, cells were
treated with either ethanol vehicle control (gray) or three different doses of retinoic acid (shades of red) or
TGF-B (shades of blue). After 72 hours of continuous exposure, bulk RNA-seq and ATAC-seq were performed
on samples. We show the number of differentially expressed genes and differentially accessible peaks for each
dose of each condition compared to ethanol vehicle control.

b. Validation that changes in gene expression and chromatin accessibility reflect known biology of
perturbations. Left: overrepresentation analysis of differentially upregulated genes in response to high dose
retinoic acid (red) or TGF-B (blue). Top ten gene sets for each signal by -log..FDR-adjusted p-value are shown.
Right: motif enrichment analysis of differentially accessible peaks for selected motifs of transcription factors
related signaling pathways of these signals. Y-axis shows percentage change of ATAC-seq signal at motif
containing peaks relative to ethanol vehicle control samples. For each condition, we pooled together replicates
for all three doses. Error bars represent bootstrapped confidence intervals.

C. Overlap between changes in gene expression and changes in chromatin accessibility in response to
high dose retinoic acid (top) or high dose TGF- (bottom). Of the genes that were differentially expressed (right
circle of Venn diagram) we looked at the overlap (shaded) of how many of them also had at least one
differentially accessible peak (left circle). To disprove the null hypothesis that there is no association between
genes that are differentially expressed and genes that have differentially accessible peaks assigned to them
using the ‘nearest’ approach, we performed Fisher’s exact test to show the probability of these data or more
extreme if the null hypothesis was true for both signals was less than 2.2x10-.

d. Expression and accessibility change of HOXA1 in response to increasing doses of retinoic acid. Left:
Expression (TPM, triplicate average) in response to increasing dose of retinoic acid (error bars represent
SEM). Middle: track view of HOXAT locus with accessibility in fragments per million and peaks and differential
peaks annotated. Right: quantification of peak accessibility (normalized fragment counts, triplicate average)
within a 50 kilobase window of HOXA1 locus with peaks that are differentially accessible between ethanol
vehicle control and high dose retinoic acid conditions marked with black lines.

e. Expression and accessibility change of SLC5A5 in response to increasing doses of retinoic acid. Left:
Expression (TPM, triplicate average) in response to increasing dose of retinoic acid (error bars represent
SEM). Middle: track view of SLC5A5 locus with accessibility in fragments per million and peaks and differential
peaks annotated. Right: quantification of peak accessibility (normalized fragment counts, triplicate average)
within a 50 kilobase window of SLC5AS5 locus with peaks that are differentially accessible between ethanol
vehicle control and high dose retinoic acid conditions marked with black lines.

Figure 2: Signaling shows less concordance between highly differentially expressed genes and
chromatin accessibility changes compared to hematopoietic differentiation data for high complexity
genes.

a. Schematic demonstrating classification of genes into “high” versus “low” complexity genes based on the
number peaks assigned to a gene using the ‘nearest’ approach.
b. Density plot of number of peaks per gene in retinoic acid (red) and TGF-f (blue, overlap in purple) with

median complexity marked by dotted line and high complexity cutoff marked by solid line.
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C. Concordance between expression and accessibility changes between hematopoietic stem and
progenitor cells and monocytes. Left: plot showing changes in gene expression in CD34+ hematopoietic stem
and progenitor cells (blue) and CD14+ monocytes (orange) from Gonzalez et al., 2015 (schematic, top). For
the plots, each dot is a gene, and on the x axis is log.fold change in expression and on the y-axis the
proportion of differentially accessible DHSs for each associated gene. The top 100 most highly expressed
genes in hematopoietic stem and progenitor cells and monocytes are colored in shades of orange and blue,
respectively. Middle: density plot of the distribution of the proportion of high complexity DHS associated with
the top 100 expressed genes in CD34+ hematopoietic stem and progenitor cells and CD14+ monocytes with
median value marked by vertical black line. Right: example tracks DNase | sequencing data for KIT and CCR1
(marked on plot on left).
d. Concordance between expression and accessibility changes between cells exposed to ethanol vehicle
control and high dose retinoic acid. Left: plot showing changes in gene expression and chromatin accessibility
between ethanol vehicle control and high dose retinoic acid. Each dot is a gene, and on the x axis is the log.
fold change in expression and on the y-axis the proportion of differentially accessible ATAC-seq peaks for each
gene. The top 100 most highly expressed genes in ethanol vehicle control and high dose retinoic acid are
colored in shades of gray and red, respectively. Middle: density plot of the distribution of the proportion of high
complexity ATAC-seq peaks associated with the top 100 expressed genes in ethanol vehicle control and high
dose retinoic acid with median value marked by vertical black line. Right: example ATAC-seq tracks of STRA6
and WNT11.
e. Concordance between expression and accessibility changes between cells exposed to ethanol vehicle
control and high dose TGF-(. Left: plot showing changes in gene expression and chromatin accessibility
between ethanol vehicle control and high dose TGF-3. Each dot is a gene, and on the x axis is the log. fold
change in expression and on the y-axis the proportion of differentially accessible ATAC-seq peaks for each
gene. The top 100 most highly expressed genes in ethanol vehicle control and high dose TGF- are colored in
shades of gray and blue, respectively. Middle: density plot of the distribution of the proportion of high
complexity ATAC-seq peaks associated with the top 100 expressed genes in ethanol vehicle control and high
dose retinoic acid with median value marked by vertical black line. Right: example ATAC-seq tracks of
PMEPA1 and COL4AS3.

