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Abstract: While invasive species are a key driver of the global biodiversity crisis, the drivers of 
invasiveness remain debated. To investigate the genomic basis of invasiveness in plants, we use 
the invasive weed Ambrosia artemisiifolia, introduced to Europe in the late 19th century, 
resequencing 655 ragweed genomes, including 308 herbarium specimens collected up to 190 
years ago. In introduced European populations, we report selection signatures in defense genes 5 
and lower prevalence of particular plant pathogens in the invasive range. Together with temporal 
changes in population structure associated with introgression from closely related Ambrosia 
species, escape from microbial enemies likely favoured the plant’s remarkable success as an 
invasive species.  

 10 

One-Sentence Summary: The invasive success of European ragweed was facilitated by release 
from enemy microbes and inter-species hybridization. 
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Main Text:  
The wide-scale introduction of exotic species to novel ranges around the world can be largely 
attributed to the nineteenth-century colonial activities of Europeans and to escalating global trade 
activities since the twentieth century (1). Invasive species are now one of the major drivers of 
ecological change (2). They threaten global biodiversity and ecosystems by outcompeting native 5 
species (3, 4). They also have a large economic impact, with terrestrial invasive species costing 
an estimated 134 billion USD in the United States alone (5). Attempts to stymie the rate of new 
introductions have failed on a global scale, as there has been no saturation in the accumulation of 
alien species worldwide, and the rate of new introductions may even be accelerating (1). 
 10 
Many more species are introduced to novel ranges than become invasive. One of the 
fundamental questions in invasion biology is why some aliens become invasive while others fail 
even to establish a permanent population (6). Some hypotheses attempt to explain differential 
success of invasive species in relation to their traits. For example, certain characteristics of some 
plants (‘ideal weeds’) make them more prone to become invasive, including prolific production 15 
of long-lived seeds, the rapid growth of seedlings, no biological necessity for specialized 
pollinators, self-compatibility, and adaptations for long-distance dispersal (7, 8). Adaptive 
genetic changes are common and often important following initial introduction (9–11). Other 
hypotheses explaining species’ differential success as invaders invoke changes in ecological 
interactions in the introduced range, including escape from herbivores and pathogens (enemy-20 
release hypothesis, ERH (12, 13)). In plants, it has been proposed that the escape from 
specialized enemies in the native range allows an exotic species to allocate resources from 
defence mechanisms towards growth and reproduction, increasing its competitiveness in the 
introduced range (evolution of increased competitive ability, EICA (12, 14)).  
 25 
In addition to herbivorous animals, exotic introduction may also free plants from fungal (15), 
bacterial (16), oomycete (17), or viral (18) pathogens that live on their surface or within their 
tissues. Plants introduced to new geographic regions will also face new microbial interactions 
(19) that affect the plant’s fitness and in some cases could facilitate invasive success (20–22). So 
far, few studies have investigated the influence of microbial communities on the success of 30 
invasive plants, and never at the genomic level. Considering the important role of plant-microbe 
interactions in evolutionary ecology (23), a holistic characterization of the invasion process 
should also investigate the interplay of the host genome with its associated microbial 
metagenome (24–27).  
 35 
To investigate the evolutionary genomic basis of plant invasion, we chose Ambrosia 
artemisiifolia (common ragweed), an extraordinarily successful noxious weed that is native to 
North America with a 200-year history of global introductions (28, 29). It is among the 100 most 
impactful exotic species in Europe (30), and has established invasive populations in >30 
European countries (31). A. artemisiifolia causes increasingly negative economic and public 40 
health impacts (32), mostly owing to its prolific production of highly allergenic, windborne 
pollen (33). Its future success is linked to climate change; thus it is predicted to become a more 
serious problem in the coming decades (34, 35). As shown by previous studies, A. artemisiifolia 
is able to rapidly adapt to its new environment (36–39) and thus has great potential to expand 
and become invasive in more regions. Recent work estimating the potential impact of biological 45 
control with the ragweed leaf beetle (Ophraella communa) offers some hope for reducing 
ragweed’s impact in Europe (32), and an indication that understanding ragweed’s ecological 
interactions may be one key to success in slowing the plant’s invasion.  
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Results 

