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Abstract

The COVID-19 pandemic has been fueled by novel variants of concern (VOC) that have
increased transmissibility, receptor binding affinity, and other properties that enhance disease.
The goal of this study is to characterize unique pathogenesis of the Delta VOC strain in the K18-
hACE2-mouse challenge model. Challenge studies suggested that the lethal dose of Delta was
higher than Alpha or Beta strains. To characterize the differences in the Delta strain’s
pathogenesis, a time-course experiment was performed to evaluate the overall host response to
Alpha or Delta variant challenge. gRT-PCR analysis of Alpha- or Delta- challenged mice
revealed no significant difference between viral RNA burden in the lung, nasal wash or brain.
However, histopathological analysis revealed high lung tissue inflammation and cell infiltration
following Delta- but not Alpha-challenge at day 6. Additionally, pro-inflammatory cytokines were
highest at day 6 in Delta-challenged mice suggesting enhanced pneumonia. Total RNA-
sequencing analysis of lungs comparing infected to uninfected mice revealed that Alpha-
challenged mice have more total genes differentially activated, conversely, Delta-challenged
mice have a higher magnitude of differential gene expression. Delta-challenged mice have
increased interferon-dependent gene expression and IFN-y production compared to Alpha.
Analysis of TCR clonotypes suggested that Delta challenged mice have increased T-cell
infiltration compared to Alpha challenged. Our data suggest that Delta has evolved to engage
interferon responses in a manner that may enhance pathogenesis. The in vivo and in silico
observations of this study underscore the need to conduct experiments with VOC strains to best

model COVID-19 when evaluating therapeutics and vaccines.
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Importance

The Delta variant of SARS-CoV-2 is known to be more transmissible and cause severe disease
in human hosts due to mutations in its genome that are divergent from previous variants of
concern (VOC). Our study evaluates the pathogenesis of Delta in the K18-hACE2 mouse model
compared to the Alpha VOC. We observed that relative to Alpha, Delta challenge results in
enhanced inflammation and tissue damage with stronger antiviral responses. These

observations provide insight into Delta’s unique pathogenesis.

Introduction

The COVID-19 pandemic is being perpetuated by the emergence of “Variants of Concern”
(VOC), mutant strains of SARS-COV-2 with enhanced disease-causing abilities. Early in the
pandemic, strains obtained the D614G mutation that enhanced binding of the spike protein to
the host hACE2 receptor. The mutation quickly became dominant in the circulating strains
around the world. Several potential variant strains were noted and monitored but few
demonstrated any unique or enhanced differences in virulence or transmission. In September
2020, the B.1.1.7 strain was first identified in the United Kingdom and quickly spread to become
the dominant variant worldwide in early 2021 (1). Later, in December 2020, two other variants,
Beta (B.1.351) and Gamma (P.1) were identified in South Africa and Japan/Brazil, respectively
(2-4). Both Beta and Gamma increased concerns because they decreased efficacy of several
vaccines in clinical trials (4—10).

In addition to the effects on vaccine efficacy in clinical trials, there were also reports that Alpha
and Beta variants were able to cause enhanced disease in humans (11-16) and animal studies
with transgenic K18-hACE2-mice and hamsters supported those observations (17,18). Before
circulating VOC established their dominance, two doses of Pfizer-BioNTech’s mRNA vaccine,
BNT162b2, exhibited 95% efficacy in protecting individuals from severe COVID-19 in

retrospective cohort studies of COVID-19-associated hospitalizations in early 2021 (19).
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78 However, the efficacy of the BNT162b2 vaccine was slightly diminished in the context of the
79  Alpha (93.7% efficacy) (20).

80 As Alpha, Beta, and Gamma continued to spread, the Delta variant (B.1.617.2) was identified in
81 India, resulting in a massive surge of COVID-19 cases in the country (21). Unsurprisingly, Delta
82 was able to cause breakthrough cases of infection within a portion of fully vaccinated people,
83  decreasing the overall efficacy of ChAdOx1, mRNA-1273, or BNT162b2 vaccines (20,22—-24). In
84  March 2021, the Delta variant was detected in the United States, and reports of its increased
85  transmissibility necessitated investigation of its threat to both unvaccinated and vaccinated
86  populations. Key pathogenic mutations in the B.1.617 SARS-CoV-2 lineage, which includes the
87 Delta (B.1.617.2) and Kappa (B.1.617.1) VOC, occur within the spike protein, which mediates
88 viral attachment and entry into host cells via the ACE2 receptor (25,26). These mutations have
89 been reported to increase transmissibility within the population and decrease antibody
90 neutralization (27). Delta does not harbor the N501Y substitution in the spike protein that was
91 characteristic of the Alpha and Beta lineages but Delta does harbor the D614G substitution in
92  spike, which contributes to the increased fitness and transmissibility of many VOC strains
93 (28,29). Some strains of Delta are reported to harbor the K417N mutation previously found in
94  Beta and Gamma, which sparked debate over designating the strain as a new variant (30,31).
95  This mutant strain was labeled as “Delta Plus.” Additional mutations within the spike protein of
96 Delta include P681R, which diverge from other VOC and help to enhance ACEZ2 receptor

97  binding and cellular entry, contributing to reported increases in Delta’s pathogenicity (32).

98 To characterize the pathogenicity of Delta (utilizing strain B.1.617.2) and how it diverges from
99  prior VOC (WA-1, Alpha, and Beta strains), we performed a time-course challenge study in K18-
100 hACEZ2 transgenic mice, which were intranasally challenged with Alpha and Delta strains.
101  Through analysis of viral load, tissue pathology, cytokine profiling, and total transcriptomics of

102 the lung, we discovered that Delta causes increased interferon type | and Il responses
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103  corresponding with greater lung inflammation when compared to Alpha. These data help to
104  advance pre-clinical models of COVID-19 as well as serve as a benchmark to compare past and
105  future VOC strains.

