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Abstract

Deep neural networks (DNNs) trained to perform visual tasks learn representations that
align with the hierarchy of visual areas in the primate brain. This finding has been taken
to imply that the primate visual system forms representations by passing them through a
hierarchical sequence of brain areas, just as DNNs form representations by passing them
through a hierarchical sequence of layers. To test the validity of this assumption, we opti-
mized DNNs not to perform visual tasks but to directly predict brain activity in human vi-
sual areas V1-V4. Using a massive sampling of human brain activity, we constructed brain-
optimized networks that predict brain activity even more accurately than task-optimized
networks. We show that brain-optimized networks can learn representations that diverge
from those formed in a strict hierarchy. Brain-optimized networks do not need to align
representations in V1-V4 with layer depth; moreover, they are able to accurately model
anterior brain areas (e.g., V4) without computing intermediary representations associated
with posterior brain areas (e.g., V1). Our results challenge the view that human visual areas
V1-V4 act—Ilike the early layers of a DNN—as a serial pre-processing sequence for higher
areas, and suggest they may subserve their own independent functions.
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. 1 Introduction

2 Primate visual cortex contains dozens of functionally distinct areas. Understanding how these
s areas relate to one another and identifying the function or functions of the different represen-
s+ tations in these areas has been a driving pre-occupation of visual neuroscience for decades
5 [Carandini et al., 2005, Roe et al., 2012, DiCarlo and Cox, 2007]].

6 Studies of the so-called “early” visual areas V1, V2, V3 and V4 have played an important
7 role in understanding the diversity of functions supported by the many brain areas in primate
s visual cortex. Each of V1-V4 represents a complete map of visual space whose boundaries
o are identifiable on cortical surface maps [Hansen et al., 2007, Wandell and Winawer, [2011].
10 Importantly, visual representations at a given location in visual space vary dramatically across
11 areas [Kobatake and Tanakal 1994, |Grill-Spector and Malach, 2004]. V1-V4 thus offer an
12 opportunity to understand the principles by which visual representations are transformed when
13 they cross a boundary between brain areas.

14 Although we currently lack a complete characterization of the representations in V1-V4,
15 the belief that they are part of a hierarchy of visual processing is deeply entrenched in both
16 neuroscience and Al [Hubel and Wiesel, |1962, Riesenhuber and Poggiol 2000, LeCun et al.,
1711989, [Krizhevsky et al., 2012, Felleman and Van Essen, 1991, |Richards et al., 2019, [Himberger
18 let al., 2018} 'Yamins and DiCarlo, 2016]]. According to this belief, representations in V1 are the
19 least complex in the hierarchy; they are passed upward through V2 and V3 to V4 and beyond,
20 Wwhere representations become more complex.

21 Belief in this hierarchy of representations is founded on well-established evidence for an
22 anatomical hierarchy defined by the laminar distributions of reciprocal connections between
23 pairs of brain areas [Felleman and Van Essen, |1991]], the evidence for a hierarchy of spatial
24 resolution defined by the monotonic increase in receptive field sizes [Dumoulin and Wandell,
s 2008, Kay et al., | 2013b] and monotonic decrease in preferred spatial frequencies [Henriksson
26 |et al., [2008]], and the evidence for a temporal hierarchy defined by the increase in neural onset
27 latencies [Schmolesky et al., [ 1998]] across V1-V4.

28 Belief in a hierarchy of representations has had a profound impact on the design of artificial
29 systems that solve visual tasks [Lecun et al., 2015]. Specifically, the architecture of convolu-
s tional deep neural networks (DNNs) specifies a hierarchy of visual maps [Fukushima, 1988].
st The success of DNNs at solving hard vision tasks [Krizhevsky et al., 2012] has been interpreted

32 as providing evidence for a hierarchy of representations in the brain [Lindsay, 2021]. Even
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a3 stronger support for a hierarchy of representations in the brain comes from the well-established
s« finding that “task-optimized” DNNs trained on supervised [ Yamins et al., 2014} Khaligh-Razavi
ss and Kriegeskorte, 2014} Giicli and van Gerven, 2015, Cichy et al., 2016, Eickenberg et al.,
s 2017], and unsupervised [Zhuang et al., 2021] computer vision tasks align their layers to the
37 presumed hierarchy of visual brain areas.

38 Despite the strong evidence appearing to support the idea that the primate visual system
ss implements a “hierarchy of representations”, the phrase remains a verbal summary of a diverse
w0 set of experimental observations [Hilgetag and Goulas), 2020] and has not yet, to our knowl-
41 edge, been distilled into a set of key properties that visual representations must satisfy in order
22 to qualify as hierarchical. To do so, we need to articulate these key properties and develop fal-
a3 sifiable tests for each. Given that our evolving understanding of representational organization
s« 1in the brain has had a significant causal impact on the development of Al [Macpherson et al.,
ss 2021, Hassabis et al., 2017]], a direct test for hierarchical representation in the primate visual
s system could yield important insights for both our understanding of the brain and the design of
47 intelligent machines.

a8 In this work, we define hierarchical representations as those that are built up through the
a0 1terative application of a fixed transformation [[Yamins and DiCarlo, 2016]. If V1-V4 conform
so to this definition then each brain area can be viewed as a layer in a single DNN. Independently
st falsifiable tests for hierarchical representation in V1-V4 follow naturally: First, predictive en-
52 coding models of V1-V4 [Naselaris et al., |2011] should perform better or worse to the extent
ss  that they are more or less consistent with this definition of hierarchy. Second, accurate DNN
s« models of representation in anterior brain areas (e.g., V4) should demand more depth than mod-
ss els of posterior brain areas (e.g., V1). Third, since representations in a hierarchy are computed
ss 1n sequence, accurate models of representations in anterior brain areas should always entail
s7 (require the construction of) representations encoded in posterior areas. If V1-V4 do not meet
ss some or all of these criteria, we must conclude that the representations they encode are non-
so hierarchical.

60 To test if these criteria of hierarchical representations are met by V1-V4, we train neural
st networks to predict human brain activity [Seeliger et al., 2021, Cadena et al., 2019, |Prenger
e2 et al., 2004, |Antolik et al., 2016, [Batty et al., 2016, Klindt et al., 2017, McIntosh et al., [2016,
ss [Kindel et al., 2019, Zhang et al., 2019] in a massive sampling of responses to hundreds of
s+ thousands of presentations of natural scenes [Allen et al., 2022]. By contrasting such “brain-

es optimized networks” to task-optimized networks, we are able to discriminate representations
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e that may be essential for solving computer vision tasks but play no essential role in modeling
o7 the brain. By analyzing the accuracy with which these diverse networks predict brain activity,
es the coupling between the layers of these networks and brain areas V1-V4, and the ability of
s9 representations optimized for one brain area to generalize to others, we are able to conduct

70 novel and sensitive tests for the existence of hierarchical representation in human visual cortex.

+ 2 Results

» 2.1 Three tests for hierarchical representation

73 We consider deep neural network models of representation in V1-V4. In a DNN, representa-

74 tions are constructed via compositions e;(x) of a transformation 7y, (x):

ei(w) =ne, 0 er1(x)

75 where x is a visual stimulus, subscripts [ index particular values of the adjustable parameters
76 0, and eg(r) = x. We denote the complete set of representations expressed by the network as
7 ¢ = (eq,...,er), where L is number of layers in the DNN.

78 We define two general properties that DNN-based models of representation in V1-V4 must
79 satisfy in order to be considered “hierarchical”. The first property, “ordering”, is a general-
so ization of the finding that task-optimized DNNs order V1-V4 with respect to layer depth. Let
st ¢ = (eh,... e)and ¢/ = (el,...,€)) be representations we use to predict brain activity in
g2 voxel group V; and Vj, respectively. Here, i, j € (1,2, 3,4) correspond to the visual area of the
s same index. We assume that all ¢’s have the same depth L and utilize transformations of the
s« same form 7, but may or may not correspond to identical DNNs. We say that ¢ and ¢’ are or-
ss dered with respect to V; and V; for a partitioning at layer [ if representations below e} contribute
ss more strongly (relative to other layers) to predicting brain activity in V; than representations
&7 below ¢ contribute to V; whenever i < j.