To uncover the hologenomics of invasion in this exceptionally successful invasive plant, we 
report a de-novo assembly and annotation of the nuclear genome of common ragweed with a 
further analysis of 655 temporally sampled individual genomes and metagenomes. Nearly 50% 5 
of these samples come from historical herbarium collections. We grouped samples into five 
populations based on geography and genetic clustering. We found that the main source of the 
introduced European invasive population is a native-range admixed genetic cluster that likely 
arose due to the anthropogenic activities of early European colonists in North America. 
We found large temporal changes in population structure in Europe, but not in North America, 10 
with several genetic clusters being exclusive to modern Europe. All spatial groups in Europe 
show signals of introgression from closely related Ambrosia spp. In Europe, we found evidence 
of recent selection on genes associated with defense, plant growth, and flowering time, and 
differences in the presence and prevalence of plant pathogens between Europe and North 
America, consistent with ERH. 15 

De-novo assembly of nuclear genome 

The initial Meraculous (40, 41) assembly of the short-read data from individual AA19_3_7 
resulted in an assembly of length 1579.1 Mbp, composed of 93,647 scaffolds with an N50 of 89.7 
Kbp. After filtering this initial assembly to remove haplotigs, the resulting filtered assembly 
consisted of 12,288 contigs with a total length of 1280.34 Mbp and an N50 of 101.591 Kbp. After 20 
HiRise scaffolding with the Chicago sequencing data, the final genome assembly’s length was 
1258.37 Mbp, and it was composed of 12,228 scaffolds with a scaffold N50 of 270.6 Kbp. The 
repeat analysis resulted in an annotation of 30.76% of the genome sequence in interspersed 
repeats. Of the whole genome, 8.01% are long terminal repeat (LTR) elements, 2.01% are long 
interspersed nuclear elements (LINEs), 3.75% are DNA transposable elements, 0.20% are short 25 
interspersed nuclear elements (SINEs), and 16.79% are unclassified repeats. The gene annotation 
of the repeat-masked genome resulted in 34,066 predicted proteins. The benchmarking universal 
single-copy orthologs (BUSCO) (42) analysis of assembly completeness determined the state of 
1,375 single-copy ortholog genes, finding 756 (54.9%) were complete and single-copy, 176 
(12.8%) were complete and duplicated, 68 (5.0%) were fragmented, and 375 (27.3%) were 30 
missing.  

Spatio-temporal population structure 

In the native North American (NA) range, samples cluster based on geography in both the PCA 
(Fig. 1) and admixture (Fig. 2) analysis, although genetic differentiation as measured by FST is 
low between these populations (Fig. 1). There are four main genetic clusters observed for K=9 in 35 
the native range: the light pink cluster that is the main component of NA West samples, the dark 
pink cluster that is the main component of samples from NA East, the light turquoise cluster that 
is the main component of samples from NA South and a blue cluster that is found in in the 
Admixed population that is located between the three extremes of the species range in North 
America (Fig. 2). The geographic clustering in the native range did not change substantially 40 
between historical (collected between 1830 and 1973) and modern (collected between 2009 and 
2019) times, and FST values are low when comparing the same populations through time (mean 
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FST=0.008, Fig. 1). The highest FST values can be observed in comparisons with the NA South 
population; although it is overall the most divergent, it is more similar to the NA East than the 
NA West population. The South population contributed little to the Admixed population as 
evidenced by a clear separation of the South population from the other populations in the PCA, 
admixture proportions, and high FST values. The Admixed population is located between the East 5 
and West population on the PCA, connecting the two clusters and leading to a continuous 
distribution rather than a clear separation of the clusters. In the historical time period, it is closer 
to the West population, with the FST value being about twice as high between Admixed - East 
than between Admixed - West. In the modern time period, this difference disappears, with Fst 
between Admixed - East being nearly identical to Fst between Admixed – West. Based on D-10 
statistics, we found evidence of introgression from the related species Ambrosia trifida in spatial 
groups from the West population. We also found evidence of introgression from Ambrosia 
psilostachya in spatial groups from the South and West populations based on D-statistics (Fig. 
S1-2) and TreeMix (Fig. S3). PSMC-based demographic reconstruction of a high-depth North 
American sample shows a population decline between 105 and 104 years ago (Fig. S4). 15 
 
