

1 **Modelling how the altered usage of cell entry pathways by the SARS-CoV-2 Omicron**
2 **variant may affect the efficacy and synergy of TMPRSS2 and Cathepsin B/L inhibitors**

3
4
5 Pranesh Padmanabhan^{1,*}, Narendra M. Dixit^{2,3,*}

6
7 ¹Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The
8 University of Queensland, Brisbane, Australia 4072

9 ²Department of Chemical Engineering, Indian Institute of Science, Bangalore, India 560012

10 ³Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
11 560012

12
13 ***Correspondence:**
14 Pranesh Padmanabhan, Narendra M. Dixit
15 Email: p.padmanabhan@uq.edu.au; narendra@iisc.ac.in

16
17 **Manuscript details:**
18 Abstract: 150 words; Main Text: ~5000 words; Figures: 5; Tables: 1; References: 47
19

20 **ABSTRACT**

21 The SARS-CoV-2 Omicron variant harbours mutations in its spike protein, which may affect
22 its cell entry, tropism, and response to interventions. To elucidate these effects, we developed
23 a mathematical model of SARS-CoV-2 entry into cells and applied it to analyse recent *in vitro*
24 data. SARS-CoV-2 enters cells using host proteases, either Cathepsin B/L or TMPRSS2. We
25 estimated >4-fold increase and >3-fold decrease in entry efficiency using Cathepsin B/L and
26 TMPRSS2, respectively, of the Omicron variant relative to the original or other strains in a cell
27 type-dependent manner. Our model predicted that Cathepsin B/L inhibitors would be more and
28 TMPRSS2 inhibitors less efficacious against the Omicron than the original strain. Furthermore,
29 the two inhibitor classes would exhibit synergy, although the drug concentrations maximizing
30 synergy would have to be tailored to the Omicron variant. These findings provide insights into
31 the cell entry mechanisms of the Omicron variant and have implications for interventions.

32

33 *Keywords:* SARS-CoV-2; COVID-19; Omicron; Spike protein; TMPRSS2; Cathepsin;
34 Mathematical modelling; Viral kinetics; Drug synergy

35

36 INTRODUCTION

37 The SARS-CoV-2 variant Omicron, declared a variant of concern on 25th November
38 2021, has become the dominant strain worldwide. It harbours as many as 37 mutations in the
39 spike protein compared to the original SARS-CoV-2 strain (Cameroni et al., 2021) and is able
40 to evade neutralising antibodies generated by previously infected or vaccinated individuals
41 (Cameroni et al., 2021; Garcia-Beltran et al., 2021; Hoffmann and et al, 2021; Willett et al.,
42 2022), possibly leading to its increased transmissibility and rapid global spread. The spike
43 protein facilitates the entry of the virus into cells (Hoffmann et al., 2020a; Koch et al., 2021).
44 Indeed, emerging data indicates that the high number of mutations in the Omicron variant
45 affects its viral entry properties and cell tropism (Garcia-Beltran et al., 2021; Hoffmann and et
46 al, 2021; Meng et al., 2021; Peacock et al., 2022; Willett et al., 2022; Zhao et al., 2021), which
47 in turn may influence its ability to establish infection post-exposure and the severity of the
48 subsequent symptoms. How the mutations influence entry and the efficacies of entry inhibitors
49 remains to be elucidated.

50 Early studies showed that the original SARS-CoV-2 (Wuhan-Hu-1) strain displayed
51 broad cell tropism, with viral entry a key determinant of the tropism both *in vitro* (Hoffmann
52 et al., 2020a) and *in vivo* (Liu et al., 2021). Intriguingly, multiple recent *in vitro* studies suggest
53 that cell tropism of the Omicron variant may be altered and its entry efficiency may be different
54 from the original and other variants in a cell line-dependent manner (Garcia-Beltran et al.,
55 2021; Hoffmann and et al, 2021; Meng et al., 2021; Peacock et al., 2022; Zhao et al., 2021).
56 For instance, SARS-CoV-2 pseudotyped virus bearing either the B.1 or the Delta variant spike
57 protein showed higher entry efficiency than the Omicron pseudotyped virus in Caco-2 (human,
58 colon) and Calu-3 (human, lung) cells, whereas the Omicron pseudotyped virus entered Vero
59 (African green monkey, kidney) and 293T (human, kidney) cells more efficiently than the other
60 variants(Hoffmann and et al, 2021). Similar trends were observed in live SARS-CoV-2 virus

61 infection assays (Meng et al., 2021; Zhao et al., 2021): the Delta variant infection spread was
62 significantly greater than the Omicron variant in Calu-3 cells (Meng et al., 2021; Zhao et al.,
63 2021), whereas the spread of the two variants was similar in VeroE6 cells (Zhao et al., 2021).
64 What causes the entry efficiency of the Omicron variant relative to other variants to be higher
65 in some cells and lower in others?

66 The first step in SARS-CoV-2 entry into target cells is the binding of the viral spike
67 protein, S, with the host cell surface receptor angiotensin-converting enzyme 2 (ACE2)
68 (Balistreri et al., 2021; Jackson et al., 2022). Cell tropism is thus expected to be affected by
69 ACE2 expression levels (Hoffmann et al., 2020a; Koch et al., 2021; Liu et al., 2021). The
70 Omicron spike protein binds soluble human ACE2 strongly (Cameroni et al., 2021; Hoffmann
71 and et al, 2021). Further, ACE2 is necessary for the entry of all SARS-CoV-2 variants (Garcia-
72 Beltran et al., 2021; Hoffmann and et al, 2021; Hoffmann et al., 2020a; Meng et al., 2021; Zhao
73 et al., 2021). Thus, any variation in ACE2 expression across cell types is likely to have similar
74 effects on the entry efficiencies of all the variants. The cell type-dependent variation in the
75 entry efficiency of the Omicron variant is therefore unlikely to arise from the variations in the
76 ACE2 expression level across cell types. Omicron spike protein incorporation into pseudotyped
77 virus appears to be compromised compared to the Delta and Wuhan D614G strains (Meng et
78 al., 2021). However, this reduction in spike protein density is expected to decrease the Omicron
79 entry efficiency across all cell types, thus ruling it out as a potential cause of the differential
80 entry efficiency observed.

81 Following ACE2 engagement, successful entry requires that the spike protein be
82 cleaved into subunits by host proteases, either by the transmembrane serine protease TMPRSS2
83 at the plasma membrane or the cysteine proteases Cathepsin B and Cathepsin L in the
84 endosomal vesicles (Jackson et al., 2022). The proteases TMPRSS2 and Cathepsin B/L are
85 thought to work independently, facilitating SARS-CoV-2 entry through two independent

86 pathways (Koch et al., 2021; Padmanabhan et al., 2020) (Fig. 1A). We recently analysed data
87 on SARS-CoV-2 pseudotyped virus infection *in vitro* (Hoffmann et al., 2020a) using a
88 mathematical model of SARS-CoV-2 entry and found that the relative usage of the TMPRSS2
89 and Cathepsin B/L entry pathways by the original SARS-CoV-2 strain varied widely across
90 cell lines (Padmanabhan et al., 2020). For example, Vero cells predominantly admitted entry
91 through the Cathepsin B/L pathway, whereas Calu-3 cells allowed entry via the TMPRSS2
92 pathway. Vero cells overexpressing TMPRSS2 permitted entry via both pathways (Hoffmann
93 et al., 2020a). Importantly, the original strain displayed the ability to use either pathway, with
94 the preferred pathway possibly based on the relative expression levels of the two proteases
95 (Koch et al., 2021). We reasoned that the Omicron variant might use these pathways differently
96 from the original (or the Delta) strain, possibly underlying its differential entry efficiency and
97 altered cell tropism.

98 Here, to elucidate the entry mechanisms of the Omicron variant, we developed a
99 mathematical model of SARS-CoV-2 entry that explicitly considered the two independent
100 entry pathways. Applying the model to the analysis of available *in vitro* data, we deduced the
101 usage of the two pathways by the Omicron variant relative to the other strains. We then applied
102 the model to predict the efficacies of drugs that target host proteases facilitating entry via the
103 two pathways.

104

105 METHODS

106 Model of SARS-CoV-2 entry and the efficacy of entry inhibitors targeting host proteases

107 *In vitro* experiments typically employ virions or pseudotyped viral particles bearing the
108 spike protein, S, of a specific SARS-CoV-2 strain to assess its entry efficiency, determined by
109 measuring the fraction of cells infected post virus exposure. We previously developed a
110 mathematical model to analyse such experiments (Padmanabhan et al., 2020). We adapted the

111 model here to compare the pathway usage of the Omicron variant relative to other variants and
112 to predict the effect of entry inhibitors.

