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Abstract

Deep neural networks (DNNs) trained to perform visual tasks learn representations that

align with the hierarchy of visual areas in the primate brain. This finding has been taken

to imply that the primate visual system forms representations by passing them through a

hierarchical sequence of brain areas, just as DNNs form representations by passing them

through a hierarchical sequence of layers. To test the validity of this assumption, we opti-

mized DNNs not to perform visual tasks but to directly predict brain activity in human vi-

sual areas V1–V4. Using a massive sampling of human brain activity, we constructed brain-

optimized networks that predict brain activity even more accurately than task-optimized

networks. We show that brain-optimized networks can learn representations that diverge

from those formed in a strict hierarchy. Brain-optimized networks do not need to align

representations in V1–V4 with layer depth; moreover, they are able to accurately model

anterior brain areas (e.g., V4) without computing intermediary representations associated

with posterior brain areas (e.g., V1). Our results challenge the view that human visual areas

V1–V4 act—like the early layers of a DNN—as a serial pre-processing sequence for higher

areas, and suggest they may subserve their own independent functions.
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1 Introduction1

Primate visual cortex contains dozens of functionally distinct areas. Understanding how these2

areas relate to one another and identifying the function or functions of the different represen-3

tations in these areas has been a driving pre-occupation of visual neuroscience for decades4

[Carandini et al., 2005, Roe et al., 2012, DiCarlo and Cox, 2007].5

Studies of the so-called “early” visual areas V1, V2, V3 and V4 have played an important6

role in understanding the diversity of functions supported by the many brain areas in primate7

visual cortex. Each of V1–V4 represents a complete map of visual space whose boundaries8

are identifiable on cortical surface maps [Hansen et al., 2007, Wandell and Winawer, 2011].9

Importantly, visual representations at a given location in visual space vary dramatically across10

areas [Kobatake and Tanaka, 1994, Grill-Spector and Malach, 2004]. V1–V4 thus offer an11

opportunity to understand the principles by which visual representations are transformed when12

they cross a boundary between brain areas.13

Although we currently lack a complete characterization of the representations in V1–V4,14

the belief that they are part of a hierarchy of visual processing is deeply entrenched in both15

neuroscience and AI [Hubel and Wiesel, 1962, Riesenhuber and Poggio, 2000, LeCun et al.,16

1989, Krizhevsky et al., 2012, Felleman and Van Essen, 1991, Richards et al., 2019, Himberger17

et al., 2018, Yamins and DiCarlo, 2016]. According to this belief, representations in V1 are the18

least complex in the hierarchy; they are passed upward through V2 and V3 to V4 and beyond,19

where representations become more complex.20

Belief in this hierarchy of representations is founded on well-established evidence for an21

anatomical hierarchy defined by the laminar distributions of reciprocal connections between22

pairs of brain areas [Felleman and Van Essen, 1991], the evidence for a hierarchy of spatial23

resolution defined by the monotonic increase in receptive field sizes [Dumoulin and Wandell,24

2008, Kay et al., 2013b] and monotonic decrease in preferred spatial frequencies [Henriksson25

et al., 2008], and the evidence for a temporal hierarchy defined by the increase in neural onset26

latencies [Schmolesky et al., 1998] across V1–V4.27

Belief in a hierarchy of representations has had a profound impact on the design of artificial28

systems that solve visual tasks [Lecun et al., 2015]. Specifically, the architecture of convolu-29

tional deep neural networks (DNNs) specifies a hierarchy of visual maps [Fukushima, 1988].30

The success of DNNs at solving hard vision tasks [Krizhevsky et al., 2012] has been interpreted31

as providing evidence for a hierarchy of representations in the brain [Lindsay, 2021]. Even32
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stronger support for a hierarchy of representations in the brain comes from the well-established33

finding that “task-optimized” DNNs trained on supervised [Yamins et al., 2014, Khaligh-Razavi34

and Kriegeskorte, 2014, Güçlü and van Gerven, 2015, Cichy et al., 2016, Eickenberg et al.,35

2017], and unsupervised [Zhuang et al., 2021] computer vision tasks align their layers to the36

presumed hierarchy of visual brain areas.37

Despite the strong evidence appearing to support the idea that the primate visual system38

implements a “hierarchy of representations”, the phrase remains a verbal summary of a diverse39

set of experimental observations [Hilgetag and Goulas, 2020] and has not yet, to our knowl-40

edge, been distilled into a set of key properties that visual representations must satisfy in order41

to qualify as hierarchical. To do so, we need to articulate these key properties and develop fal-42

sifiable tests for each. Given that our evolving understanding of representational organization43

in the brain has had a significant causal impact on the development of AI [Macpherson et al.,44

2021, Hassabis et al., 2017], a direct test for hierarchical representation in the primate visual45

system could yield important insights for both our understanding of the brain and the design of46

intelligent machines.47

In this work, we define hierarchical representations as those that are built up through the48

iterative application of a fixed transformation [Yamins and DiCarlo, 2016]. If V1–V4 conform49

to this definition then each brain area can be viewed as a layer in a single DNN. Independently50

falsifiable tests for hierarchical representation in V1–V4 follow naturally: First, predictive en-51

coding models of V1–V4 [Naselaris et al., 2011] should perform better or worse to the extent52

that they are more or less consistent with this definition of hierarchy. Second, accurate DNN53

models of representation in anterior brain areas (e.g., V4) should demand more depth than mod-54

els of posterior brain areas (e.g., V1). Third, since representations in a hierarchy are computed55

in sequence, accurate models of representations in anterior brain areas should always entail56

(require the construction of) representations encoded in posterior areas. If V1–V4 do not meet57

some or all of these criteria, we must conclude that the representations they encode are non-58

hierarchical.59

To test if these criteria of hierarchical representations are met by V1–V4, we train neural60

networks to predict human brain activity [Seeliger et al., 2021, Cadena et al., 2019, Prenger61

et al., 2004, Antolı́k et al., 2016, Batty et al., 2016, Klindt et al., 2017, McIntosh et al., 2016,62

Kindel et al., 2019, Zhang et al., 2019] in a massive sampling of responses to hundreds of63

thousands of presentations of natural scenes [Allen et al., 2022]. By contrasting such “brain-64

optimized networks” to task-optimized networks, we are able to discriminate representations65
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that may be essential for solving computer vision tasks but play no essential role in modeling66

the brain. By analyzing the accuracy with which these diverse networks predict brain activity,67

the coupling between the layers of these networks and brain areas V1–V4, and the ability of68

representations optimized for one brain area to generalize to others, we are able to conduct69

novel and sensitive tests for the existence of hierarchical representation in human visual cortex.70

2 Results71

2.1 Three tests for hierarchical representation72

We consider deep neural network models of representation in V1–V4. In a DNN, representa-73

tions are constructed via compositions el(x) of a transformation ηθl(x):74

el(x) = ηθl ◦ el−1(x)

where x is a visual stimulus, subscripts l index particular values of the adjustable parameters75

θ, and e0(x) = x. We denote the complete set of representations expressed by the network as76

φ ≡ (e1, . . . , eL), where L is number of layers in the DNN.77

We define two general properties that DNN-based models of representation in V1–V4 must78

satisfy in order to be considered “hierarchical”. The first property, “ordering”, is a general-79

ization of the finding that task-optimized DNNs order V1–V4 with respect to layer depth. Let80

