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Abstract 
A major goal in the field of transcriptional regulation is the mapping of changes in the binding of transcription 
factors to the resultant changes in gene expression. Recently, methods for measuring chromatin accessibility 
have enabled us to measure changes in accessibility across the genome, which are thought to correspond to 
transcription factor binding events. In concert with RNA-sequencing, these data in principle enable such 
mappings; however, few studies have looked at their concordance over short duration treatments with specific 
perturbations. Here, we used tandem, bulk ATAC-seq and RNA-seq measurements from MCF-7 breast 
carcinoma cells to systematically evaluate the concordance between changes in accessibility and changes in 
expression in response to retinoic acid and TGF-³. We found two classes of genes whose expression showed 
a significant change: those that showed some change in accessibility of nearby chromatin, and those that 
showed virtually no change despite strong changes in expression. The peaks associated with genes in the 
former group had a lower baseline accessibility prior to exposure to signal. Focusing the analysis specifically 
on peaks with motifs for transcription factors associated with retinoic acid and TGF-³ signaling did not reduce 
the lack of correspondence. Analysis of paired chromatin accessibility and gene expression data from distinct 
paths along the hematopoietic differentiation trajectory showed a much stronger correspondence, suggesting 
that the multifactorial biological processes associated with differentiation may lead to changes in chromatin 
accessibility that reflect rather than drive altered transcriptional status. Together, these results show many 
gene expression changes can happen independent of changes in accessibility of local chromatin in the context 
of a single-factor perturbation and suggest that some changes to accessibility changes may occur after 
changes to expression, rather than before. 

Introduction 
Transcription factors regulate gene expression by binding to specific DNA sequences, facilitating transcription 
through the recruitment and activation of the transcriptional machinery. Deciphering the combinatorial logic 
underlying which transcription factors bind to what portions of DNA and in what contexts is a central challenge 
in creating a complete model of transcriptional regulation. Sequencing-based methods have enabled the 
measurement of transcript levels for all genes as well as the putative binding profiles of transcription factors 
across the genome. However, the precise mapping between changes in these putative binding profiles and the 
changes in transcriptional activity remain the subject of debate.  
 
A key component of decoding the relationship between transcription factor activity and the resultant changes in 
transcription is the measurement of transcription factor binding to DNA. Recently, the combination of 
biochemical binding assays with sequencing-based readouts has led to a cornucopia of methods for making 
such measurements. One workhorse method is chromatin immunoprecipitation sequencing (ChIP-seq), which 
characterizes the binding of transcription factors and other DNA-protein interactions genome-wide [133] by 
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using immunoprecipitation of proteins that bind to chromatin and subsequently sequencing the coprecipitated 
DNA. However, ChIP-seq is limited in that each experiment can only interrogate the binding profile of one 
transcription factor at a time. 
 
An alternative approach that circumvents that issue is the measurement of changes in accessibility of DNA to 
infer changes in the binding of all transcription factors at once. Accessible regions of DNA (i.e. those regions 
depleted of nucleosomes) represent only 3% of the genome, but often participate in the regulation of gene 
expression [437]. These regions can be detected genome-wide by combining the enzymatic activity of 
nucleases with high-throughput sequencing using techniques such as DNase I hypersensitive site sequencing 
(DNase-seq) [8] and assay for transposase accessible chromatin with sequencing (ATAC-seq) [9]. The 
interpretation of these accessibility methods leans heavily on the assumption that changes in regulatory factor 
binding are reflected in changes in chromatin accessibility. Certainly, there are many examples in which the 
correspondence between changes in accessibility strongly correspond to changes in transcriptional output. For 
instance, summation of ChIP-seq signal for 42 transcription factors mapped by encode in K562 chronic 
myelogenous leukemia cells paralleled the signal from accessible sites revealed by DNase-seq [7]. Moreover, 
computational methods to infer transcription factor footprints from accessibility measurements have been 
shown to recapitulate ChIP-seq binding well [10]. Accessibility methods can also be used to look for changes in 
accessibility across various perturbations and cell types. Changes in accessibility generally seem to 
correspond to changes in transcription in the sense that large changes in transcriptional output are reflected in 
broad changes in the accessibility of several loci in the surrounding chromatin [11,12]. 
 
However, it is unclear how well these accessibility based methods capture the activity of all transcription 
factors. It is possible that some transcription factors9 binding and activity does not result in corresponding 
changes in accessibility and vice versa. Such a lack of correspondence could manifest itself as a lack of 
correlation between changes in accessibility and changes in transcription. Given the underlying assumption 
that a change in transcription must be mediated by the change in some transcription factor activity, then such a 
lack of correspondence would suggest that changes in the activity of transcription factors could change 
expression without changing accessibility near its binding site. While reports from the literature generally show 
a strong correspondence [11314], it is worth noting that the comparisons in such studies are often across 
rather different cell types. In such cases, it is possible that the changes in accessibility are not driven by 
regulation per se, but rather reflect the consequences of sequential exposure to multiple regulatory factors that 
characterize the differentiation process. Such accessibility changes could, in principle, signify the 
reinforcement of genes that are already transcriptionally active genes, or could even just appear around 
actively transcribed genes without any functional role. Disentangling such possibilities could be revealed with 
the use of single-factor perturbations that more directly affect an individual pathway; however, few such data 
are available. 
 
Here, we used tandem bulk RNA-seq and ATAC-seq data from MCF-7 breast carcinoma cells exposed to 
multiple doses of retinoic acid or TGF-³ to determine the degree of concordance between changes in 
chromatin accessibility and changes in gene expression. Furthermore, we evaluated concordance in another 
published data set of hematopoietic differentiation to validate our approach based on well-defined and specific 
perturbations. We demonstrate that while some differentially expressed genes have a high concordance 
between gene expression and chromatin accessibility changes, many other genes are differentially expressed 
without changes in their local chromatin accessibility.      