113 In culture, the expression levels of host proteases are expected to vary across cells and
114 affect viral entry into the cells. We let the expression levels, n_t and n_c , of TMPRSS2 and

115 Cathepsin B/L, respectively, follow the log-normal distributions $\psi_t(n_t) = \frac{1}{n_t \sigma_t \sqrt{2\pi}} e^{-\frac{(\ln n_t - \bar{n}_t)^2}{2\sigma_t^2}}$

116 and $\psi_c(n_c) = \frac{1}{n_c \sigma_c \sqrt{2\pi}} e^{-\frac{(\ln n_c - \bar{n}_c)^2}{2\sigma_c^2}}$, with \bar{n}_t and \bar{n}_c the associated means, and σ_t and σ_c the

117 standard deviations. Thus, at the start of infection, a fraction $\phi_{tc} = \psi_t(n_t) \psi_c(n_c) \Delta n_t \Delta n_c$, of the
118 cells in culture would express proteases in the narrow range Δn_t and Δn_c around n_t and n_c ,
119 respectively. Recognizing that entry efficiency would increase with protease expression
120 (Padmanabhan et al., 2020; Padmanabhan and Dixit, 2011, 2012), we defined the relative
121 susceptibility of these latter cells to virus entry through the TMPRSS2 pathway, S_t , and the

122 Cathepsin B/L pathway, S_c , as $S_t = \frac{(n_t)^{h_t}}{(n_t^{50})^{h_t} + (n_t)^{h_t}}$ and $S_c = \frac{(n_c)^{h_c}}{(n_c^{50})^{h_c} + (n_c)^{h_c}}$, where h_t and

123 h_c were Hill coefficients, and n_t^{50} and n_c^{50} were expression levels at which $S_t = 0.5$ and
124 $S_c = 0.5$, respectively. The overall susceptibility of the cells was thus $S_{tc} = S_t + S_c - S_t S_c$,
125 based on the independence of the two pathways.

126 We defined T_{tc} as the above subpopulation (or fraction) of cells and considered a total
127 of $M \times N$ such subpopulations, with $t = 1, 2, \dots, M$ and $c = 1, 2, \dots, N$, defining the range of
128 expression levels of the two proteases across cells. The following equations then described the
129 ensuing viral dynamics:

130
$$\frac{dT_{tc}}{dt} = (\lambda - \mu)T_{tc} - kS_{tc}T_{tc}V; \quad t = 1, 2, \dots, M; \quad c = 1, 2, \dots, N \quad (1)$$

131
$$\frac{dI_{tc}}{dt} = kS_{tc}T_{tc}V - \delta I_{tc}; \quad t = 1, 2, \dots, M; \quad c = 1, 2, \dots, N \quad (2)$$

132
$$\frac{dV}{dt} = p \sum_{c=1}^N \sum_{t=1}^M I_{tc} - c_V V \quad (3)$$

133 Here, cells in the subpopulation T_{tc} proliferate and die with rate constants λ and μ ,
134 respectively, and get infected by free virions, V , with the second order rate constant kS_{tc} . k
135 is thus the rate constant of the infection of the subpopulation for which entry is not limited by
136 the proteases, *i.e.*, for cells with $S_{tc} = 1$. Infection produces corresponding infected cell
137 subpopulations I_{tc} , which release free virions at the rate p per cell and die with a rate constant
138 δ . Virions are cleared with the rate constant c_V . With pseudotyped viruses, which are
139 replication incompetent, we let $p = 0$.

140 In the presence of a TMPRSS2 inhibitor, a Cathepsin B/L inhibitor, or both, the
141 susceptibilities were lowered to $S_{tc}(D_T)$, $S_{tc}(D_C)$, and $S_{tc}(D_T, D_C)$, respectively, where D_T
142 and D_C were the concentrations of the TMPRSS2 and Cathepsin B/L inhibitors. We describe
143 the latter susceptibilities below.

144

145 **Effect of host protease inhibitors.** In the presence of a protease inhibitor targeting a specific
146 protease, the drug would bind and block a fraction of the protease molecules from facilitating
147 entry. With a TMPRSS2 inhibitor at concentration D_T , we described the abundance of free
148 TMPRSS2, denoted n_t^f , using $n_t^f = \frac{\gamma_T}{\gamma_T + D_T} n_t$, where γ_T was the drug concentration that
149 reduced the abundance by half. The expression for n_t^f could be derived mechanistically
150 assuming reaction equilibrium of drug-protease binding and species balance constraints

151 (Padmanabhan et al., 2020; Padmanabhan and Dixit, 2011). The susceptibility of cells T_{tc} to
 152 infection through the TMPRSS2 pathway thus reduced to $S_t(D_T) = \frac{(n_t^f)^{h_t}}{(n_t^{50})^{h_t} + (n_t^f)^{h_t}}$. We
 153 assumed that the susceptibility through the Cathepsin B/L pathway was unaffected by a
 154 TMPRSS2 inhibitor. Similarly, in the presence of a Cathepsin B/L inhibitor at concentration
 155 D_c , we let the abundance of free Cathepsin B/L, n_c^f , follow $n_c^f = \frac{\gamma_c}{\gamma_c + D_c} n_c$, and the
 156 susceptibility through the Cathepsin B/L pathway be reduced to $S_c(D_C) = \frac{(n_c^f)^{h_c}}{(n_c^{50})^{h_c} + (n_c^f)^{h_c}}$.
 157 When both types of inhibitors are used simultaneously, the susceptibility was
 158 $S_{tc}(D_T, D_C) = S_t(D_T) + S_c(D_C) - S_t(D_T)S_c(D_C)$.

159 To assess whether the drugs exhibited synergy, we predicted the population of infected
 160 cells in the absence of drugs, I_{tc} , in the presence of a TMPRSS2 inhibitor, $I_{tc}(D_T)$, a Cathepsin
 161 B/L inhibitor, $I_{tc}(D_C)$, and both, $I_{tc}(D_T, D_C)$, at any given time following the start of infection.
 162 The total fractions of cells unaffected by the drugs individually and together were then given

$$163 \text{ by } f^u(D_T) = \frac{\sum_{c=1}^N \sum_{t=1}^M I_{tc}(D_T)}{\sum_{c=1}^N \sum_{t=1}^M I_{tc}}, \quad f^u(D_C) = \frac{\sum_{c=1}^N \sum_{t=1}^M I_{tc}(D_C)}{\sum_{c=1}^N \sum_{t=1}^M I_{tc}}, \quad \text{and } f^u(D_T, D_C) = \frac{\sum_{c=1}^N \sum_{t=1}^M I_{tc}(D_T, D_C)}{\sum_{c=1}^N \sum_{t=1}^M I_{tc}}.$$

164 We computed the expected fraction of cells unaffected by drugs assuming Bliss independence
 165 using $f_{Bliss}^u(D_T, D_C) = f^u(D_T)f^u(D_C)$. The extent of Bliss synergy then followed as
 166 $\beta_{Bliss} = f_{Bliss}^u(D_T, D_C) - f^u(D_T)f^u(D_C)$, so that

$$167 \beta_{Bliss} = \frac{\sum_{c=1}^N \sum_{t=1}^M I_{tc}(D_T)}{\sum_{c=1}^N \sum_{t=1}^M I_{tc}} \times \frac{\sum_{c=1}^N \sum_{t=1}^M I_{tc}(D_C)}{\sum_{c=1}^N \sum_{t=1}^M I_{tc}} - \frac{\sum_{c=1}^N \sum_{t=1}^M I_{tc}(D_T, D_C)}{\sum_{c=1}^N \sum_{t=1}^M I_{tc}} \quad (4)$$

168

169 **Mean-field model to compare entry efficiencies of variants**

170 To quantify the relative efficiency of the usage of the Cathepsin B/L and TMPRSS2
171 pathways by the Omicron variant, we developed a mean-field version of the model above by
172 considering ‘average’ susceptibilities of the cells to entry via the two pathways. We thus let
173 target cells, T , be infected by pseudotyped virions, V , to produce infected cells, I , depending
174 on the ‘mean’ expression levels of TMPRSS2 and Cathepsin B/L. The following equations then
175 described the ensuing dynamics:

176
$$\frac{dT}{dt} = (\lambda - \mu)T - k\bar{S}_{tc}TV \quad (5)$$

177
$$\frac{dI}{dt} = k\bar{S}_{tc}TV - \delta I \quad (6)$$

178
$$\frac{dV}{dt} = pI - c_V V \quad (7)$$

179 Here, we defined the average susceptibility of the cell population to entry via the
180 Cathepsin B/L pathway as \bar{S}_c and that via the TMPRSS2 pathway as \bar{S}_t . These susceptibilities
181 increase with the expression levels of the respective proteases and saturate to unity when the
182 levels are in excess. For a given cell type, a viral variant that has a higher \bar{S}_c (or \bar{S}_t) would be
183 more efficient at entry via the Cathepsin B/L (or TMPRSS2) pathway than a variant with a
184 lower \bar{S}_c (or \bar{S}_t). Assuming entry via the two pathways to be independent, the overall
185 susceptibility of the population to entry can be written as $\bar{S}_{tc} = \bar{S}_t + \bar{S}_c - \bar{S}_t \bar{S}_c$. This
186 susceptibility determined the rate of target cell infection relative to the maximal rate k . We let
187 $p = 0$ as described above.

188

189 **Data analysis using the mean-field model.** Experiments with pseudotyped virions typically
190 last less than 24 h. It is reasonable to assume that cell proliferation and death do not affect the
191 infection dynamics significantly during this period. Therefore, we ignored the proliferation and
192 death terms in Eqs. (5-6), which allowed us to derive an analytical expression for the time

193 evolution of the population of infected cells: $I(t) = T_0 \left(1 - e^{\frac{kS_{tc}V_0}{c_V}(e^{-c_V t} - 1)} \right)$, where T_0 and
194 V_0 are the initial target cell density and viral concentration, respectively. Using this expression,
195 we obtained the fraction of cells infected by the pseudotyped virions, χ , at time t_d post-
196 infection as

197
$$\chi = \frac{I(t_d)}{T_0} = \left(1 - e^{\vartheta S_{tc}V_0} \right) \quad (8)$$

198 where $\vartheta = \frac{k}{c_V} (e^{-c_V t_d} - 1)$ is a constant for a given t_d .