φi = (ei1, . . . , e
i
L) and φj = (ej1, . . . , e

j
L) be representations we use to predict brain activity in81

voxel group Vi and Vj , respectively. Here, i, j ∈ (1, 2, 3, 4) correspond to the visual area of the82

same index. We assume that all φ’s have the same depth L and utilize transformations of the83

same form η, but may or may not correspond to identical DNNs. We say that φi and φj are or-84

dered with respect to Vi and Vj for a partitioning at layer l if representations below eil contribute85

more strongly (relative to other layers) to predicting brain activity in Vi than representations86

below e
j
l contribute to Vj whenever i < j.87

The second property, “entailment”, is a generalization of the dependence of higher layers88

on lower layers in a DNN. In a DNN, representations are computed in sequence. This means89

representations in lower layers must be computed in order to compute representations in higher90

layers. In our work, entailment is a generalization of this hierarchical dependence that can be91

applied to distinct sets of representations φi and φj . Specifically, we say that φi and φj show92

entailment with respect to Vi and Vj if the representations in φi that contribute to predicting93
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brain activity in Vi are a subset of the representations in φj , whenever i < j.94

Figure 1: Examples of hierarchical and non-hierarchical representations (a) An example of hi-

erarchical representation in V1–V4 (circles). The depth of layers that contribute (dashed arrows) to

predicting brain activity are aligned to V1–V4 (ordering). Since representations in these layers must be

computed in sequence, we would infer that representations in V4 entail representations in V3, and so

on. (b) An example of non-hierarchical representation in V1–V4. The depth of layers that contribute to

predicting brain activity are roughly the same and do not align with V1–V4 (no ordering). Representa-

tions in these contributing layers can be computed in parallel, so in this example there is no evidence that

representations in any area entail representations in any other area. In these simplified illustrations only a

single layer contributes to predicting activity in each brain area; note, however, that is not a requirement.

In our models all layers may contribute to predicting activity in any brain area.

When representations show both ordering and entailment, we say they are hierarchical with95

respect to V1–V4 (Fig. 1a); when they show neither property we say they are non-hierarchical96

with respect to V1–V4 (Fig. 1b).97

With these definitions in place, we can construct tests for properties that we expect a hier-98

archical representation to satisfy by analyzing DNNs that are optimized to predict activity in99

V1–V4.100

First, if V1–V4 encode hierarchical representations, then models that are hierarchical with101

respect to V1–V4 should predict brain activity more accurately than those that are not. This102

implies that a network training strategy that facilitates the learning of hierarchical representa-103

tions should be a useful inductive bias [Goyal and Bengio, 2020]. Specifically, we expect that a104
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single DNN trained jointly on V1–V4 should yield more accurate predictions of brain activity105

than four distinct DNNs trained independently on each brain area. To see why this is a reason-106

able expectation, assume we want to construct a DNN to model V4. If V1–V4 are hierarchical,107

the DNN will predict activity in V4 most accurately if it entails representations that accurately108

model V1–V3. By optimizing the DNN jointly, we supply the learning algorithm with samples109

of brain activity that encode these lower-level representations. In contrast, if we train the DNN110

on activity sampled from V4 only, we deprive the learning algorithm of informative data and111

should therefore expect worse performance from the DNN once training is complete.112

If V1–V4 encode hierarchical representations, then DNNs optimized to predict activity in113

V1–V4 should be ordered. Importantly, ordering should hold regardless of whether we train114

a single DNN on all areas or train four DNNs independently on each. By assessing ordering115

in independently trained DNNs, we can determine if alignment between brain areas and layers116

is simply an optimal arrangement for task-optimized networks specifically, or if it indicates117

that the diversity of representations across V1–V4 can only be accurately modeled by varying118

compositional depth.119

Finally, if V1–V4 conform to our definition of a hierarchy, representations in anterior areas120

should entail representations in posterior areas. This implies, for instance, that if we train a121

DNN to predict V4 brain activity alone, we should also be able to use it to predict brain activity122

in V1-V3 as accurately as a DNN trained to model those more posterior areas independently.123

On the other hand, a DNN trained to predict V1 activity alone should not be expected to predict124

activity in V2–V4 as well as DNNs trained to model those more anterior areas independently.125

A network, or set of networks, that do not exhibit this hierarchical prediction asymmetry should126

not predict brain activity as accurately as one that does.127

The tests we propose for identifying hierarchical representation in V1–V4 presume an abil-128

ity to optimize neural networks to predict brain activity. In what follows, we first confirm that129

brain-optimized networks, when trained on sufficient amounts of data, can be made to yield130

state-of-the-art prediction accuracy in V1–V4, even for out-of-sample testing stimuli. We then131

use brain-optimized network models to perform the tests described above.132

2.2 Encoding models based on brain-optimized networks yield accurate133

predictions of brain activity to natural and artificial stimuli.134

In encoding models based upon deep neural networks, the DNN acts a nonlinear feature extrac-135

tor, and the activities of units in each feature map of the DNN are transformed into predicted136
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Figure 2: Training and validation of task-optimized and brain-optimized networks. (a) An en-

coding model based on a task-optimized deep neural network (AlexNet; white trapezoid). Multiple

convolutional layers (ηi) convert the input stimulus on trial t, Xt, into feature maps. (b) A read-out

head (blue trapezoid) transforms network activations into predicted brain activity (rtv, where v indexes

a single voxel). The read-out head consists of Gaussian spatial pooling fields (giv; example at lower left)

with position and size selected from a fixed grid of candidates (lower right). The pooling field and each

feature map are multiplied pixel-wise and then summed, reducing each feature map to a single feature

value. The array of feature values across all maps (left vertical rectangle) are weighted by an array of

feature weights (wv) and then summed (with a bias term bv) to yield predicted brain activity. Compres-

sive point nonlinearities (f(·)) are applied at several processing stages. (b) A similar architecture is used

for the encoding model based on the brain-optimized network (GNet; orange trapezoid), although the

“flexible” spatial pooling fields used in the read-out head may be non-Gaussian (example at lower left).
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Figure 2: (cont.) (c) Training for the AlexNet-based encoding model. For each voxel, only read-

out head parameters (gv, wv, bv) are optimized (gears) for visual areas V1–V4 (colored rectangles) in

each subjects’ brain (S1, ..., S8). The “voxelwise loss” (squared difference between predictions and

measured activity data) is evaluated independently for each voxel. (d) Training for the GNet-based

encoding model. Both the read-out head and GNet parameters are optimized jointly (“joint loss”) for

all voxels, subjects and brain areas. (e) Prediction accuracy is evaluated for each voxel by correlating

predicted brain activity with measured brain activity (ρAlexNet, ρGNet) across a set of held-out validation

trials with natural scenes. We plot the average accuracy (y-axis of central plot) vs. the difference in

accuracy (x-axis) for each voxel (dots; color indicates visual area). For this example subject S1 the

GNet-based encoding model predicts responses to natural scenes most accurately for 81.3% of voxels

in V1–V4. (f) In this example, the GNet-based encoding models predicts responses to artificial stimuli

more accurately for 88% of voxels in V1–V4.

brain activity via a linear read-out head (Fig. 2; see St-Yves and Naselaris [2018] as well as137

Allen et al. [2022]). For each voxel in the target dataset, the read-out head specifies a spatial138

receptive field and an array of feature weights that model the region of visual space and the139

nonlinear features that are represented by brain activity measured in the voxel. In our work140

the read-out head for each voxel always samples from all layers throughout the depth of the141

network. Thus, we give each layer in the feature-extractor network the chance to contribute to142

predicting brain activity (Fig. 2a,b).143

In order to perform tests of hierarchical representation, we constructed encoding models in144

which the feature extractor is a brain-optimized neural network (GNet, Fig. 2b). In the GNet145

encoding models, we minimized error on predicted brain activity by using stochastic gradient146

descent to learn all free parameters of the DNN feature extractor simultaneously with the free147

parameters of the read-out heads (Fig. 2d). We compared the prediction accuracy of these148

GNet-based encoding models to models based upon a task-optimized neural network (AlexNet;149