106

107 Results

108 The Delta Variant of SARS-CoV-2 has a greater LD100 than Alpha and Beta VOCs in K18-
109 hACE2 mice. To date, most K18-hACE2 mouse or Golden Syrian hamster studies have
110  utilized ancestral viral strains of SARS-CoV-2 (e.g., WA-1, D614G, B.1 Wuhan), and few studies
111 have been performed with emergent VOC (2,17,18,33-39). Early studies in K18-hACE-mice
112 with a variety of viral strains used a wide range of challenge doses from as low as 100 PFU to
113  as high as 10°> PFU (40-42). In pilot studies with the Alpha and Beta variants, we evaluated 10°
114  PFU (high dose) and observed mortality as early as day 4 post challenge, suggesting that VOCs
115 have enhanced virulence in K18-hACE-mice compared to WA-1 ancestral strain (data not
116  shown). We then aimed to identify an appropriate challenge dose for WA-1, Alpha, Beta, and
117  Delta VOC that could cause symptomatic disease for appropriate comparisons between the
118  subtle aspects of variant pathogenicity masked by lethal challenge doses. At the low dose of 10°
119 PFU, WA-1 challenge only resulted in morbidity of 50% of the mice (Fig. 1A). We observed that
120 a challenge dose of 10° PFU using Alpha or Beta resulted in 80% and 100% mortality,
121  respectively by day 7 post challenge. Although this comparison between Alpha and Beta
122 challenge at 10° PFU is not statistically significant (P= 0.6452), there is a significant difference
123 between the survival of WA-1 challenged mice compared to Beta at the 10° PFU dose, where
124  WA-1 elicits higher survival (P= 0.0446). Despite the observations of enhanced virulence of
125  Delta in humans, 10° PFU challenge of K18-hACE2-mice mirrored WA-1 survival more so than
126  Alpha or Beta (Fig. 1A). As expected, increasing the challenge dose to 10* PFU decreased
127  survival of K18-hACE2-mice for all strains (Fig. 1B). At the 10* PFU challenge dose, Delta

128  resulted in 0% survival (Delta vs WA-1 P= 0.0002) (Fig. 1A-B). The 10* PFU challenge dose
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129  also shortened the time to morbidity for Beta as well as Alpha (WA-1 vs Alpha P=0.0008; WA-1
130 vs Beta P=0.0122). As we suspected from an ancestral strain, total morbidity of WA-1 infected
131 groups was not observed at the either dose. Using a disease scoring system established
132 previously (T.Y.Wong, K. S. Lee, et al., JVI accepted for publication) we observed higher
133 average disease scores for Alpha and Beta than Delta in K18-hACE2 mice intranasally
134  challenged with 10° PFU (Alpha vs Delta P=0.0355; Beta vs Delta P=0.0039) (Fig. 1C-D).
135 Interestingly, Delta’s observable disease phenotypes remained low by day 6 when Alpha- and
136 Beta- challenged mice started to develop greater observable disease phenotypes consistent
137  with morbidity (Alpha vs Delta P=0.0056). Delta’s disease phenotypes were scored higher
138  following 10* PFU challenge, where they progressed in a pattern similar to Alpha. Delta-
139 challenged mice received higher average disease scores than Beta by day 6 post challenge
140 (Fig. 1D). These experiments suggested that Delta compared to WA-1, Alpha, and Beta We

141  reasoned that these differences warranted further investigation.

142  Mice challenged with of Alpha or Delta experience unique disease manifestation. To gain
143  additional insights into the differences in pathogenesis of Alpha and Delta in K18 mice, we
144  focused on a challenge dose of 10° PFU which allows for differential disease manifestation
145 between Alpha and Delta. Rectal temperature and weight loss were monitored in mice
146  challenged with 10° PFU of Alpha or Delta. In agreement with their disease scores, Alpha
147  challenged mice had significant loss of body temperature (hypothermia) and weight loss
148  between days 5 and 6 post challenge (Fig. 1E-F). However, Delta-challenged mice maintained
149  body temperature and did not experience weight loss (Fig. 1G-H). At day 6 post challenge,
150 Alpha challenged mice had reached morbidity based on disease scoring and required
151  euthanasia as a humane endpoint. However, at day 6 Delta challenged mice remained below
152  euthanasia criteria. Collectively, these data demonstrate that Alpha and Delta cause distinct

153  disease profiles in K18-hACE2-mice.
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154  Mice challenged with Delta have similar levels of viral RNA burden in the nares, and
155 lungs but lower amounts of viral RNA in the brain. It has been previously reported that
156  SARS-CoV-2 viral burden is highest two days after challenge (43) and based on our data we
157  recognize that Alpha variant will cause morbidity at day 6 post-challenge; however, Delta variant
158 challenge will not cause the same disease, or survival. Therefore, we aimed to evaluate viral
159 RNA burden at day 2 and 6 post challenge for Alpha or Delta challenge mice. At euthanasia on
160 day 2 and 6 the lung, brain, and nasal wash fluid were collected from challenged mice to
161  quantify viral RNA burden via nucleocapsid gqRT-PCR. We observed that viral RNA burden was
162  remarkably similar between Alpha and Delta in the lung at both time points (Fig. 2A). In the
163  nasal wash, viral load was also detectable at similar levels for both Alpha and Delta at day 2. In
164  contrast to the lung, the viral RNA burden decreased to undetectable levels at day 6 for both
165 VOC (Fig. 2B). Surprisingly, challenge with Delta did not lead to detectable levels of viral RNA in
166 the brain at either day 2 or day 6. In contrast, mice infected with Alpha exhibited low RNA levels
167 at day 2 and a 2-fold increase at day 6, suggesting viral replication in the brain over time (Fig.
168 2C). These observations suggest that Delta replicates efficiently in the airway in a manner
169 similar to Alpha but Delta appears to lack the brain localization previously observed in K18-

170 hACE2 mice (43-46).