199 We fit this expression to measured data from recent assays and estimated the efficiency
200 of the usage of the two pathways by the Omicron variant relative to the original or other strains.

201

202 **Model parameters.** We chose model parameters, such as the target cell proliferation and death
203 rate constants, from the literature (Gonçalves et al., 2020; Hoffmann et al., 2020a; Jiang et al.,
204 2019; Padmanabhan and Dixit, 2015; Ursache et al., 2015) and our previous study
205 (Padmanabhan et al., 2020). The model parameter values and initial conditions are summarised
206 in Table 1.

207

208 RESULTS

209 Correlation of entry efficiency with pathway usage

210 To test our hypothesis that the Omicron variant uses the entry pathways differently, we
211 examined data from the recent experiments of Hoffmann et al. (2021), who measured the extent
212 of infection of cells *in vitro* by the Omicron variant (BA.1 sublineage) relative to other variants
213 in different cell types. Interestingly, we found a correlation between the entry efficiency of the
214 Omicron variant and the relative usage of the two entry pathways by the original strain (Fig.
215 1B). With cell lines (Calu-3 and Caco-2) where the usage of the TMPRSS2 entry pathway by
216 the original strain was dominant, the Omicron pseudotyped virus entry was significantly less

217 efficient than the B.1 and delta strains. By contrast, the Omicron virus entry was more efficient
218 in cell lines (293T and Vero) where the Cathepsin B/L entry pathway usage by the original
219 strain was dominant (Fig. 1B). One possible interpretation of this relationship is that the
220 Omicron variant entry is relatively less efficient through the TMPRSS2 pathway and more
221 efficient via the Cathepsin B/L pathway than the other strains. Consistent with this notion,
222 camostat mesylate, a TMPRSS2 inhibitor, was less potent against the Omicron variant than the
223 Delta variant in blocking live virus infection of VeroE6 cells overexpressing TMPRSS2, which
224 allows entry via both pathways (Zhao et al., 2021). Moreover, syncytium formation in a cell-
225 cell fusion assay, which requires TMPRSS2 but not Cathepsins, was severely impaired for the
226 Omicron variant compared to both the Delta (Meng et al., 2021; Zhao et al., 2021) and the
227 Wuhan-Hu-1 D614G (Meng et al., 2021) strains. The increased efficiency of Cathepsin B/L
228 usage together with the reduced efficiency of TMPRSS2 usage by the Omicron variant may
229 explain its altered cell tropism relative to the original strain or other variants.

230

231 **Omicron variant entry with low Cathepsin B/L expression**

232 We reasoned that the increased efficiency of Cathepsin B/L usage and reduced
233 TMPRSS2 usage by the Omicron variant would imply that the variant would successfully enter
234 cells that express low Cathepsin B/L levels, where the original strain might fail. To elucidate
235 this, we performed calculations using our model (Eqs. (1-3)) by varying the expression level
236 of Cathepsin B/L. We first set $n_t^{50}=3.6 \times 10^5$ copies/cell and $n_c^{50}=8 \times 10^4$ copies/cell for the
237 Omicron variant and $n_t^{50}=1.2 \times 10^5$ copies/cell and $n_c^{50}=2.4 \times 10^5$ copies/cell for the original
238 strain so that for given distributions of the TMPRSS2 and Cathepsin B/L expression levels, the
239 susceptibility of cells to entry via the TMPRSS2 pathway was lower (Fig. 2A) and the
240 Cathepsin B/L pathway was higher (Fig. 2B) for the Omicron variant than the original strain.
241 Recall that n_t^{50} is the expression level at which entry efficiency via the TMPRSS2 pathway is

242 half-maximal. Thus, the lower the n_t^{50} , the more efficient is the usage of the TMPRSS2
243 pathway. Analogous notions apply to the Cathepsin B/L pathway. We then considered three *in*
244 *silico* cell lines with a constant TMPRSS2 distribution (Fig. 2C) but different Cathepsin B/L
245 levels, the latter termed low, medium and high (Fig. 2D). For each of these cell lines, we
246 predicted the distributions of cells infected by the original strain as well as by the Omicron
247 variant (Fig. 2E) and compared the two (Fig. 2F). We found that when Cathepsin B/L
248 expression was high, the advantage of the Omicron variant was undermined because of the
249 abundance of Cathepsin B/L, so that the two strains had similar entry levels (Fig. 2F). As the
250 expression level decreased, the Omicron variant was more successful at entry. With medium
251 expression level, the Omicron variant had ~1.4-fold greater entry, and with low expression
252 level, it had more than ~2.9-fold greater entry success than the original strain.

253 With these predictions further strengthening our hypothesis above, we asked whether
254 we could apply our model to analyse available data to quantify the increased (decreased) entry
255 efficiency of the Omicron variant via the Cathepsin B/L (TMPRSS2) pathway. Because the
256 distributions of the protease levels across cells are not known, we employed a simplified, mean-
257 field version of our model for this analysis (Methods).

258

259 Quantitative estimates of relative entry efficiency

260 We considered data from cell types where the original strain nearly exclusively entered
261 via either the Cathepsin B/L or the TMPRSS2 pathways, so that we could estimate the relative
262 efficiency of the usage of either pathway by the Omicron variant. We thus examined first data
263 from Garcia-Beltran et al. (2021), who measured the fraction of 293T-ACE2 cells infected by
264 pseudotyped virus bearing the wild-type or the Omicron spike proteins at different viral
265 concentrations, V_0 (Fig. 3A). 293T-ACE2 cells predominantly permit original strain entry via
266 the Cathepsin B/L pathway (Padmanabhan et al., 2020). Given the relatively poor efficiency

267 of TMPRSS2 usage by the Omicron variant, we made the approximation $\overline{S}_{tc} \approx \overline{S}_c$ in Eqs. (5-
268 6). Using the resulting expression (Eq. (8)), we fit predictions of χ as a function of V_0 to the
269 corresponding experimental data (Garcia-Beltran et al., 2021) and estimated the composite
270 parameter $\vartheta \overline{S}_c$ for the wild-type (wt) and the Omicron variant. Our model provided good fits
271 to the data (Fig. 3A). Taking ratios of the estimated composite parameter and recognizing that
272 ϑ is unlikely to be strain dependent, we obtained $\overline{S}_c^{\text{Omicron}} / \overline{S}_c^{\text{wt}} \sim 4.6$, indicating an ~4.6-fold
273 increased efficiency of the usage of the Cathepsin B/L pathway by the Omicron variant in
274 293T-ACE2 cells relative to the original strain.

275 We next analysed the experiments of Hoffmann et al. (2021) mentioned above (Fig
276 1B). We focussed on Calu-3 cells, which appear to allow entry of the original strain nearly
277 exclusively via TMPRSS2. Here, we therefore made the approximation $\overline{S}_{tc} \approx \overline{S}_t$ in Eqs. (5-6).
278 Unlike the above dataset, measurements here were available at a single initial viral load.
279 Further, measurements were available of the fractions of cells infected by viruses pseudotyped
280 with the Omicron variant relative to those with the B.1 or Delta variants. Note that B.1 has
281 spike proteins identical to the original strain except for the D614G mutation. Because the
282 overall infection of Calu-3 cells is small, Taylor series expansion of Eq. (7) yielded the
283 approximation $\chi \approx \vartheta \overline{S}_t V_0$. Accordingly, the susceptibility of cells to entry via the TMPRSS2
284 pathway of the Omicron variant relative to the B.1 strain would be given by the ratio of the
285 fractions of cells infected in the two assays: $\overline{S}_t^{\text{Omicron}} / \overline{S}_t^{\text{B.1}} = \chi^{\text{Omicron}} / \chi^{\text{B.1}}$. Using the latter
286 expression and the corresponding data yielded $\overline{S}_t^{\text{Omicron}} / \overline{S}_t^{\text{B.1}} \sim 0.28$ and $\overline{S}_t^{\text{Omicron}} /$
287 $\overline{S}_t^{\text{Delta}} \sim 0.12$. Thus, we estimated ~3.6-fold and ~8.3-fold decreased efficiency of the Omicron
288 variant in using TMPRSS2 for entry in Calu-3 cells compared to the B.1 and Delta strains,
289 respectively (Fig. 3B).

290 Together, thus, the Omicron variant appears to have evolved to use Cathepsin B/L more
291 efficiently and TMPRSS2 less efficiently for virus entry than the original and other strains.

292

293 **Efficacies of Cathepsin B/L and TMPRSS2 inhibitors in blocking Omicron variant entry**

294 Drugs targeting the proteases Cathepsin B/L and TMPRSS2 offer promising routes to
295 treat SARS-CoV-2 infection (Hashimoto et al., 2021; Hoffmann et al., 2020a; Hoffmann et al.,
296 2020b; Kreutzberger et al., 2021; Ou et al., 2021). The improved efficiency of Cathepsin B/L
297 usage and reduced efficiency of TMPRSS2 usage would imply that drugs targeting the former
298 but not the latter would be preferred for treating infections with the Omicron variant. To
299 examine this, we applied our model (Eqs. (1-3)) to predict the ability of the two classes of
300 inhibitors to prevent viral entry. We considered an *in silico* cell line with log-normal
301 distributions of the expression levels of TMPRSS2 and Cathepsin B/L (Fig. 4A) and the strain-
302 dependent susceptibility of cells to entry via the two pathways (Fig. 2A, B). In the presence of
303 a TMPRSS2 inhibitor, our model predicted that entry of the original strain would decrease in
304 a dose-dependent manner and saturate, for the parameters chosen, to ~45% of that in the
305 absence of the drug (Fig. 4B). The latter plateau represented the entry via the Cathepsin B/L
306 pathway when entry via the TMPRSS2 pathway was fully blocked. Under the same conditions,
307 entry of the Omicron variant saw hardly any decrease compared to that in the absence of the
308 drug. This is because the Omicron variant entry proceeded only minimally via the TMPRSS2
309 pathway, leaving little room for the drug to act.