88 The second property, “entailment”, is a generalization of the dependence of higher layers
ss on lower layers in a DNN. In a DNN, representations are computed in sequence. This means
o0 representations in lower layers must be computed in order to compute representations in higher
ot layers. In our work, entailment is a generalization of this hierarchical dependence that can be
e applied to distinct sets of representations ¢° and ¢’. Specifically, we say that ¢* and ¢’ show

s entailment with respect to V; and V; if the representations in ¢' that contribute to predicting
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e« brain activity in V; are a subset of the representations in ¢/, whenever i < j.

a Ordering and entailment b No ordering, no entailment
V4 )
» V3 » Vi » V3
> 2 V2 < va e
V1 4A A } < A

Figure 1: Examples of hierarchical and non-hierarchical representations (a) An example of hi-
erarchical representation in V1-V4 (circles). The depth of layers that contribute (dashed arrows) to
predicting brain activity are aligned to V1-V4 (ordering). Since representations in these layers must be
computed in sequence, we would infer that representations in V4 entail representations in V3, and so
on. (b) An example of non-hierarchical representation in V1-V4. The depth of layers that contribute to
predicting brain activity are roughly the same and do not align with V1-V4 (no ordering). Representa-
tions in these contributing layers can be computed in parallel, so in this example there is no evidence that
representations in any area entail representations in any other area. In these simplified illustrations only a
single layer contributes to predicting activity in each brain area; note, however, that is not a requirement.
In our models all layers may contribute to predicting activity in any brain area.

95 When representations show both ordering and entailment, we say they are hierarchical with
s respect to V1-V4 (Fig.[Tj); when they show neither property we say they are non-hierarchical
o7 with respect to V1-V4 (Fig. [Ib).

98 With these definitions in place, we can construct tests for properties that we expect a hier-
99 archical representation to satisfy by analyzing DNNs that are optimized to predict activity in
100 VI1-V4,

101 First, if V1-V4 encode hierarchical representations, then models that are hierarchical with
102 respect to V1-V4 should predict brain activity more accurately than those that are not. This
1s  implies that a network training strategy that facilitates the learning of hierarchical representa-

104 tions should be a useful inductive bias [Goyal and Bengio, [2020]. Specifically, we expect that a

5
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15 single DNN trained jointly on V1-V4 should yield more accurate predictions of brain activity
16 than four distinct DNNs trained independently on each brain area. To see why this is a reason-
107 able expectation, assume we want to construct a DNN to model V4. If V1-V4 are hierarchical,
108 the DNN will predict activity in V4 most accurately if it entails representations that accurately
1o model V1-V3. By optimizing the DNN jointly, we supply the learning algorithm with samples
110 of brain activity that encode these lower-level representations. In contrast, if we train the DNN
111 on activity sampled from V4 only, we deprive the learning algorithm of informative data and
112 should therefore expect worse performance from the DNN once training is complete.

113 If V1-V4 encode hierarchical representations, then DNNs optimized to predict activity in
112 V1-V4 should be ordered. Importantly, ordering should hold regardless of whether we train
15 a single DNN on all areas or train four DNNs independently on each. By assessing ordering
116 in independently trained DNNs, we can determine if alignment between brain areas and layers
117 1s simply an optimal arrangement for task-optimized networks specifically, or if it indicates
11s  that the diversity of representations across V1-V4 can only be accurately modeled by varying
119 compositional depth.

120 Finally, if V1-V4 conform to our definition of a hierarchy, representations in anterior areas
121 should entail representations in posterior areas. This implies, for instance, that if we train a
122 DNN to predict V4 brain activity alone, we should also be able to use it to predict brain activity
123 in V1-V3 as accurately as a DNN trained to model those more posterior areas independently.
124 On the other hand, a DNN trained to predict V1 activity alone should not be expected to predict
125 activity in V2-V4 as well as DNNs trained to model those more anterior areas independently.
126 A network, or set of networks, that do not exhibit this hierarchical prediction asymmetry should
127 not predict brain activity as accurately as one that does.

128 The tests we propose for identifying hierarchical representation in V1-V4 presume an abil-
120 ity to optimize neural networks to predict brain activity. In what follows, we first confirm that
130 brain-optimized networks, when trained on sufficient amounts of data, can be made to yield
131 state-of-the-art prediction accuracy in V1-V4, even for out-of-sample testing stimuli. We then

132 use brain-optimized network models to perform the tests described above.

e 2.2 Encoding models based on brain-optimized networks yield accurate
134 predictions of brain activity to natural and artificial stimuli.

135 In encoding models based upon deep neural networks, the DNN acts a nonlinear feature extrac-

136 tor, and the activities of units in each feature map of the DNN are transformed into predicted

6
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Figure 2: Training and validation of task-optimized and brain-optimized networks. (a) An en-
coding model based on a task-optimized deep neural network (AlexNet; white trapezoid). Multiple
convolutional layers (7;) convert the input stimulus on trial ¢, X}, into feature maps. (b) A read-out
head (blue trapezoid) transforms network activations into predicted brain activity (r,, where v indexes
a single voxel). The read-out head consists of Gaussian spatial pooling fields (g ; example at lower left)
with position and size selected from a fixed grid of candidates (lower right). The pooling field and each
feature map are multiplied pixel-wise and then summed, reducing each feature map to a single feature
value. The array of feature values across all maps (left vertical rectangle) are weighted by an array of
feature weights (w,) and then summed (with a bias term b,,) to yield predicted brain activity. Compres-
sive point nonlinearities (f(+)) are applied at several processing stages. (b) A similar architecture is used
for the encoding model based on the brain-optimized network (GNet; orange trapezoid), although the
“flexible” spatial pooling fields used in the read-out head may be non-Gaussian (example at lower left).

7
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Figure 2: (cont.) (c) Training for the AlexNet-based encoding model. For each voxel, only read-
out head parameters (g, w,, b,) are optimized (gears) for visual areas V1-V4 (colored rectangles) in
each subjects’ brain (S1, ..., S8). The “voxelwise loss” (squared difference between predictions and
measured activity data) is evaluated independently for each voxel. (d) Training for the GNet-based
encoding model. Both the read-out head and GNet parameters are optimized jointly (“joint loss™) for
all voxels, subjects and brain areas. (e) Prediction accuracy is evaluated for each voxel by correlating
predicted brain activity with measured brain activity (p1=Net| sGNet) across a set of held-out validation
trials with natural scenes. We plot the average accuracy (y-axis of central plot) vs. the difference in
accuracy (x-axis) for each voxel (dots; color indicates visual area). For this example subject S1 the
GNet-based encoding model predicts responses to natural scenes most accurately for 81.3% of voxels
in V1-V4. (f) In this example, the GNet-based encoding models predicts responses to artificial stimuli
more accurately for 88% of voxels in V1-V4.

137 brain activity via a linear read-out head (Fig. [2} see |St-Yves and Naselaris| [2018]] as well as
13s |Allen et al.| [2022]]). For each voxel in the target dataset, the read-out head specifies a spatial
139 receptive field and an array of feature weights that model the region of visual space and the
120 nonlinear features that are represented by brain activity measured in the voxel. In our work
141 the read-out head for each voxel always samples from all layers throughout the depth of the
122 network. Thus, we give each layer in the feature-extractor network the chance to contribute to
1 predicting brain activity (Fig. 2p,b).

144 In order to perform tests of hierarchical representation, we constructed encoding models in
145 which the feature extractor is a brain-optimized neural network (GNet, Fig. [2b). In the GNet
16 encoding models, we minimized error on predicted brain activity by using stochastic gradient
147 descent to learn all free parameters of the DNN feature extractor simultaneously with the free
e parameters of the read-out heads (Fig. 2d). We compared the prediction accuracy of these
129 GNet-based encoding models to models based upon a task-optimized neural network (AlexNet;
150 |Krizhevsky et al. [2012]) that was pre-trained to discriminate object categories. For the AlexNet
151 encoding model (Fig. [2p) the network parameters were frozen during training and only the free
152 parameters of the read-out heads were optimized (Fig. [2c).

