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Abstract: While invasive species are a key driver of the global biodiversity criss, the drivers of
invasiveness remain debated. To investigate the genomic basis of invasiveness in plants, we use
the invasive weed Ambrosia artemisiifolia, introduced to Europe in the late 19" century,
resequencing 655 ragweed genomes, including 308 herbarium specimens collected up to 190
years ago. In introduced European populations, we report selection signatures in defense genes
and lower prevalence of particular plant pathogens in the invasive range. Together with temporal
changes in population structure associated with introgression from closely related Ambrosia
species, escape from microbial enemies likely favoured the plant’ s remarkable success as an
invasive species.

One-Sentence Summary: The invasive success of European ragweed was facilitated by release
from enemy microbes and inter-species hybridization.
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Main Text:

The wide-scale introduction of exotic species to novel ranges around the world can be largely
attributed to the nineteenth-century colonial activities of Europeans and to escalating global trade
activities since the twentieth century (1). Invasive species are now one of the major drivers of
ecological change (2). They threaten global biodiversity and ecosystems by outcompeting native
species (3, 4). They also have a large economic impact, with terrestrial invasive species costing
an estimated 134 billion USD in the United States alone (5). Attempts to stymie the rate of new
introductions have failed on a global scale, as there has been no saturation in the accumulation of
alien species worldwide, and the rate of new introductions may even be accelerating (1).

Many more species are introduced to novel ranges than become invasive. One of the
fundamental questionsin invasion biology iswhy some aliens become invasive while others fail
even to establish a permanent population (6). Some hypotheses attempt to explain differential
success of invasive speciesin relation to their traits. For example, certain characteristics of some
plants (‘ideal weeds') make them more prone to become invasive, including prolific production
of long-lived seeds, the rapid growth of seedlings, no biological necessity for specialized
pollinators, self-compatibility, and adaptations for long-distance dispersal (7, 8). Adaptive
genetic changes are common and often important following initia introduction (9-11). Other
hypotheses explaining species’ differential success asinvaders invoke changes in ecological
interactionsin the introduced range, including escape from herbivores and pathogens (enemy-
release hypothesis, ERH (12, 13)). In plants, it has been proposed that the escape from
specialized enemiesin the native range allows an exotic species to allocate resources from
defence mechanisms towards growth and reproduction, increasing its competitivenessin the
introduced range (evolution of increased competitive ability, EICA (12, 14)).

In addition to herbivorous animals, exotic introduction may also free plants from fungal (15),
bacterial (16), oomycete (17), or viral (18) pathogens that live on their surface or within their
tissues. Plants introduced to new geographic regions will also face new microbial interactions
(29) that affect the plant’ s fitness and in some cases could facilitate invasive success (20-22). So
far, few studies have investigated the influence of microbial communities on the success of
invasive plants, and never at the genomic level. Considering the important role of plant-microbe
interactionsin evolutionary ecology (23), aholistic characterization of the invasion process
should also investigate the interplay of the host genome with its associated microbial
metagenome (24-27).

To investigate the evolutionary genomic basis of plant invasion, we chose Ambrosia
artemisifolia (common ragweed), an extraordinarily successful noxious weed that is native to
North America with a 200-year history of global introductions (28, 29). It is among the 100 most
impactful exotic speciesin Europe (30), and has established invasive populationsin >30
European countries (31). A. artemisiifolia causes increasingly negative economic and public
health impacts (32), mostly owing to its prolific production of highly allergenic, windborne
pollen (33). Its future successis linked to climate change; thusiit is predicted to become a more
serious problem in the coming decades (34, 35). As shown by previous studies, A. artemisiifolia
is able to rapidly adapt to its new environment (36-39) and thus has great potential to expand
and become invasive in more regions. Recent work estimating the potential impact of biological
control with the ragweed leaf beetle (Ophraella communa) offers some hope for reducing
ragweed’ s impact in Europe (32), and an indication that understanding ragweed’ s ecological
interactions may be one key to successin slowing the plant’sinvasion.
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Results

To uncover the hologenomics of invasion in this exceptionally successful invasive plant, we
report ade-novo assembly and annotation of the nuclear genome of common ragweed with a
further analysis of 655 temporally sampled individual genomes and metagenomes. Nearly 50%
of these samples come from historical herbarium collections. We grouped samplesinto five
populations based on geography and genetic clustering. We found that the main source of the
introduced European invasive population is a native-range admixed genetic cluster that likely
arose due to the anthropogenic activities of early European colonists in North America.