Krizhevsky et al. [2012]) that was pre-trained to discriminate object categories. For the AlexNet150

encoding model (Fig. 2a) the network parameters were frozen during training and only the free151

parameters of the read-out heads were optimized (Fig. 2c).152

To optimize the parameters of each type of encoding model (Fig. 2c,d) we used the Natural153

Scenes Dataset [Allen et al., 2022], a massive sampling of blood-oxygenation-level-depedendent154

(BOLD) activity in eight subjects using ultra-high field fMRI (7T, 1.8-mm resolution). Subjects155

each viewed 9,000-10,000 natural scenes (sampled from the Microsoft Common Objects in156

Context database [Lin et al., 2015]) presented (3-s exposure) repeatedly (three times typically),157

yielding 22K - 30K trials for individual subjects and a total of 213K trials across subjects.158
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Voxels were assigned to areas V1–V4 on the basis of an independent retinotopic mapping ex-159

periment [Allen et al., 2022].160

To validate and compare encoding models, after training we assessed the prediction accuracy161

of the models for each voxel by correlating predicted activity with measured activity in response162

to the shared images that were shown to all eight subjects during the experiment but were not163

used for model training (Fig. 2e). For each subject, the brain-optimized GNet encoding model164

(trained jointly) predicted brain activity in V1–V4 more accurately than the AlexNet encoding165

model for more than 68% of all voxels in V1–V4 (Fig. 3a). Averaged across subjects, the166

“win percentage” for the GNet model was significantly greater than expected by chance (80%167

win, p < 10−6, two-sided t-test). Interestingly, when model prediction accuracy was computed168

for out-of-sample classes of artificial stimuli (e.g., gratings, contrast-modulated scenes, various169

types of noise, Fig. 2f and Fig. S1), the prediction accuracy of the GNet model was greater170

than the AlexNet model for more than 76% of the voxels in all subjects (Fig. 3b). Although the171

size of the difference in prediction accuracy underlying these win percentages varied within and172

across areas (Fig. 3c), across subjects the average win percentage of the GNet model for artificial173

stimuli was significantly greater than for natural stimuli (80% win, p < 10−5, two-sided t-test).174

The win percentage was not significantly different across these two stimulus conditions for any175

single brain area except V4, where we observed an average improvement across subjects from176

62% to 74% (p < 0.01, two-sided paired t-test) (Fig. 3d).177

These results demonstrate that the GNet model outperforms the AlexNet model for a ma-178

jority of voxels in V1–V4. We also quantified the prediction accuracy of multiple model types179

with respect to the best performance that any model might achieve. To do this, we estimated the180

percentage of variance in brain activity that can be explained by variation in the stimulus (by181

computing noise ceilings as in Allen et al. [2022], gray bars in Figure 3e), as well as the percent-182

age of variance explained by the outputs of each model (colored bars in Figure 3e). For every183

subject and brain area (with the exception of S4, V4), the mean (across all voxels) percentage184

of total variance explained by GNet models is larger than or equal to the mean percentage of185

variance explained by the AlexNet models and a control Gabor wavelet model. Improvements186

in prediction accuracy achieved by extensive fine-tuning of the model parameters (see Meth-187

ods) suggests that the limit of prediction accuracy for GNet models has not yet been reached188

(“GNet8jft-fpf”, Fig. 3e, right). However, across all subjects and brain areas, GNet encoding189

models can account for at most 78% of the explainable variance, and as little as 37% (on aver-190

age over a ROI, for voxels with at least 5% of explainable variance). This means that currently,191
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Figure 3: Comparison of cross-validated prediction accuracy for encoding models based on task-

and brain-optimized deep neural networks. (a, b) Accuracy / advantage plots for all subjects and

brain areas for natural validation stimuli (a) and artificial stimuli (b). Format as in Figure 1. (c) Median

difference in model prediction accuracy (x-axis) for different levels of average prediction accuracy (y-

axis) and for natural (thin curve) and artificial (thick curve) stimuli. (d) Difference in the percentage of

voxels for which the the GNet-based encoding model explains more signal variance than AlexNet-based

encoding model (“win percentage”; x-axis). (e) Signal variance (%; y axes) in brain activity explained by

varieties of network-based encoding models (colored bars; gray bars indicate theoretical upper limit) for

all each subjects (x-axis) in visual areas V1–V4. Inset: Average (across subjects) percent of explainable

variance explained by a subset of the models. See Supplementary Table 1 for descriptions of all model

acronyms.

even the best models leave much to be explained. Interestingly, this limitation does not seem192

to be unique to models trained on BOLD activity. For most subjects, the amount of explainable193

variance in V1 that is explained by GNet is similar to the amount explained by similar brain-194

optimized DNN-based models of single-unit activity in V1 of the primate brain [Cadena et al.,195
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2019].196

Figure 4: Encoding models based on brain-optimized networks recover known retinotopic or-

ganization (a) Examples of spatial pooling fields (colormap indicates strength of predicted activa-

tion) and best-fitting Gaussian profile (with ellipsoids) for individual voxels with significantly accurate

(ρ > 0.055, p < 0.01) encoding models. (b) Mean of spatial pooling fields for all voxels and subjects

in V1–V4. (c) Best-fitting Gaussian profiles for spatial poolings of all voxels and subjects. The profiles

were used to visualize size-eccentricity relationships for all visual areas. (d) Linear fits to relationship

between pooling field size (
√
area of the one std. dev. elliptical Gaussian profile in (c)) and eccentricity

for all voxels in V1–V4. Length units are expressed in percent of stimulus span (i.e. 100% ≡ 8.4°, black

bounding box in (c)).

To further demonstrate the adequacy of brain-optimized models, we analyzed pooling fields197

(Fig. 4a) for voxels in V1–V4, recovering expected visual field coverage (Fig. 4b) and size-198

eccentricity relationships (Fig. 4c,d; [Kay et al., 2013b]). We conclude that our encoding models199

based upon brain-optimized networks are as trustworthy a tool for testing hypotheses about200

representation as any currently existing network-based encoding model.201

2.3 Representational hierarchy is not an effective inductive bias for con-202

structing predictive encoding models203

To test the effectiveness of hierarchy as inductive bias, we compared a single GNet encoding204

model trained jointly on V1–V4 (GNet8j, where “8” indicates joint training for all 8 subjects,205

and “j” indicates joint training for all four brain areas, Fig. 5a) to four separate GNet encoding206
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models trained independently to predict V1–V4 (GNet8r, where “r” stands for “ROI-wise”,207

Fig. 5b). The win percentages for GNet8j and GNetr were close to parity in V1–V3, although in208

V4 win percentage for GNet8r was 68%. Across several model variations, the win percentage of209

the GNet8j model was at best equal to the win percentage for the GNet8r model. This indicates210

that the jointly-trained GNet model was not more accurate than the independently trained GNet211

models (Fig. 5c). In fact, the independently trained models yielded better prediction accuracy212

than the jointly trained model, though the advantage is relatively small. Thus, a training strategy213

that favored discovery of hierarchical representations did not result in a relative increase in214

prediction accuracy over a training strategy that did not.215

Figure 5: Comparison of brain-optimized DNNs trained jointly or independently on activity in

V1–V4 (a) Training and architecture for the jointly-trained (GNet8j-fpf) variant of the GNet-based en-

coding model. (b) The independently-trained variant (GNet8r-fpf). A separate GNet feature extractor