310 The use of a Cathepsin B/L inhibitor, however, had the opposite effect. The entry of
311 the original strain showed hardly any reduction with increase in drug concentration (Fig. 4C).
312 On the other hand, the entry of the Omicron variant decreased in a dose-dependent manner and
313 plateaued to a value of ~38% of that in the absence of the drug.

314 It followed, thus, that Cathepsin B/L inhibitors would be more effective in blocking
315 Omicron variant entry than TMPRSS2 inhibitors.

316

317 **Synergy between Cathepsin B/L and TMPRSS2 inhibitors against both the original strain**
318 **and Omicron variant**

319 Previously, we predicted synergy between the two types of inhibitors in blocking virus
320 entry, which has since been observed in experiments with the original strain (Hoffmann et al.,
321 2020a; Kreutzberger et al., 2021). Here, we applied our model to estimate the extent of synergy
322 with the Omicron variant relative to the original strain (Eqs. (1-4)) (Fig. 5A-J). Given the
323 substantial cell-type dependence in entry efficiency, we first considered two *in silico* cell types,
324 one with relatively low (Fig. 5A) and the other with relatively high (Fig. 5E) mean TMPRSS2
325 expression levels. Both the cell types expressed moderate Cathepsin B/L levels (Fig. 5A, E).
326 The TMPRSS2 and Cathepsin B/L inhibitors worked synergistically to block original strain
327 and Omicron variant entry in a dose-dependent manner, albeit to different extents (Fig. 5B-D,
328 F-H).

329 At low drug levels, Bliss synergy, β_{Bliss} , was minimal because the chances of the drugs
330 acting together on the same cell were minimal (Fig. 5D, H). As the drug levels increased, the
331 synergy increased and plateaued at a value that depended on the expression levels of the
332 proteases and the viral strain (Fig. 5D, H). This effect could be understood by considering the
333 relative usage of the two entry pathways. In our calculations, drug synergy was high when the
334 relative preferences for the two pathways were similar, so that both pathways had to be blocked
335 and drugs targeting both pathways would thus synergize. When usage of either of the two
336 pathways dominated, the drug that blocked the dominant pathway alone had a role, leaving
337 little room for synergy. For instance, when TMPRSS2 levels were low (Fig. 5A), the original
338 strain used both pathways for entry (Fig. 5B), whereas the Omicron variant predominantly used

339 the Cathepsin B/L pathway. Consequently, the maximum synergy achieved against the original
340 strain ($\beta_{Bliss} = 0.34$) was higher than the Omicron variant ($\beta_{Bliss} = 0.07$) (Fig. 5B). In contrast,
341 when TMPRSS2 levels were high (Fig. 5E), the original strain predominantly used the
342 TMPRSS2 pathway, and the Omicron variant used both the pathways for entry. The synergy
343 for the Omicron variant ($\beta_{Bliss} = 0.54$) was now much higher than that for the original strain
344 ($\beta_{Bliss} = 0.38$) (Fig. 5H).

345 We next predicted synergy by varying either the mean expression levels of TMPRSS2
346 (Fig. 5I) or Cathepsin B/L (Fig. 5J). The synergy with the original strain and the Omicron
347 variant showed a non-monotonic dependence on protease expression levels. No synergy was
348 observed at low and high protease expression levels, when virus entry through one of the two
349 pathways was dominant (Fig. 5I, J). Synergy peaked at intermediate protease expression levels
350 when the usage of the two entry pathways was comparable (Fig. 5I, J). Because the Omicron
351 variant uses the TMPRSS2 pathway less efficiently and the Cathepsin B/L pathway more
352 efficiently than the original strain, synergy for Omicron peaked at a relatively higher
353 TMPRSS2 (Fig. 5I) and lower Cathepsin B/L (Fig. 5J) expression levels than for the original
354 strain. Drug levels that would yield optimal synergy would thus be different for the original
355 strain and the Omicron variant.

356 In summary, our model predicts that drug combinations targeting TMPRSS2 and
357 Cathepsin B/L inhibitors would synergistically block original strain and Omicron variant entry,
358 albeit to different extents in a protease expression level-dependent manner.

359

360 DISCUSSION

361 Recent studies have reported changes in cellular tropism and cell entry properties of the
362 Omicron variant compared to the original SARS-CoV-2 strain and other variant (Garcia-
363 Beltran et al., 2021; Hoffmann and et al, 2021; Meng et al., 2021; Peacock et al., 2022; Willett

364 et al., 2022; Zhao et al., 2021). Quantifying the changes in the preference of the Omicron
365 variant for different entry routes may help evaluate the efficacies of entry inhibitors in clinical
366 development and optimise entry inhibitor-based treatments (Gunst et al., 2021; Zhuravel et al.,
367 2021). Mathematical models of SARS-CoV-2 kinetics have provided valuable insights into
368 COVID-19 disease progression, drug action, and the effectiveness of vaccines and treatments
369 (Amidei and Dobrovolny, 2022; Chatterjee et al., 2022; Desikan et al., 2021; Garg et al., 2021;
370 Gonçalves et al., 2020; Goyal et al., 2020; Ke et al., 2021; Kissler et al., 2021; Néant et al.,
371 2021; Padmanabhan et al., 2022; Perelson and Ke, 2020). Here, adapting a previously
372 developed mathematical model of SARS-CoV-2 entry (Padmanabhan et al., 2020) to the
373 analysis of *in vitro* data on variants (Garcia-Beltran et al., 2021; Hoffmann and et al, 2021), we
374 quantified the altered usage of host proteases required for entry by the Omicron variant relative
375 to the original strain and the Delta variant. We then applied the model to examine the influence
376 of the latter on the efficacies and synergy of drugs targeting the host proteases mediating entry.

377 Our analysis suggests that the Omicron variant appears to have evolved to use
378 Cathepsin B/L more efficiently and TMPRSS2 less efficiently than the original strain and the
379 Delta variant for cell entry. Specifically, we estimated >4-fold enhanced efficiency in the usage
380 of the Cathepsin B/L pathway and >3-fold reduced efficiency in the usage of the TMPRSS2
381 pathway by the Omicron variant in the cell lines examined. The alteration in the preference of
382 the Omicron variant for entry pathways may have clinical implications. Drugs targeting
383 TMPRSS2, such as camostat mesylate (Hoffmann et al., 2020a), and the Cathepsin B/L
384 pathway, such as CA-074 methyl ester (Hashimoto et al., 2021), are in development. The
385 efficacy of TMPRSS2 inhibitors is likely to decrease and that of Cathepsin B/L inhibitors is
386 likely to increase against the Omicron strain. Our model predictions corroborated this
387 expectation. Available experimental data too are consistent with this expectation. Camostat
388 mesylate, a TMPRSS2 inhibitor, worked poorly against the Omicron variant compared to the

389 Delta variant in blocking infection *in vitro* (Zhao et al., 2021). Future studies may test whether
390 Cathepsin B/L inhibitors would work better against the Omicron variant than the original and
391 Delta strains. The mechanistic origins of the altered entry pathway usage by the Omicron
392 variant remain poorly elucidated. Although molecular dynamics simulations can offer insights
393 (Aggarwal et al., 2021; Ray et al., 2021; Zimmerman et al., 2021), the large number of
394 mutations in the spike protein of the Omicron variant render the mechanisms difficult to
395 unravel.

396 In a previous study, we predicted synergy between TMPRSS2 and Cathepsin B/L
397 inhibitors against original SARS-CoV-2 infection (Padmanabhan et al., 2020). This synergy
398 has since been observed experimentally (Hoffmann et al., 2020a; Kreutzberger et al., 2021).
399 Here, we predicted that the drugs would also exhibit synergy against the Omicron variant. The
400 extent of synergy and the drug concentrations at which the synergy would be maximum,
401 however, are likely to be different for the Omicron variant compared to the other strains. The
402 difference is expected because of the different entry pathway usages involved. Our formalism
403 offers a route to identify the optimal drug concentrations using the distributions of the
404 expression levels of the proteases and the dependent susceptibilities of cells to entry via the
405 two pathways as inputs. While such inputs have been available for other viruses such as HIV-
406 1 and hepatitis C virus and enabled quantitative model predictions (Brandenberg et al., 2015;
407 Koizumi et al., 2017; Magnus et al., 2009; Mulampaka and Dixit, 2011; Padmanabhan and
408 Dixit, 2011, 2015, 2017; Padmanabhan et al., 2014; Sen et al., 2019; Venugopal et al., 2018),
409 they are currently not available for SARS-CoV-2. Consequently, our findings of drug efficacies
410 and synergy, although robust, remain qualitative.