We found large temporal changes in population structure in Europe, but not in North America,
with several genetic clusters being exclusive to modern Europe. All spatial groups in Europe
show signals of introgression from closaly related Ambrosia spp. In Europe, we found evidence
of recent selection on genes associated with defense, plant growth, and flowering time, and
differences in the presence and preval ence of plant pathogens between Europe and North
America, consstent with ERH.

De-novo assembly of nuclear genome

Theinitial Meraculous (40, 41) assembly of the short-read data from individual AA19 3 7
resulted in an assembly of length 1579.1 Mbp, composed of 93,647 scaffolds with an Nsp of 89.7
Kbp. After filtering thisinitial assembly to remove haplotigs, the resulting filtered assembly
consisted of 12,288 contigs with atotal length of 1280.34 Mbp and an Nsp of 101.591 Kbp. After
HiRise scaffolding with the Chicago sequencing data, the final genome assembly’ s length was
1258.37 Mbp, and it was composed of 12,228 scaffolds with a scaffold Nsp of 270.6 Kbp. The
repeat analysis resulted in an annotation of 30.76% of the genome sequence in interspersed
repeats. Of the whole genome, 8.01% are long terminal repeat (LTR) elements, 2.01% are long
interspersed nuclear elements (LINES), 3.75% are DNA transposable elements, 0.20% are short
interspersed nuclear elements (SINES), and 16.79% are unclassified repeats. The gene annotation
of the repeat-masked genome resulted in 34,066 predicted proteins. The benchmarking universal
single-copy orthologs (BUSCO) (42) analysis of assembly completeness determined the state of
1,375 single-copy ortholog genes, finding 756 (54.9%) were complete and single-copy, 176
(12.8%) were complete and duplicated, 68 (5.0%) were fragmented, and 375 (27.3%) were
missing.

Spatio-temporal population structure

In the native North American (NA) range, samples cluster based on geography in both the PCA
(Fig. 1) and admixture (Fig. 2) analysis, although genetic differentiation as measured by Fsris
low between these populations (Fig. 1). There are four main genetic clusters observed for K=9in
the native range: the light pink cluster that isthe main component of NA West samples, the dark
pink cluster that isthe main component of samples from NA East, the light turquoise cluster that
isthe main component of samples from NA South and a blue cluster that isfound inin the
Admixed population that islocated between the three extremes of the species range in North
America (Fig. 2). The geographic clustering in the native range did not change substantially
between historical (collected between 1830 and 1973) and modern (collected between 2009 and
2019) times, and Fsr values are low when comparing the same populations through time (mean
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Fsr=0.008, Fig. 1). The highest Fsr values can be observed in comparisons with the NA South
population; although it is overall the most divergent, it is more similar to the NA East than the
NA West population. The South population contributed little to the Admixed population as
evidenced by a clear separation of the South population from the other populationsin the PCA,
admixture proportions, and high Fsr values. The Admixed population islocated between the East
and West population on the PCA, connecting the two clusters and leading to a continuous
digtribution rather than a clear separation of the clusters. In the historical time period, it is closer
to the West population, with the Fst value being about twice as high between Admixed - East
than between Admixed - West. In the modern time period, this difference disappears, with Fst
between Admixed - East being nearly identical to Fst between Admixed —West. Based on D-
statistics, we found evidence of introgression from the related species Ambrosia trifida in spatial
groups from the West population. We also found evidence of introgression from Ambrosia
psilostachya in spatial groups from the South and West populations based on D-statistics (Fig.
S1-2) and TreeMix (Fig. S3). PSM C-based demographic reconstruction of a high-depth North
American sample shows a population decline between 10°and 10 years ago (Fig. S4).