In the introduced European range, no clear relationships with a single native-range population 
are observed in both historic and modern times. European samples do not cluster with the main 
NA South cluster on the PCA (Fig. 1) and show overall little of the main NA South cluster in the 
admixture analysis. None of the European samples were assigned to the South population based 20 
on the admixture analysis for K=9. Furthermore, FST values are higher between Europe and NA 
South than between Europe and the other three North American populations. Based on FST, 
Europe is almost equally close to the West and East population in both the historical and modern 
time period. Europe shows the lowest genetic distance to the Admixed population, which is 
lower than values between the two time periods within the same populations. In the admixture 25 
analysis, more than half of the European samples for both the historical and the modern time 
period are assigned to the Admixed population. The fraction of samples stays almost constant 
over time, with 56.7% in the historical time period and 54.7% in the modern time period. For 
both the East and the West population, the fraction of European samples assigned to them 
decreases over time. In historical times, 15.2% of samples were assigned to the East population 30 
and 11.4% to the West population. Among modern samples, only 6.5% were assigned to the East 
population and 7.1% to the West population. Over time, more samples within Europe could not 
be assigned to any North American population and several unique genetic clusters are found in 
modern Europe (Fig. 2). These changes are evident in the analysis of spatial groups that show 
drastic changes over time in the admixture analysis (Fig. 3) as well as in the analysis of pairwise 35 
FST as modern spatial groups cluster outside the North American range in the MDS analysis (Fig. 
3b). Moreover, these spatial groups also cluster outside the North American range on the PCA 
(Fig.1). All spatial groups in Europe show signals of introgression from A. trifida, with the 
highest values found in those that form unique genetic clusters (Appeldorn, Innsbruck, Prague, 
Brno) (Fig. S1). In addition, two modern populations (Appeldorn and Bordeaux) show signals of 40 
introgression from A. psilostachya (Fig. S2). Due to the high genetic differences even of 
geographically close spatial groups in Europe, no isolation-by-distance pattern could be found in 
Europe, unlike in the native North American range (Fig. S5). 
 
The highest mean heterozygosity is found in the historical Admixed population and is 45 
significantly higher (Mann–Whitney U test, p<0.05) than in all other populations except 
historical West (Fig. 4). The lowest mean heterozygosity is found in the modern Europe 
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population and is significantly lower (p<0.05) than in all other populations except historical 
South and modern East. The lowest heterozygosity in the native range is found in modern East, 
which significantly differs (p-value<0.05) from all other native range populations except 
historical South. The effective population size (Ne) is higher in Europe than in any of the North 
American populations (Table S1) and decreases over time. In the native range, the South 5 
population has the lowest and the Admixed population the highest Ne. In the native range, Ne 
increases over time for all but the East population. Tajima’s D is negative in all populations, with 
the lowest value found in historical Europe, followed by historical East and historical Admixed 
(Table S1), and is generally lower in historical populations than in modern ones. 

Selection scanning 10 

Between historical Europe and modern Europe, a total of 353 FST-outlier windows were 
identified. These contained 111 unique A. artemisiifolia genes, of which six matched flowering 
time genes of Arabidopsis thaliana (43). Between modern North America and modern Europe, a 
total of 442 FST-outlier windows were found. These contained 139 unique genes, of which seven 
were homologues of A. thaliana flowering time genes (43). Of the outlier windows, 159 are 15 
shared between the comparisons of historical/modern Europe and modern Europe/North 
America. For both comparisons, outlier windows have on average a negative Fay & Wu’s H, 
which is significantly lower than in non-outlier windows (p<2.2e-16) while outlier windows in 
historical Europe and modern North America show a positive Fay & Hu’s H on average (Fig. 5). 
The GO enrichment analysis shows 45 enriched GO terms in the comparison of historical and 20 
modern Europe (Fig. 5, Data S1). Among other functions, these GO terms are associated with 
growth, stress response, light response, circadian regulation, response to phosphate and nitrate, 
flowering, and pollen recognition. Of these, 17 are also shared in the comparison of modern 
Europe and North America. Between modern Europe and modern North America, 47 GO terms 
are enriched in FST-outlier windows (Fig. 5, Data S1). These include functions associated with 25 
growth, defense, response to salinity, flowering, and response to phosphate. Of the top outlier 
SNPs (Z>100) between historical and modern Europe, 11 out of 199 are found within eight gene 
regions (Data S2). Several of these genes are orthologs of well characterized genes in A. 
thaliana. Functional analysis of AT1G47740 (PPPDE putative thiol peptidase family protein) in 
A. thaliana showed that mutants are involved in abiotic stress response evidenced by expression 30 
changes in response to cold (downregulation), oxidation (downregulation) and osmotic stress 
(upregulation) (44). Mutants of AT2G13540 (ABA HYPERSENSITIVE 1, ABH1) are early 
flowering (45), drought resistant (46, 47), and hypersensitive to the plant hormone abscisic acid, 
which regulates development and stress response (46). Loss of ABH1 function in A. thaliana 
results in abnormal processing of mRNAs for the important floral regulators FLC, CO, and 35 
FLM(45). AT5G47910 (RESPIRATORY BURST OXIDASE HOMOLOGUE D, RBOHD) is 
involved in defense response to abiotic stress and pathogens (48, 49), specifically via its 
interaction with the AtrbohF gene, which allows tuning the spatial control of the production of 
reactive oxygen intermediates and hypersensitive response around sites of infection (49). The 
protein encoded by AT3G19540 (BOUNDARY OF ROP DOMAIN4, BDR4) recognizes 40 
acetylation codes of histones also during mitosis and thus likely contributes to the transcriptional 
memory transmission to the next cell generation (50). BDR4 is also implicated in development or 
function of vessels and pit boundaries in the xylem, which transports water and nutrients from 
the plant-soil interface to stems and leaves (51). The gene AT3G21670 (NRT1-PTR FAMILY 
6.4/NPF6.4) is involved in nitrate transport (52). 45 
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Pathogen identification 