153 To optimize the parameters of each type of encoding model (Fig. [2c,d) we used the Natural
154 Scenes Dataset [Allen et al., 2022], a massive sampling of blood-oxygenation-level-depedendent
155 (BOLD) activity in eight subjects using ultra-high field fMRI (7T, 1.8-mm resolution). Subjects
156 each viewed 9,000-10,000 natural scenes (sampled from the Microsoft Common Objects in
157 Context database [Lin et al., 2015]]) presented (3-s exposure) repeatedly (three times typically),
158 yielding 22K - 30K trials for individual subjects and a total of 213K trials across subjects.
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159 Voxels were assigned to areas V1-V4 on the basis of an independent retinotopic mapping ex-
10 periment [Allen et al., 2022].

161 To validate and compare encoding models, after training we assessed the prediction accuracy
1e2  of the models for each voxel by correlating predicted activity with measured activity in response
s to the shared images that were shown to all eight subjects during the experiment but were not
16« used for model training (Fig. 2k). For each subject, the brain-optimized GNet encoding model
15 (trained jointly) predicted brain activity in V1-V4 more accurately than the AlexNet encoding
s model for more than 68% of all voxels in V1-V4 (Fig. Bh). Averaged across subjects, the
167 “win percentage” for the GNet model was significantly greater than expected by chance (80%
168 win, p < 1078, two-sided t-test). Interestingly, when model prediction accuracy was computed
1e0 for out-of-sample classes of artificial stimuli (e.g., gratings, contrast-modulated scenes, various
170 types of noise, Fig. 2f and Fig. STJ), the prediction accuracy of the GNet model was greater
171 than the AlexNet model for more than 76% of the voxels in all subjects (Fig.[3b). Although the
172 size of the difference in prediction accuracy underlying these win percentages varied within and
173 across areas (Fig.[3k), across subjects the average win percentage of the GNet model for artificial
17« stimuli was significantly greater than for natural stimuli (80% win, p < 107>, two-sided t-test).
175 The win percentage was not significantly different across these two stimulus conditions for any
176 single brain area except V4, where we observed an average improvement across subjects from
177 62% to 74% (p < 0.01, two-sided paired t-test) (Fig. [3d).

178 These results demonstrate that the GNet model outperforms the AlexNet model for a ma-
179 jority of voxels in V1-V4. We also quantified the prediction accuracy of multiple model types
180 With respect to the best performance that any model might achieve. To do this, we estimated the
181 percentage of variance in brain activity that can be explained by variation in the stimulus (by
122 computing noise ceilings as in|Allen et al.|[2022], gray bars in Figure[3), as well as the percent-
18s age of variance explained by the outputs of each model (colored bars in Figure 3g). For every
184 subject and brain area (with the exception of S4, V4), the mean (across all voxels) percentage
1es  of total variance explained by GNet models is larger than or equal to the mean percentage of
18s  variance explained by the AlexNet models and a control Gabor wavelet model. Improvements
157 1n prediction accuracy achieved by extensive fine-tuning of the model parameters (see Meth-
188 0ds) suggests that the limit of prediction accuracy for GNet models has not yet been reached
180 (“GNet8jft-fpf”, Fig. Bk, right). However, across all subjects and brain areas, GNet encoding
190 models can account for at most 78% of the explainable variance, and as little as 37% (on aver-

191 age over a ROI, for voxels with at least 5% of explainable variance). This means that currently,
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Figure 3: Comparison of cross-validated prediction accuracy for encoding models based on task-
and brain-optimized deep neural networks. (a, b) Accuracy / advantage plots for all subjects and
brain areas for natural validation stimuli (a) and artificial stimuli (b). Format as in Figure m (¢) Median
difference in model prediction accuracy (x-axis) for different levels of average prediction accuracy (y-
axis) and for natural (thin curve) and artificial (thick curve) stimuli. (d) Difference in the percentage of
voxels for which the the GNet-based encoding model explains more signal variance than AlexNet-based
encoding model (“win percentage”; x-axis). (e) Signal variance (%; y axes) in brain activity explained by
varieties of network-based encoding models (colored bars; gray bars indicate theoretical upper limit) for
all each subjects (x-axis) in visual areas V1-V4. Inset: Average (across subjects) percent of explainable
variance explained by a subset of the models. See Supplementary Table 1 for descriptions of all model
acronyms.

192 even the best models leave much to be explained. Interestingly, this limitation does not seem
13 to be unique to models trained on BOLD activity. For most subjects, the amount of explainable
19a variance in V1 that is explained by GNet is similar to the amount explained by similar brain-
195 optimized DNN-based models of single-unit activity in V1 of the primate brain
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196 [2019]).
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Figure 4: Encoding models based on brain-optimized networks recover known retinotopic or-
ganization (a) Examples of spatial pooling fields (colormap indicates strength of predicted activa-
tion) and best-fitting Gaussian profile (with ellipsoids) for individual voxels with significantly accurate
(p > 0.055,p < 0.01) encoding models. (b) Mean of spatial pooling fields for all voxels and subjects
in V1-V4. (c¢) Best-fitting Gaussian profiles for spatial poolings of all voxels and subjects. The profiles
were used to visualize size-eccentricity relationships for all visual areas. (d) Linear fits to relationship
between pooling field size (y/area of the one std. dev. elliptical Gaussian profile in (c)) and eccentricity
for all voxels in V1-V4. Length units are expressed in percent of stimulus span (i.e. 100% = 8.4°, black
bounding box in (c)).

197 To further demonstrate the adequacy of brain-optimized models, we analyzed pooling fields

1

©
oo

(Fig. Bp) for voxels in V1-V4, recovering expected visual field coverage (Fig. Bb) and size-
190 eccentricity relationships (Fig.[d,d; [Kay et al.,[2013b]). We conclude that our encoding models
200 based upon brain-optimized networks are as trustworthy a tool for testing hypotheses about

201 representation as any currently existing network-based encoding model.

22 2.3 Representational hierarchy is not an effective inductive bias for con-
203 structing predictive encoding models

204 To test the effectiveness of hierarchy as inductive bias, we compared a single GNet encoding
205 model trained jointly on V1-V4 (GNet8j, where “8” indicates joint training for all 8 subjects,

[13%4]

206 and “j” indicates joint training for all four brain areas, Fig. [Sh) to four separate GNet encoding
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207 models trained independently to predict V1-V4 (GNet8r, where “r” stands for “ROI-wise”,
208 Fig.[5p). The win percentages for GNet8j and GNetr were close to parity in V1-V3, although in
200 V4 win percentage for GNet8r was 68%. Across several model variations, the win percentage of
210 the GNet8j model was at best equal to the win percentage for the GNet8r model. This indicates
211 that the jointly-trained GNet model was not more accurate than the independently trained GNet
2z models (Fig. [5c). In fact, the independently trained models yielded better prediction accuracy
213 than the jointly trained model, though the advantage is relatively small. Thus, a training strategy
214 that favored discovery of hierarchical representations did not result in a relative increase in

215 prediction accuracy over a training strategy that did not.
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Figure 5: Comparison of brain-optimized DNNs trained jointly or independently on activity in
V1-V4 (a) Training and architecture for the jointly-trained (GNet8j-fpf) variant of the GNet-based en-
coding model. (b) The independently-trained variant (GNet8r-fpf). A separate GNet feature extractor
(trapezoids) is trained (gears) for each brain area (V1-V4). In both cases, read-out heads (squares) with
flexible pooling fields (fpf) are optimized as well. (c¢) Advantage / accuracy plots comparing predic-
tion accuracy of encoding models based on the jointly-trained (left of vertical line in each panel) and
independently-trained (right of vertical line) GNets for each subject (colors).
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26 2.4 Alignment between layers and V1-V4 does not indicate a requirement
217 for compositional depth

218 Although GNet8r was not trained in a way that facilitated learning representations with ordering
219 and entailment, it may have learned them anyway. To identify networks that order V1-V4, we
20 tested the contribution of layers in the bottom half of the various feature-extracting DNNs to
221 explaining variance in brain activity (Fig. [6] bold curves). We define the “specific” contribution
222 of any set of layers as the prediction accuracy obtained when generating predictions with that
223 set of layers alone (i.e., by masking out all other layers; Fig. [6p,c, blue curves). We define the
224 ‘“‘unique” contribution of any set of layers as the prediction accuracy of the full model, minus
225 the specific contribution of all other layers (Fig. [6c, magenta curves). For two variants of the
226 AlexNet encoding models (“AlexNet-gpf” and “AlexNet-fpf”), and for the jointly trained GNet
227 encoding model (“GNet8j-fpf”), the unique contribution of lower layers declined monotonically
228 from V1-V4 from roughly 60% to roughly 30%. Concurrently, the unique variance for the top
220 layers (indicated by the distance from the top of the y-axis to the blue curves in Figure [6f)
230 increased monotonically from V1-V4. Thus, the DNNs in these models do indeed induce an
231 ordering with respect to V1-V4, as expected from previous results [Giiclii and van Gerven,
232 [2015].