Results 
 
Genome-wide expression and chromatin accessibility changes reflect known biology of two perturbations 
 
To measure the correspondence between changes in chromatin accessibility and changes in gene expression, 
we used MCF-7 breast carcinoma cells due to their previously described transcriptional responses to all-trans 
retinoic acid [15] (referred to from here on as retinoic acid) and transforming growth factor beta (TGF-³) [16]. 
We used paired, bulk accessibility (ATAC-seq) and expression data (RNA-seq) from these cells [17] collected 
72 hours after continuous exposure to three different doses of each signal (Figure 1A). We chose this 
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timescale because previous work with MCF-7 cells showed more transcriptional changes at 72 hours 
compared to 24 hours after exposure to retinoic acid [15], and chromatin accessibility changes may not be 
detectable until 24 hours after perturbation [18]. Differential gene expression and differential peak accessibility 
analysis showed a dose-dependent response to both signals compared to ethanol control (Figure 1A, bar 
plots). The ethanol 8vehicle9 controls comprise three different densities of cells, and the transcriptomes of 
control conditions globally were similar regardless of cell density (Supplemental Figure 1A). To confirm that 
global gene expression and chromatin accessibility patterns were similar between signals and dosages, we 
performed principal component analysis. For both RNA-seq and ATAC-seq data, all samples exposed to the 
same signal or ethanol control clustered together, indicating that their gene expression and chromatin 
accessibility were more similar to each other than to other conditions, supporting the quality of these data.  
 
To validate that changes in gene expression were consistent with the known biology of these signaling 
pathways, we performed over-representation analysis on the upregulated genes in response to high dose 
retinoic acid or TGF-³ against curated gene sets from the molecular signatures database [19,20]. The top ten 
gene sets based on false discovery rate (FDR)-adjusted p-values were processes canonically associated with 
retinoic acid (morphogenesis, organ development, anterior-posterior patterning) and TGF-³ (extracellular 
matrix, endopeptidase activity), respectively (Figure 1B). Gene set enrichment analysis [21] showed that genes 
that were differentially expressed in response to high dose retinoic acid were significantly enriched for genes 
associated with skeletal system morphogenesis, and genes that were differentially expressed as a result of 
exposure to high dose TGF-³ were significantly enriched for genes associated with epithelial-to-mesenchymal 
transition (Supplemental Figure 1B). Thus, the differentially expressed genes generally reflected the known 
biology of the signals the cells were exposed to.  
 
We next wondered if the changes in chromatin accessibility in response to signal were associated with the 
activity of specific transcription factors, in particular, those associated with the biology of these signaling 
pathways. We used a modified version of the chromVAR package along with its curated database of 
transcription factor motifs, cisBP, to identify the transcription factors with the largest predicted change in 
activity [22]. We used the set of differential peaks to determine the set of the top 150 transcription factors with 
the greatest magnitude of change. These included the binding motifs of transcription factors that are canonical 
effectors of retinoic acid (RAR-³, HOXA13) and TGF-³ signaling (SMAD3, SMAD4, and SMAD9). For each of 
these transcription factor motifs, we calculated a motif enrichment score for each condition based on the bias-
uncorrected deviation score from chromVAR. The motif enrichment score represents the percentage change in 
ATAC-seq fragment counts in all peaks that contain a given transcription factor9s motif (Figure 1B). For 
example, the enrichment score of 28% for SMAD3 in the TGF-³ condition meant that peaks containing the 
SMAD3 motif on average saw a 28% increase in fragment counts after exposure to TGF-³. We pooled 
together the low, medium, and high doses  for each condition together in order to decrease the variability of 
motif enrichment scores estimates. Thus, our data recapitulated expected changes in accessibility, presumably 
due to the activity of transcription factors well-known to be activated by the signals used. Thus, of the changes 
in accessibility we did detect, they made sense based on a model of transcription factor activity leading to 
changes in accessibility. However, it was still possible that the activity of many transcription factors was not 
captured by changes in accessibility. 
 
The relationship between changes in chromatin accessibility and gene expression varies on a gene by gene 
basis   
 
We next wondered whether genes that were differentially expressed were more likely to have differentially 
accessible peaks nearby, i.e., was there concordance between gene expression and chromatin accessibility 
changes at the level of individual genes? To characterize the extent of concordance between these data, we 
looked at the overlap between genes that were differentially expressed in response to high dose signal and 
genes with differentially accessible peaks nearby after exposure to signal (Figure 1C). We assigned each 
accessible peak to the nearest transcriptional start site (<nearest approach=) and found that of the over 2000 
genes upregulated in response to high dose retinoic acid, more than half of them had at least one differential 
peak assigned to its transcriptional start site (p-value < 2.2x10-16, Fisher9s exact test). Similarly, a third of the 
genes whose expression was upregulated in response to TGF-³ had differential peaks assigned to them (p-
value < 2.2x10-16, Fisher9s exact test). Thus, genes that are differentially expressed are more likely than random 
chance to have a nearby peak that is differentially accessible in response to retinoic acid or TGF-³.  
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While using this overlap-based approach showed correspondence between genes that are differentially 
expressed and their nearby peaks in response to signal, aspects of the nature of the concordance of these 
changes were not captured by this analysis. For example, the overlap-based method counted all differentially 
accessible genes that had at least one differentially accessible peak assigned to them as concordant, but did 
not take into account the proportion or degree to which those nearby peaks change. Moreover, we did not take 
into account the relationship between directionality of changes in gene expression and chromatin accessibility. 
The underlying assumption at the basis of this relationship is that when peaks become more accessible that 
the nearby gene increases its expression, and the overlap-based approach does not take this correspondence 
of the direction of change into account. To better characterize these facets of concordance, we first individually 
examined the changes in chromatin accessibility nearby two genes whose expression were upregulated in 
response to retinoic acid. 
  
HOXA1 and SLC5A5 induction are associated with exposure to retinoic acid [23325], and both genes showed 
a dose-dependent increase in expression in response to retinoic acid (Figures 1D,E leftmost panels). After 
optimizing parameters for calling peaks and determining differentially accessible peaks (Supplemental Figure 
2), we found that while a large number of peaks are differentially accessible near the HOXA1 locus (Figure 1D, 
track view middle, black traces in accessibility plot, right), very few peaks are differentially accessible near the 
SLC5A5 locus (Figure 1E, track view middle, accessibility plot, right). Therefore, genes with high expression 
change in response to signal can show a large degree of accessibility changes or show very little accessibility 
changes, suggesting that changes in transcription factor activity may or may not be reflected in changes in 
accessibility. 
 