(trapezoids) is trained (gears) for each brain area (V1–V4). In both cases, read-out heads (squares) with

flexible pooling fields (fpf) are optimized as well. (c) Advantage / accuracy plots comparing predic-

tion accuracy of encoding models based on the jointly-trained (left of vertical line in each panel) and

independently-trained (right of vertical line) GNets for each subject (colors).
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2.4 Alignment between layers and V1–V4 does not indicate a requirement216

for compositional depth217

Although GNet8r was not trained in a way that facilitated learning representations with ordering218

and entailment, it may have learned them anyway. To identify networks that order V1–V4, we219

tested the contribution of layers in the bottom half of the various feature-extracting DNNs to220

explaining variance in brain activity (Fig. 6, bold curves). We define the “specific” contribution221

of any set of layers as the prediction accuracy obtained when generating predictions with that222

set of layers alone (i.e., by masking out all other layers; Fig. 6b,c, blue curves). We define the223

“unique” contribution of any set of layers as the prediction accuracy of the full model, minus224

the specific contribution of all other layers (Fig. 6c, magenta curves). For two variants of the225

AlexNet encoding models (“AlexNet-gpf” and “AlexNet-fpf”), and for the jointly trained GNet226

encoding model (“GNet8j-fpf”), the unique contribution of lower layers declined monotonically227

from V1–V4 from roughly 60% to roughly 30%. Concurrently, the unique variance for the top228

layers (indicated by the distance from the top of the y-axis to the blue curves in Figure 6c)229

increased monotonically from V1–V4. Thus, the DNNs in these models do indeed induce an230

ordering with respect to V1–V4, as expected from previous results [Güçlü and van Gerven,231

2015].232

In contrast, when GNet models were fit independently (“GNet8r-fpf”) there was no decline233

in the unique or specific contributions of the bottom layers from V1–V4. For V1-V3 the unique234

contribution of the lower layers was roughly 75%, and for V4 the unique contribution of the235

lower layers was above 90%. Thus, collectively the GNet8r models do not induce an ordering236

of tuning with respect to V1–V4, as it is possible to express representations in V1–V4 with the237

same number of DNN layers (Fig. 6). It is important to recall that the jointly and independently238

trained GNet models utilized the same architecture and non-linearities, and yield very similar239

prediction accuracy (Fig. 5c).240

2.5 Representations in anterior areas do not necessarily entail represen-241

tations in posterior areas242

We first tested for entailment in the AlexNet-based encoding model, because the demonstration243

of ordered representations in this model strongly suggests that it will also show entailment.244

We developed a test for entailment based upon transfer learning [Zamir et al., 2018]. First,245

we trained four independent GNet models (i.e., a GNet feature extractor plus a read-out head)246
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Figure 6: Alignment between layers and brain areas in task-optimized and brain-optimized net-

works (a) Partitioning of layers (L1, L2,...) into bottom and top halves for AlexNet and GNet. (b)

Partitioning of model output variance for bottom and top halves of the networks. Model predictions

are generated using either the bottom or top layers alone, and the prediction accuracy is calculated

(ρbottom, ρtop). These quantities are used to calculate the “specific” (f
specific
bottom ) and “unique” (f

unique
bottom)

fractions of variance explained by the bottom layers. Both measure the contribution of the bottom lay-

ers to predicting activity in each brain area. (c) Specific (light bars, blue curve) and unique variance

(solid bars, magenta curve) explained by the bottom layers for each brain area (x-axis) and all 8 subjects

(colored bars) for variants of the AlexNet and GNet-based encoding models. The error is estimated by

sampling with replacement for all estimates of voxelwise validation accuracy and the error displayed is

obtained via error propagation.

to predict the outputs (i.e., predicted brain activity) of the AlexNet model for V1, V2, V3247

and V4, respectively. In other words, we treated the outputs of the AlexNet model as if they248

were synthetic brain data, and used the GNet8r modeling approach to copy its representations249

into four distinct networks. The correlation between the outputs of these “reference” GNet250

models and the outputs of the original AlexNet model was near 1, indicating that we were able251

to (almost) losslessly copy the AlexNet model representations for each brain area using four252

independent, stand-alone GNet models. We denote this correlation ρrefv , where the subscript253

indexes voxels. If v ∈ Vi, this should be read as the “prediction accuracy of a model with a254

GNet feature extractor and a read-out head trained and tested on Vi”.255

Next, we tested if the representations in each of the reference GNet models were transfer-256

able. For each pair of brain areas (Vi, Vj), we froze the feature extractor of the reference model257

for Vj , and then trained a new read-out head to predict the outputs of the reference model for258
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Figure 7: Testing entailment of representations using transfer learning (a) Transfer learning pro-

cedure. Stand-alone GNet models consisting of a feature extractor (trapezoids) and a read-out head

(squares) are trained (gears) to predict brain activity (shown), or the outputs of another encoding model

(not shown) for V1–V4 independently. When trained on brain activity (as shown) the prediction accuracy

of these “reference” models is just ρGNet8r. The GNet feature extractors of these reference models are

used to construct transfer models. For each specific brain area (V4 in this example) the GNet is frozen,

and a new read-out head is trained for all areas, yielding prediction accuracy ρVj , where the superscript

indicates the brain area used to train the feature extractor. In this example j = 4 corresponding to area

V4. (b) To determine how well representations transfer across brain areas, we compute the prediction ac-

curacy shift (ρ
Vj
v − ρGNet8r

v , illustrated using an advantage/accuracy plot) for each voxel v. For each pair

of brain areas Vj , Vi we average these shifts over all voxels v ∈ Vi, constructing a prediction accuracy

shift matrix (at right is a hypothetical example). Rows of the matrix index the brain area used to train the

feature extractor (Vj); columns of the matrix index the brain area over which prediction accuracy shifts

are averaged (Vi). (c) For representations with entailment (α = 1), negative prediction accuracy shifts

(blue) accumulate only below the diagonal of the matrix. For representations without entailment (α = 0)

negative prediction accuracy shifts accumulate above and below the diagonal.

Vi. We then calculated the prediction accuracy of this new “transfer” model of Vi. We denote259

this prediction accuracy ρ
Vj

v∈Vi
. This should be read as the “prediction accuracy of a model with260

GNet feature extractor trained on Vj , and read-out head trained and tested on a voxel v in Vi”261

(Fig. 7a).262

Finally, we constructed a 4× 4 matrix of differences between the accuracy of reference and263

transfer models, averaged over all voxels (Fig. 7b). For each element (i, j) of the matrix we264

calculated:265
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∆j
i ≡ 〈ρVj

v − ρrefv 〉v∈Vi

This “prediction accuracy shift matrix” reveals how accurately a DNN that is trained to266

model the representations in one one brain area can model the representations in another brain267

area. According to our definition of entailment, the representations in networks trained to model268

a more posterior area should be a subset of the representations in a network trained to model a269

more anterior area, but not vice versa. Thus, if strict entailment holds, all diagonal and upper-270

diagonal elements of this matrix should be zero, while all lower-diagonal elements should be271

negative (Fig. 7c).272

As expected, the prediction accuracy shift matrix for the AlexNet model closely resembled273

the ideal of strict entailment (Fig. 8a). An index we devised to measure resemblance to this274

ideal had a value of α = 1.0± 0.2, where α = 1 indicates strict entailment, and α = 0 indicates275

no entailment (and α = −1 would indicate “reverse” entailment).276

We conducted an identical analysis on the outputs of the jointly trained GNet model because,277

like the AlexNet-based encoding model, the representations in GNet8j are ordered. Again, and278

as expected, the prediction accuracy shift matrix closely resembled the ideal for strict entail-279

ment, with α = 0.9± 0.2.280

In contrast, when this transfer learning analysis was applied to the outputs of the four GNet281

models trained independently (GNet8r), the prediction accuracy shift matrix most closely re-282

sembled the ideal outcome for non-entailment (α = 0.3 ± 0.1). Thus, we established that283

the GNet8r model learned representations that were neither ordered or entailed with respect to284

V1–V4.285

Finally, we applied the transfer learning analysis to the measured brain activity itself (Fig. 8b286

and c, black bars). In this case, ρref = ρGNet8r (as illustrated in Figure 7). To calculate prediction287

accuracy shifts, we took the GNet optimized to predict V4 brain activity (for instance), froze its288

parameters, and then re-trained read-out heads to predict brain activity in all areas (Fig. 7). We289

performed this transfer-learning procedure for feature extractors trained on every brain area.290

Interestingly, the resulting prediction accuracy shift matrix was most consistent with a non-291

entailed representation (α = 0.0 ± 0.1). It is important to note, however, that when applying292

transfer learning directly to measured brain activity (as opposed to the outputs of other models),293

noise can impact the results in potentially complicated ways that make interpretation difficult.294
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Figure 8: Transfer learning analysis for DNN-based encoding models and V1–V4 (a) Transfer

learning applied to model outputs. Prediction accuracy shift matrices resulting from the transfer learning

procedure applied to outputs of the AlexNet-gpf model, the GNet8j-fpf model, and the GNet8r-fpf model.