In the introduced European range, no clear relationships with a single native-range population
are observed in both historic and modern times. European samples do not cluster with the main
NA South cluster on the PCA (Fig. 1) and show overall little of the main NA South cluster in the
admixture analysis. None of the European samples were assigned to the South population based
on the admixture analysis for K=9. Furthermore, Fsr values are higher between Europe and NA
South than between Europe and the other three North American populations. Based on Fsr,
Europe is almost equally close to the West and East population in both the historical and modern
time period. Europe shows the lowest genetic distance to the Admixed population, which is
lower than values between the two time periods within the same populations. In the admixture
analysis, more than half of the European samples for both the historical and the modern time
period are assigned to the Admixed population. The fraction of samples stays ailmost constant
over time, with 56.7% in the historical time period and 54.7% in the modern time period. For
both the East and the West population, the fraction of European samples assigned to them
decreases over time. In historical times, 15.2% of samples were assigned to the East population
and 11.4% to the West population. Among modern samples, only 6.5% were assigned to the East
population and 7.1% to the West population. Over time, more samples within Europe could not
be assigned to any North American population and several unigue genetic clusters are found in
modern Europe (Fig. 2). These changes are evident in the analysis of spatia groups that show
drastic changes over time in the admixture analysis (Fig. 3) aswell asin the analysis of pairwise
Fsr as modern spatial groups cluster outside the North American range in the MDS analysis (Fig.
3b). Moreover, these spatial groups also cluster outside the North American range on the PCA
(Fig.1). All spatial groupsin Europe show signals of introgression from A. trifida, with the
highest values found in those that form unique genetic clusters (Appeldorn, Innsbruck, Prague,
Brno) (Fig. S1). In addition, two modern populations (Appeldorn and Bordeaux) show signals of
introgression from A. psilostachya (Fig. S2). Due to the high genetic differences even of
geographically close spatial groups in Europe, no isolation-by-distance pattern could be found in
Europe, unlike in the native North American range (Fig. S5).

The highest mean heterozygosity is found in the historical Admixed population and is
significantly higher (Mann—Whitney U test, p<0.05) than in all other populations except
historical West (Fig. 4). The lowest mean heterozygosity is found in the modern Europe
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population and is significantly lower (p<0.05) than in all other populations except historical
South and modern East. The lowest heterozygosity in the native range is found in modern East,
which significantly differs (p-value<0.05) from all other native range populations except
historical South. The effective population size (N) is higher in Europe than in any of the North
American populations (Table S1) and decreases over time. In the native range, the South
population has the lowest and the Admixed population the highest Ne. In the native range, Ne
increases over time for all but the East population. Tgima s D is negative in all populations, with
the lowest value found in historical Europe, followed by historical East and historical Admixed
(Table S1), and is generally lower in historical populations than in modern ones.

Selection scanning

Between historical Europe and modern Europe, atotal of 353 Fsr-outlier windows were
identified. These contained 111 unique A. artemisiifolia genes, of which six matched flowering
time genes of Arabidopsis thaliana (43). Between modern North America and modern Europe, a
total of 442 Fsr-outlier windows were found. These contained 139 unique genes, of which seven
were homologues of A. thaliana flowering time genes (43). Of the outlier windows, 159 are
shared between the comparisons of historical/modern Europe and modern Europe/North
America. For both comparisons, outlier windows have on average a negative Fay & Wu'sH,
which is significantly lower than in non-outlier windows (p<2.2e-16) while outlier windowsin
historical Europe and modern North America show a positive Fay & Hu’ s H on average (Fig. 5).
The GO enrichment analysis shows 45 enriched GO terms in the comparison of historical and
modern Europe (Fig. 5, Data S1). Among other functions, these GO terms are associated with
growth, stress response, light response, circadian regulation, response to phosphate and nitrate,
flowering, and pollen recognition. Of these, 17 are also shared in the comparison of modern
Europe and North America. Between modern Europe and modern North America, 47 GO terms
are enriched in Fsr-outlier windows (Fig. 5, Data S1). These include functions associated with
growth, defense, response to salinity, flowering, and response to phosphate. Of the top outlier
SNPs (Z>100) between historical and modern Europe, 11 out of 199 are found within eight gene
regions (Data S2). Several of these genes are orthologs of well characterized genesin A.
thaliana. Functional analysis of AT1G47740 (PPPDE putative thiol peptidase family protein) in
A. thaliana showed that mutants are involved in abiotic stress response evidenced by expression
changes in response to cold (downregulation), oxidation (downregulation) and osmoatic stress
(upregulation) (44). Mutants of AT2G13540 (ABA HYPERSENSI TIVE 1, ABH1) are early
flowering (45), drought resistant (46, 47), and hypersensitive to the plant hormone abscisic acid,
which regulates development and stress response (46). Loss of ABH1 function in A. thaliana
resultsin abnormal processing of MRNAS for the important floral regulators FLC, CO, and
FLM(45). AT5G47910 (RESPIRATORY BURST OXIDASE HOMOLOGUE D, RBOHD) is
involved in defense response to abiotic stress and pathogens (48, 49), specifically viaits
interaction with the AtrbohF gene, which allows tuning the spatial control of the production of
reactive oxygen intermediates and hypersensitive response around sites of infection (49). The
protein encoded by AT3G19540 (BOUNDARY OF ROP DOMAIN4, BDR4) recognizes
acetylation codes of histones also during mitosis and thus likely contributes to the transcriptional
memory transmission to the next cell generation (50). BDR4 is also implicated in development or
function of vessels and pit boundaries in the xylem, which transports water and nutrients from
the plant-soil interface to ssems and leaves (51). The gene AT3G21670 (NRT1-PTR FAMILY
6.4/NPF6.4) isinvolved in nitrate transport (52).
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Pathogen identification