Chromatin accessibility changes are less concordant with large changes in gene expression in signaling 
compared to hematopoietic differentiation  
 
Next, we evaluated the concordance between accessibility and gene expression genome-wide while also 
factoring in the directionality of changes and the relative proportion of peaks that are changing on a gene by 
gene basis. As a point of comparison, we used previously published gene expression and chromatin 
accessibility data from hematopoietic differentiation [11] that demonstrated that large changes in gene 
expression were typically associated with gains or losses (depending on the direction of expression change) of 
cell type-specific enhancers when comparing the expression and accessibility of hematopoietic stem and 
progenitor cells (HSPCs) to monocytes. 
 
Before using this data set as a comparison to ours for measuring concordance between chromatin accessibility 
and gene expression changes, we verified that the hematopoietic differentiation data was similar to our own by 
a variety of metrics. First, we wanted to compare whether the number of differentially expressed genes and 
differentially accessible peaks between HSPCs and monocytes in the hematopoietic differentiation data was 
similar to the numbers from MCF-7 cells exposed to retinoic acid or TGF-³. We found that both HSPC and 
monocyte populations had greater than 2000 genes that were specifically expressed in their respective cell 
types compared to the approximately 2000 and 1500 genes differentially expressed in MCF-7 cells in response 
to high dose retinoic acid and TGF-³, respectively (Figure 1A). Moreover, HSPC and monocyte populations 
had more than 6000 differentially accessible peaks (Supplemental Figure 3A) compared to the approximately 
15000 and 6000 differentially accessible peaks in MCF-7 cells in response to high dose retinoic acid and TGF-
³, respectively (Figure 1A).  
 
Next, we annotated the location of peaks based on where in the genome they were located relative to gene 
bodies and quantified what proportion of peaks fell into annotation categories such as promoter, intergenic, 
exonic, intronic, etc. ATAC-seq peaks from MCF-7 cells had a larger proportion of peaks at gene promoters 
(within 3 kilobases upstream or downstream of the transcription start site) whereas a greater proportion of the 
DNase I hypersensitive sites in the HSPC and monocyte populations were from distal intergenic regions 
compared to promoters (Supplemental Figure 3B). This finding could be the result of inherent differences in the 
assays or could reflect biological differences. Moreover, the MCF-7 data had a greater proportion of peaks 
located at gene promoters, which could in principle bias our results toward having a larger degree of 
concordance because accessibility changes at promoters were more strongly correlated with gene expression 
changes than distal accessible. Despite this bias, our data demonstrate less concordance.   
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Given the different assays used to determine genome-wide chromatin accessibility, we realigned the DNase-
seq data to the hg38 reference and examined the peaks at a 8housekeeping gene9 (GAPDH), hematopoietic 
differentiation-specific genes (CD34, CD14) and retinoic acid and TGF-³-related genes (DHRS3, SERPINA11) 
to spot-check that the accessibility data were similar. Indeed, there were similar accessibility profiles for 
GAPDH, and appropriate differences in accessibility given the cell type of signal for the other sites, indicating 
the accessibility data were comparable (Supplemental Figure 4A-E).  Moreover, to look at similarities in 
accessibility genome-wide, we calculated the intersection of the consensus peak sets from hematopoietic 
differentiation and MCF-7 signal response data sets. We observed that approximately 55% of peaks from 
hematopoietic differentiation data (DNase-seq) overlapped with peaks from the MCF-7 signal response data 
set (ATAC-seq). These results show that the datasets do not have systematic qualitative differences in either 
expression or accessibility, enabling us to compare the degree of concordance across these two systems. 
 
In the original analysis of hematopoietic differentiation, the authors found that regulatory complexity (defined as 
the number of accessible regions closest to a gene9s transcriptional unit) was an important discriminating factor 
for whether changes in accessibility corresponded to changes in expression, with areas of high complexity 
showing more correspondence than those of low complexity. Hence, we similarly grouped genes from our 
MCF-7 dataset into high and low complexity for our comparisons. We categorized genes with more than 7 
peaks assigned to them using the 8nearest approach9 as 8high complexity9, while genes with 7 or fewer peaks 
were categorized as having 8low complexity9 (Figure 2A, top panel). The cutoff for loci complexity was 
calculated by taking a tertile based approach [11] and calling any number of peaks above the highest tertile 
cutoff as high and any peak below that as low complexity (Figure 2B, solid line, lower plot). Because high 
complexity genes on average had higher levels of expression in the hematopoietic differentiation data, we 
sought to determine if there was any difference in expression between high and low complexity genes in our 
MCF-7 data. The median expression of high complexity loci was similarly higher than low complexity loci in 
response to both exposure to high dose retinoic acid (23.30 versus 13.27 TPM) and high dose TGF-³ (24.06 
versus 13.05 TPM) (Supplemental Figure 5A, p-value < 2.2x10-16 for both, Kolmogorov-Smirnov test) 
demonstrating that high complexity genes are more highly expressed as in the hematopoietic differentiation 
data. Despite this difference in expression, the distributions of peak widths for peaks of high and low 
complexity genes were similar (Supplemental Figure 5B). 
 
We began our analysis by focusing on the high complexity genes. To determine the concordance between 
gene expression changes and chromatin accessibility changes, we used the 8nearest approach9 to assign 
peaks to genes. For each gene we compared the log2 of the fold change in expression between conditions 
versus the proportion of peaks that were differentially accessible in the same direction (i.e., peaks that increase 
in accessibility for genes that increase in expression after exposure to signal and vice versa). We observed 
that for hematopoietic differentiation, the 100 most highly expressed high complexity genes in the HSPC and 
monocyte populations had a high proportion of peaks which were differentially accessible in the concordant 
direction, reproducing the conclusions of González et al. that large changes in expression were consistently 
associated with concordant changes in chromatin accessibility (Figure 2C). Next, we used this approach on our 
data to compare expression and accessibility changes between ethanol vehicle control and high dose retinoic 
acid or TGF-³. For both signals, we observed two distinct groups of genes within the top 100 most differentially 
expressed genes. One group of genes (8accessibility-concordant genes9) behaved similarly to those in the 
hematopoietic differentiation data, demonstrating a concordance between expression and accessibility 
changes (Figures 2D,E). However, the other group of genes (8accessibility-non-concordant genes9) had large 
expression changes with little to no peaks nearby changing in accessibility, creating a skew in the distribution 
toward a lower proportion of peaks being differentially accessible in a concordant manner compared to the 
hematopoietic differentiation data (Figures 2C-E, density plots).  
 