233 In contrast, when GNet models were fit independently (“GNet8r-fpf’) there was no decline
23 1n the unique or specific contributions of the bottom layers from V1-V4. For V1-V3 the unique
235 contribution of the lower layers was roughly 75%, and for V4 the unique contribution of the
236 lower layers was above 90%. Thus, collectively the GNet8r models do not induce an ordering
237 of tuning with respect to V1-V4, as it is possible to express representations in V1-V4 with the
28 same number of DNN layers (Fig.[6). It is important to recall that the jointly and independently
239 trained GNet models utilized the same architecture and non-linearities, and yield very similar

210 prediction accuracy (Fig. [Sk).

2 2.5 Representations in anterior areas do not necessarily entail represen-
242 tations in posterior areas

23 We first tested for entailment in the AlexNet-based encoding model, because the demonstration
244 of ordered representations in this model strongly suggests that it will also show entailment.
25 We developed a test for entailment based upon transfer learning [Zamir et al., 2018]]. First,

246 we trained four independent GNet models (i.e., a GNet feature extractor plus a read-out head)

13


https://doi.org/10.1101/2022.01.21.477293
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.21.477293; this version posted January 23, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Unique
a Alexnet GNet b #
Bottom Top Bottom Top Tuning mask b‘onim _ plop
spartitc [N DN sotom Phorom 1
LL2L3WLS 6 L7 L8 L (213141516 L7 Prop
o —f— o e || Full model /
Layerwise _ _ 12 3 4 5 6 7 8 p 7
fic Fbottom
0 500 1000 1500 2000 2500 o 100 200 300 400 500 Layers ;i :Lk‘r‘n "”‘ =
Feature index Feature index _—
Speuﬂc
C Alexnet-gpf Alexnet- fpf GNet8j-fpf GNet8r-fpf

100 100 100 100

80 I\I\;\I 7| % 80 }\{\I_—I 80

d]
\r.
\

60 60 60

40 40 40 M HI

. | Ilﬂﬂll 0

0 0 0

v2 V2

V1 \/2 VE h\/4

variance

N
S

Average perc. of explained

Figure 6: Alignment between layers and brain areas in task-optimized and brain-optimized net-
works (a) Partitioning of layers (L1, L2,...) into bottom and top halves for AlexNet and GNet. (b)
Partitioning of model output variance for bottom and top halves of the networks. Model predictions
are generated using either the bottom or top layers alone, and the prediction accuracy is calculated

. if
(Pbottoms Ptop)- These quantities are used to calculate the “specific” (fyr o) and “unique” ( ff)léltl?ou;

fractions of variance explained by the bottom layers. Both measure the contribution of the bottom lay-
ers to predicting activity in each brain area. (c) Specific (light bars, blue curve) and unique variance
(solid bars, magenta curve) explained by the bottom layers for each brain area (x-axis) and all 8 subjects
(colored bars) for variants of the AlexNet and GNet-based encoding models. The error is estimated by
sampling with replacement for all estimates of voxelwise validation accuracy and the error displayed is
obtained via error propagation.

247 to predict the outputs (i.e., predicted brain activity) of the AlexNet model for V1, V2, V3
28 and V4, respectively. In other words, we treated the outputs of the AlexNet model as if they
249 were synthetic brain data, and used the GNet8r modeling approach to copy its representations
250 1into four distinct networks. The correlation between the outputs of these “reference” GNet
251 models and the outputs of the original AlexNet model was near 1, indicating that we were able
252 to (almost) losslessly copy the AlexNet model representations for each brain area using four
253 independent, stand-alone GNet models. We denote this correlation p™*f, where the subscript
254 1ndexes voxels. If v € V;, this should be read as the “prediction accuracy of a model with a
255 GNet feature extractor and a read-out head trained and tested on V.

256 Next, we tested if the representations in each of the reference GNet models were transfer-
257 able. For each pair of brain areas (V;, V;), we froze the feature extractor of the reference model

258 for V), and then trained a new read-out head to predict the outputs of the reference model for
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Figure 7: Testing entailment of representations using transfer learning (a) Transfer learning pro-
cedure. Stand-alone GNet models consisting of a feature extractor (trapezoids) and a read-out head
(squares) are trained (gears) to predict brain activity (shown), or the outputs of another encoding model
(not shown) for V1-V4 independently. When trained on brain activity (as shown) the prediction accuracy
of these “reference” models is just pSN°8" The GNet feature extractors of these reference models are
used to construct transfer models. For each specific brain area (V4 in this example) the GNet is frozen,
and a new read-out head is trained for all areas, yielding prediction accuracy p"7, where the superscript
indicates the brain area used to train the feature extractor. In this example ;7 = 4 corresponding to area

V4. (b) To determine how well representations transfer across brain areas, we compute the prediction ac-

curacy shift (p})/j — pGNet8r illustrated using an advantage/accuracy plot) for each voxel v. For each pair

of brain areas V}, V; we average these shifts over all voxels v € V;, constructing a prediction accuracy
shift matrix (at right is a hypothetical example). Rows of the matrix index the brain area used to train the
feature extractor (V;); columns of the matrix index the brain area over which prediction accuracy shifts
are averaged (V;). (c¢) For representations with entailment (o« = 1), negative prediction accuracy shifts
(blue) accumulate only below the diagonal of the matrix. For representations without entailment (o = 0)
negative prediction accuracy shifts accumulate above and below the diagonal.

V;. We then calculated the prediction accuracy of this new “transfer” model of V;. We denote
this prediction accuracy pl/jevl This should be read as the “prediction accuracy of a model with
GNet feature extractor trained on V}, and read-out head trained and tested on a voxel v in V;”
(Fig.[T).

Finally, we constructed a 4 x 4 matrix of differences between the accuracy of reference and
transfer models, averaged over all voxels (Fig. ). For each element (4, j) of the matrix we

calculated:
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A ={py = P hvev;
266 This “prediction accuracy shift matrix” reveals how accurately a DNN that is trained to
267 model the representations in one one brain area can model the representations in another brain
26 area. According to our definition of entailment, the representations in networks trained to model
269 a more posterior area should be a subset of the representations in a network trained to model a
270 more anterior area, but not vice versa. Thus, if strict entailment holds, all diagonal and upper-
271 diagonal elements of this matrix should be zero, while all lower-diagonal elements should be
222 negative (Fig. [7c).
273 As expected, the prediction accuracy shift matrix for the AlexNet model closely resembled
274 the ideal of strict entailment (Fig. [8a). An index we devised to measure resemblance to this
275 1deal had a value of o« = 1.0+ 0.2, where o = 1 indicates strict entailment, and o« = 0 indicates
276 Nno entailment (and o« = —1 would indicate “reverse” entailment).
277 We conducted an identical analysis on the outputs of the jointly trained GNet model because,
278 like the AlexNet-based encoding model, the representations in GNet8j are ordered. Again, and
279 as expected, the prediction accuracy shift matrix closely resembled the ideal for strict entail-
220 ment, with o = 0.9 +0.2.
281 In contrast, when this transfer learning analysis was applied to the outputs of the four GNet
282 models trained independently (GNet8r), the prediction accuracy shift matrix most closely re-
283 sembled the ideal outcome for non-entailment (o« = 0.3 &= 0.1). Thus, we established that
23+ the GNet8r model learned representations that were neither ordered or entailed with respect to
25 V1-V4.
286 Finally, we applied the transfer learning analysis to the measured brain activity itself (Fig.[8b
267 and c, black bars). In this case, p™' = pSNe*®" (as illustrated in Figure. To calculate prediction
288 accuracy shifts, we took the GNet optimized to predict V4 brain activity (for instance), froze its
29 parameters, and then re-trained read-out heads to predict brain activity in all areas (Fig.[7). We
200 performed this transfer-learning procedure for feature extractors trained on every brain area.
201 Interestingly, the resulting prediction accuracy shift matrix was most consistent with a non-
202 entailed representation (o = 0.0 £ 0.1). It is important to note, however, that when applying
203 transfer learning directly to measured brain activity (as opposed to the outputs of other models),