A total of 68 different pathogens were identified in the entire dataset (Fig. 6, Data S3). Fewer
pathogens were identified in the historical herbarium samples (38 in Europe and 32 in North
America) compared to the contemporary samples (58 in Europe and 60 in North America). As
this difference could result from the shorter fragment length and ancient DNA damage in the
historical samples, comparisons were only done within time periods. In the historical time
period, eight pathogen species detected in North America are absent in Europe, while 14
pathogens detected in Europe are absent in North America. Five species have a significantly
higher (p<0.05) prevalence in historic Europe, while oneis significantly higher (p<0.05) in
historical North America. In the contemporary samples, nine pathogens are absent from Europe
and present in North America. Of these, two show the same pattern in the historical time period.
Seven pathogens present in modern Europe are absent in modern North America. Of these, three
show the same pattern in the historical specimens. In the contemporary time period, eight
pathogens show a significantly higher (p<0.05) prevalence in Europe and 12 in North America.
In general, either more or a significantly higher prevalence of Xanthomonas (Fig. 6) and
Pseudomonas taxa are found in North America and either more or a significantly higher
prevalence of Dickeya and Brenneria species are found in Europe.

Discussion

Using the largest collection of conspecific genomes derived from herbarium specimens of any
species, we discovered a remarkable turnover in the genetic structure of introduced A.
artemisiifolia populations over the brief window of time during which this plant has established
itself in Europe. Thisfinding likely reflects multiple introductions from diverse sources, drift
during introduction bottlenecks, and even introgression from related species. Moreover, we
found evidence of rapid adaptation and support for the role of microbial enemy release in the
success of thisinvasive weed.

Using high-resolution spatio-temporal sampling of A. artemigifolia populations in both North
America and Europe, we found genomic signals of divergent selection during range expansion,
pointing to rapid adaptation during the invasion. Many of these associated genes were involved
in responses to stress and light, as well as flowering, defense, and growth. Our results provide a
genomic foundation for understanding previous work describing major phenotypic differences
between samples from Europe and the native ranges, with European populations characterized by
reduced drought-resistance and a higher allocation of resources towards growth and reproduction
(37), well in line with earlier common garden experiments that showed strong evidence of
adaptation in the European range in traits such as plant size, reproduction investment, sex
allocation, phenology, dichogamy, specific leaf area, and plant growth (53). Adaptive processes
may have caused differencesin early life cycle stages in European and North American
populations. Germination rate, germination speed, frost tolerance of seedlings, as well as the
temperature niche width for germination were significantly higher and broader for European
populations (54). Consistent with our finding of rapid adaptation of flowering genes, European
populations already show clines in flowering time, similar to those found in the native range,
which likely reflect local adaptation (39).

It has long been suggested that escape from natural enemies in the native range can facilitate the
invasion success of introduced species (12—14). These enemies can be animals like the ragweed
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leaf beetle (Ophraella communa), but also any of the multitudes of microbial pathogens known
to affect A. artemisiifolia (55). In addition to some plant pathogen bacteria being absent or of
lower prevalence in Europe (e.g. Xanthomonas), we also detected some taxa only in Europe or at
higher prevalence than in North America (e.g. Brenneria, Dickeya). Bacterial plant pathogens
often have high host-specificity, but can sometimes live on non-host plants without causing
disease (56). It is thus important to ascertain whether certain pathogens actually cause diseasein
the plant in question before drawing conclusions about enemy-escape. Brenneria, Dickeya, and
Xanthomonas are the three genera that show differences in prevalence or presence between
Europe and North America. Of these, only Xanthomonas spp. are known to cause disease in A.
artemisifolia, inducing 60% mortality in infected plants (56), and show reduced prevalencein
Europe. Dovetailing with our detection of the strongest selection signatures on the gene RBOHD,
a gene associated with defense against pathogens, these findings are in favour of the enemy
release hypothesis and suggest that together with the release from herbivores such as the ragweed
leaf beetle, escape from native-range microbes facilitated the success of A. artemigifoliain
Europe.