Adjusting the minimum peak coverage parameter changes the number of differential peaks and the proportion 
of differential peaks that change in the corresponding direction of expression. We wondered if a lower 
minimum coverage threshold changed the qualitative result we noticed before and thus conducted the same 
analysis using a lower minimum peak coverage threshold for determining differential peaks (see methods). We 
observed that a similar pattern occurred in high complexity genes with this set of parameters (Supplemental 
Figure 6).  
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González and colleagues showed that for some low complexity genes, large changes in expression were not 
accompanied with concordant changes in accessibility [11]. We similarly wanted to confirm whether this 
decreased correspondence was the case in our data in response to retinoic acid and TGF-³. Using the same 
approach as before, we compared the log2 of the fold change in expression of low complexity genes to the 
proportion of peaks with differential accessibility in the concordant direction. The hematopoietic differentiation 
and signaling data for low complexity all qualitatively had genes whose expression increased without 
concordant changes in accessibility (Supplemental Figure 7A-C). The distribution of the proportion peaks that 
were differentially accessible in the concordant direction for the top 100 up and downregulated genes was 
roughly uniform when comparing HSPCs to monocytes (Supplemental Figure 7A, density plot on right). By 
comparison,the distribution was skewed toward more genes having a lower proportion of peaks being 
differentially accessible in the concordant direction in response to signals in MCF-7 cells, especially in the case 
of TGF-³ (Supplemental Figure 7B,C, density plots on right). Thus, while both the signaling in MCF-7 and 
hematopoietic data demonstrated large gene expression changes without concordant changes in chromatin 
accessibility with low complexity genes, a greater proportion of genes did so in the signaling data.  
 
Peaks nearby genes with high concordance have lower accessibility prior to exposure to signal 
 
We wondered what the differences were between genes that were differentially expressed and had large 
accessibility changes versus those that were differentially expressed and had low accessibility changes. First, 
for high dose retinoic acid and TGF-³, we split genes into four groups based on whether they were 
differentially expressed and the proportion of peaks assigned to them using the 8nearest9 method that were 
differentially accessible in the appropriate direction.  These four groups were (1) genes with differentially 
upregulated expression and concordant accessibility changes (2) genes with differentially upregulated 
expression non-concordant accessibility changes (3) genes with differentially downregulated expression and a 
concordant accessibility changes, and (4) genes with with differentially downregulated expression and non-
concordant accessibility changes (Figures 3A,B).  We quantified the distribution of peak complexity across 
these groups and observed that they were similar across all four gene subgroups (Supplemental Figures 
8A,B).  
  
We first asked whether the change in accessibility between these two gene groups was due to differences in 
the preexisting accessibility of peaks for these genes. Indeed, we found the baseline accessibility of peaks for 
genes with concordant increases in expression and accessibility in ethanol vehicle conditions was lower than 
those of peaks of genes that increase in expression without a commensurate change in chromatin accessibility 
(Figure 3C). This relationship was also recapitulated for concordant peaks that increase in expression and 
accessibility in response to high dose TGF-³ (Figure 3D). Similarly, when comparing genes that are 
differentially downregulated in expression a similar pattern holds true in the opposite direction (Figures 3C,D, 
Supplemental Figures 8C,D). One explanation may be that genes whose nearby chromatin was already 
accessible were permissive toward the action of the appropriate transcription factors to modulate expression. 
An alternative explanation is that the ATAC-seq assay itself had saturated in its ability to measure chromatin 
accessibility. In contrast, the difference in accessibility decreased between genes with a low proportion of 
peaks that were differentially accessible and genes with a high proportion of accessible peaks after exposure 
to signal Supplemental Figures 8C,D). Thus, the difference in the proportion of accessible peaks nearby the 
two groups of genes was partially explained by the pre-existing chromatin accessibility.  
 
Multiple approaches to integrating chromatin accessibility and gene expression changes show a low degree of 
concordance during signaling. 
 
Finally, we measured to what degree the change in accessibility of chromatin nearby a gene is reflected in the 
change in gene expression. Because linear distance is not always a good predictor of what accessible regions 
interact with what genes, we used multiple approaches to assign peaks to genes. First, we used the 8nearest 
approach9 to create a one-to-one mapping between accessible sites and genes by assigning them to the 
nearest transcriptional start site [26,27], again comparing our signaling dataset to the hematopoietic 
differentiation dataset. Because many genes have multiple peaks assigned to them, we used two methods for 
collapsing peak values per gene: either the median accessibility of peaks across genes or the maximum 
(Figure 4A, schematic). We observed a stronger correlation between accessibility and expression changes in 
differentiation data (median approach Pearson9s r = 0.34, maximum approach Pearson9s r = 0.26) than in 
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MCF-7 in response to signal (retinoic acid: median approach Pearson9s r = 0.27, maximum approach 
Pearson9s r = 0.10; TGF-³: median approach Pearson9s r = 0.27, maximum approach Pearson9s r = 0.10; 
Figure 4A, right side). 
 
Next, we used a window-based approach where there was the possibility of a many-to-one mapping of peaks 
to genes. We assigned all peaks within a 100 kilobase window [17] in order to maximize the number of 
differential peaks assigned to a gene (Supplemental Figure 9A,B). Similar to the 8nearest9 approach, we 
collapsed values using median accessibility change across all peaks assigned to a gene as well as maximum 
accessibility per gene (Figure 4B, schematic) We observed a similar effect using this approach where there 
was a stronger correlation between change in accessibility and change in expression between HSPC versus 
monocyte versus MCF-7 cells exposed to signal (Figure 4B). Of note, the correlation coefficients were similar 
between both methods of assigning peaks. 
 