Figure 3: Separation of differentially expressed genes in response to signal into high and low
concordance groups shows differences in pre-existing accessibility.

a. Categorization of differentially expressed genes in response to high dose retinoic acid based on
direction of expression change and proportion of peaks differentially accessible in the same direction.

b. Categorization of differentially expressed genes in response to high dose TGF- based on direction of
expression change and proportion of peaks differentially accessible in the same direction.

C. Differential accessibility in ethanol vehicle control conditions prior to addition of high dose retinoic acid.
Accessibility of every peak assigned using the ‘nearest’ approach for gene groups from (a) in ethanol vehicle
control conditions. P-values represent the probability of these data or more extreme under the null hypothesis
that the distribution of peak accessibilities were drawn from the same probability distribution via the
Kolmogorov-Smirnov test.

d. Differential accessibility in ethanol vehicle control conditions prior to addition of high dose TGF-8.
Accessibility of every peak assigned using the ‘nearest’ approach for gene groups from (b) in ethanol vehicle
control conditions. P-values represent the probability of these data or more extreme under the null hypothesis
that the distribution of peak accessibilities were drawn from the same probability distribution via the
Kolmogorov-Smirnov test.

Figure 4: Multiple approaches to quantifying peak accessibility shows low correlation between gene
expression changes and accessibility changes in signaling.

a. ‘Nearest’ approach to assigning peaks to genes shows less concordance in signaling compared to
hematopoietic differentiation. Left: schematic showing ‘nearest’ approach where peaks are assigned to the
nearest transcriptional site and change in accessibility (purple) on a per-gene basis is calculated by either
median change in accessibility (top row) or maximum peak change (bottom row). Right: scatter plots showing
change in peak accessibility (median or maximum) versus log. fold change in expression on y axis for
hematopoietic differentiation data from Gonzalez et al. (left column) and for high dose retinoic acid and high
dose TGF-B (right two columns). Pearson’s correlation coefficients reported with 95% confidence interval from
bootstrapping with 10,000 replicates in parentheses.
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b. ‘Window’ approach to assigning peaks to genes shows less concordance in signaling compared to
hematopoietic differentiation. Left: schematic showing ‘window’ approach where all peaks within a certain
window of the the transcriptional start site are assigned to that gene and the change in accessibility (purple) on
a per-gene basis is calculated by the median change in accessibility (top row) or the maximum change in
accessibility (bottom row). Right: scatter plots showing change in peak accessibility (median or maximum)
using ‘window’ approach with a 100 kilobase window versus log. fold change in expression on y axis for
hematopoietic differentiation data from Gonzalez et al. (left column) and for high dose retinoic acid and high
dose TGF-f (right two columns). Pearson’s correlation coefficients reported with 95% confidence interval from
bootstrapping with 10,000 replicates in parentheses.
C. Using ‘nearest’ approach to look for correlation between accessibility and gene expression changes
based on annotations of peak location. First two columns showing correlation for hematopoietic differentiation
data from Gonzalez et al, and right four columns showing correlation for high dose retinoic acid and high dose
TGF-B, respectively. Pearson’s correlation coefficients reported with 95% confidence interval from
bootstrapping with 10,000 replicates in parentheses.

Figure 5: Focusing on peaks annotated for biologically relevant transcription factor motifs fails to
demonstrate a strong correlation between the magnitude of gene expression and chromatin
accessibility changes.

a. Peaks annotated for motifs of transcription factors related to retinoic acid biology (RAR-a, HOXA13,
FOXA1, left column) showed weak correlation between changes in gene expression and chromatin
accessibility in response to high dose retinoic acid. Peaks are colored based on the log-odds of a motif being
present in a given peak. Plot of expression and accessibility change for 5000 randomly sampled peaks lacking
the corresponding peak (right column). Pearson’s correlation for peaks not having a given motif are for all
peaks without that motif, not the 5000 subsampled peaks. Pearson’s correlation coefficients reported with 95%
confidence interval from bootstrapping with 10,000 replicates in parentheses.

b. Peaks annotated for motifs of transcription factors related to retinoic acid biology (SMAD3, SMAD4,
SMADO9, left column) showed weak correlation between changes in gene expression and chromatin
accessibility in response to high dose TGF-3. Peaks are colored based on the log-odds of a motif being
present in a given peak. Plot of expression and accessibility change for 5000 randomly sampled peaks lacking
the corresponding peak (right column). Pearson’s correlation for peaks not having a given motif are for all
peaks without that motif, not the 5000 subsampled peaks. Pearson’s correlation coefficients reported with 95%
confidence interval from bootstrapping with 10,000 replicates in parentheses.
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Figure 5.
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