411 Since late 2021, more than a hundred Omicron sublineages, including BA.1.1, BA.2,
412 BA.2.3, BA.2.75, BA.2.9, BA.2.12.1, BA.3, BA.4, and BA.5, have emerged (Xia et al.,
413 2022). These sublineages have evolved to exhibit different transmissibility, virulence, and

414 immune evasion (Xia et al., 2022). Whether they also have different preferences for entry
415 routes is not fully understood. Our study has focussed on the BA.1 sublineage. Our model
416 presents a framework to analyse the emerging *in vitro* data and quantify the changes in the
417 entry pathways used by the other Omicron sublineages.

418 Implications of our findings also follow for our understanding of the cell tropism of the
419 Omicron variant. Because of its preferred and more efficient usage of the Cathepsin B/L
420 pathway, it is likely to preferentially infect cells expressing high levels of Cathepsin B/L. It
421 would be interesting to test whether such cells are present in greater abundance in the upper
422 respiratory tract, facilitating greater transmission of the Omicron variant than other pre-
423 Omicron variants. Similarly, future studies may test whether the reduced usage of TMPRSS2
424 results in less severe disease compared to the other variants.

425

426 **ACKNOWLEDGEMENTS**

427 We thank Rajat Desikan for help with Fig. 1A.

428

429 **COMPETING INTERESTS**

430 The authors declare that no conflicts of interests exist.

431

432 **REFERENCES**

433

434 Aggarwal, A., Naskar, S., Maroli, N., Gorai, B., Dixit, N.M., Maiti, P.K., 2021. Mechanistic
435 insights into the effects of key mutations on SARS-CoV-2 RBD-ACE2 binding. *Phys Chem
436 Chem Phys* 23, 26451-26458.

437 Amidei, A., Dobrovolny, H.M., 2022. Estimation of virus-mediated cell fusion rate of SARS-
438 CoV-2. *Virology* 575, 91-100.

439 Balistreri, G., Yamauchi, Y., Teesalu, T., 2021. A widespread viral entry mechanism: The C-
440 end Rule motif-neuropilin receptor interaction. *Proc Natl Acad Sci U S A* 118, e2112457118.

441 Brandenberg, O.F., Magnus, C., Regoes, R.R., Trkola, A., 2015. The HIV-1 entry process: A
442 stoichiometric view. *Trends Microbiol* 23, 763-774.

443 Cameroni, E., Bowen, J.E., Rosen, L.E., Saliba, C., Zepeda, S.K., Kulap, K., al., e., 2021.
444 Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. *Nature* 602,
445 664–670.

446 Chatterjee, B., Sandhu, H.S., Dixit, N.M., 2022. Modeling recapitulates the heterogeneous
447 outcomes of SARS-CoV-2 infection and quantifies the differences in the innate immune and
448 CD8 T-cell responses between patients experiencing mild and severe symptoms. *PLoS Pathog*
449 18, e1010630.

450 Desikan, R., Padmanabhan, P., Kierzek, A.M., van der Graaf, P.H., 2021. Mechanistic models
451 of COVID-19: Insights into disease progression, vaccines, and therapeutics. *Int J Antimicrob
452 Agents* 60, 106606.

453 Garcia-Beltran, W.F., Denis, K.J.S., Hoelzemer, A., Lam, E.C., Nitido, A.D., Sheehan, M.L.,
454 Berrios, C., al., e., 2021. mRNA-based COVID-19 vaccine boosters induce neutralizing
455 immunity against SARS-CoV-2 Omicron variant. *Cell* 185, 457-466.

456 Garg, A.K., Mittal, S., Padmanabhan, P., Desikan, R., Dixit, N.M., 2021. Increased B cell
457 selection stringency in germinal centers can explain improved COVID-19 vaccine efficacies
458 with low dose prime or delayed boost. *Front Immunol* 12, 776933.

459 Gonçalves, A., Bertrand, J., Ke, R., Comets, E., de Lamballerie, X., Malvy, D., Pizzorno, A.,
460 Terrier, O., Rosa Calatrava, M., Mentré, F., Smith, P., Perelson, A.S., Guedj, J., 2020. Timing
461 of antiviral treatment initiation is critical to reduce SARS-CoV-2 viral load. *CPT: Pharmacometrics Syst Pharmacol* 9, 509-514.

463 Goyal, A., Cardozo-Ojeda, E.F., Schiffer, J.T., 2020. Potency and timing of antiviral therapy
464 as determinants of duration of SARS-CoV-2 shedding and intensity of inflammatory response.
465 *Sci Adv* 6, eabc7112.

466 Gunst, J.D., Staerke, N.B., Pahus, M.H., Kristensen, L.H., Bodilsen, J., Lohse, N., Dalgaard,
467 L.S., Brønnum, D., Fröbert, O., Hønge, B., Johansen, I.S., Monrad, I., Erikstrup, C., Rosendal,
468 R., Vilstrup, E., Mariager, T., Bove, D.G., Offersen, R., Shakar, S., Cajander, S., Jørgensen,
469 N.P., Sritharan, S.S., Breining, P., Jespersen, S., Mortensen, K.L., Jensen, M.L., Kolte, L.,
470 Frattari, G.S., Larsen, C.S., Storgaard, M., Nielsen, L.P., Tolstrup, M., Sædder, E.A.,
471 Østergaard, L.J., Ngo, H.T.T., Jensen, M.H., Højen, J.F., Kjolby, M., Søgaard, O.S., 2021.
472 Efficacy of the TMPRSS2 inhibitor camostat mesilate in patients hospitalized with Covid-19-
473 a double-blind randomized controlled trial. *EClinicalMedicine* 35, 100849.

474 Hashimoto, R., Sakamoto, A., Deguchi, S., Yi, R., Sano, E., Hotta, A., Takahashi, K.,
475 Yamanaka, S., Takayama, K., 2021. Dual inhibition of TMPRSS2 and Cathepsin B prevents
476 SARS-CoV-2 infection in iPS cells. *Mol Ther Nucleic Acids* 26, 1107-1114.

477 Hoffmann, M., et al, 2021. The Omicron variant is highly resistant against antibody-mediated
478 neutralization: Implications for control of the COVID-19 pandemic. *Cell* 185, 447-456.

479 Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S.,
480 Schiergens, T.S., Herrler, G., Wu, N.H., Nitsche, A., Müller, M.A., Drosten, C., Pöhlmann, S.,
481 2020a. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically
482 proven protease inhibitor. *Cell* 181, 271-280.

483 Hoffmann, M., Schroeder, S., Kleine-Weber, H., Müller, M.A., Drosten, C., Pöhlmann, S.,
484 2020b. Nafamostat mesylate blocks activation of SARS-CoV-2: New treatment option for
485 COVID-19. *Antimicrob Agents Chemother* 64, e00754-00720.

486 Jackson, C.B., Farzan, M., Chen, B., Choe, H., 2022. Mechanisms of SARS-CoV-2 entry into
487 cells. *Nat Rev Mol Cell Biol* 23, 3-20.

488 Jiang, Y., van der Welle, J.E., Rubingh, O., van Eikenhorst, G., Bakker, W.A.M., Thomassen,
489 Y.E., 2019. Kinetic model for adherent Vero cell growth and poliovirus production in batch
490 bioreactors. *Process Biochem* 81, 156-164.

491 Ke, R., Zitzmann, C., Ho, D.D., Ribeiro, R.M., Perelson, A.S., 2021. In vivo kinetics of SARS-
492 CoV-2 infection and its relationship with a person's infectiousness. *Proc Natl Acad Sci U S A*
493 118, e2111477118.

494 Kissler, S.M., Fauver, J.R., Mack, C., Tai, C.G., Breban, M.I., Watkins, A.E., Samant, R.M.,
495 Anderson, D.J., Metti, J., Khullar, G., Baits, R., MacKay, M., Salgado, D., Baker, T., Dudley,
496 J.T., Mason, C.E., Ho, D.D., Grubaugh, N.D., Grad, Y.H., 2021. Viral dynamics of SARS-
497 CoV-2 variants in vaccinated and unvaccinated persons. *N Engl J Med* 385, 2489-2491.

498 Koch, J., Uckley, Z.M., Doldan, P., Stanifer, M., Boulant, S., Lozach, P.Y., 2021. TMPRSS2
499 expression dictates the entry route used by SARS-CoV-2 to infect host cells. *EMBO J* 40,
500 e107821.

501 Koizumi, Y., Ohashi, H., Nakajima, S., Tanaka, Y., Wakita, T., Perelson, A.S., Iwami, S.,
502 Watashi, K., 2017. Quantifying antiviral activity optimizes drug combinations against hepatitis
503 C virus infection. *Proc Natl Acad Sci U S A* 114, 1922-1927.

504 Kreutzberger, A.J.B., Sanyal, A., Ojha, R., Pyle, J.D., Vapalahti, O., Balistreri, G.,
505 Kirchhausen, T., 2021. Synergistic block of SARS-CoV-2 infection by combined drug
506 inhibition of the host entry factors PIKfyve kinase and TMPRSS2 protease. *J Virol* 95,
507 e0097521.

508 Liu, J., Li, Y., Liu, Q., Yao, Q., Wang, X., Zhang, H., Chen, R., Ren, L., Min, J., Deng, F.,
509 Yan, B., Liu, L., Hu, Z., Wang, M., Zhou, Y., 2021. SARS-CoV-2 cell tropism and multiorgan
510 infection. *Cell Discov* 7, 17.