171  Mice challenged with Delta experience significant inflammation in the lung tissue. Based
172 on gRT-PCR data showing viral RNA burden in the lung but not brain of 10° PFU Delta-
173  challenged mice, we hypothesized that relative to other Alpha, Delta may cause robust
174  pneumonia and less encephalitis in K18-hACE2-mice. To test this, we performed
175 histopathological analysis on the lungs collected at days 2 and 6 to characterize the pneumonia
176  caused by Alpha or Delta challenge. At two days following challenge, inflammation, and
177  recruitment of inflammatory cells could already be observed in the Delta- but not Alpha-

178 challenged mice when compared to the lungs of uninfected mice (Fig. 3A-B). At this time, a
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179  pathologist identified that the inflammatory infiltrate was composed predominantly of
180 lymphocytes and occasional histiocytes. By day 6, an increase in marked perivascular
181 inflammation and margination was measured in Delta- (36.86 marginating lymphocytes per mm
182  length of endothelium) and Alpha-challenged mice (12.19 marginating lymphocytes per mm
183  length of endothelium) (unpaired t-test P=0.026) (Fig 3C-D). In Alpha lungs, less total vessels
184  were identifiable within areas of inflammation, awarding these samples a margination score of
185  zero cells/mm of vessel. Overall, less inflammation occurred in Alpha lungs. At day 6, only 1%
186 of the lung area featured inflammation in Alpha, compared to 20% for Delta-challenged mice
187  (unpaired t-test P=0.003) (Fig 3E). Within these tissue areas (the airway, alveoli, and thin
188 mucous layer), the presence of Delta virions was identified using electron microscopy (Fig 3F-
189 Q). Collectively, these data suggest Delta challenged mice have increased cellular responses
190 and inflammation compared to Alpha challenged K18-hACE-mice.

191 Pro-inflammatory cytokines are increased in mice challenged with Delta at day 6.
192  Histopathological analysis revealed significant inflammation in the lungs of Delta-challenged
193 mice at day 6 compared to Alpha-challenged mice despite equal viral RNA burden. To better
194  understand differences in the inflammatory profile of these tissues, pro-inflammatory cytokine
195 levels in lung supernatant at day 2 or 6 were quantified to profile strain specific variations in the
196  “cytokine storm” (47). Insignificant amounts of cytokine were produced in the lungs of mice
197 challenged with Alpha or Delta at day 2 (Fig. 4). Alpha-challenged mice produced low amounts
198 of IL-1B and CXCL13 compared to uninfected mice at day 2 or 6. By contrast, the cytokine
199 response to Delta challenge at day 6 compared to uninfected revealed high levels of IL-1pB,
200 TNFa, and CXCL10 (P=0.0462, P=0.0268, P=0.009) (Fig. 4). The inflammatory response within
201 the lungs of mice challenged with Delta was elevated compared to Alpha. To gain insight into
202 the specific mechanisms of the immunological host response, we performed RNAseq to
203  characterize the total transcriptional profile of Alpha and Delta challenged K18-hACE2 mouse

204  lungs.
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205 RNAseq analysis of lung tissues from mice challenged with Alpha or Delta shows no
206 difference in viral sgRNA. We utilized RNA that was isolated from the lung tissue of
207 challenged and uninfected mice at 2- and 6-days post-challenge for lllumina transcriptomic
208 analysis. RNA sequencing reads were first mapped to the SARS-CoV-2 viral genome to quantify
209 the expression levels of viral genes over the course of infection (Fig. 5A). This revealed no
210 significant difference between the two strains (Fig. 5B-C) which directly supported the qRT-PCR
211 analysis (Fig. 2). It is known that SARS-CoV-2 infection results in down-regulation of hACE2
212  expression(48,49). Therefore, we mapped RNA reads to the hACE gene to analysis this effect.
213  Although not significant, a trend of lowered hACE2 expression occurred in Alpha challenged
214  mice, whereas Delta challenged mice appeared to experience only slightly reduced hACE2
215  expression (Fig. 5D). These observations together with qRT-PCR nucleocapsid data described
216  above, suggest that with equal viral burden (same challenge dose and equal viral RNA burden),
217  the differences in LD100 of Alpha and Delta as well as the disease phenotypes are likely related
218 to differences in host response to VOC and not overall viral load.