A total of 68 different pathogens were identified in the entire dataset (Fig. 6, Data S3). Fewer 
pathogens were identified in the historical herbarium samples (38 in Europe and 32 in North 
America) compared to the contemporary samples (58 in Europe and 60 in North America). As 
this difference could result from the shorter fragment length and ancient DNA damage in the 5 
historical samples, comparisons were only done within time periods. In the historical time 
period, eight pathogen species detected in North America are absent in Europe, while 14 
pathogens detected in Europe are absent in North America. Five species have a significantly 
higher (p<0.05) prevalence in historic Europe, while one is significantly higher (p<0.05) in 
historical North America. In the contemporary samples, nine pathogens are absent from Europe 10 
and present in North America. Of these, two show the same pattern in the historical time period. 
Seven pathogens present in modern Europe are absent in modern North America. Of these, three 
show the same pattern in the historical specimens. In the contemporary time period, eight 
pathogens show a significantly higher (p<0.05) prevalence in Europe and 12 in North America. 
In general, either more or a significantly higher prevalence of Xanthomonas (Fig. 6) and 15 
Pseudomonas taxa are found in North America and either more or a significantly higher 
prevalence of Dickeya and Brenneria species are found in Europe. 

Discussion 

Using the largest collection of conspecific genomes derived from herbarium specimens of any 
species, we discovered a remarkable turnover in the genetic structure of introduced A. 20 
artemisiifolia populations over the brief window of time during which this plant has established 
itself in Europe. This finding likely reflects multiple introductions from diverse sources, drift 
during introduction bottlenecks, and even introgression from related species. Moreover, we 
found evidence of rapid adaptation and support for the role of microbial enemy release in the 
success of this invasive weed.  25 
 
Using high-resolution spatio-temporal sampling of A. artemisiifolia populations in both North 
America and Europe, we found genomic signals of divergent selection during range expansion, 
pointing to rapid adaptation during the invasion. Many of these associated genes were involved 
in responses to stress and light, as well as flowering, defense, and growth. Our results provide a 30 
genomic foundation for understanding previous work describing major phenotypic differences 
between samples from Europe and the native ranges, with European populations characterized by 
reduced drought-resistance and a higher allocation of resources towards growth and reproduction 
(37), well in line with earlier common garden experiments that showed strong evidence of 
adaptation in the European range in traits such as plant size, reproduction investment, sex 35 
allocation, phenology, dichogamy, specific leaf area, and plant growth (53). Adaptive processes 
may have caused differences in early life cycle stages in European and North American 
populations. Germination rate, germination speed, frost tolerance of seedlings, as well as the 
temperature niche width for germination were significantly higher and broader for European 
populations (54). Consistent with our finding of rapid adaptation of flowering genes, European 40 
populations already show clines in flowering time, similar to those found in the native range, 
which likely reflect local adaptation (39). 
 