(b) Transfer learning applied to brain activity. Prediction accuracy shift matrix resulting when the transfer

learning procedure is applied to measured brain activity. All matrices are averaged across 8 subjects. (c)

Values of α estimated for individual subjects for the four test cases shown above.

3 Discussion295

We demonstrated that brain-optimized networks can be made to yield predictions of brain ac-296

tivity that are more accurate for most voxels than predictions read-out from task-optimized297

networks. We then used brain-optimized networks to test for evidence that hierarchical repre-298

sentations are necessary to achieve this level of prediction accuracy, focusing specifically on the299

intuitive properties of ordering and entailment. First, we showed that four GNets trained inde-300

pendently on V1–V4 (GNet8r) predicted brain activity as accurately as a single GNet trained301

jointly on V1–V4 (GNet8j), thus demonstrating that a training strategy biased in favor of hi-302

erarchical representations offered no advantage in prediction accuracy over a training strategy303

that was equally amenable to non-hierarchical representations (GNet8r). We then showed that304

in encoding models based on AlexNet and GNet8j, lower layers contributed most strongly to305

posterior areas (ordering), and representations optimized for anterior areas were more readily306
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transferable to posterior areas than the other way around (entailment). In contrast, for GNet8r307

lower layers contributed equally to posterior and anterior areas, and optimized representations308

showed the same prediction accuracy shift when transferred to anterior or posterior areas.309

These results have important implications for the ongoing debate about how literally DNNs310

can be interpreted as mechanistic models of the primate visual system [Kriegeskorte, 2015, Kay,311

2018, Richards et al., 2019, Lindsay, 2021, Cao and Yamins, 2021]. Clearly, the connections312

between layers in the kind of feed-forward DNNs we have studied here cannot be interpreted as313

literal stand-ins for anatomical connections in the brain; the best such networks can do is model314

stimulus-dependent representations encoded in brain activity patterns that are structured by far315

more complicated recurrent circuits. However, our work has allowed us to interrogate a key316

assumption in many models and theories of primate vision: that visual brain areas, like layers317

in a DNN, are related through hierarchical composition of a fixed computation.318

Taken literally, the assumption of hierarchical composition implies that each visual brain319

area computes a fixed, or “canonical” computation on their inputs. As in a DNN, the outputs of320

this computation are sent to the brain area above and the inputs to it are received from the brain321

area below. Although the canonical computation may not be identical across areas, it has a fixed322

form: across areas the computation performed varies only up to a set of parameters values θ. The323

assumption of hierarchical composition also implies that the canonical computation in the brain324

is “simple”, in the sense that variation in representations across V1–V4 cannot be explained by325

variation in θ in one layer alone. Instead, variation in representations across V1–V4 can only326

be explained by varying compositional depth.327

We did not directly test these implications, but we note that it is currently unclear if any of328

them are true. Efforts to articulate a canonical computation in cortical circuits has been ongoing329

since the early descriptions of cortical organization [Mountcastle, 1998, Hubel and Wiesel,330

1977], and it is still not known if this concept will prove to be essential for understanding331

cortical function. It is also not clear if any putative canonical computation in the brain will332

turn out to be “simple” in the sense defined above. Recent studies suggest that the input/output333

mapping of single cortical neurons may be quite complex [Beniaguev et al., 2021, Poirazi et al.,334

2003, Gidon et al., 2020].335

We were, however, able to directly test two additional and no-less critical implications of hi-336

erarchical composition: that accurate models of V1–V4 should exhibit ordering and entailment.337

Ordering arises directly from the assumption that variance in brain representations across areas338

can only be explained by varying compositional depth. Entailment arises as a consequence of339
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composition and implies that one cannot build a DNN model of V4 without also building a340

DNN model of V1–V3, and so on.341

Our strategy for testing these implications of hierarchical composition was to demonstrate342

the existence of a DNN that predicts as accurately as any other DNN-based encoding model, us-343

ing the same nonlinearities and architecture, but does not show ordering or entailment. We used344

brain-optimization to construct such a counterexample, GNet8r. The fact that GNet8r exhibits345

neither ordering nor entailment indicates that these properties are not essential for obtaining ac-346

curate predictions of brain activity. It follows that the ordering of V1–V4 with respect to layers347

in many task-optimized networks is an outcome that is contingent on specific model-building348

choices (e.g., selection of training samples, task-optimization vs. brain-optimization, and net-349

work constraints on width and expressivity). It further follows that the depth of the network350

layer to which a brain area most closely aligns is not a reliable proxy for the “complexity” of351

representations in these brain areas. At best, the network layer most closely aligned with a352

single brain area is an upper bound on the complexity of representations in the brain area, and353

our work shows that the upper bound estimated from any single DNN-based encoding model354

can be quite loose. Our results thus encourage caution in the interpretation of DNNs as mech-355

anistic models of the visual system [Kay, 2018]. Although DNNs will continue to be useful356

tools for inspiring and exploring brain models, it is currently unclear what aspects of DNNs are357

specifically brain-like.358

Why do networks that do not show ordering and entailment yield the same prediction accu-359

racy as those that do? One possible explanation may have to do with the difficulty of accounting360

for all of the explainable variance in brain activity. The network-based models we constructed361

do not account for between 35 to 55% of the explainable variance in V1–V4 (Fig. 3). Thus,362

networks that vary with respect to ordering and entailment may simply account for different363

portions of the variance in brain activity. Another possibility is that DNNs are, as a family of364

models, simply degenerate with respect to many of the properties that visual neuroscientists365

currently consider interesting and important. Indeed, it is increasingly appreciated that DNNs366

with widely varying architectures [Storrs et al., 2021, Xu and Vaziri-Pashkam, 2021] afford367

similar levels of performance in predicting brain activity. Relatedly, even though early results368

suggested that supervised training was required for accurate correspondence between networks369

and brain activity [Khaligh-Razavi and Kriegeskorte, 2014], recent advances have shown that370

unsupervised models can explain brain activity just as well [Zhuang et al., 2021].371

Finally, our results have an interesting implication for how to understand the function of372
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V1–V4. In a strict hierarchical interpretation of V1–V4, each area functions effectively as a373

pre-processing unit that participates in the sequential construction of a representation expressed374

in some more anterior area. Under this interpretation, if the more anterior brain areas fed by375

V1–V4 were damaged, V1–V4 would no longer have any functional role. Furthermore, if repre-376

sentations in an earlier area were changed (e.g., via a perceptual learning task), representations377

in all anterior areas would presumably have to change as well. Distributing representational378

labor across the layers of a strict hierarchy is understood to be the essential for the successes379

of deep neural networks trained with stochastic gradient descent, as in many cases, it permits380

representing complex relations with less neural units [Bahri et al., 2020]. However, this form of381

labor distribution strikes us as a precarious and inefficient arrangement for biological networks.382