219 Delta challenge causes a higher magnitude of host gene expression change compared to
220 Alpha. To compare the host responses of Delta- and Alpha-challenged mice, we mapped lung
221  RNA sequencing reads to the mouse genome. We observed that Alpha or Delta challenge in
222 K18-hACE2 mice result in distinct transcriptional changes. Two days after challenge with Alpha,
223 2,413 statistically significant genes (FDR P < 0.04) were differentially expressed compared to
224  uninfected mice, a difference which increases more than two-fold to 5,664 genes at day 6. In
225  Delta groups, differential expression encompasses 3,048 and 4,489 genes respectively. Venn
226  diagrams of the gene sets comparing by variant and time-points illustrate overlaps in gene sets
227 that are either activated or repressed. Both activated and repressed gene sets increase from
228 day 2 to 6 (Fig. 6A). Further filtration of these sets of genes to identify those that are uniquely
229 affected by VOC challenge and timepoint revealed that Alpha challenge results in more genes

230  differentially regulated at day 6 than Delta challenge (Fig. 6B). A set of core-activated genes
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231  was identified through a four-way comparison of VOC and timepoint. Alpha and Delta challenge
232 both activate a similar set of host genes despite their different disease pathology. After
233  identifying the commonalities in our data set, we sought to identify how host transcriptomics
234  differ between the groups. When the fold changes of this gene set were graphed on a curve
235 according to their respective values at 6 days post-Delta challenge, it became clear that
236  expression of these core genes follows a similar trend (Fig. 6C).

237 GO analysis revealed unique systems of enriched genes in mice challenged with Delta.
238 Gene Ontology (GO) term analysis was performed to systematically group transcriptomic
239  observations to identify specific pathways and gene systems whose expression changes in
240 response to Alpha and Delta challenge. Relative to Alpha-challenged mice, Delta-challenged
241  mice had a higher number of unique GO terms that were enriched at day 6 (Fig. 7A). To
242  categorize the specifically enriched terms in Delta at day 6, pathway enrichment ratios were
243 calculated for the top 30 GO terms (Fig. 7B). The expression of genes that were annotated with
244 GO terms pertaining to immune responses, anti-viral, or lymphocyte recruitment were
245  increased, as were genes of pathways associated with T cells and responses to IFN-B (Fig. 7B).
246  Due to the fact that GO term analysis identified T cell response genes to be enriched in Delta
247  challenged mice, we performed T cell receptor (TCR) clonotype analysis using RNAseq reads.
248  Within the uninfected mice, we detected ~50 total clonotypes. In Alpha-challenged mice, the
249  number of clones were decreased relative to uninfected at both day 2 and 6. By contrast, Delta-
250 challenged mice had decreased clones at day 2, but we observed a 6-fold increase in TCR
251 clones at day 6 (Fig. 7C). In counts of unique TCR clonotypes, the same trends were observed:
252  at day 6, Delta challenge had the most total unique TCR clones compared to non-challenged
253  mice, day 6 post-Alpha challenged mice, and day 2 post Delta challenged mice (Fig. 7D).
254  These data suggest that Delta may induce more robust T cell response.

255 Delta challenge causes increases interferon dependent gene expression. Gene expression

256 analysis focused by GO terms revealed Delta challenge induced expression of interferon
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257  response genes (Fig. 7). Interferon is an import regulator of the antiviral response in humans.
258 It's variable expression in response to specific variants exemplifies the differences in the host
259 response. TGTP1 and IFI211, two interferon related genes, are the highest-expressed genes in
260 Delta at day 6 at a fold change of 52,725 or 11,733 higher than in uninfected mice. In Alpha at
261 day 6 these genes are 3,367 and 591-fold higher than uninfected. Due to the important role of
262 interferons in the anti-viral response to SARS-CoV-2 which may be differentially engaged by
263  VOC, we continued to compare the top 20 genes involved in general interferon responses. Total
264  gene counts in lung RNA from each experimental group are shown in Fig. 8A. Delta day 6
265  shows high interferon dependent gene expression as well as the highest fold change difference
266  (Fig. 8B). Collectively, these data suggest Delta challenge results in higher interferon response.
267  To test that hypothesis, we directly measured type | and |l interferons in lung supernatants and
268 serum. Modest IFN-a or IFN-B were observed in both lung and serum (IFN-a: P=0.0012 Delta
269 day 6 vs No Challenge in lung supernatant; IFN-B: P=0.0474 Alpha Day 2 vs No Challenge in
270  serum); however, Delta challenge resulted in high IFN-y at day 6 (P=0.0265 in lung supernatant,
271  P=0.0103 in serum compared to no challenge) (Fig. 8C-D).

272

273  Discussion

274  In this study, we modeled the pathogenesis of SARS-CoV-2 variants of concern in the K18-
275 hACE2 mouse challenge model. Based on our observations that the Delta variant differs in
276  disease manifestation from Alpha and Beta VOC-challenge, we performed an experiment to
277  compare Alpha- and Delta-challenged mice at disease-significant timepoints. Despite a similar
278 viral RNA burden in the respiratory tract at day 2 and 6, Delta causes more significant
279 inflammation in the lungs than Alpha as infection progresses. The host response also varies
280  over time, with Delta causing increased antiviral cytokine production, specifically IFN-y, at day 6.

281 GO term analysis of Delta-challenged mice suggested a greater number of immunological
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282  pathways that are implicated in the variant’s pathogenesis compared to Alpha, further indicating
283  the unique nature of host response to individual variants.

284  Severe COVID-19 is perpetuated by dysregulated production of pro-inflammatory cytokines,
285 including type | and Il interferons, in a “cytokine storm” pathology (47,50,51). Interferon-
286  stimulated genes (ISG) in patient lung tissues implicate the role of interferon in SARS-CoV-2
287  pathogenesis, but it has not been determined if the cytokines contribute more to suppressing
288  viral replication, or suppressing the immune response through their anti-inflammatory abilities,
289  contributing to greater disease (50,51). Therefore, it is important to investigate how VOC
290 differentially engage interferon production and subsequently the expression of interferon
291 stimulated genes, during infection. Delta challenge causes a significant increase in lung and
292  serum IFNy which is greater than what has been previously reported in K18-hACE2 mice using
293  different challenge strains such as ancestral WA-1 (30,31,32). IFNy is a potent antiviral cytokine
294  that occurs later in the timeline of viral challenge and may not be observable in widely used
295 COVID-19 mouse models because of short survival lengths (52). IFNy production is typically
296  associated with the activation of Natural Killer cells, innate lymphoid cells, or Th1-like adaptive
297 immune cells (44). Its high concentrations in the lung of Delta mice could corroborate greater
298 recruitment of these cell populations identified in histopathology data as infiltrating cells (Fig. 3).
299 Together the observations of this study suggest that Delta challenge causes enhanced innate
300 immune responses compared to Alpha.

