

Matrix viscoelasticity controls spatio-temporal tissue organization

Alberto Elosegui-Artola^{1,2,3,#}, Anupam Gupta^{1,#}, Alexander J. Najibi^{1,2}, Bo Ri Seo^{1,2}, Ryan Garry¹, Max Darnell^{1,2}, Wei Gu⁴, Qiao Zhou⁴, David A. Weitz^{1,5}, L. Mahadevan^{1,5,6*}, David J. Mooney^{1,2*}

1.- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA

2.- Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, USA

3.- Institute for Bioengineering of Catalonia, Barcelona, Spain.

4.- Weill Cornell Medicine, Cornell University, NY, USA

5.- Department of Physics, Harvard University, Cambridge, United States, MA, USA

6.- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA

Equal contributions

* Corresponding authors

1 The spatio-temporal patterning of multicellular tissues is driven by the collective dynamics
2 of cell proliferation and active movement. These processes are mediated by the
3 extracellular matrix environment via a combination of biomolecular and physical cues.
4 Here we show that the passive viscoelastic properties of the matrix that encapsulate a
5 proliferating ball of cells (e.g. a developing organoid) play a critical role in guiding tissue
6 organization in space and time. By varying the viscoelasticity of well-defined model
7 matrices, we show how a spheroidal tissue of breast epithelial cells breaks symmetry and
8 forms finger-like protrusions that invade the matrix. A computational model allows us to
9 recapitulate these observations and leads to a phase diagram that demarcates the regions
10 of morphological stability and instability as a function of matrix viscoelasticity, tissue
11 viscosity, cell motility and cell division rate. Experiments that use biomolecular
12 manipulations to independently vary these parameters confirm our predictions. To further
13 test our theory, we also study the self-organization of an *in-vitro* intestinal organoid and
14 show that the morphological changes of this system also fits within our paradigm.
15 Altogether, our studies demonstrate the role of stress relaxation mechanisms in
16 determining the dynamics of tissue growth and the symmetry breaking instabilities
17 associated with branching, a fundamental process in morphogenesis and oncogenesis,
18 and suggest ways of controlling tissue form using the extracellular matrix.

19

20 **Introduction** The patterning of tissues in space and time is relevant for many fundamental
21 biological processes (e.g., embryonic development, organogenesis, oncogenesis)¹⁻⁵, and is
22 driven by cell number, size, shape and position changes and leads to symmetry breaking
23 instabilities such as buckling, folding, tearing, budding or branching⁶⁻⁹. At a molecular level, the
24 spatio-temporal organization of tissues is regulated by intrinsic gene expression¹⁰, and a variety
25 of environmental chemical and mechanical cues¹¹. While the importance of chemical morphogen

26 gradients in development has long been appreciated^{12,13}, it is increasingly clear that diverse
27 mechanical cues¹⁴⁻¹⁹ in the tissue and the surrounding 3D extracellular matrix (ECM) also regulate
28 tissue organization and morphogenesis. In particular, the dynamic interaction between cell
29 behavior and the matrix, with its time-varying mechanical properties is increasingly thought to be
30 an important player in morphogenesis²⁰⁻²². Thus, tissue organization is expected to be impacted
31 by the viscoelastic properties of the matrix²³ whose behaviors vary from an elastic solid-like
32 response to a liquid-like viscous response, with stress relaxation time scales that range from a
33 second to a few hundred seconds^{20,24}. Here we report an experimental and computational study
34 of the role of the viscoelasticity of well-defined model matrices in regulating tissue organization in
35 two commonly used *in-vitro* models of development and pathology, breast epithelial growth²⁵ and
36 intestinal organoid development¹. These studies demonstrate the role of stress relaxation in
37 determining the dynamics of tissue growth and the symmetry breaking instabilities associated
38 with branching, a fundamental process in morphogenesis and oncogenesis.

39 **Results**

40 **Matrix viscoelasticity regulates breast epithelial tissue organization**

41 We first studied the importance of matrix viscoelasticity in the organization and growth of
42 mammary tissues from spheroids of MCF10A non-malignant breast epithelial cells. Hydrogels
43 formed from the natural polysaccharide alginate were chosen as the model matrix system for
44 these studies, as mammalian cells do not express enzymes to degrade these polymers, allowing
45 effects related to matrix degradation to be eliminated²⁶. The relative viscoelastic properties of
46 these gels can be readily altered independently of the stiffness, pore size and adhesive ligands²⁴.
47 This was achieved here by changing the molecular weight of alginate and the calcium crosslinker
48 density in concert (Fig. 1a) to create gel matrices of constant elastic moduli ($G' \sim 5000 \text{ Pa}$) (Fig. 1b),
49 but varying stress relaxation times ($\tau_m \epsilon [30 - 350 \text{ s}]$) to achieve matrices that are more elastic

50 ($\tau_m \sim 350s$), or more viscoelastic ($\tau_m \sim 30s$) (Fig. 1c). As alginate does not present intrinsic integrin
51 adhesion ligands, Arg-Gly-Asp (RGD) containing peptides were conjugated to the polymer
52 backbone to provide a constant level of cell binding sites in all gels²⁷. MCF10A breast epithelial
53 cells, widely used to study mammary development and oncogenesis²⁵, were formed into
54 spheroids composed of ~2000 cells and encapsulated in elastic and viscoelastic hydrogels.

55 Over time, tissues in elastic matrices grew slowly and were morphologically stable; they increased
56 in size while maintaining their spherical symmetry. However, tissues in viscoelastic matrices grew
57 much faster. As they increased in size, they exhibited a morphological instability of the nominally
58 smooth tissue-matrix interface; eventually the tissues broke spherical symmetry, formed
59 branches, and invaded the matrix leading to a significant increase in the surface area and a
60 decrease in circularity (Fig.1d-f, Extended Data Fig.1a and Video S1). This is similar to the
61 behavior seen in many biological processes that demonstrate symmetry breaking accompanied
62 by epithelial to mesenchymal transitions (EMT)²⁸. In agreement with that precedent, cells in
63 viscoelastic matrices demonstrated an EMT, as vimentin was expressed in branches (Fig.1g) and
64 cytokeratin 14 expression was low in cells in spheroids in viscoelastic matrices (Fig.1h,i). To
65 determine whether viscoelasticity enhanced tissue growth in-vivo, MDA-MB-231 malignant breast
66 epithelial cells encapsulated either in viscoelastic or elastic matrices were injected in NOD-SCID
67 mice. Tissues grew significantly more rapidly in viscoelastic rather than in elastic matrices (Fig.1j
68 and Extended Data Fig.2). As all observed differences in-vitro and in-vivo resulted from a change
69 in the mechanical properties of the matrix, our studies next focused on two major
70 mechanosensitive hubs in cells, focal adhesion kinase (FAK) and the mechanosensitive
71 transcriptional regulator Yes-Associated protein (YAP)²⁹, both with established roles in MCF10A
72 EMT^{2,30,31}. Viscoelastic, but not elastic matrices promoted the expression of phosphorylated pFAK
73 adhesions (Fig.1k), while YAP remained in the cytoplasm in cells in elastic matrices, but
74 translocated to the nucleus in cells in branches in viscoelastic matrices (Fig.1l,m). When FAK was

75 inhibited (Extended Data Fig.1b,c), breast epithelium was morphologically stable, confirming the
76 importance of mechanotransduction.

77 Our experiments show that more elastic matrices ($\tau_m \sim 350s$), resist tissue invasion, whereas
78 viscoelastic matrices ($\tau_m \sim 30s$), are easily invaded by the motile and proliferating cells. Similarly,
79 our observations show that tissues which are highly proliferative lead to an increase in cell influx
80 and likely generate a mechanical pressure that drives the morphological instability of the tissue-
81 matrix interface. These observations of fingering morphologies in active biological systems have
82 physical analogs that have been studied for decades in simple and complex fluids^{32,33}. In physical
83 systems, morphological instabilities emerge when driven by pressure gradients (of the right sign)
84 at an interface between contrasting either elastic or viscous properties. More recently, these
85 physical instabilities have been revisited in active matter systems³⁴⁻³⁶. Our experimental
86 observations suggest that the combination of biological activity due to cell migration and/or
87 proliferative pressure at the tissue-matrix interface may lead to a similar symmetry breaking
88 instability exemplified by fingering or branching.