In contrast, if V1–V4 was not a strict hierarchy, each area could in principle encode representa-383

tions that are optimized for dedicated, independent tasks, or could encode representations that384

are routinely combined in non-hierarchical ways to solve novel tasks as they emerge.385

We interpret this work as a corrective to a tendency to treat ”hierarchy” as the defining fea-386

ture of primate visual organization. Our interpretation is consistent with emerging evidence for387

non-hierarchical representation in other sensory systems [Hamilton et al., 2021], motivates the388

development of networks with multi-branch architectures [Bakhtiari et al., 2021] that model par-389

allel visual streams with distinct functions [Ungerleider, 1982, Schiller and Logothetis, 1990,390

Pitcher and Ungerleider, 2021], and underscores the need for computational models that treat391

hierarchy as an emergent property [Konkle, 2021] rather than a requirement for successful vi-392

sion.393

4 Methods394

4.1 Dataset acquisition in brief395

All models were trained on the Natural Scenes Dataset (NSD). Complete details on NSD are396

provided elsewhere [Allen et al., 2022]. Briefly, the NSD dataset consists of between 22K and397

30K fMRI image-responses per subject (8 subjects). Images were sampled from the Common398

Objects in Context (COCO) database [Lin et al., 2015] and displayed at 8.4° × 8.4°. The399

experimental design specified that each of the eight participants would view 10K distinct images400

(3 presentations each), and a special subset of 1K images would be shared across participants401

(8 subjects × 9K unique images + 1K shared images = 73K unique images); however, not all402

participants completed the full acquisition, so the final numbers are somewhat smaller. All403
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fMRI data in the NSD were collected at ultra-high field (7T) using a whole-brain, 1.8-mm,404

1.6-s, gradient-echo, echo-planar imaging (EPI) pulse sequence.405

The image-responses are expressed in terms of betas obtained from a general linear model406

(GLM) analysis. For this paper, we used GLM results provided with the NSD data release,407

specifically, the 1.8-mm volume preparation of the data and version 3 of the GLM betas (be-408

tas fithrf GLMdenoise RR). This GLM version involves estimating the hemodynamic response409

function for each voxel, using the GLMdenoise technique for denoising [Kay et al., 2013a], and410

using ridge regression to improve the estimation of single-trial betas. Betas indicate BOLD411

response amplitudes evoked by each stimulus trial relative to the baseline signal level present412

during the absence of a stimulus (“gray screen”). The betas for each voxel in each session were413

separately z-scored and all sessions were concatenated.414

4.2 NSD synthetic experiment415

In addition to the core NSD experiment, the 8 subjects also participated in an additional 7T416

scanning session termed ‘nsdsynthetic’. This session involved presentation of a variety of arti-417

ficial stimuli. Procedures for data acquisition, pre-processing, and GLM analysis were the same418

as for the NSD core. Stimuli consisted of a set of 284 images that can be conceptually grouped419

as follows (the number of distinct images in each group is indicated in parentheses): white420

noise (4), white noise with a large block size (4), pink noise (4), natural scenes (4), upside-421

down versions of these scenes (4), Mooney versions of these scenes (4), line-drawing versions422

of these scenes (4), contrast-modulated natural scenes (4 scenes × 5 contrast levels (100%,423

50%, 10%, 6%, 4%) = 20), phase-coherence-modulated natural scenes (4 scenes × 4 coherence424

levels (75%, 50%, 25%, 0%) = 16), single words (4 words × 5 positions × 2 word lengths425

= 40), spiral gratings varying in orientation and spatial frequency (112), and chromatic pink426

noise varying in hue (68). Images typically occupied 8.4° × 8.4° (same as NSD core), though427

a few of the word stimuli extended beyond this extent. Examples of the stimuli are provided in428

Supplementary Figure 1.429

Stimuli were presented in pseudorandom order using a 2-s ON/2-s OFF trial structure. Stim-430

uli were shown against a gray background with an RGB value of (126, 110, 108), and were431

delivered using a linear color lookup table. During each run, a small semi-transparent gray fix-432

ation dot with a black border (0.2°× 0.2°, 50% opacity) was present at the center of the stimuli.433

The luminance of the dot changed every 1.4 s. In alternating runs, while maintaining central434

fixation, subjects either performed a fixation task (report direction of the luminance change of435
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the fixation dot) or a one-back task (report whether the current image is the same as the previ-436

ous image). A total of 8 runs (each with duration 428 s) were collected, yielding a total of 744437

stimulus trials over the course of the scan session. For the analyses performed in this paper,438

we modeled each stimulus trial (ignoring the variations in task performed by the subject) and439

considered only the central 8.4°square region (matching NSD core).440

4.3 Identification of visual brain areas V1–V4441

Human visual brain areas were identified using a separate population receptive field (pRF)442

retinotopic mapping experiment, as documented in [Allen et al., 2022]. Retinotopic areas (more443

generally described as ‘regions of interest’ (ROIs)) were manually drawn based on results of the444

pRF experiment. These ROIs consist of V1v, V1d, V2v, V2d, V3v, V3d, and V4, and extend445

from the fovea (0° eccentricity) to peripheral locations that exhibit sensible responses in the446

pRF experiment given the limited stimulus size (the diameter of the pRF mapping stimulus447

was 8.4°). The total number of voxels (cumulative over subjects) in each ROI was 9041, 8818,448

7763 and 3975 for V1, V2, V3 and V4 respectively, totaling 29597 voxels, with one subject449

contributing as few as 3027 voxels, and another as many as 4627 voxels.450

4.4 General encoding model architecture451

Encoding models based upon both the task-optimized and brain-optimized networks consisted452

of a feature extractor (a DNN) and multiple read-out heads as detailed in the following sections453

and described in Allen et al. [2022].454

4.4.1 Feature extractor455

Feature extractors for all encoding models are sequences of transformations456

eL(x) = ηL ◦ eL−1(x)

operating on x, here an input image, where ηL is the transformation that operates at layer457

L on the output of the subsequence eL−1(x). eL−1(x) and ηL may themselves denote arbitrary458

sequences of transformations. Our encoding models leverage the multiple intermediate rep-459

resentations el(x), which are feature maps whose elements are denoted by [el(x)]kji, where k460

indexes features and (i, j) are pixel coordinates in each feature map.461
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4.4.2 Read-out heads462

Read-out heads convert features output by the feature extractor into predictions of brain activity,463

r̄v, for each voxel v. These predictions can be expressed as a linearized model464

r̄v(x) = bv +
∑

k

wvkfout(Φk(x))

where465

Φk(x) =
∑

i,j

fin([e1(x)]k1ji)g
1
vji ⊕ · · ·

∑

i,j

fin([eL(x)]kLji)g
L
vji

and where fin(·) and fout(·) are typically some compressive nonlinearity and the sum ⊕ de-466

notes the concatenation along the feature axis k = (k1, . . . kL). g
l
vji is the value of the “pooling467

field” for voxel v applied at feature maps in layer l at pixel (i, j). Pooling fields generalize468

the population receptive field [Dumoulin and Wandell, 2008] to arbitrary feature maps. All469

pooling field elements are positive-valued and normalized such that their sum equals to unity.470

Figure 2 illustrates the two pooling field variants used in our work. Gaussian pooling fields471

(gpf) are fully described by three parameters that specify the position and size of a symmetric472