301  Surprisingly we observed that the viral RNA burden of the respiratory tract was identical per day
302 per variant in the K18-hACE2-mice, as determined by both RT-gPCR and RNAseq, a clear
303 question remains: why does Delta induce more interferon responses? One possible option that
304 could be explored is the interaction of viral sgRNAs in regulating host gene expression. Open
305 Reading Frames (ORFs) of SARS-CoV-2 have been implicated in controlling the host anti-viral
306 response (53). Studies have reported that the increase in viral burden due to Alpha leads to

307 increases in some but not all sub-genomic RNAs from the genomic regions harboring variant-
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308 characteristic mutations (54). Another study links the expression of sub-genomic RNAs in Alpha
309 infection, specifically ORF9b, to antagonism of the host immune response and suppression of
310 ISGs which would allow for more efficient viral replication and enhanced transmission (55).
311  Although viral gene reads in our analysis show no significant differences between Alpha and
312 Delta sgRNAs, it is possible that our selected timepoints were too late to detect the differences
313  previously reported at 10 and 24 hours post challenge, or that our challenge dose was too low.
314  Still, our abundant transcriptomic data suggest an extensive list of gene pathways that were
315 enriched during Delta but not Alpha infection.

316 We observed that 10° PFU challenge with Delta variant does not cause the dramatic weight loss
317 and hypothermia reported in models of Alpha and Beta challenge (17). One well known caveat
318 of the K18-hACE2-mouse model is the fact that WA-1, Alpha and Beta strains enter the brain
319 (43,45,46,56-62). However, it appears that Delta variant remains more localized in the lungs of
320 challenged mice (Fig. 3) (63). It's generally accepted that the K18-hACE2-mice reach morbidity
321 due to brain infection, supported by manifestations of disease including hypothermia, and
322 inflammatory profiles. It is possible that the absence of brain infection due to Delta allows for an
323  increased survival time, leaving more time for the development of severe infection and
324  pneumonia in the lung, which could make Delta a better strain for modeling the respiratory
325 phenotypes of COVID-19 disease in K18-hACE2 mice.

326 We appreciate that the K18-hACE2-mouse model has caveats to consider. The transgenic
327 model expressing human ACE2 in addition to mouse ACE2 addresses SARS-CoV-2’s higher
328  affinity for binding human ACEZ2, which reduces species tropism and allows virus to cause lethal
329 disease in the mice. As is common in transgenic protein expression, hACE2 under the epithelial
330 cell cytokeratin-18 (K18) promoter is not expressed with the identical tissue localization as it
331 would be in humans. Therefore, viral localization should always be carefully considered. Our
332  observations show that Delta accomplishes lung infection in the mouse and induces strong

333  pneumonia. One popular alternative to the K18-hACE2 mouse model is the Syrian Golden
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334  Hamster. After SARS-CoV-2 challenge, hamsters develop more observable respiratory disease
335 and pneumonia due to a higher affinity for hamster ACE2 (64,65). Delta has been reported to be
336 highly pathogenic in golden hamsters, with increased tropism for the respiratory tract and low
337 development of disease phenotypes like weight loss and drops in temperature (32,66). The
338 similarities between mouse and hamster models provide evidence for Delta’s unique disease
339  manifestation, defending the importance of its use in preclinical models when compared to prior
340  strains.

341  With the emergence of the Omicron variant, it's clear that novel variants of SARS-CoV-2 will
342  continue to arise with enhanced disease capabilities. To continue preclinical COVID-19
343  research with small animal models, strains that more accurately recapitulate present human
344  disease are necessary. Understanding the unique disease mechanisms of each VOC and the
345 caveats they may present in these models will help to advance research into the identification or
346  improvement of therapeutics.

347 The K18-hACE2-mouse challenge model of COVID-19 holds high value in characterizing
348 variants, evaluating vaccines and therapeutics, and defining the pathogenic mechanisms of
349 SARS-CoV-2. The data presented here show that a sublethal challenge with Delta induces
350 inflammation that is more histopathological than the Alpha VOC and increases interferon
351 responses. This study also defines the doses of SARS-CoV-2 VOC that are useful for
352  considering in performing preclinical studies. The use of RNAseq allowed us to characterize the
353  entire transcriptome of the mouse lung to understand the effect of challenge by either Alpha or
354  Delta variants. We observed massive differential gene expression caused by Delta despite that
355 fact that the mice did not reach morbidity. Our study identified unexpected and uncharacteristic
356 aspects of Delta’s disease pathogenesis. Together, our study outcomes underscore the need to
357  continue to understand SARS-CoV-2 especially outside of the immunogenicity differences of the

358 spike protein that are most often focused upon. We plan to build upon the findings of this study
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359 and characterize single-cell gene expression of the host response in a continued effort seeking
360 to understand ways to combat this virus.