89 **Computational model coupling cell motility, proliferative dynamics and matrix**
90 **viscoelasticity recapitulates tissue organization**

91 To understand how the conditions for tissue morphological instability emerge, we consider a
92 minimal theoretical model of the system (Fig.2a and Extended Data Fig.3) starting from a two-
93 phase system of active proliferating cells growing inside a confining passive viscoelastic matrix.
94 We model the individual cells in the tissue as overdamped soft elastic spheres of size a in a liquid
95 of effective viscosity μ_t , which move under the influence of three forces: (i) the interaction
96 between cells, with (a) a short-range repulsion to prevent overlap and (b) mid-range (two cell-
97 length) attraction with the depth in the attractive well ϵ (see SI for details) which together lead to
98 an active proliferative pressure driven by cell-division, (ii) the repulsion between the cell and the

99 surrounding viscoelastic matrix (modeled as a set of similar spheres of size a in a liquid of effective
100 viscosity μ_m interacting with each other via (a) an attractive potential -equivalent to storage
101 modulus G' - and (b) a short-range repulsion to prevent overlap), and (iii) the activity of cells that
102 are assumed to move randomly relative to each other in the bulk, characterized by a motility
103 parameter M (or an effective temperature)^{37,38}. Additionally, in the model, the cells at the interface
104 are assumed to have the ability to apply forces on the surrounding matrix^{39,40}. The system evolves
105 as cells proliferate and/or migrate actively and the matrix responds passively to the accompanying
106 forces. In particular, the bonds between the spheres in the matrix as well as those between the
107 cells and the matrix can break when strained beyond a prescribed threshold, allowing new bonds
108 to form; this is most likely to happen at the interface between the tissue and the matrix, and allows
109 the boundary between the two phases to evolve dynamically.

110

111 The parameters in the model allow us to define three dimensionless variables to characterize the
112 scaled matrix fluidity, the passive mechanical relaxation time of the matrix and the relative
113 proliferative capacity of the tissue: (i) $\mu = \frac{\mu_t}{\mu_m}$, the ratio of the tissue viscosity μ_t to the matrix
114 viscosity μ_m , (ii) $j = \frac{\tau_g}{\tau_t}$, the ratio of the constant timescale to add one cell to the tissue in the
115 absence to stress, τ_g , and the varying timescale to add one cell to the confined tissue in the
116 presence of stress, τ_t and (iii) $A = \frac{\tau_a}{\tau_m}$ the ratio of the cell activity timescale $\tau_a = \frac{\tau_g}{\epsilon} M$ where M
117 is the effective motility and ϵ is the strength of cell-cell adhesion, and the matrix relaxation
118 timescale, $\tau_m = \frac{\mu_m}{G'}$, where G' is the shear (storage) modulus of the matrix. In our experiments,
119 τ_g is ~30s for MCF10A, if one starts with the 2000 cells used in our studies,⁴¹ which is in the range
120 of our matrices stress relaxation times (~30-350s). It is known that increasing the mechanical
121 stress prevents division,^{42,43} which will lead to a slower rate of addition of cells to the tissue (τ_t)

122 and a smaller scaled cell flux j . Each of these dimensionless parameters can be large or small
123 (relative to unity) and plays a role in controlling morphological stability of the growing tissue.

124

125 Systems with low μ correspond to relatively viscous matrices, while those with high μ correspond
126 to matrices that are relatively fluid. When the scaled cell flux j is small, the pressure due to the
127 growing tissue is not large enough to create fingers in the matrix, while when j is large, branching
128 likely arises as cells actively intrude into the matrix. Finally, systems with low values of A
129 correspond to matrices that mechanically relax very slowly, while systems with high values of
130 A correspond to matrices that relax very quickly. In our experiments and simulations, the ratio
131 $\mu = \frac{\mu_t}{\mu_m} \in [0.001 - 2]$, $\tau_a \in [7 - 54]\text{s}$, while $\tau_m \in [1 - 350]\text{s}$, so that the ratio $A = \frac{\tau_a}{\tau_m} \in [0.1 - 100]$,
132 and finally with spheroid sizes $R \sim 100 \mu\text{m}$, and proliferative tissue timescale $\tau_t \sim [4 - 500] \text{s}$,
133 the ratio $j = \frac{\tau_g}{\tau_t} \in [0.002 - 0.25]$.

134

135 We start our simulations within this framework with a spherical ball of cells that is loosely packed
136 within a viscoelastic matrix, and then allow the cells to divide and push each other into the matrix,
137 straining it. To determine when divisions are energetically favorable, we use a Metropolis-
138 Hastings algorithm⁴⁴. Depending on the rheology of the matrix, this can either cause (i) the matrix
139 to break, flow and be remodeled even as tissue cells form finger-like protrusions, or (ii) the matrix
140 to respond purely elastically by straining, but not breaking, thus preventing the tissue cells from
141 further division and maintaining a spherical boundary with the matrix. Indeed, as we decrease the
142 relaxation time scale making the matrix behave more like a liquid (i.e. making $A = \frac{G'}{\mu_m} \tau_a$ large by
143 decreasing μ_m) we see the appearance of an interfacial morphological instability (Fig. 2b-d and
144 Video S2), in accordance with findings of experiments (Fig. 1). Notably, instabilities were found
145 to occur both in simulations and experiments when tissue spheroid diameter was $\sim 10a$.
146 Additionally, when cell motility was reduced (by changing M), the model predicts that tissues

147 growing in matrices would be unable to grow, break symmetry or form branches (Fig. 2e and
148 Extended Data Fig. 4a,b).

149

150 To test these predictions, we first carried out experiments using matrices without cell adhesion

151 ligands, as cell adhesion and thus motility would be lost in this condition $(A = \frac{G'}{\mu_m} \tau_a \sim 0)$. Tissues

152 were found to grow slowly, in a morphologically stable manner (Fig. 2f, Extended Data Fig. 4c

153 and Video S3). Next, potential mechanisms driving tissue motility and proliferation at the cellular

154 scale were explored. Cell motility can be regulated by: 1) cells pulling on the matrix via contractile

155 forces generated by acto-myosin interactions involving ROCK and Non-Muscle Myosin II, 2) cells

156 pushing on the matrix via protrusions created by Rac1 or Arp2/3 activity or 3) ion channel-

157 mediated changes⁴⁵ (Fig. 2g). Only the inhibition of Rac1 or, the Rac1 pathway downstream

158 molecule, Arp2/3 by pharmacological inhibitors (NSC23766 and CK666, respectively) inhibited

159 tissue growth (Fig. 2h and Extended Data Fig. 4d,e), in accordance with our model predictions.

160 This finding indicates that cells generate space for division and migration by pushing on the matrix.

161 Consistent with this, when the rate of cell proliferation in the model was inhibited ($j = \frac{\tau_g}{\tau_t} \sim 0$)

162 simulations predicted tissue growth and instability would be dramatically diminished (Fig. 2i,

163 Extended Data Fig. 5a,b and Video S4). Experiments in which cell proliferation was inhibited

164 confirmed this prediction (Fig. 2j and Extended Data Fig. 5c). Further, the model predicts that for

165 cells in an elastic matrix, cell division would be spatially confined to the boundary between the

166 growing tissue and the substrate, but for cells in a viscoelastic matrix, the divisions would be more

167 broadly distributed throughout growing tissues (Fig. 2k and Extended Data Fig. 6). Experimental

168 analysis of the spatial distribution of proliferating cells in elastic versus viscoelastic matrices

169 confirmed these predictions as well (Fig. 2k and Extended Data Fig. 6). Altogether, these results

170 show that cell motility and proliferation, both of which are regulated by the viscoelasticity of the

171 matrix, control tissue spatio-temporal organization and morphogenesis.

172 After having considered the role of matrix viscoelasticity and cell proliferation on tissue
173 organization, we now turn to adapt our computational model to include the experimentally known
174 role that links an increase in matrix stiffness with an increase in cell motility⁴⁶. We assume a
175 minimal model for this, via the relation $M \propto G'$ (Fig.3a). Simulations with this additional
176 assumption in the model predicted that tissue morphological instability would be enhanced with
177 an increase in the modulus of the matrix G' in viscoelastic matrices (making $A = \frac{G'}{\mu_m} \tau_a$ large), but
178 there would not be a significant impact in more elastic matrices (Fig.3b-d, Extended Data Fig.7
179 and Video S5). To validate these simulations experimentally, the previously developed matrices
180 were modified to change their modulus G' (by changing crosslinking to yield
181 $G' \sim 400, 1700$ and 500 Pa) and independently controlling the relaxation time (by changing the
182 molecular weight of alginate) and thus make the matrix more or less viscoelastic (Fig. 3e and
183 Extended Data Fig.8). In low viscosity matrices, *i.e.*, large $A = \frac{G'}{\mu_m} \tau_a$, the increase in the modulus
184 G' resulted in greater tissue growth and branching, as predicted (Fig.3f,g). To further determine
185 if these differential responses were again mediated by cell motility and proliferation, *in silico*
186 predictions of this model were compared to *in-vitro* studies performed under similar conditions.
187 As predicted by the model, inhibition of cell motility by inhibition of Rac1 and Arp2/3 complex led
188 to a greater impact on tissue growth in stiff matrices, *i.e.* large $A = \frac{G'}{\mu_m} \tau_a$ rather than soft
189 viscoelastic matrices, *i.e.* small $A = \frac{G'}{\mu_m} \tau_a$ (Fig. 3h,l, Extended Data Fig.9 and Video S6). Both
190 simulations and experiments revealed that cell division increased with stiffness both in elastic and
191 viscoelastic matrices although significantly more in viscoelastic matrices (Fig.3j,k and Extended
192 Data Fig.10). The significant increase in cell flux j with modulus G' in the viscoelastic matrices
193 ($A = \frac{G'}{\mu_m} \tau_a$ is large) emerges from the increase in motility M ⁴⁶. When cell proliferation is inhibited,
194 the simulations show that tissues do not grow (Extended Data Fig.10 and Video S7).