It has long been suggested that escape from natural enemies in the native range can facilitate the 
invasion success of introduced species (12–14). These enemies can be animals like the ragweed 45 
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leaf beetle (Ophraella communa), but also any of the multitudes of microbial pathogens known 
to affect A. artemisiifolia (55). In addition to some plant pathogen bacteria being absent or of 
lower prevalence in Europe (e.g. Xanthomonas), we also detected some taxa only in Europe or at 
higher prevalence than in North America (e.g. Brenneria, Dickeya). Bacterial plant pathogens 
often have high host-specificity, but can sometimes live on non-host plants without causing 5 
disease (56). It is thus important to ascertain whether certain pathogens actually cause disease in 
the plant in question before drawing conclusions about enemy-escape. Brenneria, Dickeya, and 
Xanthomonas are the three genera that show differences in prevalence or presence between 
Europe and North America. Of these, only Xanthomonas spp. are known to cause disease in A. 
artemisiifolia, inducing 60% mortality in infected plants (56), and show reduced prevalence in 10 
Europe. Dovetailing with our detection of the strongest selection signatures on the gene RBOHD, 
a gene associated with defense against pathogens, these findings are in favour of the enemy 
release hypothesis and suggest that together with the release from herbivores such as the ragweed 
leaf beetle, escape from native-range microbes facilitated the success of A. artemisiifolia in 
Europe.  15 
 
The population structure we found in the native range reenforces previous results based on 
reduced-representation genomic data from contemporary samples (57, 58). The most 
differentiated population is the South population in North America, which is restricted to the 
southeastern United States (Florida, coastal Mississippi, and Georgia). Based on the 20 
palynological records from sediment cores (59, 60), this region was a refugium during the last 
glacial maximum. If the East and West populations originate from different glacial refugia, this 
could explain the higher divergence of the South population from other North American 
populations. The South population has the lowest Ne in both historical and modern times. 
Together with the negative Tajima’s D and admixture results, this indicates that the South 25 
population experienced a population expansion but stayed relatively isolated from the other 
North American populations. Based on the global FST, PCA and admixture results, this 
population did not contribute substantially to the Admixed population in the native range or to 
the introduced European range.  
 30 
For North America, in contrast to Europe, we found clear stasis in the population genetic 
structure. The only exception to this was a shift in the extent of the Admixed cluster. Based on 
ABC-RF simulations and reduced-representation genomic data from present-day populations, 
van Boheemen et al. (57) estimated the Admixed population formed more than 200 years ago, 
thus suggesting it predated the introduction of the species to Europe. Anthropogenic 35 
disturbances, such as forest clearance and the expansion of agriculture (29) are the most likely 
cause for the formation of this Admixed population (29). By directly sampling historical 
herbarium samples, we confirm that this cluster already existed in the late 19th century, with the 
oldest sample in our study from this population dated to 1875. High heterozygosity values and a 
relatively high Ne for the historical Admixed population, especially compared to the modern 40 
Admixed population, indicate that the admixture event happened shortly before the period in 
which the majority of our historical samples were collected.  
 
Despite being present in French botanical gardens as early as 1763, wild populations of ragweed 
were not reported before the late 19th century in France (28), and even later in other parts of 45 
Europe (61). Historical records and herbarium data suggest that there were several independent 
introductions of A. artemisiifolia into Europe, rather than a single introduction and a subsequent 
spread (28). These introductions likely arose from different source populations, as we find that 
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many historical samples from Europe are fully assigned to a native-range population (11% West; 
15% East; 57% Admixed). Some samples (17%) could not be assigned to any of the native 
genetic clusters, and the fraction of such samples increases over time to 32%. This suggests that 
A. artemisiifolia was already present in Europe well before most of our historical samples were 
collected, and that genetic drift associated with initially small population sizes, combined with 5 
strong selection pressure, may have led to the rapid formation of unique genetic clusters early in 
Europe.  
 