204 noise can impact the results in potentially complicated ways that make interpretation difficult.
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Figure 8: Transfer learning analysis for DNN-based encoding models and V1-V4 (a) Transfer
learning applied to model outputs. Prediction accuracy shift matrices resulting from the transfer learning
procedure applied to outputs of the AlexNet-gpf model, the GNet8j-fpf model, and the GNet8r-fpf model.
(b) Transfer learning applied to brain activity. Prediction accuracy shift matrix resulting when the transfer
learning procedure is applied to measured brain activity. All matrices are averaged across 8 subjects. (¢)
Values of « estimated for individual subjects for the four test cases shown above.

3 Discussion

We demonstrated that brain-optimized networks can be made to yield predictions of brain ac-
tivity that are more accurate for most voxels than predictions read-out from task-optimized
networks. We then used brain-optimized networks to test for evidence that hierarchical repre-
sentations are necessary to achieve this level of prediction accuracy, focusing specifically on the
intuitive properties of ordering and entailment. First, we showed that four GNets trained inde-
pendently on V1-V4 (GNet8r) predicted brain activity as accurately as a single GNet trained
jointly on V1-V4 (GNet8j), thus demonstrating that a training strategy biased in favor of hi-
erarchical representations offered no advantage in prediction accuracy over a training strategy
that was equally amenable to non-hierarchical representations (GNet8r). We then showed that
in encoding models based on AlexNet and GNet8j, lower layers contributed most strongly to

posterior areas (ordering), and representations optimized for anterior areas were more readily
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307 transferable to posterior areas than the other way around (entailment). In contrast, for GNet8r
s lower layers contributed equally to posterior and anterior areas, and optimized representations
a9 showed the same prediction accuracy shift when transferred to anterior or posterior areas.

310 These results have important implications for the ongoing debate about how literally DNNs
a1 can be interpreted as mechanistic models of the primate visual system [Kriegeskorte, 2015, |Kay,
sz 2018} Richards et al., [2019, [Lindsayl 2021, Cao and Yamins, [2021]. Clearly, the connections
313 between layers in the kind of feed-forward DNNs we have studied here cannot be interpreted as
s14  literal stand-ins for anatomical connections in the brain; the best such networks can do is model
a5 stimulus-dependent representations encoded in brain activity patterns that are structured by far
ste  more complicated recurrent circuits. However, our work has allowed us to interrogate a key
317 assumption in many models and theories of primate vision: that visual brain areas, like layers
s1s in a DNN, are related through hierarchical composition of a fixed computation.

319 Taken literally, the assumption of hierarchical composition implies that each visual brain
320 area computes a fixed, or “canonical” computation on their inputs. As in a DNN, the outputs of
321 this computation are sent to the brain area above and the inputs to it are received from the brain
a2 area below. Although the canonical computation may not be identical across areas, it has a fixed
a3 form: across areas the computation performed varies only up to a set of parameters values 6. The
324 assumption of hierarchical composition also implies that the canonical computation in the brain
325 1S “simple”, in the sense that variation in representations across V1-V4 cannot be explained by
326 variation in € in one layer alone. Instead, variation in representations across V1-V4 can only
327 be explained by varying compositional depth.

328 We did not directly test these implications, but we note that it is currently unclear if any of
a9 them are true. Efforts to articulate a canonical computation in cortical circuits has been ongoing
s0 since the early descriptions of cortical organization [Mountcastle, |1998, Hubel and Wiesel,
ss1 |1977], and it is still not known if this concept will prove to be essential for understanding
a2 cortical function. It is also not clear if any putative canonical computation in the brain will
333 turn out to be “simple” in the sense defined above. Recent studies suggest that the input/output
s3¢ mapping of single cortical neurons may be quite complex [Beniaguev et al., 2021, Poirazi et al.,
a5 [2003, |Gidon et al., 2020]].

336 We were, however, able to directly test two additional and no-less critical implications of hi-
a7 erarchical composition: that accurate models of V1-V4 should exhibit ordering and entailment.
s Ordering arises directly from the assumption that variance in brain representations across areas

a9 can only be explained by varying compositional depth. Entailment arises as a consequence of
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a0 composition and implies that one cannot build a DNN model of V4 without also building a
ss1 - DNN model of V1-V3, and so on.

342 Our strategy for testing these implications of hierarchical composition was to demonstrate
a3 the existence of a DNN that predicts as accurately as any other DNN-based encoding model, us-
a4 ing the same nonlinearities and architecture, but does not show ordering or entailment. We used
a5 brain-optimization to construct such a counterexample, GNet8r. The fact that GNet8r exhibits
ass neither ordering nor entailment indicates that these properties are not essential for obtaining ac-
a7 curate predictions of brain activity. It follows that the ordering of V1-V4 with respect to layers
s 1n many task-optimized networks is an outcome that is contingent on specific model-building
a9 choices (e.g., selection of training samples, task-optimization vs. brain-optimization, and net-
sso work constraints on width and expressivity). It further follows that the depth of the network
351 layer to which a brain area most closely aligns is not a reliable proxy for the “complexity” of
352 representations in these brain areas. At best, the network layer most closely aligned with a
353 single brain area is an upper bound on the complexity of representations in the brain area, and
s« our work shows that the upper bound estimated from any single DNN-based encoding model
355 can be quite loose. Our results thus encourage caution in the interpretation of DNNs as mech-
a6 anistic models of the visual system [Kay, 2018]. Although DNNs will continue to be useful
357 tools for inspiring and exploring brain models, it is currently unclear what aspects of DNNs are
sss  specifically brain-like.

359 Why do networks that do not show ordering and entailment yield the same prediction accu-
s0 racy as those that do? One possible explanation may have to do with the difficulty of accounting
sst  for all of the explainable variance in brain activity. The network-based models we constructed
ss2 do not account for between 35 to 55% of the explainable variance in V1-V4 (Fig. [3). Thus,
sss networks that vary with respect to ordering and entailment may simply account for different
ss4 portions of the variance in brain activity. Another possibility is that DNNs are, as a family of
ss models, simply degenerate with respect to many of the properties that visual neuroscientists
ss currently consider interesting and important. Indeed, it is increasingly appreciated that DNNs
sz with widely varying architectures [Storrs et al., 2021, | Xu and Vaziri-Pashkam, 2021]] afford
ses similar levels of performance in predicting brain activity. Relatedly, even though early results
a0 suggested that supervised training was required for accurate correspondence between networks
s and brain activity [Khaligh-Razavi and Kriegeskortel [2014]], recent advances have shown that
a7t unsupervised models can explain brain activity just as well [Zhuang et al.,|[2021].

a72 Finally, our results have an interesting implication for how to understand the function of

19


https://doi.org/10.1101/2022.01.21.477293
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.21.477293; this version posted January 23, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

a73 V1-V4. In a strict hierarchical interpretation of V1-V4, each area functions effectively as a
a74  pre-processing unit that participates in the sequential construction of a representation expressed
a7s 1n some more anterior area. Under this interpretation, if the more anterior brain areas fed by
aze  V1-V4 were damaged, V1-V4 would no longer have any functional role. Furthermore, if repre-
a77  sentations in an earlier area were changed (e.g., via a perceptual learning task), representations
a7 1n all anterior areas would presumably have to change as well. Distributing representational
a7 labor across the layers of a strict hierarchy is understood to be the essential for the successes
a0 of deep neural networks trained with stochastic gradient descent, as in many cases, it permits
ss1  representing complex relations with less neural units [Bahri et al., 2020]]. However, this form of
ss2  labor distribution strikes us as a precarious and inefficient arrangement for biological networks.
a3 In contrast, if VI-V4 was not a strict hierarchy, each area could in principle encode representa-
ss4 tions that are optimized for dedicated, independent tasks, or could encode representations that
sss are routinely combined in non-hierarchical ways to solve novel tasks as they emerge.