361

362 Materials and methods

363 Biosafety, Animal, and Ethics statement.

364  All research performed was approved by West Virginia University IACUC protocol number
365 2004034204. K18-hACE2-mice were purchased from Jackson Laboratory (B6.Cg-Tg(K18-
366  ACE2)2Prlmn/J; JAX strain number #034860). All SARS-CoV-2 viral propagation or challenge
367 studies were conducted in the West Virginia University Biosafety Laboratory Level 3 facility
368 under the IBC protocol number 20-04-01. SARS-CoV-2 challenged mouse serum and lung
369 supernatant were inactivated with 1% Triton per volume before exiting high containment.
370 Additional tissues were treated using TRIzol reagent or fixed before additional work in BSL2
371  conditions.

372

373 SARS-CoV-2 cultivation and K18-hACE2 mouse challenge.

374 SARS-CoV-2 strains were obtained from BEIl: USA-WA-1/2020 (WA-1; BEI NR-52281)
375 (GenBank accession number: MN985325), hCoV19/England/204820464/2020 (Alpha; NR-
376  54000)(GISAID: EPI_ISL_683466), and hCoV19/South Africa/KRISP-EC-K005321/2020 (Beta;
377 BEI NR-54008) (GISAID: EPI_ISL_678570). The SARS-CoV-2 Delta variant (B.1.617.2 hCoV-
378  19/USA/WV-WVU-WV118685/2021) was obtained from a patient viral transport medium swab
379  (GISAID Accession ID: EPI_ISL_1742834). SARS-CoV-2 strains were propagated in Vero E6
380 cells (ATCC-CRL-1586). For variant comparison studies, K18-hACE2 mice were intranasally
381 challenged with a volume of 50 uL (25uL per nare) at: 10° PFU/dose (8 week old male and
382 female received WA-1 or Beta; 12 week old female mice received Alpha; 14 week old female
383 received Delta), or 10* PFU/dose (17 week old female received WA-1; 8 week old male and

384 female received Alpha or Beta; 20 week old female received Delta). Male age-matched mice at
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385 8 weeks old were infected with 10® PFU for timepoint comparison study. Viral doses were
386 prepared from the first passage collections from infected Vero E6 cells. Mice were anesthetized
387  with IP injection of ketamine (Patterson Veterinary 07-803-6637) /xylazine (Patterson Veterinary
388 (07-808-1947).

389

390 Disease score of SARS-CoV-2 challenged mice.

391 Challenged K18-hACE2 mice were evaluated daily through both in-person health assessments
392 in the BSL3 and SwifTAG Systems video monitoring for out to 14 days post challenge. Health
393 assessments of the mice were scored based on the following criteria: weight loss (scale 0-5 (up
394  to 20% weight loss)), appearance (scale 0-2), activity (scale 0-3), eye closure (scale 0-2), and
395 respiration (scale 0-2). All five criteria were scored based off a scaling system where 0
396 represents no symptoms and the highest number on the scale denotes the most severe
397 phenotype. Additive health scores of the criteria listed above were assigned to each mouse after
398 evaluation. Mice that scored 5 or above on the health assessment required immediate
399 euthanasia. Average cumulative disease scoring was calculated by adding the disease scores
400 of each mouse from the group on each day and reporting the mean. Morbid mice that were
401  euthanized during the study, before day 14, retained their disease score for the remainder of the
402  experiment.

403

404  Euthanasia and tissue collection.

405 Mice were euthanized either when assigned a health score of 5 or above or at the end of the
406  experiment with an IP injection of Euthasol (390mg/kg) (Pentobarbital) followed by secondary
407 measure of euthanasia with cardiac puncture. Blood from cardiac puncture was collected in BD
408 Microtainer gold serum separator tubes (Catalog No: 365967), centrifuged at 15,000 x g for 5
409 minutes and serum collected for downstream analysis. Nasal wash was acquired by pushing

410 1mL of PBS through the nasal pharynx. 500uL of nasal wash was added to 500uL of TRI
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411 reagent for RNA purification and the remainder of the nasal wash was frozen for serological
412  analysis. Lungs were separated into right and left lobes. Right lobe of the lung was
413  homogenized in 1mL of PBS in gentleMACS C tubes (order number: 130-096-334) using the
414  m_lung_02 program on the gentleMACS Dissociator. 300uL of lung homogenate was added to
415  1000pL of TRI Reagent (Zymo research) for downstream RNA purification and 300 pL of lung
416 homogenate was centrifuged at 15,000 x g for 5 minutes and the lung supernatant was
417  collected for downstream analyses. Brain was excised from the skull and homogenized in 1mL
418 PBS in gentleMACS C tubes using the same setting as lung on the gentleMACS Dissociator.
419  1000pL of TRI Reagent was added to 500uL of brain homogenate for RNA purification.

420

421 qPCR SARS-CoV-2 viral copy number analysis of lung, brain, and nasal wash.

422  RNA purification of the lung, brain and nasal wash was performed using the Direct-zol RNA
423  miniprep kit (Zymo Research R2053) following the manufacturer protocol. SARS-CoV-2 copy
424  numbers were assessed through gPCR using the Applied Biosystems TagMan RNA to CT One
425  Step Kit (Ref: 4392938). We utilized nucleocapsid primers (F: ATGCTGCAATCGTGCTACAA;
426 R: GACTGCCGCCTCTGCTC); and TagMan probe (IDT:/56-
427 FAM/TCAAGGAAC/ZEN/AACATTGCCAA/3IABKFQ/) that were synthesized according to
428  Winkler. et al, 2020 (43). The following final concentrations were used according to the Applied
429  Biosystems TagMan RNA to CT One Step Kit manufacturer protocol: TagMan RT-PCR Mix 2X,
430 Forward and reverse primers 900nM final, TagMan probe 250nM final, TagMan RT enzyme mix
431 40X and RNA template 100ng (excluding Nasal Wash). Purified RNA samples with a
432  concentration less than 100ng/uL were not diluted for use in gPCR reactions. All Nasal Wash
433  RNA samples were used at a set volume of 2 uL due to low RNA quantification via the Qubit 3
434  fluorometer. Triplicates were prepared for each sample, and samples were loaded into a
435  MicroAmp Fast optical 96 well reaction plate (Applied Biosystems 4306737). Prepared reactions

436  were run on the StepOnePlus Real-Time System machine using the parameters: Reverse
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437  transcription for 15 minutes at 48°C, activation of AmpliTag Gold DNA polymerase for 10
438 minutes at 95°C, and 50 cycles of denaturing for 15 seconds at 95°C and annealing at 60°C for
439 1 minute.