It is also clear that introgression from related plant taxa contributed to the formation of these 
unique genetic clusters in Europe. A. artemisiifolia can produce hybrids with A. trifida (62) and 10 
A. psilostachya (63), both of which were introduced to Europe around the same time as A. 
artemisiifolia (64) and had opportunities to hybridize with A. artemisiifolia in the introduced 
range, although hybrids have not yet been reported to produce viable seeds (31). We find signals 
of introgression from both A. trifida and A. psilostachya in Europe with high levels in those 
populations that form unique clusters in Europe. Hybridization in the introduced range may 15 
mitigate Allee effects, which tend to be particularly strong in self-incompatible species like A. 
artemisiifolia. In addition to ‘demographic rescue’, interspecific hybridization early in the 
invasion may have offered A. artemisiifolia populations other benefits, including heterosis and 
the adaptive introgression of beneficial alleles. As we also find introgression in some native 
range populations, it is possible that the observed pattern in Europe is due to older introgression 20 
in the source population. 
  
The origin of the European A. artemisiifolia invasion has been debated in the literature. All 
studies have found evidence for multiple introductions (28, 36, 65). However, some studies have 
suggested that the admixture was largely sourced from the native range admixed region (29), 25 
while others suggested the admixture occurred post-invasion (65, 66). Our temporally stratified 
snapshots of population structure provide clearer insights into this debate.  
 
As a whole, the European population is most closely related to the North American Admixed 
population. Moreover, most of the European samples cluster with the Admixed population in the 30 
PCA, and more than half of the samples are assigned to the Admixed cluster in the admixture 
analysis. None of the samples collected before 1892 in Europe (n=78) were assigned to the West 
cluster. According to herbarium data and bibliography, the first introductions to Europe occurred 
over a short time period of about ten years from Eastern North America (67). We thus find it 
unlikely that substantial admixture between individuals that originated from the native-range 35 
East and West genetic cluster in the introduced range led to the observed pattern and conclude 
instead that the native-range Admixed cluster was the main source of introduction in Europe. 
The East and West populations also seem to have contributed to Europe, as several European 
samples show nearly complete assignment to the main West or main East genetic cluster in the 
admixture analysis and also group with the West or East population on the PCA. Interestingly, 40 
the prevalence of West and East cluster ancestry decreases over time in Europe, while the 
fraction of samples being assigned to the Admixed cluster does not. Previously it has been 
suggested that the population genetic differentiation between eastern and western European A. 
artemisiifolia reflects historical introduction and trade routes (68). In contrast, our results 
indicate that the main source of introduction in both western and eastern Europe is likely the 45 
Admixed population from the native range. Indeed, the oldest samples in both eastern and 
western Europe are frequently (57%) placed in the Admixed cluster, supporting the hypothesis 
that substantial admixture either occurred prior to introduction or very early in the invasion 
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process. Due to the admixture of several native populations, much of the native-range genetic 
variance was introduced to historical Europe, as evidenced by no significant decrease (p>0.05) in 
heterozygosity levels in Europe compared to the native range and higher Ne than in the native 
range. Over time, the European population has diverged from the North American population, as 
fewer samples are assigned to the native genetic clusters and more genetic clusters unique to 5 
Europe have emerged.  
 
The increasing pace of biological introduction to novel ranges via global trade and climate 
change severely threatens global biodiversity. Using the weed A. artemisiifolia as a model for 
plant invasion, we demonstrate that combining population genomic analysis with a metagenomic 10 
approach can identify factors that may facilitate the success of plant invaders both prior to and 
following the introduction event. These factors include pre-introduction admixture of different 
source populations in the native range, rapid adaptation, introgression from other species and the 
escape from some plant pathogens. We show that microbial pathogens both old and new play a 
role in the adaptive landscape of highly successful invasive plants like A. artemisiifolia. The 15 
identification of A. artemisiifolia’s lost native-range pathogens informs future efforts to devise 
effective biological control measures. 
 