195 Having studied the emergence of an active scaled cell flux from motility M (with $j = \frac{\tau_g}{\tau_t} \sim O(1)$),
196 we turn to passively inject a cell flux to the tissue (making $j = \frac{\tau_g}{\tau_t} \gg 1$) to examine the role of
197 passive tissue pressure, known to regulate tissue growth^{12,41}, on morphological stability. To
198 achieve this, we developed a microfluidic system where cells were injected at a constant rate into
199 the tissue, displacing the matrix (Extended Data Fig.11). We find that tissues break symmetry and
200 branch out into elastic matrices but are unable to break symmetry when the matrix is viscoelastic,
201 consistent with our simulations that show a similar response (Extended Data Fig.11, 12, 13c and
202 Video S8). The morphological instability occurring in this cell flux driven situation is similar to the
203 Saffman-Taylor instability in hydrodynamics and its elastic analog^{32,33}, wherein a low viscosity
204 (low stiffness) material forms branches when driven into a high viscosity (high stiffness) material
205 in a confined geometry. Altogether, our simulations and experiments show that the tissue-matrix
206 interface becomes morphologically unstable when the matrix is viscoelastic and can easily relax
207 in response to stresses, or when the tissue proliferative pressure is high in more elastic matrices.
208 We summarize these results in a morphological phase diagram that quantifies the stability of the
209 growing front shown in Fig. 3l and Extended Data Fig.13.

210 **Matrix viscoelasticity also regulates intestinal organoid patterning**

211 To explore the generality of these findings as captured by the phase diagram in Fig. 3l, we decided
212 to explore the impact of matrix viscoelasticity in a synthetic context associated with the in-vitro
213 growth and development of self-organizing intestinal organoids. When Lgr5+ stem cells are
214 emplaced in a complex, laminin-rich extracellular matrix termed Matrigel, they develop into
215 complex three-dimensional structures containing all cell-types present in adult intestine, and
216 mimic intestinal tissue organization^{1,8}. To allow for a comparison with the published literature, we
217 modified our alginate matrix system to enable incorporation of Matrigel (Fig. 4a), while still
218 allowing independent control over gel stiffness and viscoelasticity³¹. The interpenetrating

networks of two different stiffness ($G' \sim 0.5\text{kPa}$ and 1.5kPa) allowed for both elastic and viscoelastic matrices (Fig. 4b). As previously described^{17,47,48}, organoids growing in elastic matrices exhibited slow expansion and were morphologically stable. In contrast, intestinal organoids grew rapidly, broke symmetry and formed branches when within viscoelastic matrices (Fig. 4c-e and Extended Data Fig.14). Apart from demonstrating tissue morphological instability, organoids in viscoelastic substrates exhibited cell patterning and differentiation representative of intestinal development (Fig. 4f,g). Matrix viscoelasticity favored the generation of high curvature tissue regions that concentrated Lgr5+ stem cells, consistent with past reports on the impact of curvature on differentiation¹⁸. To determine if organoid spatio-temporal organization was regulated by internal pressure generated inside organoid lumens, as previously reported with other systems^{14,15,49}, organoids were pharmacologically treated to impair the function of Na^+/K^+ ATPase pumps and block fluid influx^{14,50}. No significant differences in organoid morphology or patterning in viscoelastic substrates were noted (Extended Data Fig. 15). To further test the ability of viscoelasticity to control organ growth, organoid development was monitored in matrices of varying stiffness. The percentage of Lgr5+ organoids and number of colonies were higher in viscoelastic matrices rather than elastic matrices, independent of G' (Fig.4h,i). This finding is consistent with previous research as symmetry breaking and organoid development are associated with a higher percentage of Lgr5+ organoids¹. Increasing G' of viscoelastic matrices again led to greater growth of intestinal organoids, symmetry breaking and branch formation, but organoids grew more slowly and maintained their spherical symmetry in elastic matrices (Fig.4j-l).

240 Discussion

Our experiments and guiding simulations demonstrate that passive matrix viscoelasticity couples to cell motility and cell proliferation to drive tissue growth, symmetry breaking and branching. The resulting morphology is reminiscent of interfacial instabilities in passively driven physical systems

244 but modified fundamentally in living systems by the active processes of cell motility and cell
245 proliferation that can destabilize the interface and are relevant to a number of processes
246 including embryogenesis^{3,14}, oncogenesis^{2,51}, branching morphogenesis^{6,7}, and angiogenesis.
247 Our studies of two different systems: breast epithelia and intestinal organoids, show that the
248 properties of the viscoelastic extracellular matrix relative to that of the tissue, quantified in terms
249 of three experimentally-manipulatable dimensionless parameters, emerge as regulators of spatio-
250 temporal tissue organization.

251

252 More broadly, our results are consistent with prior observations that the increase in ECM fluidity
253 of the mesenchyme drives normal embryonic airway branching⁵², and an increase in tissue fluidity
254 drives wound healing⁵³, tissue elongation⁵⁴ or neural crest development⁵⁵. Furthermore, invasive
255 branches are characterized by either an increase in matrix fluidity, as has recently been observed
256 in glioblastoma^{56,57}, breast⁵⁸ and liver cancer⁵⁹ (compared to benign lesions and healthy ECM), or
257 an increase in tissue fluidity, as tumor single cells are less viscous^{60,61} and tumor tissues acquire
258 more liquid-like properties⁶²⁻⁶⁴ (e.g. EMT, unjamming). The increased expression of low molecular
259 weight hyaluronic acid in malignant tumors⁶⁵ can explain the decrease in tumor ECM viscosity.
260 Our results also suggest that when tumors migrate and grow and push the stroma, this may lead
261 to the passive generation of stroma fingers in the healthy tissue, as the stroma has more liquid-
262 like properties than healthy tissue⁵⁶⁻⁵⁹. We can also rationalize previous apparently contradictory
263 findings that tissues maintained a stable morphology when encapsulated in synthetic materials⁶⁶
264 of increasing stiffness, while becoming unstable in natural matrices as stiffness was raised^{2,67}
265 (e.g. Matrigel, collagen, fibrin). From our perspective, the explanation is due to the elastic nature
266 of the synthetics that are covalently crosslinked, in contrast to the intrinsic viscoelasticity of
267 physically cross-linked natural matrices. Finally, in addition to providing a framework to
268 understand tissue morphology and organization in normal and pathological states, our study

269 yields a phase diagram that might help provide a strategy to guide tissue morphology in
270 regenerative medicine and related fields.

271

272

273

274 **References:**

275 1 Sato, T. *et al.* Single Lgr5 stem cells build crypt-villus structures in vitro without a
276 mesenchymal niche. *Nature* **459**, 262-265, doi:10.1038/nature07935 (2009).

277 2 Paszek, M. J. *et al.* Tensional homeostasis and the malignant phenotype. *Cancer cell* **8**,
278 241-254, doi:10.1016/j.ccr.2005.08.010 (2005).

279 3 Deglincerti, A. *et al.* Self-organization of the in vitro attached human embryo. *Nature*
280 **533**, 251-254, doi:10.1038/nature17948 (2016).

281 4 Moris, N. *et al.* An in vitro model of early anteroposterior organization during human
282 development. *Nature* **582**, 410-415, doi:10.1038/s41586-020-2383-9 (2020).

283 5 Krndija, D. *et al.* Active cell migration is critical for steady-state epithelial turnover in the
284 gut. *Science* **365**, 705-710, doi:10.1126/science.aau3429 (2019).

285 6 Hannezo, E. & Simons, B. D. Multiscale dynamics of branching morphogenesis. *Current
286 opinion in cell biology* **60**, 99-105, doi:10.1016/j.ceb.2019.04.008 (2019).