2D Gaussian function. For “flexible” pooling fields (fpf) each pixel value of the pooling field is473

an independent and learnable parameter.474

4.5 AlexNet encoding model475

4.5.1 Feature extractor476

For the task-optimized model featured in all figures of the main text, the feature extractor was477

an AlexNet deep convolutional neural network trained to classify 1000 object categories of the478

ImageNet database Krizhevsky et al. [2012]. We used the pre-trained weights from Torchvi-479

sion’s model zoo (https://pytorch.org/vision/stable/models.html). Not all feature maps were480

used in the encoding. At each layer specified in Supplementary Table 3, if a layer had more481

than 512 feature maps, we selected the 512 feature maps with the most variance with respect482

to the COCO images in our experiment. The final model thus exposed a total of 2688 feature483

maps.484
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4.5.2 Read-out head485

We constructed two variants of the AlexNet model: one with a Gaussian pooling field (AlexNet-486

gpf), and one with a flexible pooling field (AlexNet-fpf). To construct AlexNet-fpf models,487

feature maps with the same spatial resolution were concatenated and a distinct spatial pool-488

ing field was learned for each spatial resolution. Thus, for AlexNet-fpf models the read-out489

heads included multiple pooling fields. For both model variants, feature maps from each layer490

throughout the depth of the AlexNet feature extractor were input to the read-out head. For491

details see Supplementary Table 3.492

4.5.3 Training493

For AlexNet models the parameters of the feature extractor were pre-trained, as described494

above. Thus, only the parameters of the read-out heads were optimized.495

For AlexNet-gpf models the three pooling field parameters are learned via grid search over496

a list of 2680 candidates tiling the visual field with 8 log-spaced sizes varying from 3 to 40%497

of stimulus size and spaced roughly in proportion to their sizes (such that each size tiles the498

visual field fully). For each candidate receptive field, the tuning weights are learned via ridge499

regression with the ridge parameter selected to maximize validation accuracy on a held-out 10%500

set of the training set.501

For AlexNet-fpf models the training of the read-out heads was performed via gradient de-502

scent with the ADAM optimizer (lr = 10−3, β1 = 0.9, β2 = 0.999).503

4.6 GNet encoding model504

4.6.1 Feature extractor505

We refer to the feature extractor of the brain-optimized network as a “GNet”. The GNet feature506

extractor consists of a pre-filtering network (e1(x)) followed by a deep feature extractor.507

The input image resolution of the pre-filtering network is 227× 227 and outputs an embed-508

ding of 192 features at a 27 × 27 spatial resolution. This part of the network is identical to the509

first two layers AlexNet.510

The deep feature extractor is a sequence of blocks of layers. Each block consists of a batch511

normalization layer followed by a dropout layer and a convolutional layer that preserves feature512

map resolution. The use of batch normalization followed by dropout in each block has been513

characterized as performing input whitening and decorrelation Chen et al. [2019]. After three514
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blocks, the resolution of the feature maps is reduced from 25× 25 to 13× 13 by a max pooling515

layer. The GNet sequence of layers was designed so that each pixel in the final convolutional516

layer effectively pools over the whole input image, whereas pixels in lower layers only integrate517

over more local regions of the input image.518

4.6.2 Read-out head519

For the GNet model only flexible pooling fields were used due to training requirement. As520

with the AlexNet model, feature maps with the same spatial resolution were concatenated and521

a single spatial pooling field was learned for each spatial resolution. Thus, the read-out heads522

contained multiple pooling fields.523

Read-out heads employed a fully differentiable nonlinearity:524

f(x) = tanh(x)log(1 + |x|), (1)

that was applied either before or after spatial pooling, or both. This nonlinearity has several525

interesting and desirable characteristics: 1) it has an expansive and a compressive regime, 2) it526

is differentiable everywhere, with no discontinuity and 3) it does not plateau over a large range.527

The final GNet model benefited from using this nonlinearity before and after spatial pooling528

(i.e. as fin and fout).529

During the structure and hyperparameter selection process for GNet, we noticed that the530

best extant GNet model was obtained when some feature maps in lower layers were not directly531

connected to the read-out heads, as indicated on Supplementary Table 3. Note, however, we find532

that the results of analyses reported here are unchanged when using fully connected read-out533

heads.534

4.6.3 Training535

The pre-filtering network was taken from a task-optimized AlexNet. Its parameters were kept536

fixed during brain-optimization. While it was possible to optimize the pre-filtering network537

parameters along with the deep extractor parameters from a random initial condition, the results538

using a pre-trained filtering network were slightly better for all model variants.539

All parameters of the deep feature extractor and the read-out heads are learned jointly via540

gradient descent with the ADAM optimizer (lr = 10−3, β1 = 0.9, β2 = 0.999). The training541
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steps of the deep feature extractor and the read-out heads are alternated to promote stability of542

the training procedure.543

To account for the noise profile and the discrepancies in voxel predictability, we used the544

following L2-norm weighted loss function545

L(r, r̄(x)) =

∑
v∈V bρ2vc(rv − r̄v(x))

2

∑
v∈V bρ2vc

,

where bρ2vc is the batchwise Pearson-like correlation of every voxel with a floor of 0.1 to al-546

ways permit some contribution of the yet-to-be-predicted voxels (i.e. those with low correlation547

at the onset of training) in the voxel ensemble V . If the model can be trained voxelwise, then548

this weighting could be ignored but this could affect the learning dynamics (learning rates).549

Unlike a typical deep network optimization with gradient descent, where all parameters550

subserve the global objective, this problem involves shared parameters (feature extractor) and551

voxelwise parameters (read-out heads). A global early stopping criterion may not be optimal552

for all voxels, since overfitting would be detected when the average loss starts to increase. On553

the other hand, voxelwise loss may increase before the optimal point due to the dependence on554

the changing deep feature extractor. This remains an outstanding problem. In spite of the afore-555

mentioned issues, relative successes were achieved by using a global early stopping criterion556

with the parameters clamped to their best value according to the validation accuracy of a 10%557

holdout set of the training set.558

A second challenge emerged from the fact that each read-out head only has access to the559

brain responses associated with the subject-wise image samples, while the feature extractor560

leverages all available images. We addressed this issue by interleaving samples from each561

subject. While typical training consists of randomly sampling a minibatch from the training562

set, we first selected a subject at random and sampled a minibatch from its set of training563

images and brain responses. The read-out heads follow the matching brain response voxels564

and changes from batch to batch while the shared feature extractor is trained with gradients565

backpropagated from the current read-out heads. At the end of each epoch, every sample from566

every subject has been “seen” exactly once. This procedure yielded distinct improvements in567

model accuracy relative to subject-wise training, i.e. training a feature extractor network for568

each subject separately (as in Allen et al. [2022]).569

In some cases, we also performed a second and third phase of training (which we refer to as570

“fine tuning”, GNet8jft-fpf in Fig. 3e). Each subsequent phase restarts training from the optimal571

weight values from the previous phase. The second phase follows the same procedure as the first572
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phase but all the read-out heads parameters were fixed and only the feature extractor parameters573

were trained (including those of the pre-filtering network). This second phase accounted for574

most of the improvement over the first phase. A third phase followed again the same objective in575

which we trained only the parameters of the read-out heads, while the feature extractor remained576

constant.577

4.7 Gabor encoding model578

4.7.1 Feature extractor579

The Gabor model feature extractor consists of a single fixed set of convolutions: 12 Gabor580

wavelets with spatial frequency log-spaced between 3 and 72 cyc/stimulus at 6 evenly-spaced581

orientations between 0 and π.582

4.7.2 Read-out head583

We used a read-out head with a Gaussian pooling field for the Gabor model. Following previous584

work [St-Yves and Naselaris, 2018], we used a compressive nonlinearity fin(x) = log(1 + |x|)585

while fout(x) = x.586

4.7.3 Training587

Gabor models were fit using grid search over the pooling field parameters (same candidate grid588

as for the AlexNet-gpf model), followed by ridge regression to determine the feature weights.589