386 We interpret this work as a corrective to a tendency to treat “hierarchy” as the defining fea-
se7 ture of primate visual organization. Our interpretation is consistent with emerging evidence for
sss non-hierarchical representation in other sensory systems [Hamilton et al.,|2021]], motivates the
a0 development of networks with multi-branch architectures [Bakhtiari et al.,|2021]] that model par-
a0 allel visual streams with distinct functions [Ungerleider, 1982, |Schiller and Logothetis, 1990,
so1 Pitcher and Ungerleider, [2021]], and underscores the need for computational models that treat
a2 hierarchy as an emergent property [Konklel 2021] rather than a requirement for successful vi-

33 Sion.

« 4 Methods

s 4.1 Dataset acquisition in brief

sss  All models were trained on the Natural Scenes Dataset (NSD). Complete details on NSD are
s7 provided elsewhere [Allen et al., 2022]]. Briefly, the NSD dataset consists of between 22K and
ss 30K fMRI image-responses per subject (8 subjects). Images were sampled from the Common
a9 Objects in Context (COCO) database [Lin et al., 2015] and displayed at 8.4° x 8.4°. The
a0 experimental design specified that each of the eight participants would view 10K distinct images
s01 (3 presentations each), and a special subset of 1K images would be shared across participants
s02 (8 subjects x 9K unique images + 1K shared images = 73K unique images); however, not all

a3 participants completed the full acquisition, so the final numbers are somewhat smaller. All
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a4 fMRI data in the NSD were collected at ultra-high field (7T) using a whole-brain, 1.8-mm,
a5 1.6-s, gradient-echo, echo-planar imaging (EPI) pulse sequence.

408 The image-responses are expressed in terms of betas obtained from a general linear model
a7 (GLM) analysis. For this paper, we used GLM results provided with the NSD data release,
a8 specifically, the 1.8-mm volume preparation of the data and version 3 of the GLM betas (be-
a0 tas_fithrf_GLMdenoise_RR). This GLM version involves estimating the hemodynamic response
410 function for each voxel, using the GLMdenoise technique for denoising [Kay et al., 2013al], and
411 using ridge regression to improve the estimation of single-trial betas. Betas indicate BOLD
412 response amplitudes evoked by each stimulus trial relative to the baseline signal level present
#13 during the absence of a stimulus (“gray screen”). The betas for each voxel in each session were

414 separately z-scored and all sessions were concatenated.

«s 4.2 NSD synthetic experiment

a6 In addition to the core NSD experiment, the 8 subjects also participated in an additional 7T
417 scanning session termed ‘nsdsynthetic’. This session involved presentation of a variety of arti-
ss ficial stimuli. Procedures for data acquisition, pre-processing, and GLM analysis were the same
419 as for the NSD core. Stimuli consisted of a set of 284 images that can be conceptually grouped
220 as follows (the number of distinct images in each group is indicated in parentheses): white
221 noise (4), white noise with a large block size (4), pink noise (4), natural scenes (4), upside-
222 down versions of these scenes (4), Mooney versions of these scenes (4), line-drawing versions
423 of these scenes (4), contrast-modulated natural scenes (4 scenes X 5 contrast levels (100%,
24 50%, 10%, 6%, 4%) = 20), phase-coherence-modulated natural scenes (4 scenes x 4 coherence
a5 levels (75%, 50%, 25%, 0%) = 16), single words (4 words x 5 positions x 2 word lengths
a6 = 40), spiral gratings varying in orientation and spatial frequency (112), and chromatic pink
a7 noise varying in hue (68). Images typically occupied 8.4° x 8.4° (same as NSD core), though
s2s  a few of the word stimuli extended beyond this extent. Examples of the stimuli are provided in
29 Supplementary Figure

430 Stimuli were presented in pseudorandom order using a 2-s ON/2-s OFF trial structure. Stim-
s31 uli were shown against a gray background with an RGB value of (126, 110, 108), and were
sz delivered using a linear color lookup table. During each run, a small semi-transparent gray fix-
s33  ation dot with a black border (0.2° x 0.2°, 50% opacity) was present at the center of the stimuli.
a3« The luminance of the dot changed every 1.4 s. In alternating runs, while maintaining central

35 fixation, subjects either performed a fixation task (report direction of the luminance change of
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a6 the fixation dot) or a one-back task (report whether the current image is the same as the previ-
a7 ous image). A total of 8 runs (each with duration 428 s) were collected, yielding a total of 744
a8 stimulus trials over the course of the scan session. For the analyses performed in this paper,
a3 we modeled each stimulus trial (ignoring the variations in task performed by the subject) and

a0 considered only the central 8.4°square region (matching NSD core).

4.3 Identification of visual brain areas V1-V4

a2 Human visual brain areas were identified using a separate population receptive field (pRF)
a3 retinotopic mapping experiment, as documented in [Allen et al., 2022]. Retinotopic areas (more
a4 generally described as ‘regions of interest’ (ROIs)) were manually drawn based on results of the
a5 pRF experiment. These ROIs consist of V1v, V1d, V2v, V2d, V3v, V3d, and V4, and extend
ws  from the fovea (0° eccentricity) to peripheral locations that exhibit sensible responses in the
47 pRF experiment given the limited stimulus size (the diameter of the pRF mapping stimulus
as was 8.4°). The total number of voxels (cumulative over subjects) in each ROI was 9041, 8818,
a9 7763 and 3975 for V1, V2, V3 and V4 respectively, totaling 29597 voxels, with one subject

ss0 contributing as few as 3027 voxels, and another as many as 4627 voxels.

= 4.4 General encoding model architecture

452 Encoding models based upon both the task-optimized and brain-optimized networks consisted
453 of a feature extractor (a DNN) and multiple read-out heads as detailed in the following sections
4« and described in |Allen et al.|[2022]].

45 4.4.1 Feature extractor

a6 Feature extractors for all encoding models are sequences of transformations

er(r) =nroer ()

457 operating on x, here an input image, where 7, is the transformation that operates at layer
sss L on the output of the subsequence ey, _1(x). ey _1(z) and 7, may themselves denote arbitrary
a9 sequences of transformations. Our encoding models leverage the multiple intermediate rep-
a0 resentations e;(z), which are feature maps whose elements are denoted by [e;(x)]x;;, Where k

a1 indexes features and (7, j) are pixel coordinates in each feature map.
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w2 4.4.2 Read-out heads

w3 Read-out heads convert features output by the feature extractor into predictions of brain activity,

a4 T, for each voxel v. These predictions can be expressed as a linearized model

77v(l‘) = bU + Zkafout(q)k(x))

465 where
Op(x) = fnller@)]rii)gn; @ -+ > funllen@)rgii) gy
i3 i,J
466 and where fi,(-) and fou(+) are typically some compressive nonlinearity and the sum & de-

w7 notes the concatenation along the feature axis k = (ky,... k). gf}jl- is the value of the “pooling
s field” for voxel v applied at feature maps in layer [ at pixel (¢, j). Pooling fields generalize
a0 the population receptive field [Dumoulin and Wandell, |2008]] to arbitrary feature maps. All
a0 pooling field elements are positive-valued and normalized such that their sum equals to unity.
snn Figure [2] illustrates the two pooling field variants used in our work. Gaussian pooling fields
a2 (gpf) are fully described by three parameters that specify the position and size of a symmetric
a3 2D Gaussian function. For “flexible” pooling fields (fpf) each pixel value of the pooling field is

47+ an independent and learnable parameter.