287 7 Varner, V. D. & Nelson, C. M. Cellular and physical mechanisms of branching
288 morphogenesis. *Development* **141**, 2750-2759, doi:10.1242/dev.104794 (2014).

289 8 Serra, D. *et al.* Self-organization and symmetry breaking in intestinal organoid
290 development. *Nature* **569**, 66-72, doi:10.1038/s41586-019-1146-y (2019).

291 9 Hannezo, E. *et al.* A Unifying Theory of Branching Morphogenesis. *Cell* **171**, 242-255
292 e227, doi:10.1016/j.cell.2017.08.026 (2017).

293 10 Briggs, J. A. *et al.* The dynamics of gene expression in vertebrate embryogenesis at
294 single-cell resolution. *Science* **360**, doi:10.1126/science.aar5780 (2018).

295 11 Hannezo, E. & Heisenberg, C. P. Mechanochemical Feedback Loops in Development
296 and Disease. *Cell* **178**, 12-25, doi:10.1016/j.cell.2019.05.052 (2019).

297 12 Green, J. B. & Sharpe, J. Positional information and reaction-diffusion: two big ideas in
298 developmental biology combine. *Development* **142**, 1203-1211, doi:10.1242/dev.114991
299 (2015).

300 13 Kondo, S. & Miura, T. Reaction-diffusion model as a framework for understanding
301 biological pattern formation. *Science* **329**, 1616-1620, doi:10.1126/science.1179047
302 (2010).

303 14 Chan, C. J. *et al.* Hydraulic control of mammalian embryo size and cell fate. *Nature* **571**,
304 112-116, doi:10.1038/s41586-019-1309-x (2019).

305 15 Mosaliganti, K. R. *et al.* Size control of the inner ear via hydraulic feedback. *eLife* **8**,
306 doi:10.7554/eLife.39596 (2019).

307 16 Nelson, C. M. *et al.* Microfluidic chest cavities reveal that transmural pressure controls
308 the rate of lung development. *Development* **144**, 4328-4335, doi:10.1242/dev.154823
309 (2017).

310 17 Gjorevski, N. *et al.* Designer matrices for intestinal stem cell and organoid culture.
311 *Nature* **539**, 560-564, doi:10.1038/nature20168 (2016).

312 18 Shyer, A. E., Huycke, T. R., Lee, C., Mahadevan, L. & Tabin, C. J. Bending gradients:
313 how the intestinal stem cell gets its home. *Cell* **161**, 569-580,
314 doi:10.1016/j.cell.2015.03.041 (2015).

315 19 Harris, A. R. *et al.* Characterizing the mechanics of cultured cell monolayers.
316 *Proceedings of the National Academy of Sciences of the United States of America* **109**,
317 16449-16454, doi:10.1073/pnas.1213301109 (2012).

318 20 Vining, K. H. & Mooney, D. J. Mechanical forces direct stem cell behaviour in
319 development and regeneration. *Nature reviews. Molecular cell biology* **18**, 728-742,
320 doi:10.1038/nrm.2017.108 (2017).

321 21 Khalilgharibi, N., Fouchard, J., Recho, P., Charras, G. & Kabla, A. The dynamic
322 mechanical properties of cellularised aggregates. *Current opinion in cell biology* **42**, 113-
323 120, doi:10.1016/j.ceb.2016.06.003 (2016).

324 22 Ricca, B. L., Venugopalan, G. & Fletcher, D. A. To pull or be pulled: parsing the multiple
325 modes of mechanotransduction. *Current opinion in cell biology* **25**, 558-564,
326 doi:10.1016/j.ceb.2013.06.002 (2013).

327 23 Heisenberg, C. P. & Bellaïche, Y. Forces in tissue morphogenesis and patterning. *Cell*
328 **153**, 948-962, doi:10.1016/j.cell.2013.05.008 (2013).

329 24 Chaudhuri, O. *et al.* Hydrogels with tunable stress relaxation regulate stem cell fate and
330 activity. *Nature materials* **15**, 326-334, doi:10.1038/nmat4489 (2016).

331 25 Debnath, J., Muthuswamy, S. K. & Brugge, J. S. Morphogenesis and oncogenesis of
332 MCF-10A mammary epithelial acini grown in three-dimensional basement membrane
333 cultures. *Methods* **30**, 256-268 (2003).

334 26 Lee, K. Y. & Mooney, D. J. Alginate: properties and biomedical applications. *Progress in
335 polymer science* **37**, 106-126, doi:10.1016/j.progpolymsci.2011.06.003 (2012).

336 27 Rowley, J. A., Madlambayan, G. & Mooney, D. J. Alginate hydrogels as synthetic
337 extracellular matrix materials. *Biomaterials* **20**, 45-53 (1999).

338 28 Yang, J. *et al.* Guidelines and definitions for research on epithelial-mesenchymal
339 transition. *Nature reviews. Molecular cell biology*, doi:10.1038/s41580-020-0237-9
340 (2020).

341 29 Elosegui-Artola, A. *et al.* Mechanical regulation of a molecular clutch defines force
342 transmission and transduction in response to matrix rigidity. *Nature cell biology* **18**, 540-
343 548, doi:10.1038/ncb3336 (2016).

344 30 Zanconato, F., Cordenonsi, M. & Piccolo, S. YAP/TAZ at the Roots of Cancer. *Cancer
345 cell* **29**, 783-803, doi:10.1016/j.ccr.2016.05.005 (2016).

346 31 Chaudhuri, O. *et al.* Extracellular matrix stiffness and composition jointly regulate the
347 induction of malignant phenotypes in mammary epithelium. *Nature materials* **13**, 970-
348 978, doi:10.1038/nmat4009 (2014).

349 32 Saffman, P. G. & Taylor, G. I. The penetration of a fluid into a porous medium or Hele-
350 Shaw cell containing a more viscous liquid. *Proceedings of the Royal Society of London.
351 Series A. Mathematical and Physical Sciences* **245**, 312-329,
352 doi:doi:10.1098/rspa.1958.0085 (1958).

353 33 Biggins, J. S., Saintyves, B., Wei, Z., Bouchaud, E. & Mahadevan, L. Digital instability of
354 a confined elastic meniscus. *Proceedings of the National Academy of Sciences of the
355 United States of America* **110**, 12545-12548, doi:10.1073/pnas.1302269110 (2013).

356 34 Montel, F. *et al.* Stress clamp experiments on multicellular tumor spheroids. *Phys Rev
357 Lett* **107**, 188102, doi:10.1103/PhysRevLett.107.188102 (2011).

358 35 Bogdan, M. J. & Savin, T. Fingering instabilities in tissue invasion: an active fluid model.
359 *Royal Society Open Science* **5**, 181579, doi:doi:10.1098/rsos.181579 (2018).

360 36 Risler, T. & Basan, M. Morphological instabilities of stratified epithelia: a mechanical
361 instability in tumour formation. *New Journal of Physics* **15**, 065011, doi:10.1088/1367-
362 2630/15/6/065011 (2013).

363 37 Shaebani, M. R., Wysocki, A., Winkler, R. G., Gompper, G. & Rieger, H. Computational
364 models for active matter. *Nature Reviews Physics* **2**, 181-199, doi:10.1038/s42254-020-
365 0152-1 (2020).

366 38 Marchetti, M. C. *et al.* Hydrodynamics of soft active matter. *Reviews of Modern Physics*
367 **85**, 1143-1189, doi:10.1103/RevModPhys.85.1143 (2013).

368 39 Mallory, S. A., Šarić, A., Valeriani, C. & Cacciuto, A. Anomalous thermomechanical
369 properties of a self-propelled colloidal fluid. *Physical Review E* **89**, 052303,
370 doi:10.1103/PhysRevE.89.052303 (2014).

371 40 Berthier, L. & Kurchan, J. Non-equilibrium glass transitions in driven and active matter.
372 *Nature Physics* **9**, 310-314, doi:10.1038/nphys2592 (2013).

373 41 Araujo, A. R., Gelens, L., Sheriff, R. S. & Santos, S. D. Positive Feedback Keeps
374 Duration of Mitosis Temporally Insulated from Upstream Cell-Cycle Events. *Mol Cell* **64**,
375 362-375, doi:10.1016/j.molcel.2016.09.018 (2016).

376 42 Uroz, M. *et al.* Regulation of cell cycle progression by cell-cell and cell-matrix forces.
377 *Nature cell biology* **20**, 646-654, doi:10.1038/s41556-018-0107-2 (2018).

378 43 Delarue, M. *et al.* Compressive Stress Inhibits Proliferation in Tumor Spheroids through
379 a Volume Limitation. *Biophysical journal* **107**, 1821-1828,
380 doi:<https://doi.org/10.1016/j.bpj.2014.08.031> (2014).