511 Magnus, C., Rusert, P., Bonhoeffer, S., Trkola, A., Regoes, R.R., 2009. Estimating the
512 stoichiometry of human immunodeficiency virus entry. *J Virol* 83, 1523-1531.

513 Meng, B., Ferreira, I.A.T.M., Abdullahi, A., Saito, A., Kimura, I., al., e., 2021. Altered
514 TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. *Nature* 603,
515 706-714.

516 Mulampaka, S.N., Dixit, N.M., 2011. Estimating the threshold surface density of Gp120-CCR5
517 complexes necessary for HIV-1 envelope-mediated cell-cell fusion. *PLoS One* 6, e19941.

518 Néant, N., Lingas, G., Le Hingrat, Q., Ghosn, J., Engelmann, I., Lepiller, Q., Gaymard, A.,
519 Ferré, V., Hartard, C., Plantier, J.C., Thibault, V., Marlet, J., Montes, B., Bouiller, K., Lescure,
520 F.X., Timsit, J.F., Faure, E., Poissy, J., Chidiac, C., Raffi, F., Kimmoun, A., Etienne, M.,
521 Richard, J.C., Tattevin, P., Garot, D., Le Moing, V., Bachelet, D., Tardivon, C., Duval, X.,
522 Yazdanpanah, Y., Mentré, F., Laouénan, C., Visseaux, B., Guedj, J., 2021. Modeling SARS-

523 CoV-2 viral kinetics and association with mortality in hospitalized patients from the French
524 COVID cohort. *Proc Natl Acad Sci U S A* 118, e2017962118.

525 Ou, T., Mou, H., Zhang, L., Ojha, A., Choe, H., Farzan, M., 2021. Hydroxychloroquine-
526 mediated inhibition of SARS-CoV-2 entry is attenuated by TMPRSS2. *PLoS Pathog* 17,
527 e1009212.

528 Padmanabhan, P., Desikan, R., Dixit, N.M., 2020. Targeting TMPRSS2 and Cathepsin B/L
529 together may be synergistic against SARS-CoV-2 infection. *PLoS Comput Biol* 16, e1008461.

530 Padmanabhan, P., Desikan, R., Dixit, N.M., 2022. Modeling how antibody responses may
531 determine the efficacy of COVID-19 vaccines. *Nat Comput Sci* 2, 123-131.

532 Padmanabhan, P., Dixit, N.M., 2011. Mathematical model of viral kinetics in vitro estimates
533 the number of E2-CD81 complexes necessary for hepatitis C virus entry. *PLoS Comput Biol*
534 7, e1002307.

535 Padmanabhan, P., Dixit, N.M., 2012. Viral kinetics suggests a reconciliation of the disparate
536 observations of the modulation of claudin-1 expression on cells exposed to hepatitis C virus.
537 *PLoS One* 7, e36107.

538 Padmanabhan, P., Dixit, N.M., 2015. Modeling suggests a mechanism of synergy between
539 hepatitis C virus entry inhibitors and drugs of other classes. *CPT Pharmacometrics Syst
540 Pharmacol* 4, 445-453.

541 Padmanabhan, P., Dixit, N.M., 2017. Inhibitors of hepatitis C virus entry may be potent
542 ingredients of optimal drug combinations. *Proc Natl Acad Sci U S A* 114, E4524-E4526.

543 Padmanabhan, P., Garaigorta, U., Dixit, N.M., 2014. Emergent properties of the interferon-
544 signalling network may underlie the success of hepatitis C treatment. *Nature Commun* 5, 3872.

545 Peacock, T.P., Brown, J.C., Zhou, J., Thakur, N., Sukhova, K., Newman, J., Kugathasan, R.,
546 Yan, A.W., Furnon, W., De Lorenzo, G., 2022. The altered entry pathway and antigenic
547 distance of the SARS-CoV-2 Omicron variant map to separate domains of spike protein.
548 *bioRxiv*.

549 Perelson, A.S., Ke, R., 2020. Mechanistic modeling of SARS-CoV-2 and other infectious
550 diseases and the effects of therapeutics. *Clin Pharmacol Ther*, 10.1002/cpt.2160.

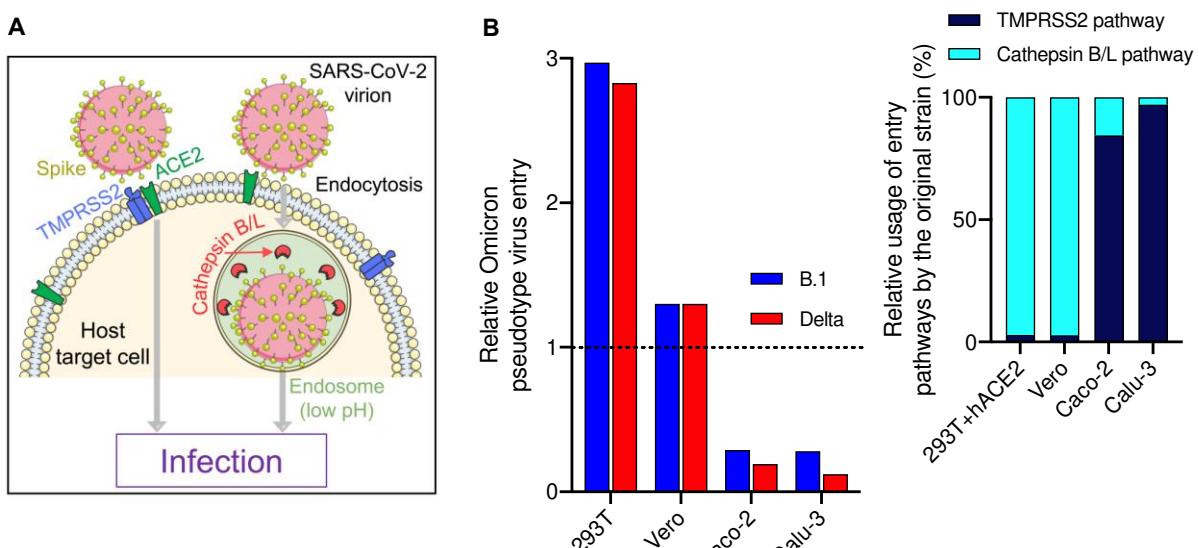
551 Ray, D., Le, L., Andricioaei, I., 2021. Distant residues modulate conformational opening in
552 SARS-CoV-2 spike protein. *Proc Natl Acad Sci U S A* 118, e2100943118.

553 Sen, P., Saha, A., Dixit, N.M., 2019. You cannot have your synergy and efficacy too. *Trends
554 Pharmacol Sci* 40, 811-817.

555 Ursache, R.V., Thomassen, Y.E., van Eikenhorst, G., Verheijen, P.J., Bakker, W.A., 2015.
556 Mathematical model of adherent Vero cell growth and poliovirus production in animal
557 component free medium. *Bioprocess Biosyst Eng* 38, 543-555.

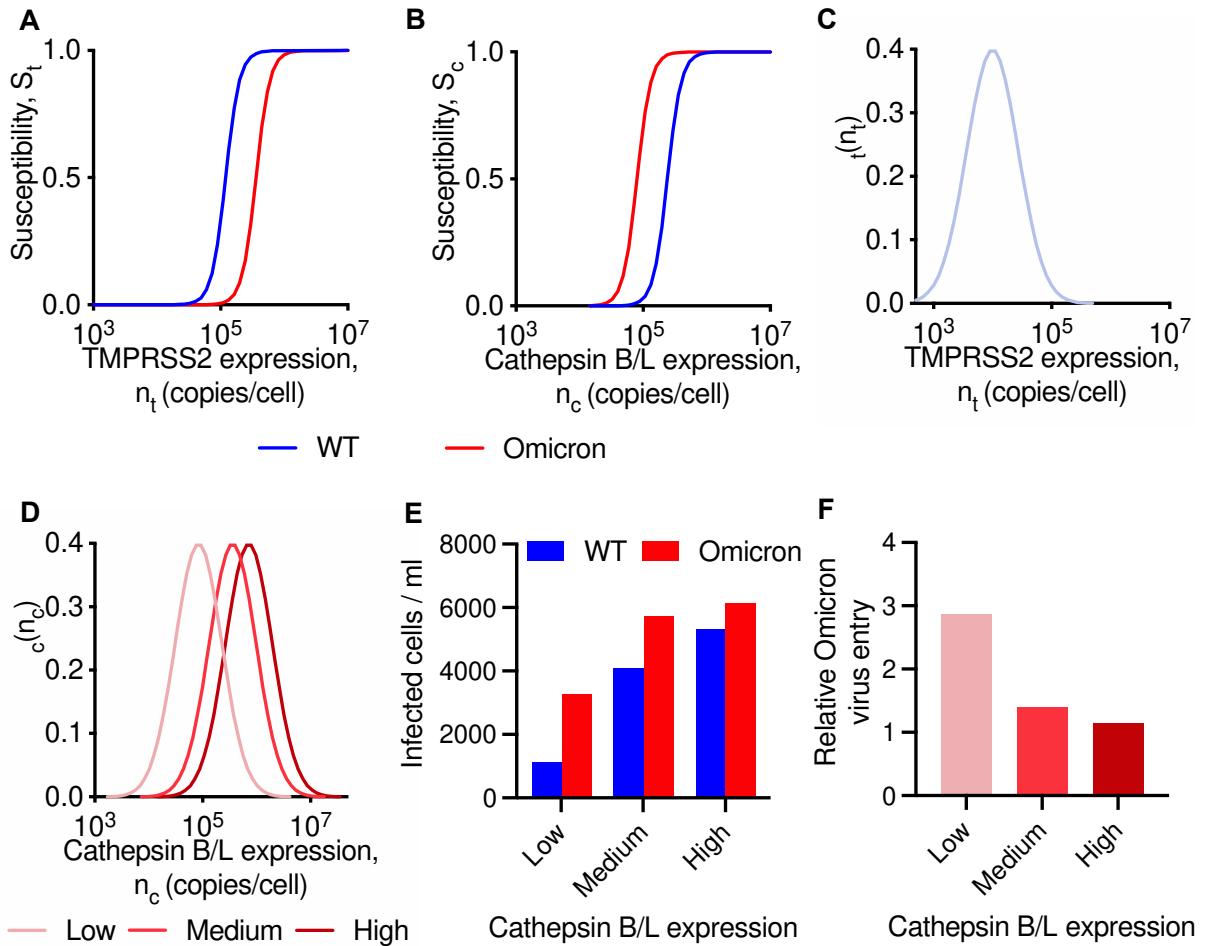
558 Venugopal, V., Padmanabhan, P., Raja, R., Dixit, N.M., 2018. Modelling how responsiveness
559 to interferon improves interferon-free treatment of hepatitis C virus infection. *PLoS Comput
560 Biol* 14, e1006335.