Our study illustrates the potential of global herbarium collections as a rich source of historical 
material for high-resolution population genomic and metagenomic investigations over 20 
continental and even global spatial scales. These meticulously curated and often well-preserved 
plant specimens contain not only the host plant genome, but also a complex community of 
associated microbes that, when considered together in a hologenomic framework, can reveal a 
rich history of co-evolution and networks of synergy and antagonism during the Anthropocene. 
 25 
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Fig. 1. Population structure in Ambrosia artemisiifolia. (A) PCA of A. artemisiifolia samples. 
North American populations are defined based on genetic clustering and geography. Dark pink: 
modern West NA, light pink: historical West NA, dark orange: modern Admixed NA, light 5 
orange: historical Admixed NA, dark turquoise: modern South NA, light turquoise: historical 
South, dark blue: modern East NA, light blue: historical East NA, dark grey: modern Europe, 
light gray: historical Europe. Circles: historical herbarium samples, triangles: contemporary 
samples. (B) Genetic structure estimated by pairwise FST (weighted) between native range 
populations and Europe. Populations are split by time period (historical and modern). Shading of 10 
the boxes corresponds to the FST -value, with yellow boxes indicating low FST and purple boxes 
indicating high FST. 
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Fig. 2. Admixture proportions for Ambrosia artemisiifolia populations. The NGSadmix run 
with the highest likelihood for K=9 was used for plotting and the same color scheme was used 
across all panels. (A, B, E, F) Admixture maps. Samples within 100 km were grouped together 
and the average ancestry across those groups was plotted. If samples were grouped together, 5 
ancestry values were plotted at the centroid of the group. (C, D, G, H) Admixture barplots. Each 
bar represents one individual. Samples are grouped based on their assignment to a genetic cluster
(based on K=9): A: Admixed, E: East, W: West, S: South, O: other. (A) Historical North 
America. (B) Historical Europe. (C) Historical North America. (D) Historical Europe. (E) 
Modern North America. (F) Modern Europe. (G) Modern North America. (H) Modern Europe. 10 
The NGSadmix run with the highest likelihood was used for plotting and the same color scheme 
was used across all panels. 
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Fig. 3. Genetic structure of spatial groups. (A) MDS plot of pairwise FST
 between spatial 

groups (stress = 0.17). Gray circles: historical Europe, orange triangles: modern Europe, blue 
squares: historical North America, green crosses: modern North America. (B) Location of spatial
groups in North America. (C) Location of spatial groups in Europe. (D) Admixture barplots for 5 
K=9 of European spatial groups. (E) Admixture barplots for K=9 of North American spatial 
groups. (E-F) If the spatial group was split into an older (collected before 1900) and younger 
(collected after 1900), the top row shows the older and the middle row the younger historical 
time period. Otherwise, the middle row shows the historical time period. Bottom row: modern 
time period. For the admixture barplots, the same color scheme as in fig. 2 was used. 10 
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Fig. 4. Heterozygosity. (A) Heterozygosity of individuals within North American and European 
populations. North American populations are defined based on genetic clustering and geography. 
Color scheme is the same as in the PCA (Fig. 1). Samples with nuclear genome coverage below 
0.5X after MAPQ 25 filtering were removed as downsampling experiments showed that the 5 
heterozygosity estimate at such low coverage diverges from the true heterozygosity (see SI). (B) 
P-values of Mann–Whitney U test between heterozygosity levels of different populations. 
Samples with coverage below 0.5X are removed. p-values below 0.05 are highlighted in yellow, 
p-values below 0.01 are highlighted in green. 
 10 
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Fig. 5. Selection scan. (A-B) Significantly enriched GO terms in the FST outlier windows. The 
size of the circles represents the number of significant genes annotated for the respective GO 
term. The color represents the p-value for the enrichment with yellow representing high and 
purple low p-values. The gene ratio is the number of significant genes divided by the total 5 
number of genes in FST outlier windows. (A) Enriched GO terms for historical vs. modern 
Europe. (B) Enriched GO terms for modern Europe vs. modern North America. (C-D) Fay & 
Hu’s H in FST outlier (yellow) and non-outlier (green) windows. The boxplots show the median, 
first and third quantile. (C) Outlier windows for FST between historical and modern Europe. (D) 
Outlier windows for FST between modern Europe and modern North America. 10 
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Fig. 6. Pathogen presence. (A-B) Prevalence of Xanthomonas spp. in contemporary samples. 
Samples within 100 km were grouped together. The pie chart indicates the fraction of samples in 
which Xanthomonas spp. are present with black indicating no Xanthomonas species identified. 
The color indicates how many different Xanthomonas species were identified at a location. (A) 5 
modern North America. (B) modern Europe. (C) Venn Diagram of pathogens identified in 
modern European (green), modern North American (green), historical European (blue) and 
historical North American (orange) samples. (D) Venn diagram of pathogens identified in 
modern European (green) and modern North American (yellow) samples. (E) Venn diagram of 
pathogens identified in historical European (blue) and historical North American (orange) 10 
samples. 
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