We also wondered if the correlation between the extent of chromatin accessibility changes and gene 
expression changes would be different at the two lower doses. We used both the median and maximum peak 
value per gene while assigning peaks to genes using the nearest and window approaches. We observed 
similarly weak correlation as high dose signal using all methods at both low and medium doses (Supplemental 
Figure 9C,D). Consequently, the correlation between the magnitude of change in gene expression and 
chromatin accessibility was modest across the range of doses of signals.  
 
To see if peaks in specific genomic regions (promoters, parts of the gene body, downstream and intergenic 
areas) had unique relationships between change in chromatin accessibility and change in gene expression, we 
subsetted our correlation analysis. We annotated peaks using ChiPseeker [28] to categorize them as being at 
promoters, within the gene body (59 UTR, 39 UTR, intronic, and exonic sequences), downstream of the gene 
end, or at intergenic sequences. We used peaks assigned to genes using the 8nearest9 approach and took the 
median change in accessibility per gene. The strongest correlation between changes in accessibility and gene 
expression across sets of comparisons was at promoter peaks (Figure 4C). While promoter correlation is 
quantitatively stronger, the overall qualitative conclusion remains the same. Thus, despite using a variety of 
approaches for both assigning peaks to genes as well as collapsing the accessibility of all peaks for a given 
gene to a single value, we failed to appreciate a strong relationship between changes in accessibility and 
changes in gene expression. 
 
Finally, we wondered if peaks that contained the motifs of transcription factors that are associated with retinoic 
acid and TGF-³ signaling only (as opposed to all peaks) would show a stronger correlation between the 
changes in chromatin accessibility and gene expression. We annotated peaks with a log-likelihood score of a 
given motif being found in that peak and subsetted on those peaks with a nonzero log-likelihood score to 
examine the correlation between changes in accessibility and gene expression. Using this approach, we 
examined log-likelihood scores for motifs associated with retinoic acid signaling (RARA-³, HOXA13, and 
FOXA1) and motifs associated with TGF-³ (SMAD3, SMAD4, and SMAD9). We observed that focusing on 
peaks annotated with peaks we would a priori expect to be involved in modulating gene expression in 
response to signal showed limited correlation between changes in chromatin accessibility and changes in gene 
expression (Figure 5).  

Discussion  
Here, we integrated tandem, genome-wide chromatin accessibility and transcriptomic data to characterize the 
extent of concordance between them in response to inductive signals. We demonstrated that while certain 
genes have a high degree of concordance of change between expression and accessibility changes, there is 
also a large group of differentially expressed genes whose local chromatin remains unchanged. By 
comparison, data from cell types along the hematopoietic differentiation trajectory had a much higher degree of 
concordance between genes with large gene expression changes and chromatin accessibility changes. 
 
What might explain the lack of concordant changes in chromatin accessibility? One explanation could be that 
pre-existing chromatin accessibility dictates the de novo binding of transcription factors, but that the binding of 
transcription factors to those regions does not result in further changes to accessibility. Such effects have been 
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reported in the context of glucocorticoid signaling, in which the glucocorticoid receptor almost exclusively binds 
to chromatin that is already accessible in response to dexamethasone [29]. Indeed, we demonstrated that 
genes that lacked concordance between changes in chromatin accessibility and gene expression were more 
likely to have nearby chromatin that was already accessible (Figures 3C,D). It is possible that in MCF-7 cells, 
the transcriptional effects of RA and TGF-³ do not lead to a significant change in the activity of pioneer 
transcription factors, which are able to bind directly to condensed or inaccessible chromatin to facilitate its 
opening [30]. Also, implicit in our approach is the assumption that an increase in accessibility is associated with 
an increase in expression, which is not necessarily the case if a genomic locus becomes accessible to a 
repressive factor or a bound repressive factor is displaced by a nucleosome. 
 
We looked at MCF-7 cells exposed to retinoic acid and TGF-³ because these two signals induce a robust 
transcriptional response through distinct mechanisms. RAR-³ remains bound to DNA and interacts with 
transcriptional activators in response to retinoic acid binding, while SMAD family members require TGF-³ to 
bind to surface receptors to translocate to the nucleus. Yet, despite these differences, we observed that many 
genes changed expression independent of changes in chromatin accessibility for both signals. It is, however, 
possible that signaling molecules that exert their effects through very different types of transcription factors 
may have a different profile of concordance between changes in accessibility and gene expression. It is 
possible that other types of factors in a different context (e.g., different cell line) may yield a stronger 
correspondence. 
 
Our data characterized molecular changes resulting from a single input (retinoic acid or TGF-³) in a clonal cell 
line, whereas the majority of work reporting a stronger concordance between simultaneous measurements of 
accessibility and transcription compared entirely different cell types or cells undergoing a directed 
differentiation protocol. What we have observed in the case of a single perturbation applied to cells that are not 
thought to change type per se is increased or decreased transcription with less concomitant nearby change in 
accessibility. How can one reconcile these observations? One possibility is that if we were to leave the signal 
on for longer, or combine it over time with the effects of several other signals, that we eventually would observe 
many further changes in accessibility proximal to a gene, concordant with the aforementioned results from 
comparisons between cell types. Whatever the source, these further changes in accessibility do not seem to 
occur randomly, given that they largely reflect the direction of change in transcription (increased accessibility 
for upregulation, decreased for downregulation). It may be that these subsequent changes in accessibility do 
not explicitly change transcription, but rather alter the underlying regulatory logic of the gene; i.e., the removal 
of a signal may not lead to a decrease in the gene9s transcription, or the gene9s transcription may be sensitized 
or desensitized to some other set of transcription factors. 

Methods 
 
PCA of RNA and ATAC-sequencing samples 
 
Principal component analysis and visualization of RNA-seq and ATAC-seq samples was performed using raw 
counts and performing a variance stabilizing transform. Results were visualized using functions from the R 
DESeq2 package [31].  
 