561 Willett, B.J., Grove, J., MacLean, O.A., Wilkie, C., De Lorenzo, G., Furnon, W., Cantoni, D.,
562 Scott, S., Logan, N., Ashraf, S., Manali, M., Szemiel, A., Cowton, V., Vink, E., Harvey, W.T.,
563 Davis, C., Asamaphan, P., Smollett, K., Tong, L., Orton, R., Hughes, J., Holland, P., Silva, V.,
564 Pascall, D.J., Puxty, K., da Silva Filipe, A., Yebra, G., Shaaban, S., Holden, M.T.G., Pinto,
565 R.M., Gunson, R., Templeton, K., Murcia, P.R., Patel, A.H., Klenerman, P., Dunachie, S.,
566 Haughney, J., Robertson, D.L., Palmarini, M., Ray, S., Thomson, E.C., 2022. SARS-CoV-2
567 Omicron is an immune escape variant with an altered cell entry pathway. *Nat Microbiol* 7,
568 1161-1179.


569 Xia, S., Wang, L., Zhu, Y., Lu, L., Jiang, S., 2022. Origin, virological features, immune evasion
570 and intervention of SARS-CoV-2 Omicron sublineages. *Signal Transduct Target Ther* 7, 241.

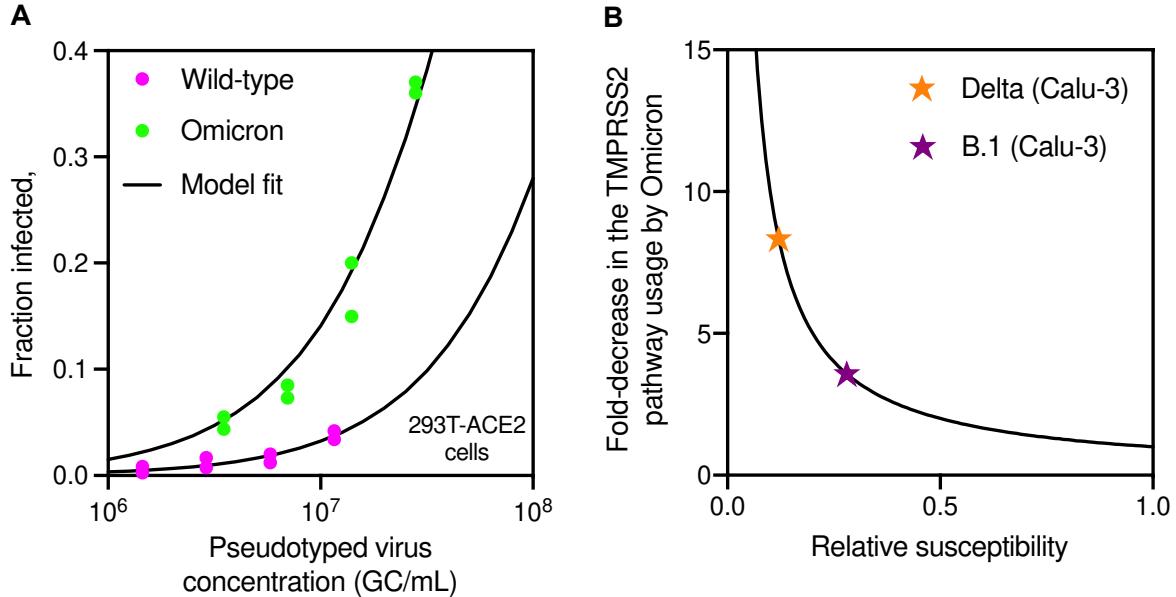
571 Zhao, H., Lu, L., Peng, Z., Chen, L.L., Meng, X., Zhang, C., Ip, J.D., Chan, W.M., Chu, A.W.,
572 Chan, K.H., Jin, D.Y., Chen, H., Yuen, K.Y., To, K.K., 2021. SARS-CoV-2 Omicron variant
573 shows less efficient replication and fusion activity when compared with delta variant in
574 TMPRSS2-expressed cells. *Emerg Microbes Infect* 11, 277-283.

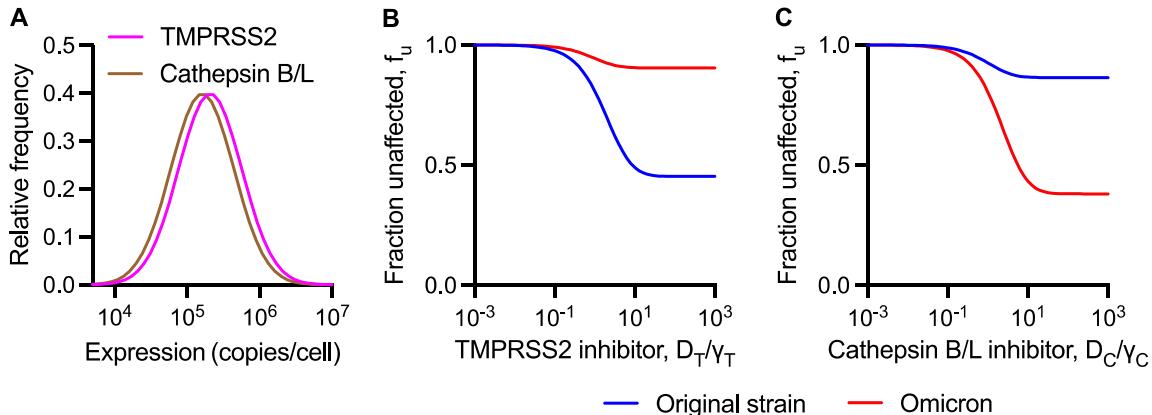
575 Zhuravel, S.V., Khmelnitskiy, O.K., Burlaka, O.O., Gritsan, A.I., Goloshchekin, B.M., Kim,
576 S., Hong, K.Y., 2021. Nafamostat in hospitalized patients with moderate to severe COVID-19
577 pneumonia: a randomised Phase II clinical trial. *EClinicalMedicine* 41, 101169.


578 Zimmerman, M.I., Porter, J.R., Ward, M.D., Singh, S., Vithani, N., Meller, A., Mallimadugula,
579 U.L., Kuhn, C.E., Borowsky, J.H., Wiewiora, R.P., Hurley, M.F.D., Harbison, A.M., Fogarty,
580 C.A., Coffland, J.E., Fadda, E., Voelz, V.A., Chodera, J.D., Bowman, G.R., 2021. SARS-CoV-
581 2 simulations go exascale to predict dramatic spike opening and cryptic pockets across the
582 proteome. *Nat Chem* 13, 651-659.