«s 4.5 AlexNet encoding model

a6 4.5.1 Feature extractor

a7 For the task-optimized model featured in all figures of the main text, the feature extractor was
a7s an AlexNet deep convolutional neural network trained to classify 1000 object categories of the
a9 ImageNet database Krizhevsky et al. [2012]. We used the pre-trained weights from Torchvi-
a0 sion’s model zoo (https://pytorch.org/vision/stable/models.html). Not all feature maps were
ss1 used in the encoding. At each layer specified in Supplementary Table 3, if a layer had more
sz than 512 feature maps, we selected the 512 feature maps with the most variance with respect
a3 to the COCO images in our experiment. The final model thus exposed a total of 2688 feature

484 IMaps.
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45 4.5.2 Read-out head

a6 We constructed two variants of the AlexNet model: one with a Gaussian pooling field (AlexNet-
a7 gpf), and one with a flexible pooling field (AlexNet-fpf). To construct AlexNet-fpf models,
sss  feature maps with the same spatial resolution were concatenated and a distinct spatial pool-
a0 ing field was learned for each spatial resolution. Thus, for AlexNet-fpf models the read-out
a0 heads included multiple pooling fields. For both model variants, feature maps from each layer
a9t throughout the depth of the AlexNet feature extractor were input to the read-out head. For

92 details see Supplementary Table 3.

a3 4.5.3 Training

a4 For AlexNet models the parameters of the feature extractor were pre-trained, as described
a9s above. Thus, only the parameters of the read-out heads were optimized.

496 For AlexNet-gpf models the three pooling field parameters are learned via grid search over
s07 a list of 2680 candidates tiling the visual field with 8 log-spaced sizes varying from 3 to 40%
a9s  of stimulus size and spaced roughly in proportion to their sizes (such that each size tiles the
99 visual field fully). For each candidate receptive field, the tuning weights are learned via ridge
soo regression with the ridge parameter selected to maximize validation accuracy on a held-out 10%
so1  set of the training set.

502 For AlexNet-fpf models the training of the read-out heads was performed via gradient de-
ss scent with the ADAM optimizer (Ir = 1073, 8; = 0.9, 5, = 0.999).

s« 4.6 GNet encoding model

sos 4.6.1 Feature extractor

sos  We refer to the feature extractor of the brain-optimized network as a “GNet”. The GNet feature
so7 extractor consists of a pre-filtering network (e (x)) followed by a deep feature extractor.

508 The input image resolution of the pre-filtering network is 227 x 227 and outputs an embed-
so0 ding of 192 features at a 27 X 27 spatial resolution. This part of the network is identical to the
sio  first two layers AlexNet.

511 The deep feature extractor is a sequence of blocks of layers. Each block consists of a batch
stz normalization layer followed by a dropout layer and a convolutional layer that preserves feature
st3 map resolution. The use of batch normalization followed by dropout in each block has been

sia  characterized as performing input whitening and decorrelation |Chen et al. [2019]. After three
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s15 blocks, the resolution of the feature maps is reduced from 25 x 25 to 13 x 13 by a max pooling
sie layer. The GNet sequence of layers was designed so that each pixel in the final convolutional
si7 layer effectively pools over the whole input image, whereas pixels in lower layers only integrate

518 over more local regions of the input image.

si9 4.6.2 Read-out head

s20 For the GNet model only flexible pooling fields were used due to training requirement. As
s2r - with the AlexNet model, feature maps with the same spatial resolution were concatenated and
s22  a single spatial pooling field was learned for each spatial resolution. Thus, the read-out heads

s23  contained multiple pooling fields.

524 Read-out heads employed a fully differentiable nonlinearity:
f(x) = tanh(z)log(1 + [x]), (1)
525 that was applied either before or after spatial pooling, or both. This nonlinearity has several

s26 1nteresting and desirable characteristics: 1) it has an expansive and a compressive regime, 2) it
se7 18 differentiable everywhere, with no discontinuity and 3) it does not plateau over a large range.
s2s The final GNet model benefited from using this nonlinearity before and after spatial pooling
s20 (1.e. as fin and fous).

530 During the structure and hyperparameter selection process for GNet, we noticed that the
sst  best extant GNet model was obtained when some feature maps in lower layers were not directly
ss2  connected to the read-out heads, as indicated on Supplementary Table 3. Note, however, we find
ss3  that the results of analyses reported here are unchanged when using fully connected read-out

53 heads.

s5 4.6.3 Training

sss The pre-filtering network was taken from a task-optimized AlexNet. Its parameters were kept
se7 fixed during brain-optimization. While it was possible to optimize the pre-filtering network
sss  parameters along with the deep extractor parameters from a random initial condition, the results
s30 using a pre-trained filtering network were slightly better for all model variants.

540 All parameters of the deep feature extractor and the read-out heads are learned jointly via
s+t gradient descent with the ADAM optimizer (Ir = 1073, 3; = 0.9, B> = 0.999). The training

25


https://doi.org/10.1101/2022.01.21.477293
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.21.477293; this version posted January 23, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

se2  steps of the deep feature extractor and the read-out heads are alternated to promote stability of
ss3  the training procedure.
544 To account for the noise profile and the discrepancies in voxel predictability, we used the

ses  following L2-norm weighted loss function

L(r,7(z)) = ZUEV %J (:ULP_QJTU(:E)) ’

546 where | p?] is the batchwise Pearson-like correlation of every voxel with a floor of 0.1 to al-

s47  Ways permit some contribution of the yet-to-be-predicted voxels (i.e. those with low correlation
sss  at the onset of training) in the voxel ensemble V. If the model can be trained voxelwise, then
se9  this weighting could be ignored but this could affect the learning dynamics (learning rates).

550 Unlike a typical deep network optimization with gradient descent, where all parameters
ss1 - subserve the global objective, this problem involves shared parameters (feature extractor) and
ss2 voxelwise parameters (read-out heads). A global early stopping criterion may not be optimal
ss3  for all voxels, since overfitting would be detected when the average loss starts to increase. On
ss« the other hand, voxelwise loss may increase before the optimal point due to the dependence on
ss5 the changing deep feature extractor. This remains an outstanding problem. In spite of the afore-
sss mentioned issues, relative successes were achieved by using a global early stopping criterion
ss7  with the parameters clamped to their best value according to the validation accuracy of a 10%
sss  holdout set of the training set.

559 A second challenge emerged from the fact that each read-out head only has access to the
ss0 brain responses associated with the subject-wise image samples, while the feature extractor
ss1 leverages all available images. We addressed this issue by interleaving samples from each
se2 subject. While typical training consists of randomly sampling a minibatch from the training
se3  set, we first selected a subject at random and sampled a minibatch from its set of training
ss+ 1mages and brain responses. The read-out heads follow the matching brain response voxels
ses and changes from batch to batch while the shared feature extractor is trained with gradients
se6  backpropagated from the current read-out heads. At the end of each epoch, every sample from
se7 every subject has been “seen” exactly once. This procedure yielded distinct improvements in
ses model accuracy relative to subject-wise training, i.e. training a feature extractor network for
se9 each subject separately (as in |Allen et al. [2022]).

570 In some cases, we also performed a second and third phase of training (which we refer to as
s71 “fine tuning”, GNet8jft-fpf in Fig. 3¢). Each subsequent phase restarts training from the optimal

s72 welght values from the previous phase. The second phase follows the same procedure as the first
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s73 phase but all the read-out heads parameters were fixed and only the feature extractor parameters
s74  were trained (including those of the pre-filtering network). This second phase accounted for
575 most of the improvement over the first phase. A third phase followed again the same objective in
s7e  which we trained only the parameters of the read-out heads, while the feature extractor remained

577 constant.

s 4.7 Gabor encoding model

s 4.7.1 Feature extractor

ss0 The Gabor model feature extractor consists of a single fixed set of convolutions: 12 Gabor
ss1 - wavelets with spatial frequency log-spaced between 3 and 72 cyc/stimulus at 6 evenly-spaced

se2  orientations between O and 7.

sss 4.7.2 Read-out head

ss4  We used a read-out head with a Gaussian pooling field for the Gabor model. Following previous
sss work [St-Yves and Naselaris), 2018]], we used a compressive nonlinearity fi,(z) = log(1 + |z|)

sss  While fout (JC) =X.

ss7 4.7.3 Training

sss  Gabor models were fit using grid search over the pooling field parameters (same candidate grid

ss9  as for the AlexNet-gpf model), followed by ridge regression to determine the feature weights.