RNA-sequencing analysis 
 
Initial RNA sequencing analysis was performed as previously [32]. Briefly, reads were aligned to the hg38 
assembly using STAR v.2.7.1a and counted uniquely mapped reads with HTSeq v0.6.1 and hg38 GTF file 
from Ensembl (release 90). We used DESeq2 v1.22.2 in R 3.5.1 using a minimum absolute-value log-fold-
change of 0.5 and a q value of 0.05. For genes with multiple annotated transcriptional start sites, we used the 
8canonical9 transcription start site from the knownCanonical table from GENCODE v29 in the UCSC Table 
Browser.  
 
We performed functional over-representation and gene set enrichment analysis [21] of upregulated transcripts 
in the high dose retinoic acid and high dose TGF-³ using clusterProfiler v4.0.5 and enrichplot v1.12.3 [33]. P 
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values for the over-representation analysis were adjusted using a false discovery rate approach. We used the 
C5 ontology and H hallmark curated gene sets from the Molecular Signatures Database (MSigDB) v7.4 [19,20] 
as reference gene sets to compare our upregulated genes to.  
 
ATAC-sequencing analysis  
 
ATAC-seq alignment and peak calling was performed as previously [17]. We aligned peaks to the hg38 
assembly using bowtie2 v2.3.4.1, and filtered out low-quality alignments with samtools v1.96, removed 
duplicate read pairs with picard 1.96, and used custom Python scripts along with bedtools v2.25.0 to create 
alignment files with inferred Tn5 insertion points. We called peaks using MACS2 [34] v2.1.1.20160309 with the 
command, 8macs2 callpeak --nomodel --nolambda --keep-dup all --call-summits -B --

SPMR --format BED -q 0.05 --shift 75 --extsize 1509. 
 
Since we had three biological replicates per condition, we used a majority rule approach to retain only summits 
that were found in at least two replicates [35]. Using these condition-specific peak files, we used bedtools to 
create a consensus peak file by merging each individual condition's peak summit file together in a manner that 
disallowed overlapping peaks. We used bedtools merge command 8bedtools merge -d 509 to combine 

features within 50 base pairs of each other into a single peak after testing multiple merge distances. We used 
the number of ATAC-seq fragment counts at each peak in this merged consensus peak file for differential peak 
analysis.  
 
We used the custom peak analysis algorithm from Sanford et al., 2020 that took advantage of additional 
ethanol control conditions to estimate false discovery rate in ethanol controls to then identify differential peaks. 
Briefly, reads were quantified for each peak in the master consensus file and fragments at each peak were 
normalized to correct for differences in total sequencing depth using the equation: 
sample's total reads in peaksmean number of reads in peaks across all samples. Next, an estimated false 
discovery rate was calculated in each cell of a 50x50 grid containing 50 exponentially-spaced steps of 
minimum fold-change values (ranging from 1.5-10) and 50 exponentially-spaced steps of minimum number of 
normalized fragment counts in the condition with the greater number of counts (ranging from 30 to 237 or 10 to 
237). The estimated false discovery rate (FDR) was calculated using the equation: estimated FDR = (no. of 
conditions)(est. number of false positive peaks per condition)total number of differential peaks in experimental 
conditions. After calculating the estimated FDR in each cell of the 50x50 grid, we then pooled together 
differential peaks contained in any cell with an FDR less than 0.25%.  
 
We performed motif analysis on our set of differential peaks using chromVAR v1.8.0 [22], its associated cisBP 
database of transcription factor motifs, and the motifmatchR package from bioconductor. To decrease the 
variance of the transcription factor motif deviations scores, we pooled together the different dosages of retinoic 
acid or TGF-³. The chromVAR code was modified to extract an internal metric that equals the fractional 
change in fragment counts at motif-containing peaks for a given motif.   
 
Hematopoietic differentiation data 
 
We used preexisting RNA- and DNase I-seq data (aligned to genome assembly hg19) of hematopoietic 
differentiation [11] to compare against our data. We used data from the website provided in the paper 
(http://cbio.mskcc.org/public/Leslie/Early_enhancer_establishment/) to download annotations of peaks 
(peaksTable.txt), counts of DNase-seq (DNaseCnts.txt), and RNA-seq counts (RNAseqCnts.txt). Counts 
presented in these data files were quantile normalized and averaged when biological replicates were available. 
We filtered peaks with <CD14= or <CD34= under the <accessPattern= annotation to choose for peaks that were 
relevant for comparing HSPCs to monocytes. We used a log2 fold change of greater than or equal to 2 as a 
cutoff for assigning differential peaks. We used the preexisting annotations of genes for each peak for peak-
gene mapping. For determining the log2 fold change in gene expression we discarded genes whose maximum 
expression value across the two conditions was fewer than 5 quantile-normalized units.  
 
For visualization of this data set with our own accessibility data, we realigned raw fastq files DNase-seq files to 
the hg38 assembly using bowtie v2.3.4.1 and filtered out low-quality alignments with samtools v1.1 to generate 
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new .bam alignment files. The alignment files were combined using samtools merge in a single .bam file per 
cell type. Bam files were converted to .bigWig format using deeptools 3.5.1 [36] <bamCoverage -- 

normalizeUsing CPM= to create a 8consensus9 .bigWig for visualization. Peaks for CD34+ and CD14+ 

samples were made by filtering peaks annotated for these populations in the <accessPattern= column and 
creating separate .bed files using a custom script. The peak location in these .bed files were then lifted over 
from hg19 to hg38 using UCSC hgLiftOver. For comparing the overlap of peaks between data sets, we created 
consensus peak sets across all sample types and used the bedtools intersect function to quantify the 
proportion of peaks that intersected between the hematopoietic differentiation and signaling data. 
 
Peak annotation 
 
Peaks were annotated using ChIPseeker [28] to determine the relative proportion of features in the data from 
González et al., 2015 (DNAse-seq) and Sanford et al., 2020 (ATAC-seq). For ease of visualization, certain 
categories like the three promoter categories were collapsed into one. ChiPseeker was also used to identify 
the nearest transcriptional start site to a gene used for the nearest integration approach described below. For 
making scatter plots of change in accessibility versus change in expression annotated by peak feature, a 
custom script was used to combine annotations from ChIPseeker into four categories: downstream, gene body, 
integenic, and promoter. 
 