4.8 Cross-validated prediction accuracy590

Prediction accuracy is calculated using the subset of trials that include images displayed to all591

subjects (for most subjects, 1000 images with 3 repeats each). These trials were not included in592

the training data, and were not used for hyperparameter selection (see below), ensuring proper593

cross-validation. Prediction accuracy is the Pearson correlation between predicted brain ac-594

tivity and measured brain activity on a single-trial basis. Prediction accuracy uncertainty was595

estimated by sampling with replacement the predicted and actual brain activities for each voxel.596
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4.9 Hyperparameter selection597

The process of hyperparameter selection for the GNet models (e.g., pooling map resolutions,598

number of layers, nonlinearities, forms of regularization) was based on the prediction accuracy599

measured on a fixed, held-out model selection set consisting of 10% of each subject’s training600

data. The holdout prediction accuracy was evaluated, for each selection of hyperparameter601

values, at the early stopping point (i.e. at the minimum of the holdout loss during training of602

that model). The GNet model was refined on this basis using 4 subjects, and the best extant603

model was used to perform the final analysis with all 8 subjects.604

4.10 Receptive field modeling605

Receptive fields (Fig. 4) were derived directly from the spatial pooling fields of the read-out606

head for each voxel. For some voxels, the flexible pooling fields do not have a clearly localized607

structure. However, for the vast majority of voxels the trained flexible spatial pooling fields608

extend smoothly from a clearly identifiable center. Thus, we characterized these maps by fitting609

an elliptical 2D gaussian to the parameters (the pixels in the map) of the flexible spatial pooling610

field. For each voxel, the size of its receptive field is defined as
√
πab, where a and b are one611

std. dev. along the major and minor axis of the elliptical gaussian, and its eccentricity is the612

Euclidean distance from the display center. In the plot of Figure 4d both measures are expressed613

as percent of the display size (i.e. 100% ≡ 8.4°).614

4.11 Layer-wise contributions to prediction accuracy615

To test for alignment between layer depth and brain areas we calculated the prediction accu-616

racy of network-based encoding models when layers from the bottom or top half of the feature617

extractor network were masked. Specifically, let ρbottom be the prediction accuracy obtained618

from an encoding model in which feature weights w from layers in the top half of the feature619

extractor network have been zeroed-out (refer to Figure 6a for the designation of bottom and620

top layers in the AlexNet and GNet feature extractors, respectively). Separately, we also calcu-621

late the prediction accuracy ρtop obtained by zeroing-out the feature weights that couple to the622

bottom layers. Both of these measures of prediction accuracy are necessarily smaller than the623

total prediction accuracy of the model ρ obtained when all feature weights are used (see Venn624

diagram in Figure 6b).625

To assess ordering for a given DNN, we calculated the specific and unique contributions of626
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the bottom layers to predicting brain activity. Given that total variance varies a great deal across627

voxels, we express the specific and unique contributions of the bottom layers for each voxel in628

relative terms:629

f
specific
bottom =

ρ2bottom
ρ2

and f
unique
bottom =

ρ2 − ρ2top

ρ2
(2)

This decomposition of prediction accuracy into specific and unique contributions is per-630

formed for individual voxels. We then average the specific and unique contributions over all631

voxels in a single brain area that have validation accuracy that exceeded ρ = 0.055 (p < 0.01,632

prediction randomization trial). We plot these values along the presumed hierarchy of brain633

areas in Figure 6c. We verified that the results were robust to the precise choice of threshold.634

Note that values for the specific and unique contribution of the top layer are obtained by swap-635

ping “bottom” and “top” subscripts in the above formulas, and can be read-off by eye from the636

curves in Figure 6c.637

4.12 Transfer learning experiments638

In transfer learning experiments, we test how well representations in a GNet feature extractor639

optimized for one brain area can generalize to another brain area. To test this, we first train a640

GNet feature extractor and read-out head to predict brain activity (or the outputs of another en-641

coding model) for all voxels in a single brain area i. We then freeze the parameters of the trained642

GNet feature extractor for this area-specific encoding model (we call it the “reference model”643

below), but train new read-out heads to predict brain activity in all brain areas. We then com-644

pare the cross-validated prediction accuracy obtained when the feature extractor and read-out645

are trained on the same brain area (the reference model) to prediction accuracy obtained when646

the feature extractor and read-out are trained on different brain areas (the “transfer” model).647

Let i, j ∈ (1, 2, 3, 4) index brain areas, and let ρrefv be the cross-validated prediction accuracy648

of a reference model for voxel v. For the reference model, the GNet feature extractor and the649

read-out head are trained simultaneously on the brain area that v belongs to and then used to650

predict activity on held-out trials for that area. Let ρ
Vj
v be the cross-validated prediction accuracy651

of a transfer model. For the transfer model, the feature extractor is trained on area Vj and then652

frozen while a read-out head is subsequently trained on the brain area to which v belongs. The653

transfer model is then used to predict activity on held-out trials in the brain area to which v654
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belongs. We define the “prediction accuracy shift” ∆j
i as:655

∆j
i ≡ 〈ρVj

v − ρrefv 〉v∈Vi
(3)

where 〈·〉v∈V i denotes averaging over all voxels in brain area V i. In Figures 7 and 8 we656

show prediction accuracy shift matrices consisting of ∆j
i for all pairs of brain areas Vi, Vj . Rows657

(labeled “feature extractor trained on”) and columns (labeled “model tested on”) correspond to658

the superscript and subscript of ∆j
i , respectively. For entries along the diagonal of this matrix,659

∆i
i measures the prediction accuracy shift induced by first training the feature extractor and660

read-out head simultaneously on area Vi (i.e., the reference model) and then fixing the feature661

extractor and re-training the read-out head only on area i (i.e., the transfer model). The subtle662

difference between simultaneous and serial training of the model components typically induces663

a small positive prediction accuracy shift.664

In Figure 7 we illustrate the transfer of a GNet feature extractor optimized for V4 to V1,V2665

and V3. The results of this transfer learning operation populate the top row, ∆4
i , of the prediction666

accuracy shift matrix.667

In Figure 8a, the three prediction accuracy shift matrices on the left labeled “AlexNet-gpf”,668

“GNet8j-fpf” and “GNet8r-fpf” were constructed by applying the transfer learning procedure669

just described to the outputs of the AlexNet-gpf, GNet8j-fpf and GNet8r-fpf models, respec-670

tively. In other words, instead of using brain activity to train the reference and transfer models,671

we use the outputs of the indicated encoding models to train them (by “outputs”, we specifically672

mean the activity predictions of the encoding model for each voxel). This allows us to identify673

the models that learn hierarchical representations during the course of their training. For the674

matrix on the far right labeled “Measured brain activity”, the transfer learning procedure was675

applied directly to measured brain activity. Note that in this special case, ρrefv = ρGNet8r
v for all676

v.677

We characterized the structure of the prediction accuracy shift matrices by calculating a678

scalar value, α, that captures the normalized difference between the upper and lower triangular679

components:680

α =
a+ − a−

|a+|+ |a−|
where a+ and a− are the slopes of the upper and lower triangular entries of the matrix,681

respectively. To calculate these slopes, we expressed the respective matrix entries as a function682
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of their taxicab distance from the matrix diagonal, the off-diagonal entries having a distance of683

1 and so on. In cases where the matrix is characterized by a salient lower triangular (negative684

slope) and a flat (zero slope) upper triangular, α would be close to 1. On the other hand, if the685

matrix is symmetric, α would be zero. The error in α is estimated via error propagation of the686

estimate of the errors on the slopes.687
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