381 44 Hastings, W. K. Monte Carlo Sampling Methods Using Markov Chains and Their
382 Applications. *Biometrika* **57**, 97-109, doi:10.2307/2334940 (1970).

383 45 Hung, W. C. *et al.* Confinement Sensing and Signal Optimization via Piezo1/PKA and
384 Myosin II Pathways. *Cell Rep* **15**, 1430-1441, doi:10.1016/j.celrep.2016.04.035 (2016).

385 46 Ulrich, T. A., de Juan Pardo, E. M. & Kumar, S. The mechanical rigidity of the
386 extracellular matrix regulates the structure, motility, and proliferation of glioma cells.
387 *Cancer research* **69**, 4167-4174, doi:10.1158/0008-5472.CAN-08-4859 (2009).

388 47 Hushka, E. A., Yavitt, F. M., Brown, T. E., Dempsey, P. J. & Anseth, K. S. Relaxation of
389 Extracellular Matrix Forces Directs Crypt Formation and Architecture in Intestinal
390 Organoids. *Advanced Healthcare Materials* **9**, 1901214, doi:10.1002/adhm.201901214
391 (2020).

392 48 Cruz-Acuna, R. *et al.* Synthetic hydrogels for human intestinal organoid generation and
393 colonic wound repair. *Nature cell biology* **19**, 1326-1335, doi:10.1038/ncb3632 (2017).

394 49 Dasgupta, S., Gupta, K., Zhang, Y., Viasnoff, V. & Prost, J. Physics of lumen growth.
395 *Proceedings of the National Academy of Sciences of the United States of America* **115**,
396 E4751-E4757, doi:10.1073/pnas.1722154115 (2018).

397 50 Violette, M. I., Madan, P. & Watson, A. J. Na+/K+ -ATPase regulates tight junction
398 formation and function during mouse preimplantation development. *Developmental
399 biology* **289**, 406-419, doi:10.1016/j.ydbio.2005.11.004 (2006).

400 51 Friedl, P., Locker, J., Sahai, E. & Segall, J. E. Classifying collective cancer cell invasion.
401 *Nature cell biology* **14**, 777-783, doi:10.1038/ncb2548 (2012).

402 52 Spurlin, J. W. *et al.* Mesenchymal proteases and tissue fluidity remodel the extracellular
403 matrix during airway epithelial branching in the embryonic avian lung. *Development* **146**,
404 doi:10.1242/dev.175257 (2019).

405 53 Tetley, R. J. *et al.* Tissue fluidity promotes epithelial wound healing. *Nature Physics* **15**,
406 1195-1203, doi:10.1038/s41567-019-0618-1 (2019).

407 54 Mongera, A. *et al.* A fluid-to-solid jamming transition underlies vertebrate body axis
408 elongation. *Nature* **561**, 401-405, doi:10.1038/s41586-018-0479-2 (2018).

409 55 Kuriyama, S. *et al.* In vivo collective cell migration requires an LPAR2-dependent
410 increase in tissue fluidity. *The Journal of cell biology* **206**, 113-127,
411 doi:10.1083/jcb.201402093 (2014).

412 56 Streitberger, K. J. *et al.* High-resolution mechanical imaging of glioblastoma by
413 multifrequency magnetic resonance elastography. *PLoS one* **9**, e110588,
414 doi:10.1371/journal.pone.0110588 (2014).

415 57 Streitberger, K. J. *et al.* How tissue fluidity influences brain tumor progression.
416 *Proceedings of the National Academy of Sciences of the United States of America* **117**,
417 128-134, doi:10.1073/pnas.1913511116 (2020).

418 58 Sankus, R. *et al.* Viscoelastic shear properties of in vivo breast lesions measured by MR
419 elastography. *Magnetic resonance imaging* **23**, 159-165, doi:10.1016/j.mri.2004.11.060
420 (2005).

421 59 Shahryari, M. *et al.* Tomoelastography distinguishes non-invasively between benign and
422 malignant liver lesions. *Cancer research*, canres.2150.2019, doi:10.1158/0008-
423 5472.Can-19-2150 (2019).

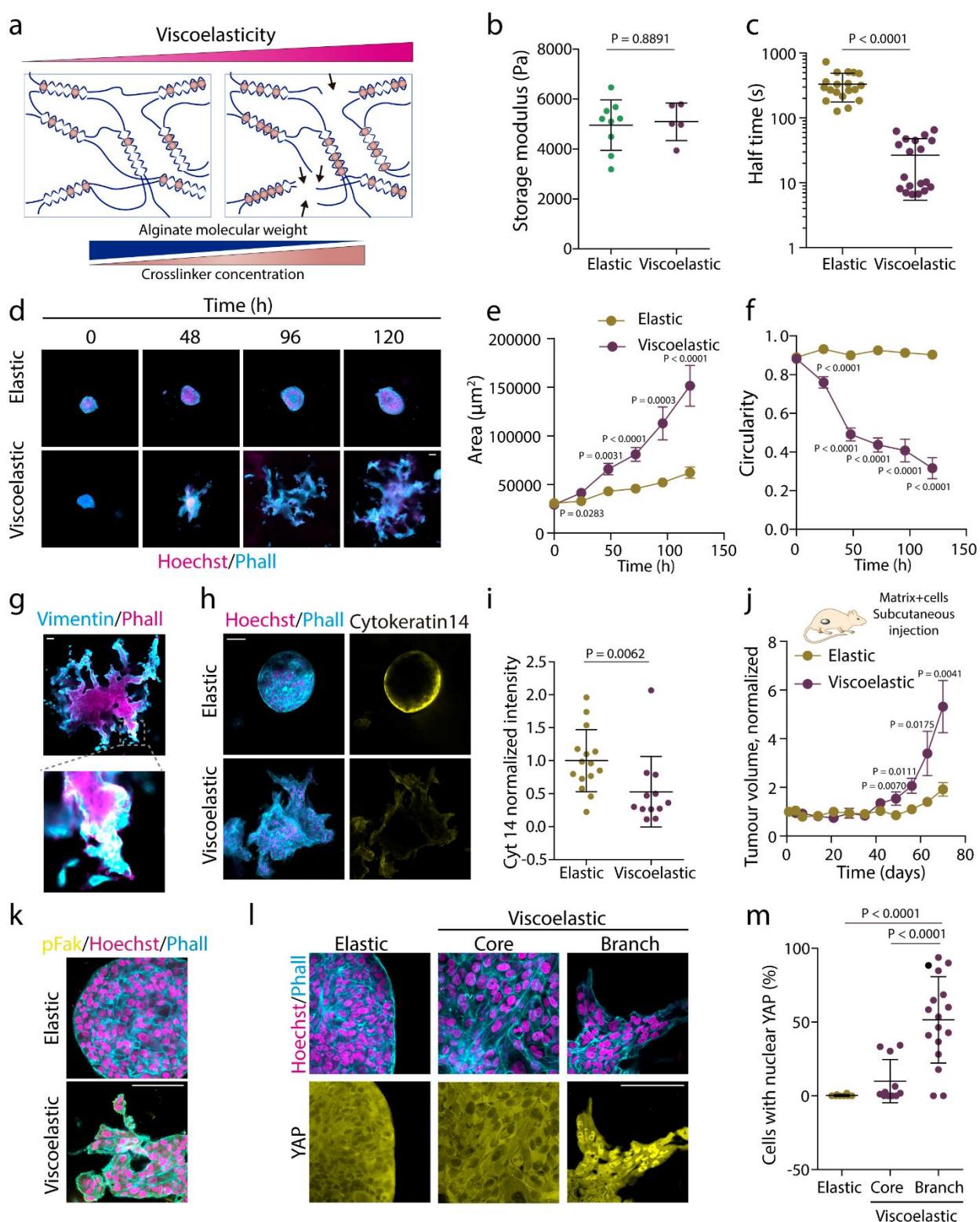
424 60 Nematbakhsh, Y., Pang, K. T. & Lim, C. T. Correlating the viscoelasticity of breast
425 cancer cells with their malignancy. *Convergent Science Physical Oncology* **3**, 034003,
426 doi:10.1088/2057-1739/aa7ffb (2017).

427 61 Ketene, A. N., Schmelz, E. M., Roberts, P. C. & Agah, M. The effects of cancer
428 progression on the viscoelasticity of ovarian cell cytoskeleton structures. *Nanomedicine:*
429 *Nanotechnology, Biology and Medicine* **8**, 93-102,
430 doi:<https://doi.org/10.1016/j.nano.2011.05.012> (2012).

431 62 Palamidessi, A. *et al.* Unjamming overcomes kinetic and proliferation arrest in terminally
432 differentiated cells and promotes collective motility of carcinoma. *Nature materials* **18**,
433 1252-1263, doi:10.1038/s41563-019-0425-1 (2019).