440

441  Cytokine analysis

442  R&D 5-plex mouse magnetic Luminex assay (Ref LXSAMSM) was used to quantify cytokines:
443  IL-1B, CXCL13, TNFa, IL-6, IFN-y, IL-17, and CXCL10 from lung supernatant. Manufacturer
444  protocols were followed in preparing samples. Mouse cytokine plate was analyzed on the
445  Luminex Magpix and pg/mL were calculated based off standard curves generated for each
446  cytokine in the assay. IFN-a, IFN-B and IFN-y were additionally quantified using MSD U-PLEX
447  Interferon Combo 1 (ms) assay kit (Catalog No K15320K-1) and manufacturer protocols. MSD
448  assay plates were analyzed using the Meso Scale Discovery Sector 2400.

449

450 Histology and Electron microscopy

451  Left lobes of lungs were immediately fixed in 10mL of 10% neutral buffered formalin. Fixed
452  lungs were paraffin embedded into 5 ym sections. Sections were stained with hematoxylin and
453  eosin and visualized on the DynamyxTM digital pathology platform. Lungs were scored for
454  chronic and acute inflammation in the lung parenchyma, blood vessels, and airways by a
455  Dblinded pathologist. Pulmonary inflammation was quantified by measuring the total area of lung
456  tissue involved by inflammation. The predominant inflammatory cell type was noted. To quantify
457  vascular margination of inflammatory cells, five representative arteries were identified within
458  areas involved by inflammation. Total length of endothelium of these vessels was measured and
459 the number of marginating inflammatory cells in the cross section were manually counted.
460 Areas involved by inflammation were further evaluated by electron microscopic examination.
461  The areas of interest were punched from the paraffin embedded tissue block and processed for

462  electron microscopy. Ultrathin sections were cut on a Leica Ultra-Microtome, collected on
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463  copper mesh grids, stained using uranyl acetate and lead citrate and viewed using a Jeol 1010
464  electron microscope (FEI) with attached AMT camera.

465

466 Illlumina library preparation, sequencing, and in silico bioinformatic analysis

467 RNA quantity was measured with Qubit 3.0 Fluormeter using the RNA high sensitivity (Life
468 Technologies) and RNA integrity was assessed using an Agilent TapeStation. RNA was
469 DNAased before library preparation. lllumina sequencing libraries were prepared with KAPA
470 RNA HyperPrep Kit with RiboErase (Basel, Switzerland). Resulting libraries passed standard
471  lllumina quality control PCR and were sequenced on an lllumina NovaSeq s4 4000 at Admera
472  Health (South Plainfield, NJ). A total of ~100 million 150 base pair reads were acquired per
473  sample. Sequencing data will be deposited to the Sequence Read Archive. The reads were
474  trimmed for quality and mapped to the Mus musculus reference genome using CLC Genomics
475  Version 21.0.5. Two mice were excluded due to no detectable viral reads (n=5 NC, 4 Alpha
476 Day 2, 5 Alpha Day 6, 5 Delta Day 2, 4 Delta Day 6). An exported gene expression browser
477  table is available upon request. Statistical analysis was performed with the Differential
478  Expression for RNA Seq tool and genes were annotated with the reference mouse gene
479  ontology terms. Quantification of the number of activated or repressed genes unique to each
480 experimental group was performed using Venny 2.1 (67). Genes from each experimental
481 comparison with significant fold changes (Bonferroni < 0.04) were submitted to the WEB-based
482  Gene SeT AnalLysis Toolkit's Over Representation Analysis (ORA) software compared to the
483  reference set “affy mg u74a” to determine GO terms from gene ontology and biological process
484  databases (FDR < 0.05) (68). GO Term heat maps were generated using Morpheus (69). Raw
485 read data is available at NCBI SRA: SUB10957945 (submission complete, pending processing).
486

487  Statistical analyses
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488  All statistical analyses were performed using GraphPad Prism version 9. Statistical analyses
489  were performed with n > 3 for all K18-ACE2 mice studies. Ordinary one-way ANOVA with
490 Dunnett's multiple comparisons test or Two-Way ANOVA with Tukey’s multiple comparisons
491 test were used with single pooled variance for data sets following a normal distribution and
492  Kruskal-Wallis with Dunn’s multiple comparisons test for non-parametric distributed datasets.
493  Kaplan-Meier survival curves were utilized, and Log-rank (Mantel-Cox) test were used to test
494  significance of survival between sample groups.