For each of the top 150 most variable transcription factor motifs we identified using differential accessibility 
analysis, we used the R bioconductor motifmatchR package to annotate both the number of motif matches and 
a log-likelihood match score for each peak. 
 
RNA and ATAC data integration 
 
We employed two methods for assigning peaks to genes. In the 8nearest9 approach, we used annotation from 
ChIPseeker to assign each peak to the nearest transcriptional start site. With this method, each peak is 
uniquely mapped to a single gene. In the 8window9 approach we used a window of 50 kilobases on either side 
of the transcriptional start site (100 kilobases in total) to assign peaks to a gene, which could result in a peak 
being assigned to multiple genes.  
 
Track Visualization 
 
We visualized accessibility data using the web based version of integrative genomics viewer (IGV) [37,38]. We 
prepared accessibility data for visualization by taking consensus files and converting them to .bigWig file 
format with either fragments per million or counts per million normalization. Bed files for identifying peaks were 
created using custom scripts.  
 
Statistics and software 
 
Unless otherwise stated, we performed analyses using R v4.1.0 with data manipulation and visualization done 
with tidyverse v1.3.1 [39] and ggpubr v0.4.0. We used a Kolmogorov-Smirnov test to compare means. Unless 
otherwise stated, 95% confidence intervals for Pearson9s r were calculated by bootstrapping using 10,000 
replicates.  
 
Data and Code Availability 
All raw and processed data as well as code for the analyses in this manuscript can be found at: 
https://www.dropbox.com/sh/qbjuagz511c072g/AAChvYMjdoG7A0eNdqbEmaUla?dl=0 
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Figure Captions 
 
Figure 1: Changes in gene expression can occur with or without concordant changes in chromatin 
accessibility in response to signal. 
a. Schematic of signal response experiments in MCF-7 cells from Sanford et al., 2020. Briefly, cells were 
treated with either ethanol vehicle control (gray) or three different doses of retinoic acid (shades of red) or 
TGF-³ (shades of blue). After 72 hours of continuous exposure, bulk RNA-seq and ATAC-seq were performed 
on samples. We show the number of differentially expressed genes and differentially accessible peaks for each 
dose of each condition compared to ethanol vehicle control. 
b. Validation that changes in gene expression and chromatin accessibility reflect known biology of 
perturbations. Left: overrepresentation analysis of differentially upregulated genes in response to high dose 
retinoic acid (red) or TGF-³ (blue). Top ten gene sets for each signal by -log10 FDR-adjusted p-value are shown. 
Right: motif enrichment analysis of differentially accessible peaks for selected motifs of transcription factors 
related signaling pathways of these signals. Y-axis shows percentage change of ATAC-seq signal at motif 
containing peaks relative to ethanol vehicle control samples. For each condition, we pooled together replicates 
for all three doses. Error bars represent bootstrapped confidence intervals. 
c. Overlap between changes in gene expression and changes in chromatin accessibility in response to 
high dose retinoic acid (top) or high dose TGF-³ (bottom). Of the genes that were differentially expressed (right 
circle of Venn diagram) we looked at the overlap (shaded) of how many of them also had at least one 
differentially accessible peak (left circle). To disprove the null hypothesis that there is no association between 
genes that are differentially expressed and genes that have differentially accessible peaks assigned to them 
using the 8nearest9 approach, we performed Fisher9s exact test to show the probability of these data or more 
extreme if the null hypothesis was true for both signals was less than 2.2x10-16. 
d. Expression and accessibility change of HOXA1 in response to increasing doses of retinoic acid. Left: 
Expression (TPM, triplicate average) in response to increasing dose of retinoic acid (error bars represent 
SEM). Middle: track view of HOXA1 locus with accessibility in fragments per million and peaks and differential 
peaks annotated. Right: quantification of peak accessibility (normalized fragment counts, triplicate average) 
within a 50 kilobase window of HOXA1 locus with peaks that are differentially accessible between ethanol 
vehicle control and high dose retinoic acid conditions marked with black lines.  
e. Expression and accessibility change of SLC5A5 in response to increasing doses of retinoic acid. Left: 
Expression (TPM, triplicate average) in response to increasing dose of retinoic acid (error bars represent 
SEM). Middle: track view of SLC5A5 locus with accessibility in fragments per million and peaks and differential 
peaks annotated. Right: quantification of peak accessibility (normalized fragment counts, triplicate average) 
within a 50 kilobase window of SLC5A5 locus with peaks that are differentially accessible between ethanol 
vehicle control and high dose retinoic acid conditions marked with black lines.  

 
Figure 2: Signaling shows less concordance between highly differentially expressed genes and 
chromatin accessibility changes compared to hematopoietic differentiation data for high complexity 
genes.  
a. Schematic demonstrating classification of genes into <high= versus <low= complexity genes based on the 
number peaks assigned to a gene using the 8nearest9 approach.  
b. Density plot of number of peaks per gene in retinoic acid (red) and TGF-³ (blue, overlap in purple) with 
median complexity marked by dotted line and high complexity cutoff marked by solid line. 
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c. Concordance between expression and accessibility changes between hematopoietic stem and 
progenitor cells and monocytes. Left: plot showing changes in gene expression in CD34+ hematopoietic stem 
and progenitor cells (blue) and CD14+ monocytes (orange) from González et al., 2015 (schematic, top). For 
the plots, each dot is a gene, and on the x axis is log2 fold change in expression and on the y-axis the 
proportion of differentially accessible DHSs for each associated gene. The top 100 most highly expressed 
genes in hematopoietic stem and progenitor cells and monocytes are colored in shades of orange and blue, 
respectively. Middle: density plot of the distribution of the proportion of high complexity DHS associated with 
the top 100 expressed genes in CD34+ hematopoietic stem and progenitor cells and CD14+ monocytes with 
median value marked by vertical black line. Right: example tracks DNase I sequencing data for KIT and CCR1 
(marked on plot on left). 
d. Concordance between expression and accessibility changes between cells exposed to ethanol vehicle 
control and high dose retinoic acid. Left: plot showing changes in gene expression and chromatin accessibility 
between ethanol vehicle control and high dose retinoic acid. Each dot is a gene, and on the x axis is the log2 
fold change in expression and on the y-axis the proportion of differentially accessible ATAC-seq peaks for each 
gene. The top 100 most highly expressed genes in ethanol vehicle control and high dose retinoic acid are 
colored in shades of gray and red, respectively. Middle: density plot of the distribution of the proportion of high 
complexity ATAC-seq peaks associated with the top 100 expressed genes in ethanol vehicle control and high 
dose retinoic acid with median value marked by vertical black line. Right: example ATAC-seq tracks of STRA6 
and WNT11. 
e. Concordance between expression and accessibility changes between cells exposed to ethanol vehicle 
control and high dose TGF-³. Left: plot showing changes in gene expression and chromatin accessibility 
between ethanol vehicle control and high dose TGF-³. Each dot is a gene, and on the x axis is the log2 fold 
change in expression and on the y-axis the proportion of differentially accessible ATAC-seq peaks for each 
gene. The top 100 most highly expressed genes in ethanol vehicle control and high dose TGF-³ are colored in 
shades of gray and blue, respectively. Middle: density plot of the distribution of the proportion of high 
complexity ATAC-seq peaks associated with the top 100 expressed genes in ethanol vehicle control and high 
dose retinoic acid with median value marked by vertical black line. Right: example ATAC-seq tracks of 
PMEPA1 and COL4A3. 