434 63 Han, Y. L. *et al.* Cell swelling, softening and invasion in a three-dimensional breast
435 cancer model. *Nature Physics* **16**, 101-108, doi:10.1038/s41567-019-0680-8 (2020).

436 64 Staneva, R. *et al.* Cancer cells in the tumor core exhibit spatially coordinated migration
437 patterns. *Journal of cell science* **132**, doi:10.1242/jcs.220277 (2019).

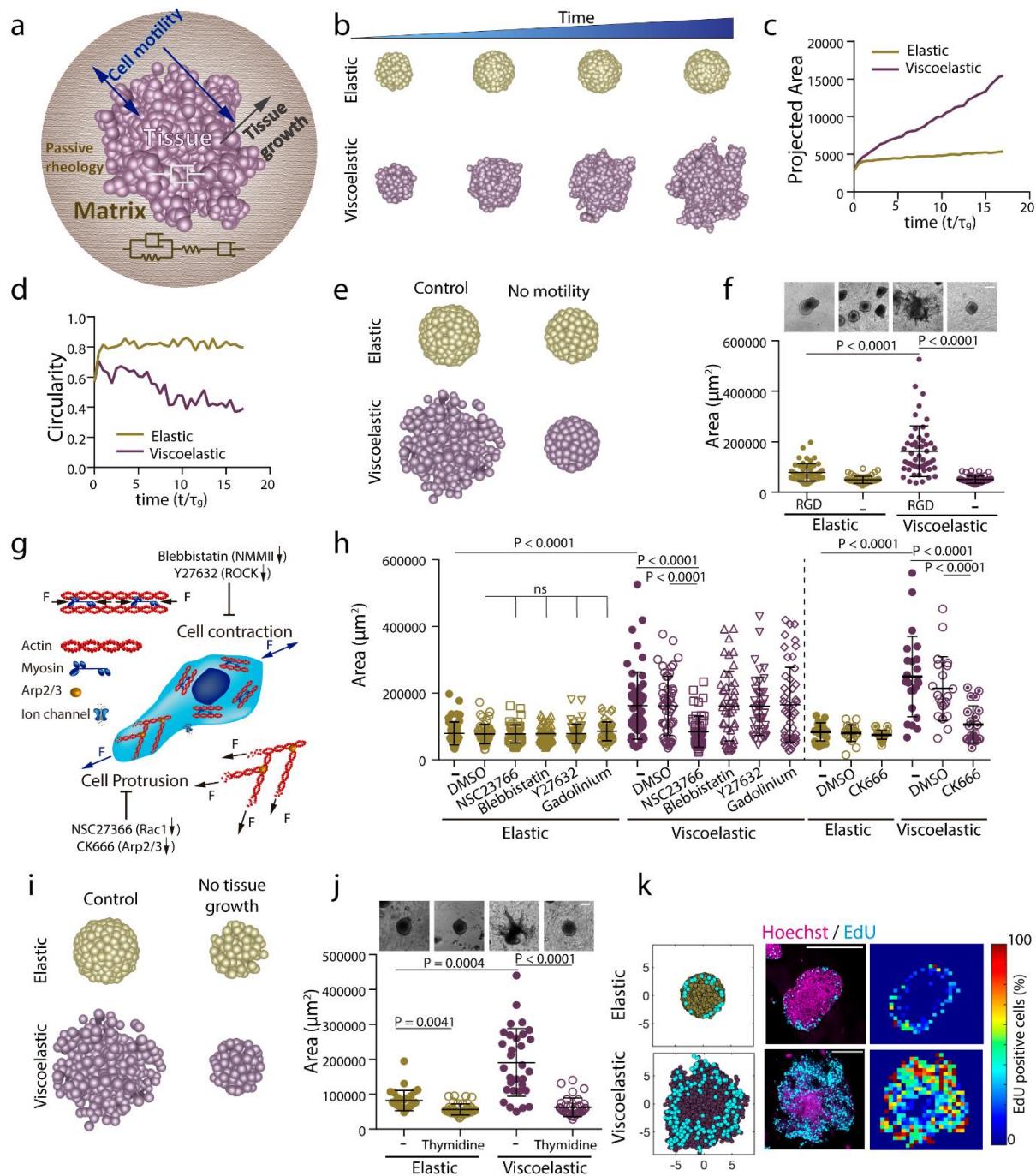

438 65 Monslow, J., Govindaraju, P. & Puré, E. Hyaluronan – A Functional and Structural Sweet
439 Spot in the Tissue Microenvironment. *Frontiers in immunology* **6**,
440 doi:10.3389/fimmu.2015.00231 (2015).

441 66 Taubenberger, A. V. *et al.* 3D Microenvironment Stiffness Regulates Tumor Spheroid
442 Growth and Mechanics via p21 and ROCK. *Advanced Biosystems* **3**, 1900128,
443 doi:10.1002/adbi.201900128 (2019).

444 67 Kumar, S. & Weaver, V. M. Mechanics, malignancy, and metastasis: the force journey of
445 a tumor cell. *Cancer metastasis reviews* **28**, 113-127, doi:10.1007/s10555-008-9173-4
446 (2009).

447

448

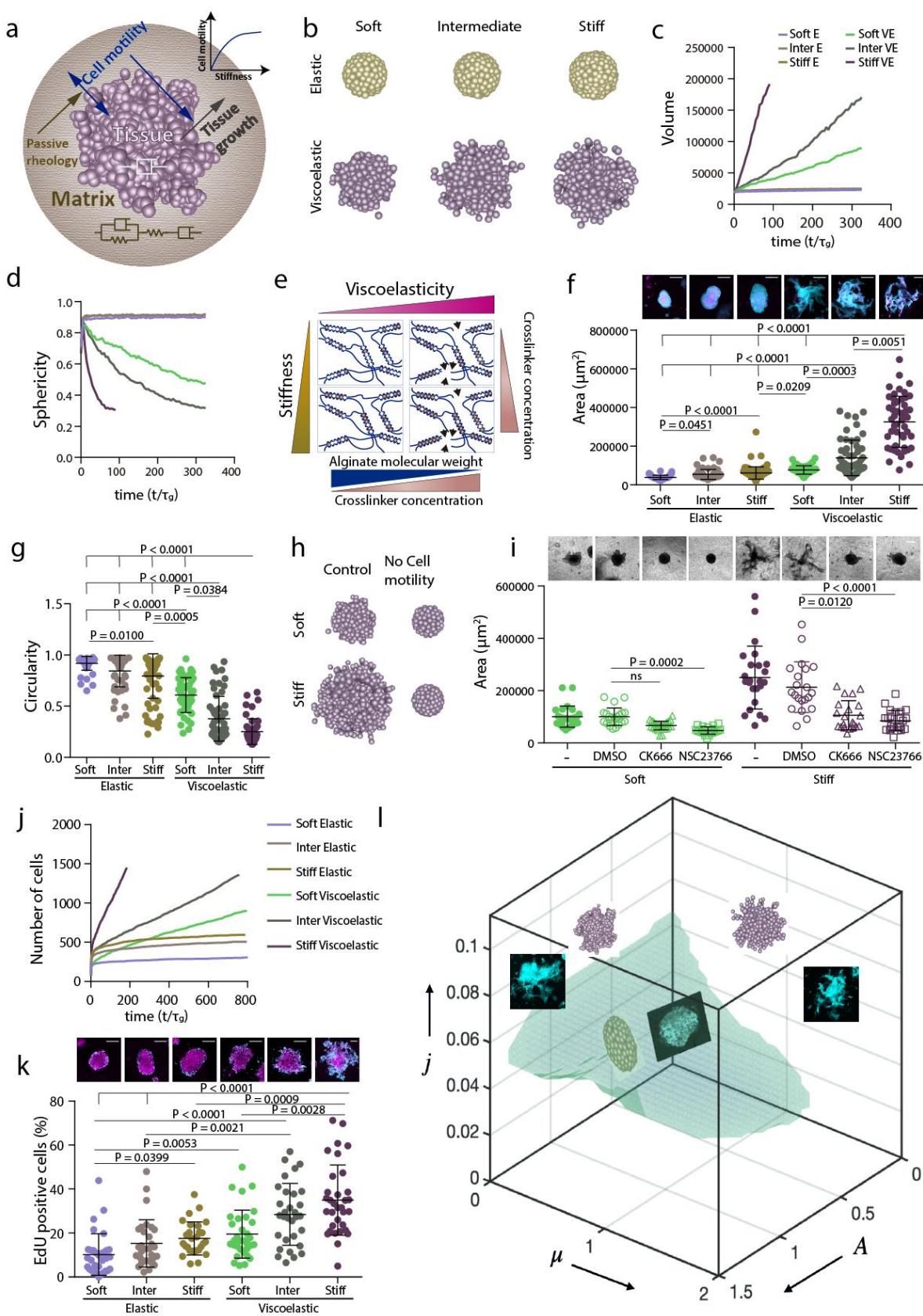


449

450 **Figure 1. Matrix viscoelasticity determines symmetry breaking, tissue branching, and**
 451 **epithelial to mesenchymal transition**