The population structure we found in the native range reenforces previous results based on
reduced-representation genomic data from contemporary samples (57, 58). The most
differentiated population is the South population in North America, which is restricted to the
southeastern United States (Florida, coastal Mississippi, and Georgia). Based on the
palynological records from sediment cores (59, 60), this region was a refugium during the last
glacial maximum. If the East and West populations originate from different glacial refugia, this
could explain the higher divergence of the South population from other North American
populations. The South population has the lowest Nein both historical and modern times.
Together with the negative Tajima' s D and admixture results, thisindicates that the South
population experienced a population expansion but stayed relatively isolated from the other
North American populations. Based on the global Fsr, PCA and admixture results, this
population did not contribute substantially to the Admixed population in the native range or to
the introduced European range.

For North America, in contrast to Europe, we found clear stasisin the population genetic
structure. The only exception to thiswas a shift in the extent of the Admixed cluster. Based on
ABC-RF simulations and reduced-representation genomic data from present-day populations,
van Boheemen et al. (57) estimated the Admixed population formed more than 200 years ago,
thus suggesting it predated the introduction of the species to Europe. Anthropogenic
disturbances, such as forest clearance and the expansion of agriculture (29) are the most likely
cause for the formation of this Admixed population (29). By directly sampling historical
herbarium samples, we confirm that this cluster already existed in the late 19th century, with the
oldest samplein our study from this population dated to 1875. High heterozygosity values and a
relatively high Ne for the historical Admixed population, especially compared to the modern
Admixed population, indicate that the admixture event happened shortly before the period in
which the majority of our historical samples were collected.

Despite being present in French botanical gardens as early as 1763, wild populations of ragweed

were not reported before the late 19th century in France (28), and even later in other parts of

Europe (61). Historical records and herbarium data suggest that there were several independent

introductions of A. artemisiifolia into Europe, rather than a single introduction and a subsequent

spread (28). These introductions likely arose from different source populations, as we find that
8
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many historical samples from Europe are fully assigned to a native-range population (11% West;
15% East; 57% Admixed). Some samples (17%) could not be assigned to any of the native
genetic clusters, and the fraction of such samples increases over time to 32%. This suggests that
A. artemisiifolia was already present in Europe well before most of our historical samples were
collected, and that genetic drift associated with initially small population sizes, combined with
strong selection pressure, may have led to the rapid formation of unique genetic clusters early in
Europe.

It isalso clear that introgression from related plant taxa contributed to the formation of these
unique genetic clustersin Europe. A. artemisifolia can produce hybrids with A. trifida (62) and
A. psilostachya (63), both of which were introduced to Europe around the same time as A.
artemisifolia (64) and had opportunities to hybridize with A. artemisifolia in the introduced
range, although hybrids have not yet been reported to produce viable seeds (31). Wefind signals
of introgression from both A. trifida and A. psilostachya in Europe with high levelsin those
populations that form unique clustersin Europe. Hybridization in the introduced range may
mitigate Allee effects, which tend to be particularly strong in self-incompatible specieslike A.
artemisifolia. In addition to ‘ demographic rescu€e’, interspecific hybridization early in the
invasion may have offered A. artemisiifolia populations other benefits, including heterosis and
the adaptive introgression of beneficial alleles. As we also find introgression in some native
range populations, it is possible that the observed pattern in Europe is due to older introgression
in the source population.

The origin of the European A. artemisiifolia invasion has been debated in the literature. All
studies have found evidence for multiple introductions (28, 36, 65). However, some studies have
suggested that the admixture was largely sourced from the native range admixed region (29),
while others suggested the admixture occurred post-invasion (65, 66). Our temporally stratified
snapshots of population structure provide clearer insights into this debate.