583

584

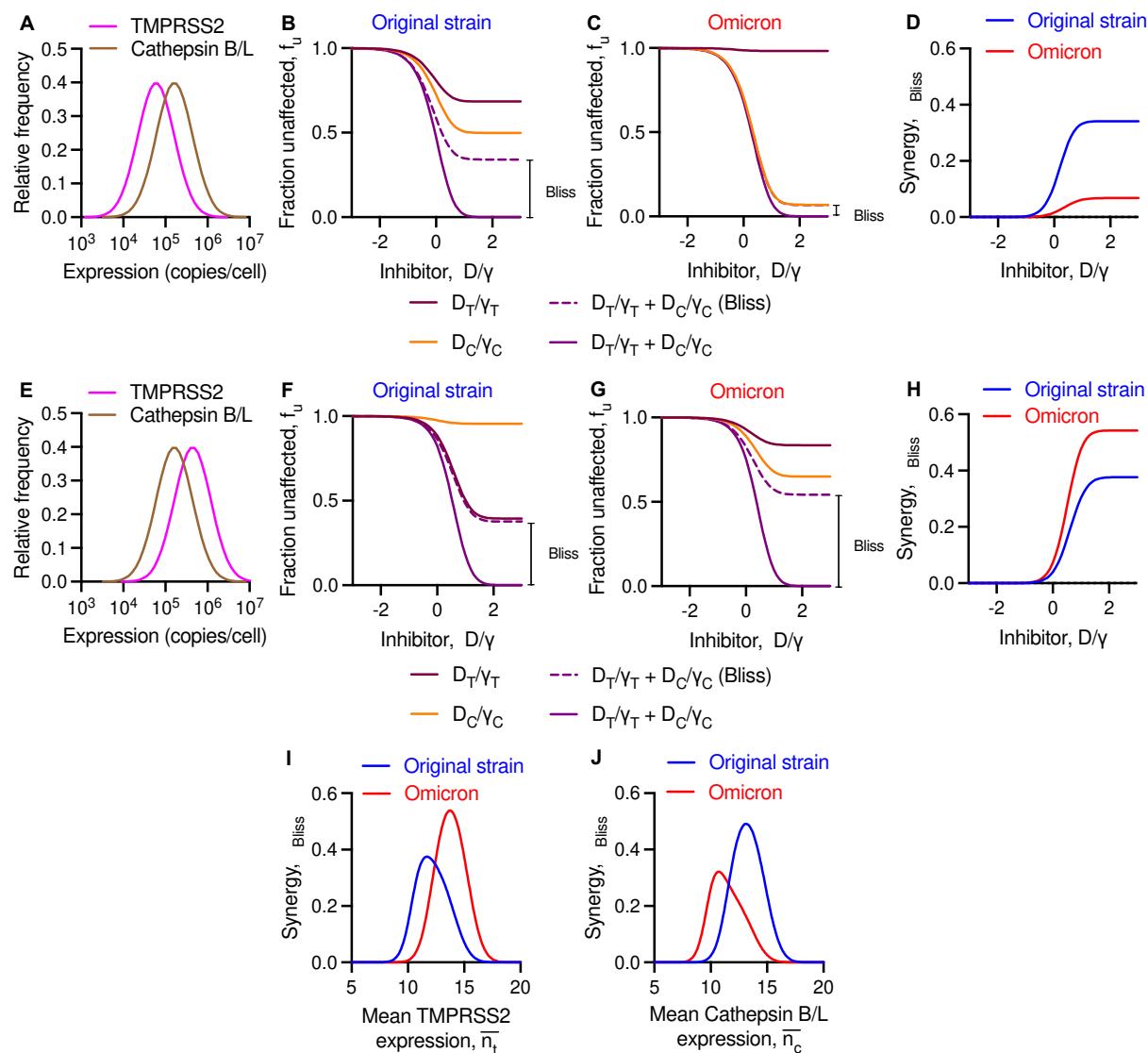

585 **Figure 1. Omicron variant entry efficiency relative to B.1 and Delta strains correlates**
586 **with the relative usage of the TMPRSS2 and Cathepsin B/L pathways. (A)** Schematic of
587 the two independent entry pathways accessible to SARS-CoV-2. **(B)** The Omicron entry
588 efficiency relative to either the B.1 (blue) or the Delta (red) variant across cell types. Data was
589 taken from Hoffmann et al. (2021). *Inset*, the relative usage of the entry pathways by the
590 original strain. Data was taken from Padmanabhan et al. (2020).
591


592
593

594 **Figure 2. The relative entry efficiency of the Omicron variant depends on the protease**
 595 **expression. (A, B)** Dependence of susceptibility of infection on TMPrSS2 (A) and Cathepsin
 596 B/L (B) expression levels for the original strain (blue line) and Omicron variant (red line). (C)
 597 The log-normal distribution of TMPrSS2 across cells with the mean TMPrSS2 expression
 598 levels $\bar{n}_t = 9.21$. (D) The log-normal distribution of Cathepsin B/L across cells with low (\bar{n}_c
 599 = 11.34), medium ($\bar{n}_c = 12.79$) and high ($\bar{n}_c = 13.49$) mean Cathepsin B/L expression levels.
 600 (E, F) Cells infected by the wild-type (blue bar) and Omicron variant (red bar) (E) and the
 601 Omicron entry efficiency relative to the original strain (F) at different Cathepsin B/L
 602 expression levels shown in Fig. 2D and fixed TMPrSS2 expression level shown in Fig. 2C.
 603 The other parameters and initial conditions are listed in Table 1.

604

605
606 **Figure 3. Estimation of entry pathway usage by the Omicron variant.** (A) Fits of model
607 predictions (lines) to the experimental data (symbols) taken from Garcia-Beltran et al. (2021)
608 measuring the fraction of cells infected by pseudotyped virus bearing either the wild-type or
609 the Omicron spike proteins. Data was fit using the tool NLINFIT in MATLAB R2017b. (B)
610 The fold-decrease in Omicron entry efficiency through the TMPRSS2 pathway as a function
611 of relative susceptibility to entry. Symbols place experimental data of relative infection taken
612 from Hoffmann et al. (2021) on the relative susceptibility curve predicted (see text) so that the
613 fold decrease can be read off. In A and B, experimental data was extracted using Engauge
614 Digitizer 12.1.
615


616

617 **Figure 4. Predictions of the efficacies of TMPRSS2 and Cathepsin B/L inhibitors against**
618 **the wild-type and Omicron variant. (A)** The log-normal distribution of TMPRSS2 and
619 cathepsin B/L across cells. **(B, C)** The fraction of infection events caused by the original strain
620 (blue line) and Omicron variant (red line) uninhibited by different concentrations of a
621 TMPRSS2 inhibitor (B) and a Cathepsin B/L inhibitor (C). In A-C, $\bar{n}_c = 12$ and $\bar{n}_t = 12.25$.
622 In D-E, $\bar{n}_c = 12$. In F-G, $\bar{n}_t = 12.25$. The other parameters and initial conditions are listed in
623 Table 1.

624

625

626

627

628 **Figure 5. Predictions of the effect of combination treatment targeting both TMPRSS2**
629 **and Cathepsin B/L pathways against the original strain and Omicron variant. (A-D)** The
630 log-normal distribution of TMPRSS2 and cathepsin B/L across cells (A) employed to predict
631 the fraction of infection events caused by the original strain (B) and the Omicron variant (C)
632 unaffected by Cathepsin B/L inhibitor, TMPRSS2 inhibitor or both and the Bliss synergy (D)
633 over a range of drug concentrations. (E-H) The log-normal distribution of TMPRSS2 and
634 cathepsin B/L across cells (E) employed to predict the fraction of infection events caused by
635 the original strain (F) and the Omicron variant (G) unaffected by Cathepsin B/L inhibitor,
636 TMPRSS2 inhibitor or both and the Bliss synergy (H) over a range of drug concentrations. In
637 B, C, F, and G, the extent of Bliss synergy is marked. (I, J) The predicted Bliss synergy for
638 varying TMPRSS2 expression and fixed mean ($\bar{n}_c = 12$) Cathepsin B/L expression and for
639 varying Cathepsin B/L expression and fixed mean ($\bar{n}_t = 12$) TMPRSS2 expression at two
640 different drug concentrations. In B-D and F-H, $D_C/\gamma_C = D_T/\gamma_T = D/\gamma$. In I, $\bar{n}_c = 12$. In J, $\bar{n}_t =$
641 12. In I-J, $D_C/\gamma_C = D_T/\gamma_T = 10$. The other parameters and initial conditions are listed in Table 1.

642

643

644 **Table 1: Model parameters and their values.**

Parameter	Description	Values	Ref.
λ	Target cell proliferation rate constant	0.77 d ⁻¹	(Jiang et al., 2019)
μ	Target cell death rate constant	0.22 d ⁻¹	(Ursache et al., 2015)
δ	Infected cell death rate constant	0.53 d ⁻¹	(Gonçalves et al., 2020)
c_V	Virion clearance rate constant	10 d ⁻¹	(Gonçalves et al., 2020)
k	Infection rate constant of cells with excess proteases	1x10 ⁻⁴ ml ffu ⁻¹ d ⁻¹	(Padmanabhan and Dixit, 2015)
$T(0)$	Initial target cells	1x10 ⁵ cell ml ⁻¹	(Padmanabhan and Dixit, 2015)
$V(0)$	Initial viral titre	1x10 ⁴ ffu ml ⁻¹	(Padmanabhan and Dixit, 2015)
t_d	Time of assessment	24 h	(Hoffmann et al., 2020a)
h_t	Hill coefficient	4	(Padmanabhan and Dixit, 2015)
h_c	Hill coefficient	4	(Padmanabhan and Dixit, 2015)
\bar{n}_t	Mean of TMPRSS2 distribution	6 – 18	Varied
\bar{n}_c	Mean of Cathepsin B/L distribution	6 – 18	Varied
n_t^{50} (Original strain)	TMPRSS2 expression at which $S_t = 0.5$	1.2 x 10 ⁵ copies/cell	Assumed
n_c^{50} (Original strain)	Cathepsin B/L expression at which $S_c = 0.5$	2.4 x 10 ⁵ copies/cell	Assumed
n_t^{50} (Omicron variant)	TMPRSS2 expression at which $S_t = 0.5$	3.6 x 10 ⁵ copies/cell	Assumed
n_c^{50} (Omicron variant)	Cathepsin B/L expression at which $S_c = 0.5$	8 x 10 ⁴ copies/cell	Assumed
σ_t	Standard deviation of TMPRSS2 distribution	1	(Padmanabhan and Dixit, 2015)
σ_c	Standard deviation of Cathepsin B/L distribution	1	(Padmanabhan and Dixit, 2015)

645 *ffu stands for focus-forming units. We set $p = 0$ for pseudoviruses.