495
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521 Figures and Legends

522  Figure 1. Survival, disease scores, weight, and temperature of K19-hACE2-mice

523 challenged with WA-1, Alpha, Beta, and Delta strains. K18-hACE2 transgenic mice were

524  intranasally challenged with 1x103 or 1x104 PFU WA-1, Alpha (B.1.1.7), Beta (B.1.351) or Delta

525 (B.1.617) SARS-CoV-2, or mock-challenged with PBS (NC). Post-challenge, mouse survival (A,
526  B) (n=4 for 1x10° WA-1, n=7 for 1x10° WA-1, n= 3 for 1x10° Alpha, n=4 for 1x10" Alpha, n=4 for

527 1x103 Beta, n=4 for 1x104 Beta, n=5 for 1x103 Delta and n=10 for 1x104 Delta) and disease
528 scores (C, D) were evaluated. Based on experimental results, mice challenged with Alpha (n=10
529  split between timepoints) and Delta (n=10 split between timepoints) or mock-challenged with
530 PBS (n=5), were evaluated at day 2 and day 6 post-challenge to measure changes in
531 bodyweight (E, F) and body rectal temperature (G, H). Dotted lines indicate euthanasia points
532 onday 2, day 5 (euthanasia of mock-challenge controls) and day 6. NC=no challenge.

533 Figure 2. Viral RNA burden of disease-associated tissues was quantified using
534 nucleocapsid qPCR. Viral RNA was detectable in the lung tissue of challenged mice from both
535 variants at both timepoints compared to no challenge (One-Way ANOVA, P=0.0008; 0.0004;
536 0.0003; 0.0013) (A). In Nasal Wash, viral RNA burden increased from both variants at Day 2
537 compared to no challenge (One-Way ANOVA, P=0.0016 Alpha; P=0.0030 Delta) and was

538 decreased at Day 6 for both variants from copy numbers at Day 2 (One-Way ANOVA, P=0.0043
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539 Alpha; P=0.0019 Delta) (B). Alpha challenged mice have increased detectable viral RNA in the
540 brain at Day 6 compared to Day 2 (One-Way ANOVA, P=0.0012) while Delta challenge results
541  in no viral RNA burden in the brain (C). Dashed lines indicate limit of detection via qPCR.
542  NC=no challenge.

543  Figure 3. Histopathological and electron microscopy analysis of Alpha or Delta
544  challenged K18-hACE2-mouse lungs. 20X images demonstrating inflammation in the lung
545 tissue of Alpha and Delta SARS-CoV-2 challenged K18-hACEZ2 at Day 2 or 6 post-challenge (B)
546  compared to no challenge (A). 20X images reveal margination at blood vessels within areas of
547 inflammation (green arrows indicate counted marginating cells, red arrows indicate tissue-
548 resident non-marginating cells)(C). Marginating inflammatory cells were counted within the
549 tissue and were found to be increased in Delta challenge at Day 6 (Kruskal Wallis One-Way
550 ANOVA, P=0.0097) (D). Regional tissue inflammation was quantified as % total area of
551 analyzed tissue (mm?® and was highest in Delta at Day 6 compared to no challenge (Kruskal
552  Wallis One-Way ANOVA, P=0.0012) (E). Error bars represent SD. Electron microscopy images
553  displayed distribution of Delta virus particles in 1x10® PFU challenged mouse lung tissue (F,G).
554  White arrows identify virions.

555 Figure 4. Analysis of cytokines production in lung supernatants from Alpha or Delta
556 challenged K18-hACE2 transgenic mice at 2 or 6 days post-challenge. Non-challenged,
557 Alpha or Delta challenged lung supernatants were used to determine local cytokine production
558 in response to challenge. Concentrations (pg/mL) were graphed using Morpheus to reveal
559 relative levels of cytokines compared to non-challenged lungs.

560 Figure 5. RNAseq analysis of SARS-CoV-2 genes in challenged mouse lungs. Schematic
561 of the SARS-CoV-2 genome (A). Total viral read counts in each group (B) as well as
562 quantification of viral reads per 1M RNAseq reads obtained (C). Reads of human ACE2 gene of

563 the K18-hACE2-mice were quantified per 50M reads obtained per lung sample (D).
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564 Figure 6. Total transcriptomic analysis of mouse genes in non-challenged mice
565 compared to Alpha and Delta challenged mice at days 2 and 6. RNAseq reads from
566 challenged mice were compared to non-challenged mice to determine differential gene
567 expression (A). Genes that were statistically significant are indicated in relation to challenge
568 day and their relative expression as being activated or repressed. Venn diagrams are shown to
569 illustrate the amount of overlap in significant genes between days 2 and 6. The total number of
570 unique differentially expressed genes are represented per each challenge day and relative
571 expression (B). The highest differentially activated genes are show per each group with fold
572  change relative to non-challenged control RNAseq reads (C). Gene expression of activated
573  genes are ranked by fold change in Delta day 6 mice and then shown in relation to both strains
574  and days post challenge (D).

575 Figure 7 Gene ontology analysis of systems of genes in challenged mice. Circle plots
576 indicate the number of unique or conserved sets of genes that were found to be enriched per
577  each group (A). The top 30 enriched GO terms are shown and plotted per their relative level of
578 expression and enrichment ratio (B). TCR clonotypes were mapped and represented as Total
579  clones (C) or unique clones per unique CDR3 sequence (D). Total TCR clones (P=0.0005) and
580 unique clones were increased between Delta day 2 and day 6 (P<0.0001).

581 Figure 8 Analysis of interferon dependent gene expression and production of type | and
582 type Il interferon in lungs and serum of K18-hACE2-mice. Total RNA counts per interferon
583 dependent gene are shown per each mouse, time-point, and variant challenge group (A). Each
584  square represents the total RNA counts per gene from one mouse. Interferon dependent genes
585 are shown with relative fold change plotted (B). Interferon alpha, beta, and gamma production
586 inlung supernatant (C) and serum (D) of K18-hACE2-mice.

587
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