452 **a**, Schematic demonstrating how simultaneously changing the polymer molecular weight and
453 extent of crosslinking allows for constant gel stiffness but altered viscoelastic properties. **b**,
454 Quantification of the storage modulus of resulting alginate hydrogels (n=5,9 gels per condition).
455 Statistical analysis was performed using two-sided U Mann-Whitney test. **c**, Quantification of the
456 timescale at which an initially applied stress is relaxed to half its original value (n=19 gels per
457 condition). Statistical analysis was performed using Mann-Whitney U-test. **d**, Examples of growth
458 of MCF10A spheroids in elastic versus viscoelastic hydrogels over 5 days. Phalloidin in cyan,
459 Hoechst in magenta. **e-f**, Quantification of the spheroids area (**e**) and circularity (**f**), respectively
460 (error bars, s.e.m). n=19-43 spheroids/condition/day. Statistical analysis was performed using
461 Kruskal-Wallis test followed by post hoc Dunn's test. **g**, Examples of vimentin, phalloidin and
462 hoechst stainings in spheroids growing in viscoelastic gels. Insets shows a spheroid branch. **h**,
463 Examples of phalloidin, Hoechst (left) and cytokeratin 14 (right) stainings in spheroids in
464 viscoelastic and elastic hydrogels. Phalloidin in cyan, Hoechst in magenta and cytokeratin 14 in
465 yellow. **i**, Quantification of average cytokeratin 14 intensity of the outer ring of spheroids. Elastic
466 spheroids average intensity is normalized to 1. n=12,15 spheroids per condition. Statistical
467 analysis was performed using Mann-Whitney U-test. **j**, Quantification of the tumor volume in mice
468 injected in day 0 with viscoelastic and elastic hydrogels containing MDA-MB231 breast epithelial
469 cells (error bars, s.e.m). **k**, Representative examples of phosphorylated FAK, phalloidin and
470 Hoechst stainings in MCF10A celll spheroids growing in elastic and viscoelastic gels. pFAK in
471 yellow, phalloidin in cyan and hoechst in magenta. **h**, Representative examples of phalloidin,
472 Hoechst (upper row) and YAP (lower row) stainings of spheroids in elastic and viscoelastic gels
473 (spheroids core cells and branch leader cells). **i**, Quantification from stainings of the percentage
474 of cells with nuclear YAP per image for the indicated regions (n=8,11,17 images per condition).
475 All data are mean \pm s.d. except where indicated, all scale bars are 75 μ m.
476

477

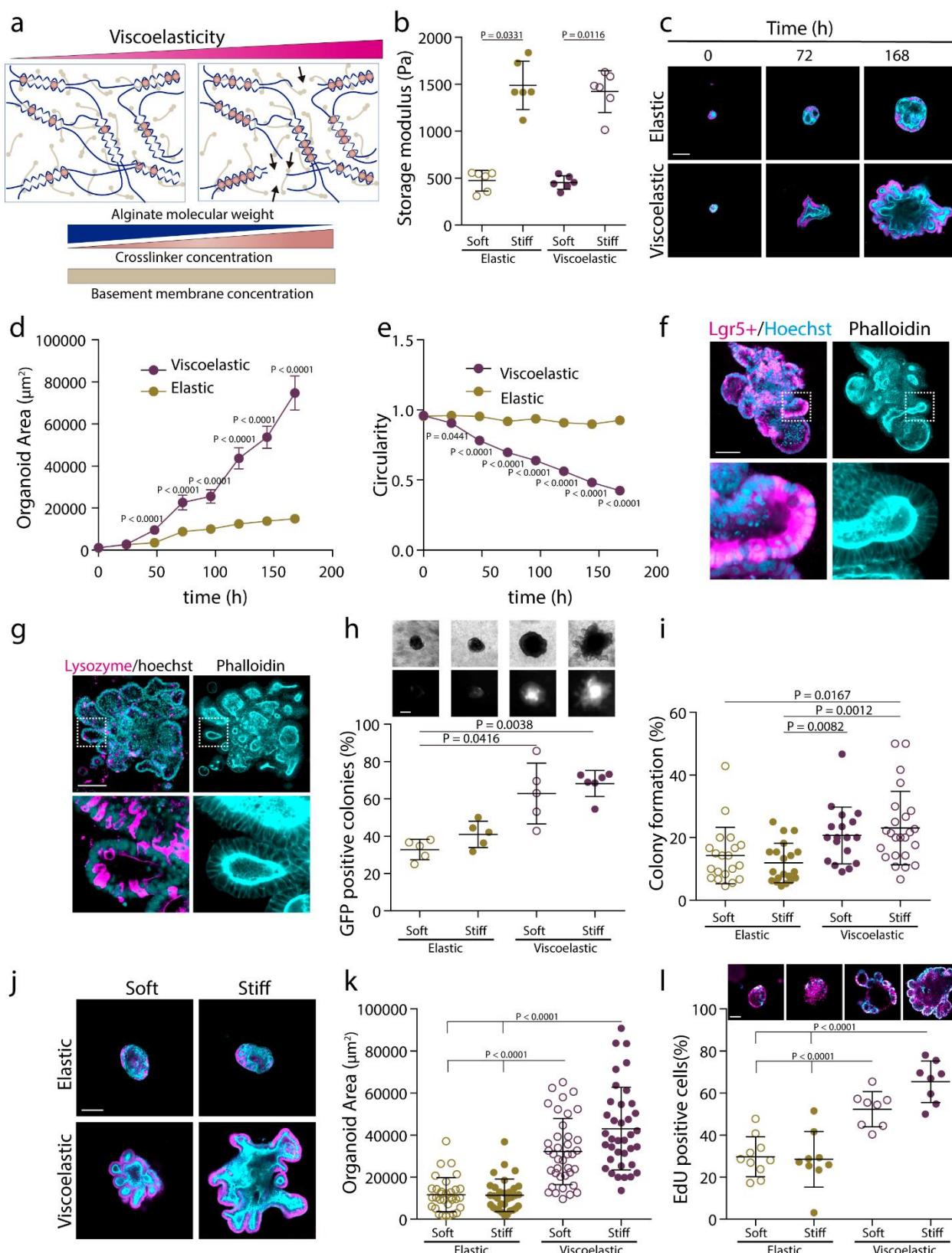

478

479 **Figure 2: 3D theoretical model predicts that spheroids-material physical interaction**
 480 **regulates tissue geometrical evolution**

481 **a**, Schematic depicting the theoretical physical model of tissue growth in a passive viscoelastic

482 matrix. The viscosity of the tissue, viscosity of the matrix, and the elasticity of the matrix can be

483 tuned independently. **b**, Examples of simulated tissue growth in elastic matrices (top row) as
484 versus viscoelastic matrices (lower row). **c-d**, Quantification from the simulations of the projected
485 area and circularity of the spheroids, respectively, over time. **e**, Model prediction with inhibition of
486 cell motility. **f**, Representative experimental examples (upper row) and quantification of spheroid's
487 area (lower row) in hydrogels after 5 days in gels with and without cell adhesive ligand RGD.
488 n=52,52,51,54 spheroids per condition. Statistical analysis was performed using Kruskal–Wallis
489 test followed by post hoc Dunn's test. **g**, Schematic showing the inhibitors used to affect cell
490 motility:1) Blebbistatin and Y27632 affect actomyosin cytoskeleton by affecting non-muscle
491 myosin II and ROCK, respectively; 2) Cell protrusion is affected by NSC23766 and CK666 that
492 affect Rac1 and Arp2/3 complex, respectively; and 3) gadolinium affects ion channels. **h**,
493 Quantification of spheroid area in hydrogels after 5 days in the presence of the indicated inhibitors.
494 n=52,50,51,51,51,50,51,50,51,46,41,51,21,21,24,20,21,25 spheroids per condition. Statistical
495 analysis was performed using Kruskal–Wallis test followed by post hoc Dunn's test. **i**, Model
496 predictions with tissue growth inhibition. **j**, Representative experimental examples and
497 quantification of the spheroid's area without or with the presence of thymidine to inhibit cell
498 proliferation. n=52,53,51,53 spheroids per condition. Statistical analysis was performed using
499 Kruskal–Wallis test followed by post hoc Dunn's test. **k**, Model predictions and experimental
500 results for the numbers and distributions of proliferating cells across spheroids in elastic (upper
501 row) and viscoelastic gels (lower row): left, model predictions of localization of cell division (cyan)
502 from a section of a spheroid; center, representative examples of experimental spheroids showing
503 EdU positive cells (cyan) and cell nuclei (Hoechst, magenta) for spheroids in elastic and
504 viscoelastic gels; right, colormaps of experimental image (center) showing the local percentage
505 of EdU positive cells across the spheroid. n=3,4 spheroids per condition. All data are mean \pm s.d.,
506 all scale bars are 200 μ m.