 
Figure 3:  Separation of differentially expressed genes in response to signal into high and low 
concordance groups shows differences in pre-existing accessibility. 
a. Categorization of differentially expressed genes in response to high dose retinoic acid based on 
direction of expression change and proportion of peaks differentially accessible in the same direction. 
b. Categorization of differentially expressed genes in response to high dose TGF-³ based on direction of 
expression change and proportion of peaks differentially accessible in the same direction. 
c. Differential accessibility in ethanol vehicle control conditions prior to addition of high dose retinoic acid. 
Accessibility of every peak assigned using the 8nearest9 approach for gene groups from (a) in ethanol vehicle 
control conditions. P-values represent the probability of these data or more extreme under the null hypothesis 
that the distribution of peak accessibilities were drawn from the same probability distribution via the 
Kolmogorov-Smirnov test.  
d. Differential accessibility in ethanol vehicle control conditions prior to addition of high dose TGF-³. 
Accessibility of every peak assigned using the 8nearest9 approach for gene groups from (b) in ethanol vehicle 
control conditions. P-values represent the probability of these data or more extreme under the null hypothesis 
that the distribution of peak accessibilities were drawn from the same probability distribution via the 
Kolmogorov-Smirnov test.  

 
Figure 4: Multiple approaches to quantifying peak accessibility shows low correlation between gene 
expression changes and accessibility changes in signaling. 
a. 8Nearest9 approach to assigning peaks to genes shows less concordance in signaling compared to 
hematopoietic differentiation. Left: schematic showing 8nearest9 approach where peaks are assigned to the 
nearest transcriptional site and change in accessibility (purple) on a per-gene basis is calculated by either 
median change in accessibility (top row) or maximum peak change (bottom row). Right: scatter plots showing 
change in peak accessibility (median or maximum) versus log2 fold change in expression on y axis for 
hematopoietic differentiation data from González et al. (left column) and for high dose retinoic acid and high 
dose TGF-³ (right two columns). Pearson9s correlation coefficients reported with 95% confidence interval from 
bootstrapping with 10,000 replicates in parentheses. 
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b. 8Window9 approach to assigning peaks to genes shows less concordance in signaling compared to 
hematopoietic differentiation. Left: schematic showing 8window9 approach where all peaks within a certain 
window of the the transcriptional start site are assigned to that gene and the change in accessibility (purple) on 
a per-gene basis is calculated by the median change in accessibility (top row) or the maximum change in 
accessibility (bottom row). Right: scatter plots showing change in peak accessibility (median or maximum) 
using 8window9 approach with a 100 kilobase window versus log2 fold change in expression on y axis for 
hematopoietic differentiation data from González et al. (left column) and for high dose retinoic acid and high 
dose TGF-³ (right two columns). Pearson9s correlation coefficients reported with 95% confidence interval from 
bootstrapping with 10,000 replicates in parentheses. 
c. Using 8nearest9 approach to look for correlation between accessibility and gene expression changes 
based on annotations of peak location. First two columns showing correlation for hematopoietic differentiation 
data from González et al, and right four columns showing correlation for high dose retinoic acid and high dose 
TGF-³, respectively. Pearson9s correlation coefficients reported with 95% confidence interval from 
bootstrapping with 10,000 replicates in parentheses. 

 
Figure 5: Focusing on peaks annotated for biologically relevant transcription factor motifs fails to 
demonstrate a strong correlation between the magnitude of gene expression and chromatin 
accessibility changes. 
a. Peaks annotated for motifs of transcription factors related to retinoic acid biology (RAR-³, HOXA13, 
FOXA1, left column) showed weak correlation between changes in gene expression and chromatin 
accessibility in response to high dose retinoic acid. Peaks are colored based on the log-odds of a motif being 
present in a given peak. Plot of expression and accessibility change for 5000 randomly sampled peaks lacking 
the corresponding peak (right column). Pearson9s correlation for peaks not having a given motif are for all 
peaks without that motif, not the 5000 subsampled peaks.  Pearson9s correlation coefficients reported with 95% 
confidence interval from bootstrapping with 10,000 replicates in parentheses. 
b. Peaks annotated for motifs of transcription factors related to retinoic acid biology (SMAD3, SMAD4, 
SMAD9, left column) showed weak correlation between changes in gene expression and chromatin 
accessibility in response to high dose TGF-³. Peaks are colored based on the log-odds of a motif being 
present in a given peak. Plot of expression and accessibility change for 5000 randomly sampled peaks lacking 
the corresponding peak (right column). Pearson9s correlation for peaks not having a given motif are for all 
peaks without that motif, not the 5000 subsampled peaks.  Pearson9s correlation coefficients reported with 95% 
confidence interval from bootstrapping with 10,000 replicates in parentheses. 
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