0 4.8 Cross-validated prediction accuracy

sor  Prediction accuracy is calculated using the subset of trials that include images displayed to all
se2  subjects (for most subjects, 1000 images with 3 repeats each). These trials were not included in
ses the training data, and were not used for hyperparameter selection (see below), ensuring proper
se¢ cross-validation. Prediction accuracy is the Pearson correlation between predicted brain ac-
ses tivity and measured brain activity on a single-trial basis. Prediction accuracy uncertainty was

se6 estimated by sampling with replacement the predicted and actual brain activities for each voxel.
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s 4.9 Hyperparameter selection

ses The process of hyperparameter selection for the GNet models (e.g., pooling map resolutions,
se9 number of layers, nonlinearities, forms of regularization) was based on the prediction accuracy
s0 measured on a fixed, held-out model selection set consisting of 10% of each subject’s training
ot data. The holdout prediction accuracy was evaluated, for each selection of hyperparameter
02 values, at the early stopping point (i.e. at the minimum of the holdout loss during training of
sos that model). The GNet model was refined on this basis using 4 subjects, and the best extant

s« model was used to perform the final analysis with all 8 subjects.

os 4.10 Receptive field modeling

sos Receptive fields (Fig. 4) were derived directly from the spatial pooling fields of the read-out
07 head for each voxel. For some voxels, the flexible pooling fields do not have a clearly localized
sos structure. However, for the vast majority of voxels the trained flexible spatial pooling fields
oo extend smoothly from a clearly identifiable center. Thus, we characterized these maps by fitting
s10 an elliptical 2D gaussian to the parameters (the pixels in the map) of the flexible spatial pooling
e11 field. For each voxel, the size of its receptive field is defined as \/ﬁ, where a and b are one
sz std. dev. along the major and minor axis of the elliptical gaussian, and its eccentricity is the
st Euclidean distance from the display center. In the plot of Figure dd both measures are expressed

s14 as percent of the display size (i.e. 100% = 8.4°).

os 4.11 Layer-wise contributions to prediction accuracy

st6 1o test for alignment between layer depth and brain areas we calculated the prediction accu-
s17 racy of network-based encoding models when layers from the bottom or top half of the feature
18 extractor network were masked. Specifically, let ppoiom be the prediction accuracy obtained
s19 from an encoding model in which feature weights w from layers in the top half of the feature
s20 extractor network have been zeroed-out (refer to Figure [6p for the designation of bottom and
e21  top layers in the AlexNet and GNet feature extractors, respectively). Separately, we also calcu-
s22 late the prediction accuracy py,, obtained by zeroing-out the feature weights that couple to the
23 bottom layers. Both of these measures of prediction accuracy are necessarily smaller than the
e« total prediction accuracy of the model p obtained when all feature weights are used (see Venn
e2s diagram in Figure [6b).

626 To assess ordering for a given DNN, we calculated the specific and unique contributions of
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e27 the bottom layers to predicting brain activity. Given that total variance varies a great deal across
28 voxels, we express the specific and unique contributions of the bottom layers for each voxel in

s20 relative terms:

2 2 _ 2
specific __ Pbottom d unique p Ptop (2)
bottom 2 an bottom 2
p p
630 This decomposition of prediction accuracy into specific and unique contributions is per-

ss1 formed for individual voxels. We then average the specific and unique contributions over all
ss2 voxels in a single brain area that have validation accuracy that exceeded p = 0.055 (p < 0.01,
a3 prediction randomization trial). We plot these values along the presumed hierarchy of brain
es« areas in Figure [6c. We verified that the results were robust to the precise choice of threshold.
e3s  Note that values for the specific and unique contribution of the top layer are obtained by swap-
sss  ping “bottom” and “top” subscripts in the above formulas, and can be read-off by eye from the

es7 curves in Figure[6.

s 4.12 Transfer learning experiments

39 In transfer learning experiments, we test how well representations in a GNet feature extractor
ss0 optimized for one brain area can generalize to another brain area. To test this, we first train a
ss1  GNet feature extractor and read-out head to predict brain activity (or the outputs of another en-
ss2 coding model) for all voxels in a single brain area :. We then freeze the parameters of the trained
sss  GNet feature extractor for this area-specific encoding model (we call it the “reference model”
sss below), but train new read-out heads to predict brain activity in all brain areas. We then com-
ess pare the cross-validated prediction accuracy obtained when the feature extractor and read-out
sss are trained on the same brain area (the reference model) to prediction accuracy obtained when

a7 the feature extractor and read-out are trained on different brain areas (the “transfer” model).

ref
v

648 Leti,j € (1,2,3,4) index brain areas, and let pI*' be the cross-validated prediction accuracy
s4o Of a reference model for voxel v. For the reference model, the GNet feature extractor and the
eso read-out head are trained simultaneously on the brain area that v belongs to and then used to
est  predict activity on held-out trials for that area. Let pq‘fj be the cross-validated prediction accuracy
sz Of a transfer model. For the transfer model, the feature extractor is trained on area V; and then
es3 frozen while a read-out head is subsequently trained on the brain area to which v belongs. The

es« transfer model is then used to predict activity on held-out trials in the brain area to which v
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ess  belongs. We define the “prediction accuracy shift” A{ as:

A = (07 = P )ven, (3)

656 where (-),cy; denotes averaging over all voxels in brain area V. In Figures [7| and (8| we
es7  show prediction accuracy shift matrices consisting of Ag for all pairs of brain areas V;, V;. Rows
ess  (labeled “feature extractor trained on”’) and columns (labeled “model tested on”) correspond to
eso the superscript and subscript of A{ , respectively. For entries along the diagonal of this matrix,
0 A’ measures the prediction accuracy shift induced by first training the feature extractor and
es1 read-out head simultaneously on area V; (i.e., the reference model) and then fixing the feature
es2 extractor and re-training the read-out head only on area : (i.e., the transfer model). The subtle
ess difference between simultaneous and serial training of the model components typically induces
s« a small positive prediction accuracy shift.

665 In Figure 7| we illustrate the transfer of a GNet feature extractor optimized for V4 to VI1,V2
ses and V3. The results of this transfer learning operation populate the top row, A?, of the prediction
e67 accuracy shift matrix.

668 In Figure [8p, the three prediction accuracy shift matrices on the left labeled “AlexNet-gpf™,
s ‘GNet8j-fpf” and “GNet8r-fpf” were constructed by applying the transfer learning procedure
70 just described to the outputs of the AlexNet-gpf, GNet8j-fpf and GNet8r-fpf models, respec-
71 tively. In other words, instead of using brain activity to train the reference and transfer models,
e72 we use the outputs of the indicated encoding models to train them (by “outputs”, we specifically
e73 mean the activity predictions of the encoding model for each voxel). This allows us to identify
e74 the models that learn hierarchical representations during the course of their training. For the
e7s matrix on the far right labeled ‘“Measured brain activity”, the transfer learning procedure was
e7s applied directly to measured brain activity. Note that in this special case, pref = pSNe®®r for all
677 V.

678 We characterized the structure of the prediction accuracy shift matrices by calculating a
e7o  scalar value, o, that captures the normalized difference between the upper and lower triangular

60 components:

ap — a_
o=
jas] +fa]
681 where a; and a_ are the slopes of the upper and lower triangular entries of the matrix,

ess2 respectively. To calculate these slopes, we expressed the respective matrix entries as a function
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sss  Of their taxicab distance from the matrix diagonal, the off-diagonal entries having a distance of
s« 1 and so on. In cases where the matrix is characterized by a salient lower triangular (negative
ess slope) and a flat (zero slope) upper triangular, o would be close to 1. On the other hand, if the
es6 Mmatrix is symmetric, & would be zero. The error in « is estimated via error propagation of the

es7 estimate of the errors on the slopes.
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