508 **Figure 3. Stiffness intersects with matrix viscoelasticity to regulate growth and branching.**

509 **a**, To incorporate the matrix stiffness dependence on the tissue property, now the active motility
510 of the tissue is an increasing function of the matrix stiffness. Which makes the active motility a
511 dependent parameter and in turn it also affects the tissue growth. **b-d**, 3D final timepoint
512 simulation images (b), projected area (c) and circularity (d) evolution over time of spheroids in
513 increasingly stiff elastic and viscoelastic gels. **e**, Stiffness of experimental matrices was modified
514 by further altering the extent of crosslinking in both elastic and viscoelastic gels. **f**, Representative
515 experimental examples (upper row) and quantification of spheroid area (lower row) after 5 days
516 in elastic and viscoelastic matrices of increasing stiffness. $n=63,55,84,50,55,50$ spheroids per
517 condition. Statistical analysis was performed using Kruskal–Wallis test followed by post hoc
518 Dunn's test. **g**, Quantification of spheroid circularity after 5 days in elastic and viscoelastic
519 matrices of increasing stiffness. $n=63,55,84,50,55,50$ spheroids per condition. Statistical analysis
520 was performed using Kruskal–Wallis test followed by post hoc Dunn's test. **h**, Representative
521 model simulation results when cell motility is eliminated in stiff viscoelastic matrices compared to
522 soft viscoelastic matrices. **i**, Representative experimental examples (upper row) and
523 quantification of spheroid's area (lower row) after 5 days in soft and stiff viscoelastic matrices with
524 Rac1 (NSC23766) and Arp2/3 (CK666) inhibitors. $n=25,22,27,21,24,21,21,24$ spheroids per
525 condition. Statistical analysis was performed using Kruskal–Wallis test followed by post hoc
526 Dunn's test. **j**, Model predictions for cell proliferation in spheroids of increasing stiffness for both
527 elastic and viscoelastic gels. **k**, Representative experimental examples (upper row) and
528 quantification of the percentage of EdU positive cells in a spheroid (lower row) after 5 days in
529 elastic and viscoelastic gels of increasing stiffness. $n=32,30,28,33,31,33$ spheroids per condition.
530 Statistical analysis was performed using Kruskal–Wallis test followed by post hoc Dunn's test. All
531 data are mean \pm s.d., all scale bars are 200 μm . **l**, phase diagram. Simulations predict, and
532 experiments confirm that regions of tissue growth stability and instability can be predicted based
533 on the values of three dimensionless variables. When the scaled proliferation pressure $j = \frac{\tau_g}{\tau_t} \ll$
534 1, the tissue grows as a stable spheroid (Fig. 2i,j and Extended Data Fig. 9, 10, 13b). Additionally,
535 when the scaled matrix relaxation time $A = \frac{\tau_a}{\tau_m} \ll 1$, the tissue remains spheroidal and is
536 morphologically stable as long as the scaled proliferation pressure $j = \frac{\tau_g}{\tau_t} \sim O(1)$ (top panel of
537 Fig.1d and Fig 2b). When the scaled matrix relaxation time $A = \frac{\tau_a}{\tau_m} \gg 1$: if the scaled proliferation
538 pressure $j = \frac{\tau_g}{\tau_t} \ll 1$, the tissue grows as a stable spheroid (bottom right of Fig. 2i and bottom
539 panel of Extended Data Fig. 11b); if the scaled proliferation pressure $j = \frac{\tau_g}{\tau_t} \sim O(1)$, the growth is
540 unstable and the tissue breaks symmetry and develops branches (bottom panel of Fig.1d and
541 bottom panel of Fig. 2b and 3b); if the scaled proliferation pressure $j = \frac{\tau_g}{\tau_t} \gg 1$, the morphological
542 stability of the tissue depends on $\mu = \frac{\mu_t}{\mu_m}$ (see Extended Data Fig11d,e and 13c); for $\mu = \frac{\mu_t}{\mu_m} \ll 1$,
543 the tissue remains spheroidal (Extended Data Fig.11d,e, 13c); for $\mu = \frac{\mu_t}{\mu_m} \gg 1$, growth is unstable
544 and the tissue breaks symmetry and develops branches (Extended Data Fig.11d,e, 13c). We
545 have shown representative images from the experiments and the simulations in different regimes
546 of the Phase diagram; one set of images from stable tissues in the blue region

547 $(A = \frac{\tau_a}{\tau_m} = 0.4, \mu = \frac{\mu_t}{\mu_m} = 0.002, j = \frac{\tau_g}{\tau_t} = 0.05)$; top left is first set of unstable images from a specific
548 point $(A = \frac{\tau_a}{\tau_m} = 400, \mu = \frac{\mu_t}{\mu_m} = 2, j = \frac{\tau_g}{\tau_t} = 0.22)$; and top right is second set of images of another
549 unstable point $(A = \frac{\tau_a}{\tau_m} = 3.3, \mu = \frac{\mu_t}{\mu_m} = 2, j = \frac{\tau_g}{\tau_t} = 0.14)$. Scale bars are 200 μm . p<0.05 *; p<0.01
550 **; p<0.001 ***.

551

552

553 **Figure 4: Matrix viscoelasticity controls intestinal organoid growth, symmetry breaking,
554 budding and cell patterning.**

555 **a**, Schematic depicting of interpenetrating networks (IPNs) of alginate and Matrigel used in
556 organoid studies. Viscoelasticity is controlled by polymer molecular weight and crosslinker
557 concentration, while the concentration of Matrigel is maintained constant. **b**, Storage moduli of
558 the elastic and viscoelastic alginate-matrigel IPNs. n=6 gels per condition. Statistical analysis
559 was performed using Mann-Whitney U-test. **c**, Representative examples of phalloidin and
560 hoechst stainings of intestinal organoids in elastic and viscoelastic hydrogels over 7 days of
561 culture. Phalloidin in cyan, Hoechst in magenta. **d-e**, Quantification of the organoids area (**d**)
562 and circularity (**e**), respectively, over 7 days in elastic and viscoelastic matrices (error bars,
563 s.e.m). n= 24/26,2/24,27/22,31/21,19/23,22/29,21/26 organoids in Elastic/Viscoelastic gels per
564 day. Statistical analysis was performed using Kruskal-Wallis test followed by post hoc Dunn's
565 test. **f**, Example of Lgr5+, phalloidin and hoechst staining of intestinal organoids in a stiff
566 viscoelastic gel after 7 days. Left, Lgr5+ (magenta) and hoechst (cyan); right, phalloidin (cyan).
567 **g**, Example of Lysozyme, phalloidin and hoechst staining of intestinal organoids in a stiff
568 viscoelastic gel after 7 days. Left, lysozyme (magenta) and hoechst (cyan); right, phalloidin
569 (cyan). **h**, Representative examples of phase contrast and Lgr5+ GFP images (upper row) and
570 quantification of GFP positive Lgr5+ intestinal organoids in the viscoelastic and elastic matrices
571 of different stiffness. n=5,5,5,6 samples per condition. Statistical analysis was performed using
572 Kruskal-Wallis test followed by post hoc Dunn's test. **i**, Quantification of the percentage of
573 colony formation per condition. n=20,20,18,24 images per condition. Statistical analysis was
574 performed using Kruskal-Wallis test followed by post hoc Dunn's test. **j**, Examples of phalloidin
575 and Hoechst stainings of intestinal organoids in different stiffness elastic and viscoelastic
576 matrices after 7 days. **k**, Quantification of the organoids area in different stiffness elastic and
577 viscoelastic matrices. n=32,32,38,37 organoids per condition. Statistical analysis was performed
578 using Kruskal-Wallis test followed by post hoc Dunn's test. **m**, Example of EdU (cyan) and
579 Hoechst (nuclei) (upper row) and the percentage of EdU positive cells (lower row) of intestinal
580 organoids in different stiffness elastic and viscoelastic matrices. n=10,9,8,8 organoids per
581 condition. Statistical analysis was performed using Kruskal-Wallis test followed by post hoc
582 Dunn's test. All data are mean \pm s.d. except where indicated, all scale bars are 100 μ m.