As awhole, the European population is most closely related to the North American Admixed
population. Moreover, most of the European samples cluster with the Admixed population in the
PCA, and more than half of the samples are assigned to the Admixed cluster in the admixture
analysis. None of the samples collected before 1892 in Europe (n=78) were assigned to the West
cluster. According to herbarium data and bibliography, the first introductions to Europe occurred
over ashort time period of about ten years from Eastern North America (67). We thusfind it
unlikely that substantial admixture between individuals that originated from the native-range
East and West genetic cluster in the introduced range led to the observed pattern and conclude
instead that the native-range Admixed cluster was the main source of introduction in Europe.
The East and West populations also seem to have contributed to Europe, as several European
samples show nearly complete assignment to the main West or main East genetic cluster in the
admixture analysis and also group with the West or East population on the PCA. Interestingly,
the prevalence of West and East cluster ancestry decreases over time in Europe, while the
fraction of samples being assigned to the Admixed cluster does not. Previoudly it has been
suggested that the population genetic differentiation between eastern and western European A.
artemisifolia reflects historical introduction and trade routes (68). In contrast, our results
indicate that the main source of introduction in both western and eastern Europe islikely the
Admixed population from the native range. Indeed, the oldest samples in both eastern and
western Europe are frequently (57%) placed in the Admixed cluster, supporting the hypothesis
that substantial admixture either occurred prior to introduction or very early in theinvasion
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process. Due to the admixture of several native populations, much of the native-range genetic
variance was introduced to historical Europe, as evidenced by no significant decrease (p>0.05) in
heterozygosity levelsin Europe compared to the native range and higher Ne than in the native
range. Over time, the European population has diverged from the North American population, as
fewer samples are assigned to the native genetic clusters and more genetic clusters unique to
Europe have emerged.

The increasing pace of biological introduction to novel ranges via global trade and climate
change severely threatens global biodiversity. Using the weed A. artemisiifolia asamodel for
plant invasion, we demonstrate that combining population genomic analysis with a metagenomic
approach can identify factors that may facilitate the success of plant invaders both prior to and
following the introduction event. These factors include pre-introduction admixture of different
source populationsin the native range, rapid adaptation, introgression from other species and the
escape from some plant pathogens. We show that microbial pathogens both old and new play a
role in the adaptive landscape of highly successful invasive plantslike A. artemisiifolia. The
identification of A. artemisiifolia’slost native-range pathogens informs future efforts to devise
effective biological control measures.

Our study illustrates the potential of global herbarium collections as arich source of historical
material for high-resolution population genomic and metagenomic investigations over
continental and even global spatial scales. These meticulously curated and often well-preserved
plant specimens contain not only the host plant genome, but also a complex community of
associated microbes that, when considered together in a hologenomic framework, can reveal a
rich history of co-evolution and networks of synergy and antagonism during the Anthropocene.
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and the average ancestry across those groups was plotted. If samples were grouped together,
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Modern North America. (F) Modern Europe. (G) Modern North America. (H) Modern Europe.
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Fig. 5. Selection scan. (A-B) Significantly enriched GO termsin the Fsr outlier windows. The
size of the circles represents the number of significant genes annotated for the respective GO
term. The color represents the p-val ue for the enrichment with yellow representing high and

5 purple low p-values. The generatio isthe number of significant genes divided by the total
number of genesin Fsroutlier windows. (A) Enriched GO terms for historical vs. modern
Europe. (B) Enriched GO terms for modern Europe vs. modern North America. (C-D) Fay &
Hu s H in Fsroutlier (yellow) and non-outlier (green) windows. The boxplots show the median,
first and third quantile. (C) Outlier windows for Fsr between historical and modern Europe. (D)

10 Outlier windows for Fsr between modern Europe and modern North America.
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Fig. 6. Pathogen presence. (A-B) Prevalence of Xanthomonas spp. in contemporary samples.
Samples within 100 km were grouped together. The pie chart indicates the fraction of samplesin
which Xanthomonas spp. are present with black indicating no Xanthomonas species identified.
The color indicates how many different Xanthomonas species were identified at alocation. (A)
modern North America. (B) modern Europe. (C) Venn Diagram of pathogens identified in
modern European (green), modern North American (green), historical European (blue) and
historical North American (orange) samples. (D) Venn diagram of pathogens identified in
modern European (green) and modern North American (yellow) samples. (E) Venn diagram of
pathogens identified in historical European (blue) and historical North American (orange)
samples.
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